JP2015193715A - start-up method of sour shift catalyst - Google Patents

start-up method of sour shift catalyst Download PDF

Info

Publication number
JP2015193715A
JP2015193715A JP2014071947A JP2014071947A JP2015193715A JP 2015193715 A JP2015193715 A JP 2015193715A JP 2014071947 A JP2014071947 A JP 2014071947A JP 2014071947 A JP2014071947 A JP 2014071947A JP 2015193715 A JP2015193715 A JP 2015193715A
Authority
JP
Japan
Prior art keywords
gas
shift catalyst
shift
gasification
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071947A
Other languages
Japanese (ja)
Other versions
JP6343474B2 (en
Inventor
和仁 市原
Kazuhito Ichihara
和仁 市原
博宗 鈴木
Hiromune Suzuki
博宗 鈴木
洋一 安田
Yoichi Yasuda
洋一 安田
哲 本橋
Satoru Motohashi
哲 本橋
鈴木 英樹
Hideki Suzuki
英樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Chiyoda Corp
Original Assignee
Electric Power Development Co Ltd
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Chiyoda Corp filed Critical Electric Power Development Co Ltd
Priority to JP2014071947A priority Critical patent/JP6343474B2/en
Publication of JP2015193715A publication Critical patent/JP2015193715A/en
Application granted granted Critical
Publication of JP6343474B2 publication Critical patent/JP6343474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PROBLEM TO BE SOLVED: To provide a start-up method enabling a shift catalyst to exhibit activity, even in the case of the catalyst having low activity.SOLUTION: The method includes: a first step of circulating heated nitrogen gas through a pre-sulfurized shift catalyst; a second step of gradually introducing a gasification gas into the shift catalyst until reaching a specified gas flow less than the supply amount in the steady operation while gradually decreasing the circulation amount of the nitrogen gas; a third step of continuing the supply of the gasification gas to the shift catalyst at the specified gas flow for a specified time, preferably under an atmospheric pressure of the shift catalyst maintained at about the pressure in the steady operation, with the zero amount of the circulating nitrogen; and a fourth step of increasing the supply amount of the gasification gas to the shift catalyst to the supply amount in the steady operation after the passage of the specified time. Preferably the circulating nitrogen gas includes 50 to 5000 ppmv of hydrogen sulfide and carbonyl sulfide, and the gasification gas includes 50 to 5000 ppmv of hydrogen sulfide and carbonyl sulfide.

Description

本発明は、サワーシフト触媒のスタートアップ方法に関し、特に石炭ガス化プロセスで使用するサワーシフト触媒のスタートアップ方法に関する。   The present invention relates to a sour shift catalyst start-up method, and more particularly to a sour shift catalyst start-up method used in a coal gasification process.

石炭は可採埋蔵量が豊富で採掘可能な地域の偏在性が低いため、将来に亘って低価格で安定して調達可能であるという利点を有しているが、一方で石炭を燃焼すると硫黄酸化物等の環境汚染物質が発生するうえ、他のエネルギー源に比べて二酸化炭素(CO)の排出量の割合が高いという課題も有している。そこで、近年、環境負荷を抑えつつ石炭を有効活用できる技術として、石炭を直接燃焼せずにガス化する石炭ガス化プロセスが注目を集めている。 Coal is rich in recoverable reserves and has a low ubiquity in the minable area, so it has the advantage that it can be procured stably at a low price in the future. In addition to the generation of environmental pollutants such as oxides, there is a problem that the proportion of carbon dioxide (CO 2 ) emissions is higher than other energy sources. Therefore, in recent years, a coal gasification process in which coal is gasified without directly burning it is attracting attention as a technology that can effectively use coal while suppressing environmental load.

石炭ガス化プロセスは、空気又は酸素雰囲気の下、石炭をガス化して主に一酸化炭素(CO)と水素(H)とからなるガス化ガス(合成ガスとも称する)を生成することを中核とする技術であり、種々の前処理や後処理と組み合わせることで、複合発電や燃料電池、合成液体燃料などの化学品原料、水素製造など、幅広い用途への利用が期待されている。例えば特許文献1には、石炭ガス化プロセスを複合発電に適用した石炭ガス化複合発電設備(IGCC)が開示されている。 The coal gasification process is centered on gasification of coal under air or oxygen atmosphere to generate gasification gas (also called synthesis gas) mainly composed of carbon monoxide (CO) and hydrogen (H 2 ). By combining with various pre-treatments and post-treatments, it is expected to be used for a wide range of applications such as combined power generation, chemical raw materials such as fuel cells and synthetic liquid fuels, and hydrogen production. For example, Patent Document 1 discloses a combined coal gasification combined power generation facility (IGCC) in which a coal gasification process is applied to combined power generation.

石炭ガス化複合発電設備は、ガス化炉で生成したガス化ガスの燃焼エネルギーでガスタービンを駆動し、更にその排熱で得た蒸気で蒸気タービンを駆動して複合発電するものである。特に特許文献1のプロセスでは、ガス化ガスを燃焼する前に、ガス化ガスをシフト反応装置内に導入してガス化ガス中の一酸化炭素に水を作用させて水素と二酸化炭素に変換し、更に、脱炭酸装置に導入してガス化ガスから二酸化炭素を除去している。   The coal gasification combined power generation facility is configured to drive a gas turbine with combustion energy of gasified gas generated in a gasification furnace, and further drive a steam turbine with steam obtained from the exhaust heat to perform combined power generation. In particular, in the process of Patent Document 1, before the gasified gas is combusted, the gasified gas is introduced into the shift reactor and water is allowed to act on carbon monoxide in the gasified gas to convert it into hydrogen and carbon dioxide. Furthermore, carbon dioxide is removed from the gasification gas by introducing the carbon dioxide into a decarbonator.

