JP2015193485A - silica sol - Google Patents
silica sol Download PDFInfo
- Publication number
- JP2015193485A JP2015193485A JP2014071054A JP2014071054A JP2015193485A JP 2015193485 A JP2015193485 A JP 2015193485A JP 2014071054 A JP2014071054 A JP 2014071054A JP 2014071054 A JP2014071054 A JP 2014071054A JP 2015193485 A JP2015193485 A JP 2015193485A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- concentration
- plate
- weight
- silica sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
本発明は、球状のシリカ粒子と板状シリカを含有するシリカゾルに関する。 The present invention relates to a silica sol containing spherical silica particles and plate-like silica.
シリカ等の無機粒子を含む分散液を用いて機能性被膜を形成することが知られている。例えば、有機樹脂膜や無機膜にシリカ等の無機粒子を配合した透明被膜を、ガラス、プラスチックシート、プラスチックレンズ等の透明基材の表面に設ける。このような透明被膜は、良好な耐摩耗性を持つハードコート膜として機能し、シリカ粒子を含む分散液を用いて形成される。このとき、望まれる性能に応じて、バインダー樹脂や粒子の材質や性状を選択している。
そして、非球形状のシリカ粒子をハードコート膜に含有させることによって、膜の耐アルカリ性を向上させることが知られている(例えば、特許文献1を参照)。
また、球状のシリカ微粒子と、球状のシリカ微粒子を3〜20個化学結合させた異形シリカ微粒子とを混在させてハードコートフィルムを構成し、それらの微粒子の表面に反応性官能基を持たせることが知られている(例えば、特許文献2を参照)。これにより、薄膜でも高い硬度を実現している。
また、ガスバリア性と高い透明性を実現するために、板状のスメクタイト型微粒子の表面にシリカ層が形成された薄片状微粒子を用いることが知られている(例えば、特許文献3を参照)。
It is known to form a functional film using a dispersion liquid containing inorganic particles such as silica. For example, a transparent film in which inorganic particles such as silica are blended in an organic resin film or an inorganic film is provided on the surface of a transparent substrate such as glass, a plastic sheet, or a plastic lens. Such a transparent film functions as a hard coat film having good wear resistance and is formed using a dispersion containing silica particles. At this time, the material and properties of the binder resin and particles are selected according to the desired performance.
And it is known that the alkali resistance of a film | membrane is improved by containing a non-spherical silica particle in a hard-coat film | membrane (for example, refer patent document 1).
Also, a hard coat film is formed by mixing spherical silica fine particles and irregular silica fine particles obtained by chemically bonding 3 to 20 spherical silica fine particles, and a reactive functional group is provided on the surface of these fine particles. Is known (see, for example, Patent Document 2). As a result, even a thin film achieves high hardness.
In order to realize gas barrier properties and high transparency, it is known to use flaky fine particles in which a silica layer is formed on the surface of plate-like smectite fine particles (see, for example, Patent Document 3).
しかしながら、特許文献1、2に記載の構成では、ガスバリア性とハードコート性をともに高めることが困難であった。また、特許文献3に記載の薄片状微粒子では、平均粒子径がナノオーダーと小さいため、透明性は高いが、高いガスバリア性とハードコート性が得られないという課題がある。
本発明は、ガスバリア性、ハードコート性、及び透明性に優れた膜を製造するための分散液を得ることを目的とする。
However, with the configurations described in Patent Documents 1 and 2, it is difficult to improve both gas barrier properties and hard coat properties. In addition, the flaky fine particles described in Patent Document 3 have a problem that high gas barrier properties and hard coat properties cannot be obtained because the average particle diameter is as small as nano-order, but the transparency is high.
An object of this invention is to obtain the dispersion liquid for manufacturing the film | membrane excellent in gas-barrier property, hard-coat property, and transparency.
そこで、本発明のシリカゾルは、平均粒子径が3〜300nmの球状シリカ粒子と、板状シリカを含有させることとした。このとき、板状シリカは長辺が0.5〜10μm、短辺が100〜500nm、厚みが1〜30nmの矩形体であり、この板状シリカはSiO2固形分として該シリカゾルに1〜10重量%含まれている。さらに、板状シリカは該シリカゾルに単分散して存在することが好ましい。特に、板状シリカの長辺が0.5〜5μmであることが好ましい。さらに、板状シリカのアスペクト比(長辺/短辺)を1〜30であることが好ましい。
さらに、球状シリカ粒子の平均粒子径は3〜40nmが好ましい。また、この球状シリカ粒子はSiO2固形分として該シリカゾルに20〜50重量%存在していることが好ましい。
Therefore, the silica sol of the present invention contains spherical silica particles having an average particle diameter of 3 to 300 nm and plate-like silica. At this time, the plate-like silica is a rectangular body having a long side of 0.5 to 10 μm, a short side of 100 to 500 nm, and a thickness of 1 to 30 nm, and this plate-like silica is 1 to 10 in the silica sol as SiO 2 solid content. Contains% by weight. Further, the plate-like silica is preferably present in a monodispersed state in the silica sol. In particular, the long side of the plate-like silica is preferably 0.5 to 5 μm. Further, the aspect ratio (long side / short side) of the plate-like silica is preferably 1-30.
Furthermore, the average particle diameter of the spherical silica particles is preferably 3 to 40 nm. The spherical silica particles are preferably present in the silica sol in an amount of 20 to 50% by weight as SiO 2 solid content.
本発明によれば、ガスバリア性、ハードコート性、及び透明性に優れた膜を製造するためのシリカゾルが容易に実現できる。 According to the present invention, a silica sol for producing a film excellent in gas barrier properties, hard coat properties, and transparency can be easily realized.
本発明のシリカゾルは、平均粒子径が3〜300nmの球状のシリカ粒子と、板状シリカを含んでいる。ここで、板状シリカは、シリカを主成分としており、リン片状または短冊状が代表的な形状である。大きさは、長辺が0.5〜10μm、短辺が100〜500nmである。ここでは、長辺は、板状シリカを形成する矩形の4辺のうち最も長い辺を意味する。短辺は、この矩形の4辺のうち最も短い辺を意味する。板状シリカの角が丸みを帯びていて、4辺の長さが明確にできない場合には、走査型電子顕微鏡によって観察して得られる写真上において、その板状シリカの輪郭に接する最も近似する矩形を描き、その矩形の長辺及び短辺の長さとする。ここでは、板状シリカは、最も長い一辺、あるいは直径、が500nmを超えている大きさのものである。また、板状シリカはシリカゾル内に単分散状態で存在している。 The silica sol of the present invention contains spherical silica particles having an average particle diameter of 3 to 300 nm and plate-like silica. Here, the plate-like silica has silica as a main component, and a flake shape or a strip shape is a typical shape. The size is 0.5 to 10 μm for the long side and 100 to 500 nm for the short side. Here, the long side means the longest side among the four sides of the rectangle forming the plate-like silica. The short side means the shortest side among the four sides of the rectangle. If the corners of the plate-like silica are rounded and the lengths of the four sides cannot be clearly defined, the closest approximation to the plate-like silica outline on the photograph obtained by observation with a scanning electron microscope. Draw a rectangle and make it the length of the long and short sides of the rectangle. Here, the plate-like silica has a size in which the longest side or diameter exceeds 500 nm. Further, the plate-like silica exists in a monodispersed state in the silica sol.
板状シリカについて図を用いて説明する。走査型電子顕微鏡による板状シリカの拡大写真を図1に示す。この板状シリカは、SiO2換算基準で30重量%のシリカゾルをエタノールとイオン交換水の重量比1:1の溶液を用いて100倍に希釈し、この希釈シリカゾル5gを500rpmのスピンコートでガラス基材に塗布し、室温で24時間自然乾燥させたものである。図示するように、板状シリカは走査型電子顕微鏡によって5000〜30000倍程度の倍率で拡大して上視した場合に、矩形あるいは略矩形の形状である。ここで、略矩形には、ひし形や台形など、厳密には長方形ではない形状も含まれる。例えば、コーナーが90度ではなく丸みを帯びていても、外形を示す4辺が直線でなくても、略矩形の範疇である。また、板状シリカの厚み(矩形に対し垂直方向の厚み)は、走査型電子顕微鏡による観察に依れば、概ね1〜30nmと推定できる。 The plate-like silica will be described with reference to the drawings. An enlarged photograph of plate-like silica by a scanning electron microscope is shown in FIG. This plate-like silica was prepared by diluting 30% by weight of a silica sol in terms of SiO 2 using a solution having a weight ratio of 1: 1 of ethanol and ion-exchanged water 100 times, and 5 g of this diluted silica sol was spin-coated at 500 rpm. It is applied to a substrate and naturally dried at room temperature for 24 hours. As shown in the drawing, the plate-like silica has a rectangular or substantially rectangular shape when viewed from the top with a scanning electron microscope at a magnification of about 5000 to 30000 times. Here, the substantially rectangular shape includes a shape that is not strictly rectangular, such as a rhombus or a trapezoid. For example, even if the corner is rounded instead of 90 degrees, and the four sides indicating the outer shape are not straight lines, they are in a substantially rectangular category. The thickness of the plate-like silica (thickness in the direction perpendicular to the rectangle) can be estimated to be approximately 1 to 30 nm based on observation with a scanning electron microscope.
次に、球状のシリカ粒子の平均粒子径について説明する。本発明のシリカゾルに含まれる球状シリカ粒子の平均粒子径は3〜600nmであり、3〜160nmであることが好ましく、3〜40nmであることがより好ましい。球状シリカ粒子が600nmより大きいと、粒子間の空隙が大きくなるため、ガスバリア性が悪い。また、粒子が大きすぎるため、膜ヘーズが高くなる。一方、球状シリカ粒子が3nm未満の場合、ハードコート膜を形成するための塗布液の粘度が高くなってしまい、塗布液の安定性が悪くなり、均一なハードコート膜を形成することができない。そのため、ハードコート膜のガスバリア性だけでなく、鉛筆硬度や耐擦傷性も良くない。 Next, the average particle diameter of the spherical silica particles will be described. The average particle diameter of the spherical silica particles contained in the silica sol of the present invention is 3 to 600 nm, preferably 3 to 160 nm, and more preferably 3 to 40 nm. If the spherical silica particles are larger than 600 nm, the gap between the particles becomes large, so that the gas barrier property is poor. Moreover, since the particles are too large, the film haze increases. On the other hand, when the spherical silica particles are less than 3 nm, the viscosity of the coating solution for forming the hard coat film is increased, the stability of the coating solution is deteriorated, and a uniform hard coat film cannot be formed. Therefore, not only the gas barrier property of the hard coat film but also the pencil hardness and scratch resistance are not good.
なお、球状シリカ粒子の平均粒子径は、以下のように求められる。シリカゾルをコロジオン膜にのせて乾燥させた後、走査型電子顕微鏡を用いて球状シリカ粒子を倍率30万倍で写真撮影する。得られた写真から任意に100個の球状シリカ粒子を選び、各々の投影面積円相当径を測定する。この測定結果から粒度分布を求め、これより平均粒子径(メジアン径)を算出する。 In addition, the average particle diameter of spherical silica particles is calculated | required as follows. After the silica sol is placed on the collodion film and dried, the spherical silica particles are photographed at a magnification of 300,000 times using a scanning electron microscope. 100 spherical silica particles are arbitrarily selected from the obtained photograph, and the projected area equivalent circle diameter is measured. The particle size distribution is obtained from the measurement result, and the average particle diameter (median diameter) is calculated therefrom.
前述の通り、本発明によるシリカゾルは、球状シリカ粒子と板状シリカを含んでいる。シリカゾル全量に対して板状シリカが1〜10(重量)%含有することが好ましい。換言すれば、板状シリカの濃度は1〜10重量%が好ましい。板状シリカの濃度が1重量%未満のシリカゾルでは、後述のようにハードコート膜を作製するとガスバリア性を高くすることができない。また、板状シリカの濃度が10重量%以上のシリカゾルでは、ハードコート膜を形成するための塗布液の粘度が上昇してしまい、塗布液の安定性が悪く、均一なハードコート膜を形成することができない。そのため、ハードコート膜のガスバリア性だけでなく、鉛筆硬度や耐擦傷性も良くない。 As described above, the silica sol according to the present invention includes spherical silica particles and plate-like silica. The plate-like silica is preferably contained in an amount of 1 to 10 (weight)% based on the total amount of silica sol. In other words, the concentration of the plate-like silica is preferably 1 to 10% by weight. In the case of a silica sol having a plate-like silica concentration of less than 1% by weight, the gas barrier property cannot be increased if a hard coat film is produced as described later. In addition, when the silica sol has a plate-like silica concentration of 10% by weight or more, the viscosity of the coating solution for forming the hard coat film increases, the stability of the coating solution is poor, and a uniform hard coat film is formed. I can't. Therefore, not only the gas barrier property of the hard coat film but also the pencil hardness and scratch resistance are not good.
一方、球状シリカ粒子は、シリカゾル全量に対して20〜50重量%含まれることが望ましい。球状シリカの濃度が20重量%未満のシリカゾルでは、後述のようにハードコート膜を作製すると鉛筆硬度や耐擦傷性も良くない。また、球状シリカ粒子の濃度が50重量%以上のシリカゾルでは、ハードコート膜を形成するための塗布液の粘度が上昇してしまい、塗布液の安定性が悪く、均一なハードコート膜を形成することができない。そのため、ハードコート膜のガスバリア性だけでなく、鉛筆硬度や耐擦傷性も良くない。 On the other hand, the spherical silica particles are desirably contained in an amount of 20 to 50% by weight based on the total amount of silica sol. In a silica sol having a spherical silica concentration of less than 20% by weight, pencil hardness and scratch resistance are not good when a hard coat film is produced as described later. In addition, when the silica sol has a spherical silica particle concentration of 50% by weight or more, the viscosity of the coating liquid for forming the hard coat film is increased, the stability of the coating liquid is poor, and a uniform hard coat film is formed. I can't. Therefore, not only the gas barrier property of the hard coat film but also the pencil hardness and scratch resistance are not good.