特許第2870929号公報Japanese Patent No. 2870929

上記したように、燃焼前にガス化ガスをシフト反応装置及び脱炭酸装置に導入することにより、極めて効率よくガス化ガスから二酸化炭素を回収することができ、更に発電設備の発電効率を高めることが可能となる。ところで、石炭ガス化ガスなどの硫黄化合物を含むガスを処理対象としたシフト反応装置をスタートアップする時は、あらかじめ予備硫化されたシフト触媒が充填されているシフト反応装置に対して先ず加熱した窒素を循環して所定の温度までシフト触媒を加熱した後、この循環する窒素をガス化ガスに徐々に切り替える方法がとられてきた。   As described above, by introducing the gasification gas into the shift reaction device and the decarbonation device before combustion, it is possible to recover carbon dioxide from the gasification gas extremely efficiently, and further increase the power generation efficiency of the power generation facility. Is possible. By the way, when starting up a shift reactor for treating a gas containing a sulfur compound such as coal gasification gas, heated nitrogen is first added to the shift reactor filled with a presulfided shift catalyst in advance. After circulating and heating the shift catalyst to a predetermined temperature, a method of gradually switching the circulating nitrogen to gasification gas has been used.

しかしながら、上記したスタートアップ時やその後の再スタートアップ時、ガス化ガスを導入する際にシフト反応がほとんど発現しない現象が起こることがあった。本発明は、かかる従来の問題に鑑みてなされたものであり、活性が低い触媒(ここで、触媒とは反応器全体の触媒層を指す)であっても、シフト反応を発現させることができるスタートアップ方法を提供することを目的としている。   However, at the time of start-up described above and at the subsequent re-start-up, there is a case in which a shift reaction hardly occurs when gasified gas is introduced. The present invention has been made in view of such a conventional problem, and a shift reaction can be developed even with a catalyst having low activity (here, the catalyst refers to the catalyst layer of the entire reactor). It aims to provide a startup method.

上記目的を達成するため、本発明が提供するシフト触媒のスタートアップ方法は、予備硫化されたシフト触媒に加熱した窒素ガスを循環させる第1工程と、前記窒素ガスの循環量を徐々に減少させながらシフト触媒にガス化ガスを定常運転時の供給量未満の所定のガス流量に達するまで徐々に導入していく第2工程と、前記窒素ガスの循環量をゼロにしてシフト触媒へのガス化ガスの供給を前記所定のガス流量のまま所定時間継続する第3工程と、前記所定時間の経過後にシフト触媒へのガス化ガスの供給量を前記定常運転時の供給量まで増加させる第4工程とからなることを特徴としている。   In order to achieve the above object, a start-up method of a shift catalyst provided by the present invention includes a first step of circulating heated nitrogen gas to a presulfided shift catalyst, while gradually reducing the circulation amount of the nitrogen gas. A second step of gradually introducing gasified gas into the shift catalyst until a predetermined gas flow rate less than the supply amount during steady operation is reached, and the gasification gas to the shift catalyst with zero circulation of the nitrogen gas And a fourth step of increasing the supply amount of the gasification gas to the shift catalyst to the supply amount during the steady operation after elapse of the predetermined time; and It is characterized by consisting of.

本発明によれば、活性が低いシフト触媒であっても、シフト反応を発現させることが可能になる。   According to the present invention, it is possible to develop a shift reaction even with a shift catalyst having low activity.

本発明のシフト触媒のスタートアップ方法を好適に適用できるシフト反応装置を備えた石炭ガス化複合発電を示すブロックフロー図である。It is a block flow figure showing coal gasification combined cycle power generation provided with the shift reaction device which can apply the start-up method of the shift catalyst of the present invention suitably. 図1のシフト反応装置の模式的なフロー図である。It is a typical flowchart of the shift reaction apparatus of FIG. 本発明のシフト触媒のスタートアップ方法の一例を示すタイムチャートである。It is a time chart which shows an example of the start-up method of the shift catalyst of this invention.

以下、本発明のシフト触媒のスタートアップ方法について具体例を挙げて説明する。先ず、本発明のシフト触媒のスタートアップ方法が好適に適用されるシフト反応装置を備えた石炭ガス化複合発電設備について図1を参照しながら説明する。この図1に示す石炭ガス化複合発電設備は、石炭をガス化するガス化装置10と、ガス化装置10で生成されたガス化ガス中の一酸化炭素を二酸化炭素に変換するシフト反応装置20と、シフト反応装置20から排出されるガス化ガスから硫化水素を分離すると共に、二酸化炭素を分離する脱硫・脱炭酸装置30と、硫化水素および二酸化炭素が除去されたガス化ガスの燃焼エネルギーを用いて発電を行う複合発電装置40とで主に構成されている。   Hereinafter, the start-up method of the shift catalyst of the present invention will be described with specific examples. First, a coal gasification combined power generation facility equipped with a shift reaction apparatus to which the shift catalyst start-up method of the present invention is preferably applied will be described with reference to FIG. The coal gasification combined power generation facility shown in FIG. 1 includes a gasification device 10 that gasifies coal, and a shift reaction device 20 that converts carbon monoxide in the gasification gas generated by the gasification device 10 into carbon dioxide. And the desulfurization / decarboxylation device 30 for separating hydrogen sulfide from the gasification gas discharged from the shift reaction device 20 and carbon dioxide, and the combustion energy of the gasification gas from which hydrogen sulfide and carbon dioxide have been removed. It is mainly composed of a combined power generator 40 that generates power using the power generator.

各装置について図2をも参照しながら具体的に説明すると、ガス化装置10は、石炭をガス化に適した形態にして供給する石炭供給手段(図示せず)と、ガス化剤を供給するガス化剤供給手段(図示せず)と、石炭をガス化するガス化炉(図示せず)とから主に構成される。ガス化炉の内部は、ガス化剤として供給された空気若しくは酸素によって高温高圧雰囲気になっており、ここにスラリー状若しくは微粉末状の石炭が送り込まれる。送り込まれた石炭は、熱分解、部分酸化等の反応により一酸化炭素、水素、窒素、二酸化炭素等からなるガス化ガスとなってガス化炉から排出される。なお、石炭に含まれる灰分は、スラグとして底部から排出される。   Each apparatus will be specifically described with reference to FIG. 2. The gasifier 10 supplies coal supply means (not shown) for supplying coal in a form suitable for gasification, and supplies a gasifying agent. It mainly comprises gasifying agent supply means (not shown) and a gasification furnace (not shown) for gasifying coal. The inside of the gasification furnace is in a high-temperature and high-pressure atmosphere by air or oxygen supplied as a gasifying agent, and slurry-like or fine-powder-like coal is fed into this. The fed coal is discharged from the gasification furnace as a gasification gas composed of carbon monoxide, hydrogen, nitrogen, carbon dioxide and the like by a reaction such as thermal decomposition and partial oxidation. In addition, the ash contained in coal is discharged from the bottom as slag.

ガス化炉から排出されるガス化ガスには未燃カーボンなどの粒子状物質や不純物が含まれている。これらは後段の処理に悪影響を及ぼすおそれがあるので、ガス化ガスをシフト反応装置20に送る前に必要に応じてフィルターなどの除去手段を設けて除去するのが好ましい。シフト反応装置20に送られたガス化ガスは、その流量に対して所定の割合のスチームが添加された後、シフト触媒が充填されているシフト反応器に送られる。シフト反応器内では、シフト触媒の存在下で下記式1に示す水性シフト反応が進行する。
[式1]
CO(g)+HO(g)=H(g)+CO(g)
The gasification gas discharged from the gasification furnace contains particulate matter such as unburned carbon and impurities. Since these may adversely affect the subsequent processing, it is preferable to remove the gasification gas by providing a removing means such as a filter as needed before sending it to the shift reactor 20. The gasification gas sent to the shift reactor 20 is sent to a shift reactor filled with a shift catalyst after adding a predetermined ratio of steam to the flow rate. In the shift reactor, an aqueous shift reaction represented by the following formula 1 proceeds in the presence of a shift catalyst.
[Formula 1]
CO (g) + H 2 O (g) = H 2 (g) + CO 2 (g)

上記式1に示す水性シフト反応は発熱反応であるため、化学平衡論上は低温の方がCO変換の観点から好ましく、1つのシフト反応器でシフト反応を行うと出口ガス温度が高くなるため、所定の反応率が得られない。そこで、図2に示すシフト反応装置では、第1シフト反応器22、第2シフト反応器24、及び第3シフト反応器26の3つのシフト反応器をシリーズにして設けると共に、それぞれの前段に加熱器や熱交換器などの第1〜第3温度調整手段21、23、25を設けている。これにより、各シフト反応器の入口ガス温度を200〜300℃程度に調整することが可能になり、その結果、所定のシフト反応率を確保することが可能になる。   Since the aqueous shift reaction shown in the above formula 1 is an exothermic reaction, a low temperature is preferable in terms of chemical equilibrium from the viewpoint of CO conversion, and when the shift reaction is performed in one shift reactor, the outlet gas temperature becomes high. A predetermined reaction rate cannot be obtained. Therefore, in the shift reaction apparatus shown in FIG. 2, three shift reactors of the first shift reactor 22, the second shift reactor 24, and the third shift reactor 26 are provided in series, and heating is performed in the preceding stage. 1st-3rd temperature control means 21,23,25, such as an oven and a heat exchanger, are provided. Thereby, it becomes possible to adjust the inlet gas temperature of each shift reactor to about 200-300 degreeC, As a result, it becomes possible to ensure a predetermined shift reaction rate.

上記の第1〜第3シフト反応器内に充填するシフト触媒には、例えばアルミナ担体にコバルト−モリブデン系触媒を担持させたものを使用することができる。この触媒は、石炭のガス化ガスのように硫黄化合物を高濃度に含むガスであっても良好にシフト反応を行うことが可能であり、このような硫黄化合物を高濃度のに含むガスのシフト反応をサワーシフトと称することがある。   As the shift catalyst filled in the first to third shift reactors, for example, a catalyst in which a cobalt-molybdenum catalyst is supported on an alumina carrier can be used. This catalyst can satisfactorily perform a shift reaction even in a gas containing a high concentration of sulfur compounds such as coal gasification gas, and a gas shift containing such a high concentration of sulfur compounds is possible. The reaction is sometimes called sour shift.

第3シフト反応器26を出たガス化ガスは、例えば冷却水を冷媒に用いた熱交換などによる冷却手段27で後段の脱硫・脱炭酸装置30への供給に適した温度まで冷却された後、脱硫・脱炭酸装置30に送られる。なお、この冷却手段27で冷却されたガス化ガスが流れる冷却手段27から脱硫・脱炭酸装置30までのガス供給ラインには、第1温度調整手段21の1次側に戻るリサイクルラインが分岐しており、この分岐点の手前には圧縮機28が設けられている。これにより、後述する第1〜第3シフト反応器のリサイクル運転ができるようになっている。   After the gasified gas leaving the third shift reactor 26 is cooled to a temperature suitable for supply to the subsequent desulfurization / decarbonation apparatus 30 by cooling means 27 by heat exchange using cooling water as a refrigerant, for example. And sent to the desulfurization / decarbonation apparatus 30. The gas supply line from the cooling means 27 through which the gasified gas cooled by the cooling means 27 flows to the desulfurization / decarbonation apparatus 30 is branched from a recycle line that returns to the primary side of the first temperature adjusting means 21. A compressor 28 is provided in front of this branch point. Thereby, the recycle operation | movement of the 1st-3rd shift reactor mentioned later can be performed now.