また、本発明によるシリカゾルの固形分は、シリカ(SiO2)を主成分としている。ここで「主成分」とは、後述するICPを用いた方法によって求められる固形分中における含有率が70重量%以上であることを意味する。すなわち、本発明によるシリカゾルの固形分にはシリカが70重量%以上含まれる。シリカ以外の固形分には、アルミナ(Al2O3)、ジルコニア(ZrO2)、セリア(CeO2)、チタニア(TiO2)、酸化鉄(Fe2O3、FeO)、酸化マンガン(Mn2O3、MnO)、アルカリ金属元素(Li、Na、K、Rb、Cs、Fr)、周期表第2族元素(Be、Mg、Ca、Sr、Ba)がある。シリカの含有率は高いほど好ましい。すなわち、シリカゾルに含まれる固形分が実質的にシリカ(SiO2)からなることが最も好ましい。ここで「実質的になる」とは、原料や製造過程から不可避的に含まれる不純物は含まれ得るが、それ以外は含まないことを意味する。なお、特に断りがない限り、本発明の説明において「主成分」および「実質的になる」は、このような意味で用いるものとする。 The solid content of the silica sol according to the present invention is mainly composed of silica (SiO 2 ). Here, the “main component” means that the content in the solid content determined by a method using ICP described later is 70% by weight or more. That is, the solid content of the silica sol according to the present invention contains 70% by weight or more of silica. Solids other than silica include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), ceria (CeO 2 ), titania (TiO 2 ), iron oxide (Fe 2 O 3 , FeO), manganese oxide (Mn 2 O 3 , MnO), alkali metal elements (Li, Na, K, Rb, Cs, Fr), and periodic table group 2 elements (Be, Mg, Ca, Sr, Ba). The higher the content of silica, the better. That is, it is most preferable that the solid content contained in the silica sol is substantially composed of silica (SiO 2 ). Here, “becomes substantially” means that impurities inevitably contained from the raw materials and the production process can be contained, but other than that are not contained. Unless otherwise specified, in the description of the present invention, “main component” and “substantially become” are used in this sense.
シリカゾルの固形分に含まれる各成分の含有率は、次の方法で測定する。シリカゾルをコロジオン膜にのせ、乾燥させることで固形分が得られる。その後、この固形分をフッ酸で溶解し、加熱してフッ酸を除去する。そして、必要に応じて純水を加え、得られた溶液についてICP誘導結合プラズマ発光分光分析装置(例えば、セイコー電子工業株式会社製、SPS1200A)を用いて、各元素の含有率を測定する。
次に、酸化物で存在すると考えられる元素については、その元素の最も典型的な酸化物(例えばSiO2、Al2O3、ZrO2、CeO2、TiO2)で全量が存在するとして、各元素の酸化物での含有率を算出する。例えば、シリカであれば、ICPを用いてSi含有率を測定した後、Si元素の全てがSiO2の態様で存在しているとしてSiO2含有率を算出する。以下、特に断りがない限り、シリカゾルが固形分として含有する各成分の含有率は、このような方法で測定して得た値である。
The content rate of each component contained in the solid content of the silica sol is measured by the following method. Solid content is obtained by placing silica sol on a collodion film and drying. Thereafter, the solid content is dissolved with hydrofluoric acid and heated to remove the hydrofluoric acid. And if necessary, pure water is added and the content rate of each element is measured about the obtained solution using an ICP inductively coupled plasma emission spectroscopic analyzer (for example, SPS1200A by Seiko Denshi Kogyo Co., Ltd.).
Next, regarding the element considered to be present in the oxide, it is assumed that the total amount is present in the most typical oxide of the element (for example, SiO 2 , Al 2 O 3 , ZrO 2 , CeO 2 , TiO 2 ). The content of the element in the oxide is calculated. For example, if the silica, after measuring the Si content using ICP, all Si element calculates the SiO 2 content as being present in the form of SiO 2. Hereinafter, unless otherwise specified, the content of each component contained in the silica sol as a solid content is a value obtained by measurement by such a method.
次に、本発明のシリカゾルの製造方法について説明する。本発明のシリカゾルは従来よりも板状シリカを多く含んでいるため、どの工程で板状シリカの濃度を上げるかが重要となる。したがって、(1)水ガラスの調製段階で高濃度の板状シリカを含有させ、その後シリカゾルを調整する。(2)板状シリカを低濃度含む水ガラスを、濃縮により板状シリカを高濃度にした後で、シリカゾルを調整する。(3)板状シリカを低濃度含む水ガラスを用いてシリカゾルを調製してから、水熱処理により板状シリカを高濃度にする。という3つの形態に大別できる。 Next, the manufacturing method of the silica sol of this invention is demonstrated. Since the silica sol of the present invention contains more plate-like silica than before, it is important in which step the concentration of the plate-like silica is increased. Therefore, (1) a high concentration of plate-like silica is contained in the water glass preparation stage, and then the silica sol is prepared. (2) A silica glass sol is prepared after the water glass containing a low concentration of plate-like silica is concentrated to a high concentration of plate-like silica. (3) After preparing a silica sol using water glass containing low concentration of plate-like silica, the plate-like silica is made high concentration by hydrothermal treatment. It can be roughly divided into three forms.
以下、シリカゾルの製造方法の実施例を詳細に説明する。実施例1では、板状シリカの濃度をより高めるために、上述の(1)と(2)の形態を融合させている。 Hereinafter, the Example of the manufacturing method of a silica sol is described in detail. In Example 1, in order to raise the density | concentration of plate-like silica more, the form of the above-mentioned (1) and (2) is united.
[実施例1]
(板状シリカを含む水ガラスの調製)
珪砂とソーダ灰によりカレットを作製する。カレットとイオン交換水と苛性ソーダを用いて、NaOHとSiO2のモル比(NaOH/SiO2)が0.5に、H2OとSiO2のモル比(H2O/SiO2)が5になるように溶液を調整する。オートクレーブを用いて、この溶液を150℃で30分間撹拌する。これにより、水ガラスAが得られる。
[Example 1]
(Preparation of water glass containing platy silica)
Make cullet with silica sand and soda ash. Using cullet, ion exchange water and caustic soda, the molar ratio of NaOH and SiO 2 (NaOH / SiO 2 ) is 0.5, and the molar ratio of H 2 O and SiO 2 (H 2 O / SiO 2 ) is 5. Adjust the solution to be. The solution is stirred for 30 minutes at 150 ° C. using an autoclave. Thereby, the water glass A is obtained.
この水ガラスAにNaOH水溶液を追加して、NaOHとSiO2のモル比(NaOH/SiO2)を0.6に、H2OとSiO2のモル比(H2O/SiO2)を10に調整する。オートクレーブを用いてこの溶液を150℃で10時間撹拌する。冷却後、ラヂオライトを加えてろ過し、水ガラスBを得る。このようにして作製された水ガラスBは、水ガラスAに比べて板状シリカの含有量が増加している。 An aqueous NaOH solution is added to this water glass A, the molar ratio of NaOH and SiO 2 (NaOH / SiO 2 ) is 0.6, and the molar ratio of H 2 O and SiO 2 (H 2 O / SiO 2 ) is 10 Adjust to. The solution is stirred at 150 ° C. for 10 hours using an autoclave. After cooling, radiolite is added and filtered to obtain water glass B. The water glass B thus produced has an increased content of plate-like silica compared to the water glass A.
さらに、板状シリカの含有量を上げるには、限外濾過工程を加えればよい。すなわち、この水ガラスBを、限外濾過して、水ガラスCを得る。限外濾過により板状シリカは濃縮される。そのため、板状シリカの濃度が高い水ガラスCが得られる。 Furthermore, what is necessary is just to add an ultrafiltration process, in order to raise content of plate-like silica. That is, this water glass B is ultrafiltered to obtain water glass C. The plate-like silica is concentrated by ultrafiltration. Therefore, water glass C having a high concentration of plate-like silica is obtained.