脱硫・脱炭酸装置30には、アルカノールアミン溶液などの化学吸収液を用いた化学吸収法、SelexolTMに代表される物理吸収液を用いた物理吸収法、これら化学吸収液と物理吸収液とを組み合わせたハイブリッド法などの一般的な処理法を用いることができる。シフト反応装置20を出たガス化ガスにかかる脱硫処理および脱炭酸処理を施すことにより、当該ガス化ガスに含まれる硫化水素および二酸化炭素を効率よく分離して水素リッチなガス化ガスを得ることができ、一方、硫化水素と二酸化炭素を別々に回収することができる。 The desulfurization / decarbonation apparatus 30 includes a chemical absorption method using a chemical absorption liquid such as an alkanolamine solution, a physical absorption method using a physical absorption liquid represented by Selexol TM , and the chemical absorption liquid and the physical absorption liquid. A general processing method such as a combined hybrid method can be used. By performing desulfurization treatment and decarbonation treatment on the gasification gas leaving the shift reaction device 20, hydrogen sulfide and carbon dioxide contained in the gasification gas are efficiently separated to obtain a hydrogen-rich gasification gas. On the other hand, hydrogen sulfide and carbon dioxide can be recovered separately.

例えば物理吸収法の場合は、まず上記したシフト反応装置20を出たガス化ガスを脱硫塔(図示せず)に導入すると共に、後段の脱炭酸塔の塔底から排出される二酸化炭素を多く含んだ吸収液を供給してこれらを向流気液接触させることにより、当該ガス化ガス中の硫化水素を選択的に吸収液に吸収させる。次に、脱硫塔の搭頂部から排出される脱硫されたガス化ガスを脱炭酸塔(図示せず)に導くと共に、後述する再生塔で再生した吸収液を供給してこれらを向流気液接触させることにより、ガス化ガス中の二酸化炭素と一部残存する硫化水素とを吸収液に吸収させる。これにより、脱炭酸塔の塔頂部から脱硫および脱炭酸されたガス化ガスを取り出すことができる。脱硫塔の塔底部からは二酸化炭素および硫化水素を含んだ吸収液が排出されるが、この二酸化炭素および硫化水素を含んだ吸収液はフラッシュドラム(図示せず)に送られ、ここで吸収液を脱圧させて二酸化炭素の回収が行われた後、再生塔(図示せず)に送られて吸収液の加熱により硫化水素の回収が行われる。回収した二酸化炭素ガスは、必要に応じて昇圧された後、EOR(Enhanced Oil Recovery)などに利用される。一方、硫化水素は硫黄回収装置に送られる。   For example, in the case of the physical absorption method, first, the gasification gas exiting the shift reaction apparatus 20 is introduced into a desulfurization tower (not shown), and a large amount of carbon dioxide is discharged from the bottom of the subsequent decarbonation tower. By supplying the contained absorbent and bringing them into countercurrent gas-liquid contact, hydrogen sulfide in the gasified gas is selectively absorbed by the absorbent. Next, the desulfurized gasified gas discharged from the top of the desulfurization tower is led to a decarbonation tower (not shown), and an absorption liquid regenerated in the regenerator described later is supplied to counterflow the gas and liquid. By contacting, carbon dioxide in the gasification gas and part of the remaining hydrogen sulfide are absorbed by the absorption liquid. Thereby, the gasification gas desulfurized and decarboxylated can be taken out from the top of the decarboxylation tower. The absorption liquid containing carbon dioxide and hydrogen sulfide is discharged from the bottom of the desulfurization tower, and this absorption liquid containing carbon dioxide and hydrogen sulfide is sent to a flash drum (not shown), where the absorption liquid The carbon dioxide is recovered by depressurizing the gas and then sent to a regeneration tower (not shown) to recover hydrogen sulfide by heating the absorbent. The recovered carbon dioxide gas is pressurized as necessary, and then used for EOR (Enhanced Oil Recovery) or the like. On the other hand, hydrogen sulfide is sent to a sulfur recovery device.

脱硫・脱炭酸装置30で脱硫および脱炭酸されたガス化ガスは、次に複合発電装置40に送られる。複合発電装置40では、脱硫および脱炭酸されたガス化ガスを燃焼器(図示せず)で燃焼して高温・高圧ガスを発生させる。この燃焼ガスのエネルギーでガスタービン(図示せず)を回して発電を行う。更に、ガスタービンを出た燃焼ガスを排熱回収ボイラー(図示せず)に送り、ここで蒸気を発生させる。この蒸気で蒸気タービン(図示せず)を回して発電を行う。   The gasified gas desulfurized and decarboxylated by the desulfurization / decarbonation apparatus 30 is then sent to the combined power generation apparatus 40. In the combined power generator 40, the desulfurized and decarboxylated gasified gas is burned in a combustor (not shown) to generate a high-temperature and high-pressure gas. Power is generated by turning a gas turbine (not shown) with the energy of the combustion gas. Further, the combustion gas exiting the gas turbine is sent to an exhaust heat recovery boiler (not shown) where steam is generated. A steam turbine (not shown) is rotated by this steam to generate power.

次に、上記シフト反応装置20のスタートアップ法について図3を参照しながら説明する。シフト反応装置20に充填されているシフト触媒は、スタートアップの前に予備硫化されていることを前提とする。このシフト触媒の予備硫化は、例えば以下の方法で行うことができる。なお、本発明では硫化水素に代えて、あるいは硫化水素と共に硫化カルボニル(COS)を用いてもほぼ同等の効果が得られるため、以降の「硫化水素」は、特に断りのない限り「硫化水素」及び/又は「硫化カルボニル」を表すものとする。また、硫化水素の供給源としては、DMDSを気化/分解する方法や、HSボンベを利用する方法等によるものが考えられる。先ずシフト触媒が充填されているシフト反応器に対して、前述したリサイクルライン及び圧縮機28を用いて加熱した窒素を循環し、次にこの循環系内に触媒の温度が高くなり過ぎないように注意しながら水素及び硫化水素をそれぞれ所定の濃度になるまで徐々に添加する。そして、所定の水素濃度及び硫化水素濃度に達したら、硫化水素のブレークスルーが認められるまで上記濃度を維持しながら上記循環運転を継続する。 Next, the start-up method of the shift reaction apparatus 20 will be described with reference to FIG. It is assumed that the shift catalyst charged in the shift reactor 20 is presulfided before start-up. The preliminary sulfidation of the shift catalyst can be performed, for example, by the following method. In the present invention, even if carbonyl sulfide (COS) is used instead of hydrogen sulfide or together with hydrogen sulfide, substantially the same effect can be obtained. Therefore, “hydrogen sulfide” hereinafter is “hydrogen sulfide” unless otherwise specified. And / or “carbonyl sulfide”. Further, as a supply source of hydrogen sulfide, a method of vaporizing / decomposing DMDS, a method of using an H 2 S cylinder, or the like can be considered. First, heated nitrogen is circulated to the shift reactor filled with the shift catalyst using the above-described recycle line and the compressor 28, and then the temperature of the catalyst is prevented from becoming too high in the circulation system. Carefully add hydrogen and hydrogen sulfide each until a predetermined concentration is reached. When the predetermined hydrogen concentration and hydrogen sulfide concentration are reached, the circulation operation is continued while maintaining the concentration until hydrogen sulfide breakthrough is observed.

このようにして予備硫化されたシフト触媒を含むシフト反応装置20に対して、図3に示すタイムチャートに従ってスタートアップを行う。具体的に説明すると、先ず第1工程に示すように、シフト触媒が充填されている第1〜第3シフト反応器22、24、26に、前述したリサイクルライン及び圧縮機28を用いて窒素ガスを循環させる。窒素を循環させるときの流量は例えば定常運転時のガス流量の90%程度にする。   Start-up is performed in accordance with the time chart shown in FIG. 3 for the shift reactor 20 including the shift catalyst presulfided in this manner. More specifically, first, as shown in the first step, the first to third shift reactors 22, 24, 26 filled with the shift catalyst are supplied with nitrogen gas using the above-described recycling line and compressor 28. Circulate. The flow rate for circulating nitrogen is, for example, about 90% of the gas flow rate during steady operation.

その際、第1温度調整手段21及び必要に応じて第2〜3温度調整手段23、25を用いて各シフト反応器内のシフト触媒を徐々に加熱し、第1シフト反応器22の入口ガス温度が260℃程度になった時点でこの温度状態を維持する。なお、シフト触媒の加熱時は、第1シフト反応器22の入口ガス温度の変化率が1時間当たり60℃以下となるように留意する。また、窒素ガスの循環時は、第1シフト反応器22の入口圧力で約1.5MPaG程度、望ましくは定常運転時の圧力付近となるように系内の圧力を維持する。なお、定常運転時の圧力付近とは、定常運転時の圧力に対して±0.5MPa程度の圧力範囲内のことをいう。この状態の循環運転をすべてのシフト反応器の触媒温度が蒸気露点を超える(例えば、180℃以上)まで続ける。これにより、ガス化ガスを利用した昇温方法と比較して、COやCOによるメタネーション反応を防止しながらシフト触媒を加熱することが可能になる。 At that time, the shift catalyst in each shift reactor is gradually heated using the first temperature adjusting means 21 and, if necessary, the second to third temperature adjusting means 23 and 25, and the inlet gas of the first shift reactor 22. This temperature state is maintained when the temperature reaches about 260 ° C. Note that when the shift catalyst is heated, the rate of change in the inlet gas temperature of the first shift reactor 22 is 60 ° C. or less per hour. Further, during the circulation of the nitrogen gas, the pressure in the system is maintained so that the inlet pressure of the first shift reactor 22 is about 1.5 MPaG, preferably near the pressure during steady operation. The vicinity of the pressure during steady operation refers to a pressure range of about ± 0.5 MPa with respect to the pressure during steady operation. The circulation operation in this state is continued until the catalyst temperature of all shift reactors exceeds the vapor dew point (for example, 180 ° C. or more). This makes it possible to heat the shift catalyst while preventing the methanation reaction due to CO or CO 2 as compared with a temperature raising method using gasified gas.

上記循環する窒素ガスに酸素が含まれている場合は、循環する窒素ガス中に硫化水素を含有させるか、あるいは硫化水素および水素を含有させるのが好ましい。その理由は、循環窒素ガス中に酸素が含まれていると、触媒を酸化させて活性を低下させる恐れがあるが、上記したように硫化水素か、硫化水素および水素を共存させることにより、触媒の酸化を防ぐことができるからである。なお、一般的には循環する窒素ガス中の硫化水素濃度を50〜5000ppmvにし、より好ましくはさらに水素濃度を5〜10vol%程度にすることで上記要件を満たすことができる。   When oxygen is contained in the circulating nitrogen gas, it is preferable to contain hydrogen sulfide or hydrogen sulfide and hydrogen in the circulating nitrogen gas. The reason is that if oxygen is contained in the circulating nitrogen gas, the catalyst may be oxidized and the activity may be reduced. However, as described above, hydrogen sulfide or hydrogen sulfide and hydrogen coexist, It is because the oxidation of can be prevented. In general, the above requirements can be satisfied by setting the hydrogen sulfide concentration in the circulating nitrogen gas to 50 to 5000 ppmv, more preferably about 5 to 10 vol%.