(活性珪酸液の調製)
この水ガラスCに純水を加えて、シリカ濃度(SiO2換算濃度)が5重量%の珪酸ナトリウム水溶液Aを作製する。この珪酸ナトリウム水溶液A6500gを強酸性陽イオン交換樹脂(三菱化学製SK1BH)で通液させることにより活性珪酸液6650gが得られる。得られた活性珪酸液のシリカ濃度は4.7重量%となる。
(Preparation of active silicic acid solution)
Pure water is added to the water glass C to prepare a sodium silicate aqueous solution A having a silica concentration (SiO 2 equivalent concentration) of 5% by weight. By passing 6500 g of this sodium silicate aqueous solution A through a strongly acidic cation exchange resin (SK1BH manufactured by Mitsubishi Chemical), 6650 g of an active silicic acid solution is obtained. The silica concentration of the obtained active silicic acid solution is 4.7% by weight.
(シリカゾルの調製)
水ガラスC80.1gに純水1217.8gを加えて希釈し、シリカ濃度1.5重量%の珪酸ナトリウム水溶液B1297.9gを作製する。この珪酸ナトリウム水溶液Bに前述の活性珪酸液20.1gを加えて攪拌し、82℃に昇温する。この温度(82℃)を30分間保持する。その後、さらに前述の活性珪酸液11064.8gを15時間かけて継続的に添加する。添加中も82℃を維持し、添加終了後も82℃を1時間保つ。その後、室温になるまで冷却する。
このようにして得られるシリカゾルAを限外濾過膜(旭化成製SIP−1013)により、シリカ濃度が12重量%になるまで濃縮する。これに濃度5重量%の水酸化ナトリウム水溶液を加えて、pHが10になるように調整する。ついで、ロータリーエバポレーターで濃縮して、シリカ濃度30重量%(SiO2換算基準)のシリカゾルBを作製する。シリカゾルBでは、板状シリカの濃度は8重量%、球状シリカ粒子の濃度は22重量%であった。
(Preparation of silica sol)
1217.8 g of pure water is added to 80.1 g of water glass C and diluted to prepare 1297.9 g of an aqueous sodium silicate solution B having a silica concentration of 1.5% by weight. The above-mentioned active silicic acid solution 20.1 g is added to this sodium silicate aqueous solution B, stirred, and heated to 82 ° C. This temperature (82 ° C.) is held for 30 minutes. Thereafter, 11064.8 g of the aforementioned active silicic acid solution is continuously added over 15 hours. The temperature is maintained at 82 ° C. during the addition, and maintained at 82 ° C. for 1 hour after the addition is completed. Then, it is cooled to room temperature.
The silica sol A thus obtained is concentrated by an ultrafiltration membrane (SIP-1013 manufactured by Asahi Kasei) until the silica concentration becomes 12% by weight. A sodium hydroxide aqueous solution having a concentration of 5% by weight is added thereto to adjust the pH to 10. Subsequently, it concentrates with a rotary evaporator to produce silica sol B having a silica concentration of 30% by weight (SiO 2 conversion standard). In silica sol B, the concentration of plate-like silica was 8% by weight, and the concentration of spherical silica particles was 22% by weight.
(板状シリカの濃度測定方法と大きさの計測方法)
シリカゾルや水ガラスに球状シリカ粒子と板状シリカがどのくらい含まれているかは、以下のように確認できる。
測定対象サンプルのシリカ濃度(Y重量%)を測定する。対象サンプルをエタノール/イオン交換水(モル比=50/50の溶液)を用いて100倍に希釈する。この希釈シリカゾル5gをスピンコート(ミカサ製1H−7D型)によりガラス基材(100×100mm)に500rpmで塗布し、室温で24時間乾燥させる。このガラス基材の40μm×6mmの範囲を、走査型電子顕微鏡を用いて10000倍で観察したところ、球状シリカ粒子と板状シリカを多数確認できた。また、走査型電子顕微鏡を用いて30000倍でこの板状シリカを30個観察し、長辺と短辺を計測して、平均値を算出する。
一方、測定対象サンプルを40℃に昇温させ、限外モジュール(旭化成製PMP−102、公称孔径0.25μm)に0.20MPaで通液し、濾過する。濾過により得られるサンプルAのシリカ濃度(X重量%)を測定する。このサンプルAをエタノール/イオン交換水(モル比=50/50の溶液)を用いて100倍に希釈する。この希釈シリカゾル5gを、スピンコート(ミカサ製1H−7D型)を用いてガラス基材(100×100mm)に500rpmで塗布し、このガラス基材を室温で24時間乾燥させる。このガラス基材の40μm×6mmの範囲を、走査型電子顕微鏡を用いて10000倍で観察する。この範囲内で、球状シリカ粒子が発見され、板状シリカが発見されなければ、濾過により得られたサンプルAには板状シリカは含まれない、と推定できる。実際に、本実施例のサンプルAでは板状シリカは発見できなかった。したがって、対象サンプルに含まれる板状シリカ濃度は(Y−X)重量%となる。
(Method for measuring concentration and size of plate-like silica)
How much spherical silica particles and plate-like silica are contained in silica sol or water glass can be confirmed as follows.
The silica concentration (Y wt%) of the sample to be measured is measured. The target sample is diluted 100 times with ethanol / ion exchange water (molar ratio = 50/50 solution). 5 g of this diluted silica sol is applied to a glass substrate (100 × 100 mm) at 500 rpm by spin coating (Mikasa 1H-7D type) and dried at room temperature for 24 hours. When a 40 μm × 6 mm range of this glass substrate was observed at a magnification of 10,000 using a scanning electron microscope, many spherical silica particles and plate-like silica were confirmed. Further, 30 plate-like silicas are observed at a magnification of 30000 using a scanning electron microscope, the long side and the short side are measured, and the average value is calculated.
On the other hand, the sample to be measured is heated to 40 ° C., passed through an ultra module (PMP-102 manufactured by Asahi Kasei Corporation, nominal pore diameter of 0.25 μm) at 0.20 MPa, and filtered. The silica concentration (X wt%) of sample A obtained by filtration is measured. This sample A is diluted 100 times using ethanol / ion exchange water (molar ratio = 50/50 solution). 5 g of this diluted silica sol is applied to a glass substrate (100 × 100 mm) at 500 rpm using spin coating (Mikasa 1H-7D type), and the glass substrate is dried at room temperature for 24 hours. The range of 40 μm × 6 mm of this glass substrate is observed at a magnification of 10,000 using a scanning electron microscope. If spherical silica particles are found within this range, and plate-like silica is not found, it can be estimated that sample A obtained by filtration does not contain plate-like silica. Actually, plate-like silica was not found in Sample A of this example. Therefore, the plate-like silica concentration contained in the target sample is (YX) wt%.
(板状シリカの粒度分布測定方法)
次に、板状シリカの平均粒子径を遠心沈降法により測定する。まず、板状シリカの分散液(水または40重量%グリセリン溶媒、固形分濃度0.1〜5重量%)を超音波発生機(iuch社製US−2型)に5分間かけ、分散させる。更に、水またはグリセリンを加えて適度な濃度に調節し、これをガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に取り、遠心沈降式粒度分布測定装置(堀場製作所製CAPA−700)を用いて平均粒子径を測定する。
(Method for measuring particle size distribution of plate-like silica)
Next, the average particle diameter of the plate-like silica is measured by a centrifugal sedimentation method. First, a dispersion liquid of plate-like silica (water or 40 wt% glycerin solvent, solid content concentration 0.1 to 5 wt%) is dispersed for 5 minutes in an ultrasonic generator (US-2 type manufactured by Iuch). Furthermore, water or glycerin is added to adjust to an appropriate concentration, and this is taken in a glass cell (length 10 mm, width 10 mm, height 45 cm), and centrifugal sedimentation type particle size distribution analyzer (CAPA-700 manufactured by Horiba, Ltd.). ) To measure the average particle size.
以下に、他の製造方法によるシリカゾルの実施例を説明する。なお、実施例1と重複する説明は適宜省略する。 Examples of silica sols produced by other production methods will be described below. In addition, the description which overlaps with Example 1 is abbreviate | omitted suitably.
[実施例2]
本実施例では、実施例1と同様にして得られた水ガラスBを基にシリカゾルを作製している。そのため、板状シリカの濃度、含有量は実施例1より低い。
[Example 2]
In this example, a silica sol was produced based on the water glass B obtained in the same manner as in Example 1. Therefore, the concentration and content of plate-like silica are lower than in Example 1.
(活性珪酸液の調製)
実施例1の水ガラスBを純水で希釈して、シリカ濃度5重量%の珪酸ナトリウム水溶液Aを作製する。この珪酸ナトリウム水溶液Aを陽イオン交換塔に通液し、シリカ濃度4.5重量%の活性珪酸液を得る。
(Preparation of active silicic acid solution)
The water glass B of Example 1 is diluted with pure water to prepare a sodium silicate aqueous solution A having a silica concentration of 5% by weight. This sodium silicate aqueous solution A is passed through a cation exchange tower to obtain an active silicate solution having a silica concentration of 4.5% by weight.
(シリカゾルの調製)
また、水ガラスB80.1gに純水1217.8gを加えて希釈し、シリカ濃度1.5重量%の珪酸ナトリウム水溶液B1297.9gを作製する。この珪酸ナトリウム水溶液Bに前述の活性珪酸液20.1gを加えて攪拌し、82℃に昇温する。この温度を30分間保持する。その後、前述の活性珪酸液11064.8gを15時間かけて継続的に添加する。添加中も82℃を維持し、添加終了後も82℃を1時間保つ。その後、室温になるまで冷却する。
(Preparation of silica sol)
Further, 1217.8 g of pure water is added to 80.1 g of water glass B and diluted to prepare 1297.9 g of an aqueous sodium silicate solution B having a silica concentration of 1.5% by weight. The above-mentioned active silicic acid solution 20.1 g is added to this sodium silicate aqueous solution B, stirred, and heated to 82 ° C. Hold this temperature for 30 minutes. Thereafter, 11064.8 g of the aforementioned active silicic acid solution is continuously added over 15 hours. The temperature is maintained at 82 ° C. during the addition, and maintained at 82 ° C. for 1 hour after the addition is completed. Then, it is cooled to room temperature.
このようにして得られるシリカゾルAを限外濾過膜(旭化成製SIP−1013)により、シリカ濃度が12重量%になるまで濃縮する。これに5重量%の水酸化ナトリウム水溶液を加えて、pHが10になるように調整する。ついで、ロータリーエバポレーターを用いて濃縮し、シリカ濃度30重量%(SiO2換算基準)のシリカゾルを作製する。このように作製された実施例2のシリカゾルでは、板状シリカの濃度は1重量%、球状シリカ粒子の濃度は29重量%であった。 The silica sol A thus obtained is concentrated by an ultrafiltration membrane (SIP-1013 manufactured by Asahi Kasei) until the silica concentration becomes 12% by weight. A 5% by weight aqueous sodium hydroxide solution is added to this to adjust the pH to 10. Then concentrated using a rotary evaporator to produce a sol of silica concentration 30 wt% (SiO 2 equivalent value). In the silica sol of Example 2 produced in this way, the concentration of plate-like silica was 1% by weight, and the concentration of spherical silica particles was 29% by weight.
[実施例3]
本実施例はシリカゾルの製造方法が実施例1と異なっている。はじめに通常のシリカゾルを調製し、その後、板状シリカを濃縮する実施例である。
まず、市販の3号水硝子(シリカ濃度(SiO2換算濃度)24重量%)に純水を添加し、シリカ濃度5重量%の珪酸ナトリウム水溶液を得る。このシリカ濃度5重量%の珪酸ナトリウム水溶液6500gを陽イオン交換塔に通液させることで活性珪酸液6450gが得られる。得られた活性珪酸液のシリカ濃度は4.7重量%となる。
さらに、市販の3号水硝子(シリカ濃度24重量%)80.1gに純水1217.8gを添加して、シリカ濃度1.5重量%の珪酸ナトリウム水溶液Bを1297.9g作製する。この珪酸ナトリウム水溶液Bへ前述の活性珪酸液20.1gを添加して攪拌した後、82℃に昇温する。82℃のままで30分保持し、さらに前述の活性珪酸液11064.8gを15時間かけて添加する。添加終了後、さらに82℃のまま1時間放置し、その後室温まで冷却する。
[Example 3]
This example differs from Example 1 in the method for producing silica sol. This is an example in which a normal silica sol is first prepared and then the plate-like silica is concentrated.
First, pure water is added to commercially available No. 3 water glass (silica concentration (SiO 2 equivalent concentration: 24 wt%)) to obtain a sodium silicate aqueous solution having a silica concentration of 5 wt%. By passing 6500 g of this sodium silicate aqueous solution having a silica concentration of 5% by weight through a cation exchange tower, 6450 g of an active silicate solution is obtained. The silica concentration of the obtained active silicic acid solution is 4.7% by weight.
Furthermore, 1217.8 g of pure water is added to 80.1 g of commercially available No. 3 water glass (silica concentration: 24% by weight) to prepare 1297.9 g of sodium silicate aqueous solution B having a silica concentration of 1.5% by weight. After adding the above-mentioned active silicic acid solution 20.1g to this sodium silicate aqueous solution B and stirring, it heats up to 82 degreeC. The temperature is kept at 82 ° C. for 30 minutes, and 11064.8 g of the aforementioned active silicic acid solution is further added over 15 hours. After completion of the addition, the mixture is further left at 82 ° C. for 1 hour and then cooled to room temperature.
このようにして得られるシリカゾルを限外濾過膜(旭化成製SIP−1013)を用いて、シリカ濃度が12重量%になるまで濃縮する。これに5重量%の水酸化ナトリウム水溶液を加えて、pHが10になるように調整する。ついで、ロータリーエバポレーターで濃縮して、シリカ濃度30重量%のシリカゾルを作製する。この段階では、球状シリカ粒子の濃度は29重量%で、板状シリカの濃度は1重量%であった。このシリカゾルを40℃とし、限外モジュール(旭化成製PMP−102、公称孔径0.25μm)に0.20MPaで通液させると、球状シリカ粒子と水のみが限外モジュールを通過し、板状シリカは限外モジュールを通過できない。この原理を用いて、シリカゾルを3倍に濃縮する。このように作製された実施例3のシリカゾルでは、板状シリカの濃度は3重量%、球状シリカ粒子の濃度は27重量%であった。 The silica sol thus obtained is concentrated using an ultrafiltration membrane (SIP-1013 manufactured by Asahi Kasei) until the silica concentration becomes 12% by weight. A 5% by weight aqueous sodium hydroxide solution is added to this to adjust the pH to 10. Subsequently, it concentrates with a rotary evaporator to produce a silica sol having a silica concentration of 30% by weight. At this stage, the concentration of spherical silica particles was 29% by weight, and the concentration of plate-like silica was 1% by weight. When this silica sol is made 40 ° C. and passed through an ultra module (PMP-102 manufactured by Asahi Kasei Co., Ltd., nominal pore size 0.25 μm) at 0.20 MPa, only spherical silica particles and water pass through the ultra module, and plate-like silica is obtained. Cannot pass through the limit module. Using this principle, the silica sol is concentrated three times. In the silica sol of Example 3 produced in this way, the concentration of plate-like silica was 3% by weight, and the concentration of spherical silica particles was 27% by weight.