次に、第2工程に示すように、リサイクルライン上のバルブを徐々に絞って、循環している窒素ガスの流量を上記第1工程の循環流量の略半分程度(定常運転時のガス流量の約45%)になるまで徐々に低下させる。そして、これと並行して第1〜第3シフト反応器22、24、26に、前段のガス化装置10からガス化ガスを定常運転時での供給量の例えば45%程度の流量に達するまで徐々に導入する。この時、導入したガス化ガスの量に見合うだけのガス量が後段の脱硫・脱炭酸装置30に送られることになる。なお、ガス化ガスを導入するときは、ガス流量の1分当たりの変化率が10Nm/h以下となるように留意する。 Next, as shown in the second step, the valve on the recycle line is gradually throttled so that the flow rate of the circulating nitrogen gas is approximately half the circulation flow rate in the first step (the gas flow rate during steady operation). Gradually lower until about 45%). In parallel with this, the first to third shift reactors 22, 24, 26 are supplied with gasification gas from the preceding gasification apparatus 10 until the flow rate reaches, for example, about 45% of the supply amount in steady operation. Introduce gradually. At this time, an amount of gas commensurate with the amount of gasification gas introduced is sent to the subsequent desulfurization / decarboxylation device 30. In addition, when introducing gasification gas, attention is paid so that the rate of change per minute of the gas flow rate is 10 Nm 3 / h or less.

ガス化ガス導入時には、ガス化ガス中のCO、Hによる触媒の還元を防止するため、ガス化ガス中に硫化水素が含まれているのが望ましい。具体的には、ガス化ガス中の硫化水素濃度が50〜5000ppmvとなるよう、ガス化ガスの導入の際、当該ガス化ガスに硫化水素を導入する。 When introducing the gasification gas, it is desirable that hydrogen sulfide is contained in the gasification gas in order to prevent reduction of the catalyst by CO and H 2 in the gasification gas. Specifically, hydrogen sulfide is introduced into the gasification gas when the gasification gas is introduced so that the hydrogen sulfide concentration in the gasification gas is 50 to 5000 ppmv.

次に、第3工程に示すように、ガス化ガスの供給量を上記した定常運転時の45%程度の流量を維持したまま運転を続ける。この第3工程の初期の段階では、リサイクルライン上のバルブを徐々に閉じることにより、窒素の循環量を上記した略半分程度から徐々に低下させて最終的にゼロにする。これにより、シフト触媒を通過するガス中の一酸化炭素濃度が上昇し、且つ触媒のSV(Space Velocity)が低下するので、シフト反応が起きやすい状況となり、触媒の活性を発現させることができる。また、シフト触媒のうち、シフト反応の起きやすい部位から発現したシフト反応熱を利用してその他の部位のシフト反応を促進することが可能になる。   Next, as shown in the third step, the operation is continued with the gasification gas supply amount maintained at a flow rate of about 45% in the above-described steady operation. In the initial stage of the third step, the valve on the recycle line is gradually closed, so that the amount of nitrogen circulated is gradually reduced from about the above half to finally become zero. As a result, the concentration of carbon monoxide in the gas passing through the shift catalyst is increased and the SV (Space Velocity) of the catalyst is decreased, so that a shift reaction is likely to occur and the activity of the catalyst can be expressed. In addition, among the shift catalysts, it is possible to promote the shift reaction of other sites by utilizing the shift reaction heat expressed from the site where the shift reaction is likely to occur.

更に第3工程では、窒素の循環量がゼロになった時点で、シフト触媒の雰囲気圧力を徐々に高めて、定常運転時の圧力付近に維持するのが好ましい。これにより、触媒のSVが低下するので、よりシフト反応が起きやすい状況となる。図3では、第1シフト反応器22の入口圧力において2.2MPaGに維持する例が示されている。また、上記系内圧力の増加は、窒素循環量の低下の操作と並行して行ってもよい。シフト触媒の雰囲気圧力を徐々に高めるときは、その変化率を1分当たり0.004MPa以下にするのが好ましい。   Furthermore, in the third step, it is preferable that the atmospheric pressure of the shift catalyst is gradually increased and maintained near the pressure during steady operation when the amount of nitrogen circulation becomes zero. Thereby, since SV of a catalyst falls, it will be in the situation where a shift reaction will occur more easily. FIG. 3 shows an example in which the inlet pressure of the first shift reactor 22 is maintained at 2.2 MPaG. The increase in the system pressure may be performed in parallel with the operation of decreasing the nitrogen circulation rate. When gradually increasing the atmospheric pressure of the shift catalyst, the rate of change is preferably set to 0.004 MPa or less per minute.

第2および第3工程では、ガス化ガスに硫化水素が50〜5000ppmv程度含まれているのが好ましい。その理由は、硫化水素がシフト触媒に吸着してその活性発現に寄与すると考えられるからである。ガス化装置10からのガス化ガス中に上記濃度の硫化水素が含まれていない場合は、第1温度調整手段21の上流側に硫化水素ボンベなどを接続して硫化水素ガスを添加してもよい。   In the second and third steps, the gasification gas preferably contains about 50 to 5000 ppmv of hydrogen sulfide. The reason is that it is considered that hydrogen sulfide is adsorbed on the shift catalyst and contributes to the expression of its activity. If the gasified gas from the gasifier 10 does not contain hydrogen sulfide at the above concentration, a hydrogen sulfide gas may be added to the upstream side of the first temperature adjusting means 21 by connecting a hydrogen sulfide cylinder or the like. Good.

次に、第4工程に示すように、ガス化装置10からのガス化ガスの供給量を定常運転時のガス流量(すなわち、100%)まで増加させる。増加の際は、ガス流量の1分当たりの変化率が、5Nm/h以下となるように操作するのが好ましい。そして、ガス化ガスの供給量を定常運転時まで増やした時点で第1シフト反応器22の入口圧力で約2.5MPaG程度になるように系内の圧力を高める。 Next, as shown in the fourth step, the supply amount of the gasification gas from the gasifier 10 is increased to the gas flow rate during normal operation (that is, 100%). When increasing, it is preferable to operate the gas flow rate so that the rate of change per minute is 5 Nm 3 / h or less. Then, the pressure in the system is increased so that the inlet pressure of the first shift reactor 22 becomes about 2.5 MPaG when the supply amount of the gasification gas is increased until the steady operation.

上記の方法でスタートアップさせることにより、定常運転に入ってから比較的早い段階でシフト触媒の活性を効果的に発現させることが可能になる。上記の方法でシフト触媒の活性を発現できる理由については詳しいことが分からないが、発明者らは微量の硫化物を含んだガスを予備硫化済みのシフト触媒に接触させることにより、触媒に何らかの構造的な変化を生じさせるか、あるいは触媒の酸化や還元を防止しているものと考えている。   By starting up with the above method, it becomes possible to effectively develop the activity of the shift catalyst at a relatively early stage after the start of steady operation. Although it is not known in detail about the reason why the activity of the shift catalyst can be expressed by the above-mentioned method, the inventors contact the pre-sulfided shift catalyst with a gas containing a trace amount of sulfide, so that the catalyst has some structure. It is considered that the change is caused or the oxidation or reduction of the catalyst is prevented.

以上、本発明のシフト触媒のスタートアップ方法を一具体例を挙げて説明したが、本発明はかかる一具体例に限定されるものではなく、本発明の趣旨から逸脱しない範囲内で種々の変形例や代替例を含み得る点に留意すべきである。例えば、上記説明では、本発明のシフト触媒のスタートアップ方法をIGCCのシフト反応装置に適用する場合について説明したが、これに限定されるものではなく、燃料電池、化学品原料、水素製造を用途とする石炭ガス化プロセスのシフト反応装置にも好適に用いることができる。   The start-up method of the shift catalyst of the present invention has been described with a specific example, but the present invention is not limited to such a specific example, and various modifications can be made without departing from the spirit of the present invention. It should be noted that and alternatives may be included. For example, in the above description, the case where the shift catalyst start-up method of the present invention is applied to an IGCC shift reaction apparatus has been described. However, the present invention is not limited to this, and fuel cells, chemical raw materials, and hydrogen production are used. It can also be suitably used for a shift reactor for a coal gasification process.

[実施例]
予備硫化されたTopsoe社製のシフト触媒(型番SSK−10)が充填されている図2に示すようなシフト反応装置に対して、図3に示すタイムチャートに沿ってスタートアップを行った。なお、第3工程の際、ガス中のHS濃度が1,000ppmvとなるように第1温度調整手段21の上流側に硫化水素ガスを添加した。その結果、窒素ガス循環量がゼロになった後、速やかに触媒の活性が発現した。なお、シフト触媒の活性の発現は触媒層の温度トレンドにより判断した。
[Example]
The shift reactor as shown in FIG. 2 filled with the presulfided topsoe shift catalyst (model number SSK-10) was started up according to the time chart shown in FIG. In the third step, hydrogen sulfide gas was added upstream of the first temperature adjusting means 21 so that the H 2 S concentration in the gas was 1,000 ppmv. As a result, after the nitrogen gas circulation amount became zero, the activity of the catalyst was quickly developed. The expression of the shift catalyst activity was judged by the temperature trend of the catalyst layer.

[比較例]
比較のため、上記実施例と同様のシフト触媒が充填された上記実施例と同様のシフト反応装置に対して、図3の第2〜第3工程を行わずに、代わりに第1工程において第1シフト反応器22の入口ガス温度を265℃に維持して24時間窒素ガスの循環を行った後、第4工程において1分当たり10Nm/hの変化率で上記実施例と同等のガス化ガスを導入しながら窒素ガスの循環量を90%からゼロに減らすことによりスタートアップを行った。その結果、活性は得られなかった。
[Comparative example]
For comparison, for the same shift reaction apparatus as in the above example filled with the same shift catalyst as in the above example, the second to third steps in FIG. After the nitrogen gas was circulated for 24 hours while maintaining the inlet gas temperature of the 1-shift reactor 22 at 265 ° C., gasification equivalent to the above example was performed at a rate of change of 10 Nm 3 / h per minute in the fourth step. Start-up was performed by reducing the nitrogen gas circulation rate from 90% to zero while introducing gas. As a result, no activity was obtained.