[実施例4]
本実施例では、実施例3で得られたシリカゾルを水熱処理する工程を設けている。
実施例3で得られたシリカゾル4500gに、濃度5重量%の水酸化ナトリウム水溶液を100g加えて、200℃のオートクレーブ中で10時間撹拌を行う。さらに、180℃で3時間放置する。この工程により、球状シリカ粒子が大きくなり、板状シリカの濃度が高くなり、板状シリカの平均粒子径も大きくなる。
[Example 4]
In this example, a process of hydrothermally treating the silica sol obtained in Example 3 is provided.
100 g of a 5 wt% sodium hydroxide aqueous solution is added to 4500 g of the silica sol obtained in Example 3, and the mixture is stirred in an autoclave at 200 ° C. for 10 hours. Furthermore, it is left at 180 ° C. for 3 hours. By this step, the spherical silica particles are enlarged, the concentration of the plate-like silica is increased, and the average particle size of the plate-like silica is also increased.
[実施例5]
本実施例は、基本的な製法は実施例1と同一であるが、径の小さい球状シリカ粒子を得たい場合の実施例である。
実施例1の水ガラスCを純水で希釈してシリカ濃度5質量%とした後、陽イオン交換塔に通液し、活性珪酸液(シリカ濃度4.5重量%)を作製する。次に、市販の3号水硝子(シリカ濃度24重量%)31gに純水469gを添加し、シリカ濃度1.5重量%の珪酸ナトリウム水溶液Bを500作製する。この希釈珪酸ナトリウム水溶液B500gに、活性珪酸液(シリカ濃度4.5重量%)222gを混合し、60℃で1時間加熱する。その後60℃を保持しつつ、更に活性珪酸液(シリカ濃度4.5重量%)945gを6時間かけて徐々に添加して、水系溶媒分散シリカゾルを得る。
この水系溶媒分散シリカゾルをロータリーエバポレーターを用いて、250gまで濃縮する。このようにして得られた本実施例のシリカゾルはシリカ濃度30重量%で、板状シリカの濃度は7重量%、球状シリカ粒子のシリカ濃度は23重量%、球状シリカ粒子の平均粒子径は5nmであった。
[Example 5]
In this example, the basic manufacturing method is the same as that in Example 1, but it is an example when spherical silica particles having a small diameter are desired.
The water glass C of Example 1 was diluted with pure water to a silica concentration of 5% by mass, and then passed through a cation exchange tower to produce an active silicic acid solution (silica concentration of 4.5% by weight). Next, 469 g of pure water is added to 31 g of commercially available No. 3 water glass (silica concentration: 24 wt%) to prepare 500 sodium silicate aqueous solution B having a silica concentration of 1.5 wt%. In 500 g of this diluted sodium silicate aqueous solution B, 222 g of an active silicic acid solution (silica concentration: 4.5% by weight) is mixed and heated at 60 ° C. for 1 hour. Thereafter, 945 g of an active silicic acid solution (silica concentration: 4.5 wt%) is gradually added over 6 hours while maintaining 60 ° C. to obtain an aqueous solvent-dispersed silica sol.
The aqueous solvent-dispersed silica sol is concentrated to 250 g using a rotary evaporator. The silica sol of this example thus obtained has a silica concentration of 30% by weight, the concentration of plate-like silica is 7% by weight, the silica concentration of the spherical silica particles is 23% by weight, and the average particle size of the spherical silica particles is 5 nm. Met.
[実施例6]
本実施例は、基本的な製法は実施例1と同一であるが、径の大きい球状シリカ粒子を得たい場合の実施例である。
実施例1の水ガラスCを純水で希釈してシリカ濃度5重量%とした後、陽イオン交換塔に通液し、活性珪酸液(シリカ濃度4.5重量%)を作製する。次に、純水600gと市販の3号水硝子(シリカ濃度24重量%)70gを混合して、希釈珪酸ナトリウム水溶液670gを調製する。この希釈珪酸ナトリウム水溶液670gに、前述の活性珪酸液20gを混合し、98℃で1時間加熱する。その後98℃を保持しつつ、前述の活性珪酸液417gを3時間かけて徐々に添加する。さらに、98℃に保持した状態で、前述の活性珪酸液7500gを10時間かけて徐々に添加して、水系溶媒分散シリカゾルが得られる。この水系溶媒分散シリカゾルをロータリーエバポレーターにて、250gまで濃縮する。このようにして得られた本実施例のシリカゾルは、シリカ濃度30重量%で、板状シリカの濃度は9重量%、球状シリカ粒子の濃度は21%、球状シリカ粒子の平均粒子径は45nmであった。
[Example 6]
In this example, the basic production method is the same as that in Example 1, but this is an example when it is desired to obtain spherical silica particles having a large diameter.
The water glass C of Example 1 was diluted with pure water to a silica concentration of 5% by weight, and then passed through a cation exchange tower to produce an active silicic acid solution (silica concentration of 4.5% by weight). Next, 600 g of pure water and 70 g of commercially available No. 3 water glass (silica concentration: 24% by weight) are mixed to prepare 670 g of a diluted sodium silicate aqueous solution. 20 g of the aforementioned active silicic acid solution is mixed with 670 g of this diluted sodium silicate aqueous solution and heated at 98 ° C. for 1 hour. Thereafter, while maintaining 98 ° C., 417 g of the aforementioned active silicic acid solution is gradually added over 3 hours. Further, while maintaining at 98 ° C., 7500 g of the aforementioned active silicic acid solution is gradually added over 10 hours to obtain an aqueous solvent-dispersed silica sol. The aqueous solvent-dispersed silica sol is concentrated to 250 g using a rotary evaporator. The silica sol of this example thus obtained had a silica concentration of 30% by weight, a plate-like silica concentration of 9% by weight, a spherical silica particle concentration of 21%, and an average particle diameter of spherical silica particles of 45 nm. there were.
[比較例1]
比較のために、実質的に板状シリカを含まないシリカゾルを作製する。市販の3号水硝子(シリカ濃度24重量%)80.1gに純水1217.8gを添加してシリカ濃度1.5重量%の珪酸ナトリウム水溶液を1297.9g作製する。次に、この珪酸ナトリウム水溶液にシリカ濃度4.7重量%の活性珪酸液20.1gを添加して攪拌した後、82℃に昇温した。82℃のまま30分保持し、さらにシリカ濃度4.7重量%の活性珪酸液11064.8gを15時間かけて継続的に添加する。添加終了後、さらに82℃のまま1時間保ち、その後、室温まで冷却した。
そして、得られたシリカゾルを限外濾過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12重量%になるまで濃縮し、濃度5重量%の水酸化ナトリウム水溶液を加えて、pHを10に調整する。ついで、ロータリーエバポレーターで濃縮する。このようにして得られた本比較例の水溶媒分散系シリカゾルは、シリカ濃度30重量%で、板状シリカは含まれず、球状シリカ粒子の濃度は31重量%、球状シリカ粒子の平均粒子径は18nmであった。
[Comparative Example 1]
For comparison, a silica sol containing substantially no plate-like silica is prepared. 1217.8 g of pure water is added to 80.1 g of commercially available No. 3 water glass (silica concentration: 24 wt%) to prepare 1297.9 g of an aqueous sodium silicate solution having a silica concentration of 1.5 wt%. Next, 20.1 g of an active silicic acid solution having a silica concentration of 4.7% by weight was added to the sodium silicate aqueous solution and stirred, and then the temperature was raised to 82 ° C. While maintaining at 82 ° C. for 30 minutes, 11064.8 g of an active silicic acid solution having a silica concentration of 4.7% by weight is continuously added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature.