10 ガス化装置
20 シフト反応装置
21 第1温度調整手段
22 第1シフト反応器
23 第2温度調整手段
24 第2シフト反応器
25 第3温度調整手段
26 第3シフト反応器
27 冷却手段
28 圧縮機
30 脱硫・脱炭酸装置
40 複合発電装置
DESCRIPTION OF SYMBOLS 10 Gasifier 20 Shift reactor 21 1st temperature control means 22 1st shift reactor 23 2nd temperature control means 24 2nd shift reactor 25 3rd temperature control means 26 3rd shift reactor 27 Cooling means 28 Compressor 30 Desulfurization / decarbonation equipment 40 Combined power generation equipment

Claims (4)

予備硫化されたシフト触媒に加熱した窒素ガスを循環させる第1工程と、前記窒素ガスの循環量を徐々に減少させながらシフト触媒にガス化ガスを定常運転時の供給量未満の所定のガス流量に達するまで徐々に導入していく第2工程と、前記窒素ガスの循環量をゼロにしてシフト触媒へのガス化ガスの供給を前記所定のガス流量のまま所定時間継続する第3工程と、前記所定時間の経過後にシフト触媒へのガス化ガスの供給量を前記定常運転時の供給量まで増加させる第4工程とからなることを特徴とするシフト触媒のスタートアップ方法。   A first step of circulating heated nitrogen gas to the presulfided shift catalyst, and a predetermined gas flow rate that is less than the supply amount during steady operation of the gasification gas to the shift catalyst while gradually reducing the circulation amount of the nitrogen gas. A second step of gradually introducing the gas until it reaches a value, and a third step of continuing the supply of the gasification gas to the shift catalyst for a predetermined time while maintaining the predetermined gas flow rate with the amount of nitrogen gas circulated zero. A start-up method for a shift catalyst, comprising a fourth step of increasing the supply amount of gasification gas to the shift catalyst to the supply amount during the steady operation after the predetermined time has elapsed. 前記第3工程において、シフト触媒の雰囲気圧力を前記定常運転時の圧力付近まで上昇させて維持することを特徴とする、請求項1に記載のシフト触媒のスタートアップ方法。   2. The start-up method of a shift catalyst according to claim 1, wherein in the third step, the atmospheric pressure of the shift catalyst is increased to and maintained near the pressure during the steady operation. 前記循環させる窒素ガスには、硫化水素及び/又は硫化カルボニルが50〜5000ppmv含まれており、前記ガス化ガスには硫化水素及び/又は硫化カルボニルが50〜5000ppmv含まれていることを特徴とする、請求項1又は2に記載のシフト触媒のスタートアップ方法。   The nitrogen gas to be circulated contains 50 to 5000 ppmv of hydrogen sulfide and / or carbonyl sulfide, and the gasification gas contains 50 to 5000 ppmv of hydrogen sulfide and / or carbonyl sulfide. The start-up method of the shift catalyst according to claim 1 or 2. 前記循環させる窒素ガスには、さらに水素が合計5〜10vol%含まれていることを特徴とする、請求項3に記載のシフト触媒のスタートアップ方法。   The start-up method for a shift catalyst according to claim 3, wherein the nitrogen gas to be circulated further contains 5 to 10 vol% of hydrogen in total.
JP2014071947A 2014-03-31 2014-03-31 Sourshift catalyst startup method Active JP6343474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071947A JP6343474B2 (en) 2014-03-31 2014-03-31 Sourshift catalyst startup method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071947A JP6343474B2 (en) 2014-03-31 2014-03-31 Sourshift catalyst startup method

Publications (2)

Publication Number Publication Date
JP2015193715A true JP2015193715A (en) 2015-11-05
JP6343474B2 JP6343474B2 (en) 2018-06-13

Family

ID=54433058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071947A Active JP6343474B2 (en) 2014-03-31 2014-03-31 Sourshift catalyst startup method

Country Status (1)

Country Link
JP (1) JP6343474B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513114A (en) * 2016-03-17 2019-05-23 アルケマ フランス Method of producing hydrogen enriched synthesis gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025642A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Apparatus for separating and recovering co2 of coal gasification gas
JP2015188879A (en) * 2014-03-29 2015-11-02 千代田化工建設株式会社 Co shift catalyst, and method of co shift reaction using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025642A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Apparatus for separating and recovering co2 of coal gasification gas
JP2015188879A (en) * 2014-03-29 2015-11-02 千代田化工建設株式会社 Co shift catalyst, and method of co shift reaction using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513114A (en) * 2016-03-17 2019-05-23 アルケマ フランス Method of producing hydrogen enriched synthesis gas
JP2022017276A (en) * 2016-03-17 2022-01-25 アルケマ フランス Method for producing hydrogen-enriched synthesis gas

Also Published As

Publication number Publication date
JP6343474B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
WO2011108546A1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP2008163944A (en) Reforming system for partial co2 recovery type cycle plant
EP2248575B1 (en) Method and system for recovering high-purity CO2 from gasification gas
US20100077767A1 (en) Emission free integrated gasification combined cycle
JP2007254270A (en) Method of treating gaseous mixture comprising hydrogen and carbon dioxide
KR20070100962A (en) Method for producing syngas with low carbon dioxide emission
JP2012522090A (en) Method for producing purified synthesis gas
US20110120012A1 (en) Minimal sour gas emission for an integrated gasification combined cycle complex
JP6463830B2 (en) Integrated calcium loop combined cycle for acid gas utilization
CN103537163A (en) System and method for gas treatment
TW533265B (en) Using shifted syngas to regenerate SCR type catalyst
JP2016530983A (en) Method for sustainable energy generation in a power plant with a solid oxide fuel cell
AU2010300123B2 (en) Method for operating an IGCC power plant process having integrated CO2 separation
JP2011168628A (en) Gas purification method and gas purification device
JP6913822B2 (en) Acid gas processing and power generation process
JP2013173898A (en) Co shift reaction apparatus and system of purifying gasification gas
JP6343474B2 (en) Sourshift catalyst startup method
KR20140038672A (en) Igcc with co2 removal system
WO2014171393A1 (en) Gasification gas production system
JP5733974B2 (en) CO shift conversion system and method, coal gasification power plant
JP5465028B2 (en) Coal gasification system
JP2012111847A (en) Gasified gas formation device and gasified gas formation method
KR20150138498A (en) Integrated gasification combined cycle system
JP2010168514A (en) Tar decomposition equipment and start-up method of the same
Martínez Berges et al. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6343474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250