Then, the obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration became 12% by weight, and a 5% by weight sodium hydroxide aqueous solution was added to adjust the pH. Is adjusted to 10. Subsequently, it concentrates with a rotary evaporator. The aqueous solvent-dispersed silica sol of this comparative example thus obtained has a silica concentration of 30% by weight, does not contain plate-like silica, the concentration of spherical silica particles is 31% by weight, and the average particle size of the spherical silica particles is It was 18 nm.
[比較例2]
特許文献3に対応する比較例を以下のように作製する。すなわち、この比較例では板状の薄片状微粒子のみを含むゾルを作製する。
サポナイト[Na0.33(Mg3)(Al0.33Si3.67)O10(OH)2・5H2O、動的光散乱法による平均粒子径20nm、短径/長径比0.3]100gに、純水と水酸化ナトリウム5重量%水溶液とを加えて、サポナイト水溶液10kg(固形分1重量%、pH11.0)を作製する。このサポナイト水溶液を80℃に保持し、活性珪酸液(シリカ濃度4.5重量%)17.8kgを添加速度59g/分(シリカ換算)で添加する。添加終了後、更に1時間、80℃で保持して熟成させる。その後、ロータリーエバポレーターで濃縮し、固形分濃度20重量%の薄片状微粒子分散液を得る。この薄片状微粒子分散液には、球状シリカ粒子は含まれていないので、薄片状微粒子の濃度が20重量%となっている。
[Comparative Example 2]
The comparative example corresponding to patent document 3 is produced as follows. That is, in this comparative example, a sol containing only plate-like flaky fine particles is produced.
To 100 g of saponite [Na 0.33 (Mg 3 ) (Al 0.33 Si 3.67 ) O 10 (OH) 2 .5H 2 O, average particle diameter 20 nm, minor axis / major axis ratio 0.3] by dynamic light scattering method, pure water And 5 wt% sodium hydroxide aqueous solution are added to prepare 10 kg of saponite aqueous solution (solid content 1 wt%, pH 11.0). This saponite aqueous solution is kept at 80 ° C., and 17.8 kg of an active silicic acid solution (silica concentration: 4.5% by weight) is added at an addition rate of 59 g / min (silica conversion). After completion of the addition, the mixture is further aged at 80 ° C. for 1 hour. Then, it concentrates with a rotary evaporator to obtain a flaky fine particle dispersion having a solid content of 20% by weight. Since the flaky fine particle dispersion does not contain spherical silica particles, the concentration of the flaky fine particles is 20% by weight.
[比較例3]
比較例2で得られた薄片状微粒子分散液20gと比較例1で得られた水溶媒分散系シリカゾル80gを混合して、シリカ濃度28重量%のシリカゾルを得た。本比較例のシリカゾルは、球状シリカ粒子の濃度は24重量%、薄片状微粒子の濃度は4重量%、薄片状微粒子の平均粒子径は28nmであった。
実施例1〜6と比較例1〜3で得られたシリカゾルの特性値を表1に示す。
[Comparative Example 3]
20 g of the flaky fine particle dispersion obtained in Comparative Example 2 and 80 g of the aqueous solvent-dispersed silica sol obtained in Comparative Example 1 were mixed to obtain a silica sol having a silica concentration of 28% by weight. In the silica sol of this comparative example, the concentration of spherical silica particles was 24% by weight, the concentration of flaky fine particles was 4% by weight, and the average particle size of the flaky fine particles was 28 nm.
Table 1 shows the characteristic values of the silica sols obtained in Examples 1 to 6 and Comparative Examples 1 to 3.
表1に示したシリカゾルの分散液を有機溶媒に置換し、UV硬化樹脂と混合して、ハードコート膜を作成する。以下に、その方法を示す。 The silica sol dispersion shown in Table 1 is replaced with an organic solvent and mixed with a UV curable resin to form a hard coat film. The method is shown below.
(有機溶媒置換)
シリカゾル670gにイオン交換樹脂(三菱化学製:ダイヤイオンSK1B)400gを添加し、80℃で3時間イオン交換して洗浄を行った。ついで、イオン交換樹脂を除去した後、分散液を限外濾過膜法によりメタノールに溶媒置換するとともに濃縮して、固形分濃度20重量%のシリカ粒子メタノール分散液を得た。
ついで、このゾル100gにγ-メタアクリロオキシプロピルトリメトキシシラン3.0g(信越シリコ−ン製:KBM−503、SiО2成分81.2%)を加え、50℃で6時間加熱撹拌して疎水性シリカ粒子分散液を得た。
ついで、ロータリーエバポレーターにてメチルイソブチルケトンに溶媒置換して濃度20重量%の疎水性シリカ粒子メチルイソブチケトン分散液を得た。
(Organic solvent substitution)
400 g of an ion exchange resin (manufactured by Mitsubishi Chemical: Diaion SK1B) was added to 670 g of silica sol, and washing was performed by ion exchange at 80 ° C. for 3 hours. Subsequently, after removing the ion exchange resin, the dispersion was subjected to solvent substitution with methanol by an ultrafiltration membrane method and concentrated to obtain a silica particle methanol dispersion with a solid content concentration of 20% by weight.
Next, 3.0 g of γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone: KBM-503, SiO 2 component 81.2%) was added to 100 g of the sol, and the mixture was heated and stirred at 50 ° C. for 6 hours. A hydrophobic silica particle dispersion was obtained.
Subsequently, the solvent was replaced with methyl isobutyl ketone by a rotary evaporator to obtain a dispersion of hydrophobic silica particles methyl isobutyketone having a concentration of 20% by weight.
(ハードコート膜形成用塗布液の調製)
疎水性シリカ粒子メチルイソブチケトン分散液18.10gと、アクリル樹脂(共栄社化学製:DPE−6A)36.00gと、シリコーン系レベリング剤(楠本化成製;ディスパロン1711)0.20gと光重合開始剤(チバジャパン製:イルガキュア184)2.16gとPGME43.54gを充分に混合して固形分濃度40.0重量%のハードコート膜形成用塗布液を調製した。
(Preparation of coating solution for hard coat film formation)
Photopolymerization started with 18.10 g of hydrophobic silica particle methyl isobutyketone dispersion, 36.00 g of acrylic resin (Kyoeisha Chemical Co., Ltd .: DPE-6A), silicone leveling agent (manufactured by Enomoto Kasei; Disparon 1711) 2.16 g of an agent (manufactured by Ciba Japan: Irgacure 184) and 43.54 g of PGME were sufficiently mixed to prepare a coating solution for forming a hard coat film having a solid content concentration of 40.0% by weight.
(ハードコート膜付基材の製造)
ハードコート膜形成用塗布液を、両面易接着層付きPETフィルム(東レ株式会社製ルミラー#188−U48(厚さ:188μm、屈折率:1.51))にバーコーター法(#4)で塗布し、80℃で120秒間乾燥した後、300mJ/cm2の紫外線を照射して硬化させてハードコート膜付基材を製造した。このときのハードコート膜の厚さは5μmであった。
(Manufacture of base material with hard coat film)
The coating liquid for forming a hard coat film is applied to a PET film with a double-sided easy-adhesion layer (Lumirror # 188-U48 manufactured by Toray Industries, Inc. (thickness: 188 μm, refractive index: 1.51)) by the bar coater method (# 4). Then, after drying at 80 ° C. for 120 seconds, the substrate was coated with a hard coat film by irradiating with 300 mJ / cm 2 ultraviolet rays to be cured. At this time, the thickness of the hard coat film was 5 μm.
ハードコート膜の評価
上述の実施例と比較例により得られるハードコート膜の評価を行った。結果を表2に示す。
Evaluation of hard coat film The hard coat film obtained by the above-mentioned Examples and Comparative Examples was evaluated. The results are shown in Table 2.
ガスバリア性(酸素ガス透過度)の評価は、日本工業規格JIS−K7126「プラスチックフィルム及びシートの気体透過度試験方法」に基づく差圧法によって行った。試験装置は、試験片にガスを透過させるための透過セル、透過したガスによる圧力変化を測定する圧力検出器、透過セルに酸素を供給するための気体供給器、真空ポンプから構成される。圧力検出器としてNEWパルミル真空計PVD−9500−L21(佐藤真空株式会社製)を用い、1Paの精度で測定した。試験片にはデシケーター内でシリカゲルを用いて48時間以上乾燥したものを用いた。その透過面の直径は30mmである。試験条件は室温25℃、試験温度25℃で行った。試験片によって隔てられた一方を真空に保ち、他方にガスを導入し(約1気圧)、低圧側の圧力を記録し透過曲線を得た。透過曲線の定常状態の傾きから単位時間における低圧側の圧力変化を求め、気体透過度[ml/m2/24hrs/MPa]を算出した。なお、気体には酸素を用い、試験片の厚さは3箇所測定した平均値を用いた。 The gas barrier property (oxygen gas permeability) was evaluated by a differential pressure method based on Japanese Industrial Standard JIS-K7126 “Plastic Film and Sheet Gas Permeability Test Method”. The test apparatus includes a permeation cell for allowing gas to permeate the test piece, a pressure detector for measuring a pressure change caused by the permeated gas, a gas supply for supplying oxygen to the permeation cell, and a vacuum pump. A NEW Palmyl vacuum gauge PVD-9500-L21 (manufactured by Sato Vacuum Co., Ltd.) was used as a pressure detector, and the pressure was measured with an accuracy of 1 Pa. The test piece used was dried for 48 hours or more using silica gel in a desiccator. The diameter of the transmission surface is 30 mm. The test conditions were a room temperature of 25 ° C. and a test temperature of 25 ° C. One separated by the test piece was kept in vacuum, gas was introduced into the other (about 1 atm), and the pressure on the low pressure side was recorded to obtain a transmission curve. Calculated pressure variation of the low pressure side of the unit from the slope of a steady state permeation curve time was calculated gas permeability [ml / m 2 / 24hrs / MPa]. In addition, oxygen was used for gas and the average value measured three places was used for the thickness of the test piece.
全光線透過率およびヘーズはヘーズメーター(スガ試験機製)により測定した。ハードコート膜の屈折率は、界面活性剤処理金属酸化物微粒子(A1)、マトリックス成分の各屈折率を含有量に応じて、計算によって求めた。 The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments). The refractive index of the hard coat film was calculated by calculating the refractive indexes of the surfactant-treated metal oxide fine particles (A1) and the matrix component according to the contents.
鉛筆硬度は、JIS−K−5600に準じて鉛筆硬度試験器により測定した。 The pencil hardness was measured with a pencil hardness tester according to JIS-K-5600.
耐擦傷性は、#0000スチールウールを用いて荷重1kg/cm2で30回摺動させて、膜の表面を目視観察し、以下の基準で評価した。
筋条の傷が認められない :◎
筋条の傷が僅かに認められる :○
筋条の傷が多数認められる :△
面が全体的に削られている :×
The scratch resistance was evaluated by the following criteria by visually observing the surface of the film by sliding it 30 times with a load of 1 kg / cm 2 using # 0000 steel wool.
No streak injury is found: ◎
Slight flaws are observed: ○
Many streak wounds are found: △
The surface has been cut entirely: ×
Claims (6)
前記板状シリカは長辺が0.5〜10μm、短辺が100〜500nm、厚みが1〜30nmの矩形体であり、前記板状シリカはSiO2固形分として該シリカゾルに1〜10重量%含まれることを特徴とするシリカゾル。 Spherical silica particles having an average particle diameter of 3 to 300 nm, and plate-like silica,
The plate-like silica is a rectangular body having a long side of 0.5 to 10 μm, a short side of 100 to 500 nm, and a thickness of 1 to 30 nm. The plate-like silica is 1 to 10% by weight in the silica sol as SiO 2 solid content. Silica sol characterized by being contained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014071054A JP2015193485A (en) | 2014-03-31 | 2014-03-31 | silica sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014071054A JP2015193485A (en) | 2014-03-31 | 2014-03-31 | silica sol |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015193485A true JP2015193485A (en) | 2015-11-05 |
Family
ID=54432910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014071054A Pending JP2015193485A (en) | 2014-03-31 | 2014-03-31 | silica sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015193485A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019182687A (en) * | 2018-04-04 | 2019-10-24 | 株式会社日本触媒 | Colloidal silica |
-
2014
- 2014-03-31 JP JP2014071054A patent/JP2015193485A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019182687A (en) * | 2018-04-04 | 2019-10-24 | 株式会社日本触媒 | Colloidal silica |
JP7007982B2 (en) | 2018-04-04 | 2022-01-25 | 株式会社日本触媒 | Colloidal silica |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5057199B2 (en) | Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating | |
KR101790553B1 (en) | Process for production of hollow silica particles, hollow silica particles, and composition and insulation sheet which contain same | |
TWI488813B (en) | Hollow silica fine particles, a transparent film-forming composition containing the same, and a substrate having a transparent film | |
JP5591530B2 (en) | Method for producing silica-based fine particle dispersed sol, silica-based fine particle dispersed sol, coating composition containing the dispersed sol, curable coating film, and substrate with curable coating film | |
TWI241326B (en) | Hard coating material and film comprising the same | |
Du et al. | Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system | |
TWI510434B (en) | A chain-like silica-based hollow fine particles and a method for producing the same, a coating liquid for forming a transparent film containing the fine particles, and a substrate coated with a transparent film | |
JP6237322B2 (en) | Method for producing article with antiglare film | |
WO2005093465A1 (en) | Optical member including antireflection film | |
JP2008139581A (en) | Substrate with antireflection film | |
JP5922231B2 (en) | Method for producing zirconia colloids | |
JP2013076075A (en) | Al-MODIFIED SPINY FINE PARTICLE, MANUFACTURING METHOD THEREOF, DISPERSION, AND COATING COMPOSITION | |
JP2018123043A (en) | Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film | |
JP6214412B2 (en) | Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof | |
JP5241199B2 (en) | Method for producing fibrous hollow silica fine particles and substrate with antireflection coating | |
JP5146683B2 (en) | Method for producing modified zirconium oxide-stannic oxide composite sol | |
JP5754884B2 (en) | Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating | |
WO2017029735A1 (en) | Article with anti-glare film, method for producing same and image display device | |
CN113165900B (en) | Method for preparing zirconium dioxide nano particles in presence of amino acid | |
JP6080583B2 (en) | Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate | |
JP2009143754A (en) | Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same | |
JP2015193485A (en) | silica sol | |
JP2011105580A (en) | SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME | |
JP2006342023A (en) | Hollow silica sol and hollow silica fine particle | |
JP5700944B2 (en) | Dispersion sol of confetti-like silica-based fine particles, coating composition containing the dispersion sol, and method for producing confetti-like silica-based fine particle dispersion sol. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160531 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160606 |