JP2015193372A - Flow straightening structure for lower part of vehicle body - Google Patents

Flow straightening structure for lower part of vehicle body Download PDF

Info

Publication number
JP2015193372A
JP2015193372A JP2015056120A JP2015056120A JP2015193372A JP 2015193372 A JP2015193372 A JP 2015193372A JP 2015056120 A JP2015056120 A JP 2015056120A JP 2015056120 A JP2015056120 A JP 2015056120A JP 2015193372 A JP2015193372 A JP 2015193372A
Authority
JP
Japan
Prior art keywords
vehicle body
flap
flow path
vehicle
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015056120A
Other languages
Japanese (ja)
Other versions
JP6537165B2 (en
Inventor
裕介 大木
Yusuke Oki
裕介 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2015056120A priority Critical patent/JP6537165B2/en
Publication of JP2015193372A publication Critical patent/JP2015193372A/en
Application granted granted Critical
Publication of JP6537165B2 publication Critical patent/JP6537165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow straightening structure for a lower part of a vehicle body, which can reduce air resistance by straightening an airflow generated on the downside of the vehicle body during vehicle traveling, and which can obtain proper aerodynamic characteristics.SOLUTION: In a flow straightening structure for a lower part of a vehicle body, a flap 2 protruding downward from the lower part of the vehicle body is provided ahead of a tire. A protrusion 4 protruding downward the lower part of the vehicle body ahead of the flap 2 is provided, and a flow straightening member 3 for splitting an airflow, which is directed backward from a front side through the downside of the vehicle body 10, in a vehicle-body width direction by the protrusion 4 is provided.

Description

本発明は、車両走行時に、車体下部における空気抵抗を低減させる車体下部整流構造に関する。   The present invention relates to a lower body rectification structure that reduces air resistance in a lower part of a vehicle body when the vehicle travels.

一般に、車両走行時に発生する走行流のうちフロントバンパの下側を通って車体下部の前方から後方に向かって流れる気流が、前輪タイヤへ干渉すると、該前輪タイヤの回転により気流が乱れ、空気抵抗が大きくなり、操縦安定性が不安定になる問題がある。
そこで、前輪タイヤの前方に、車体の下部から下方へ突き出すフラップを設けて、気流の方向を車体の幅方向や下方へ変えて、空気抵抗を低減させる技術が一般的に知られている。
In general, when the airflow flowing from the front of the lower part of the vehicle body through the lower side of the front bumper to the rear of the traveling flow generated when the vehicle travels interferes with the front tire, the airflow is disturbed by the rotation of the front tire, and the air resistance There is a problem that steering stability becomes unstable.
Therefore, a technique is known that reduces the air resistance by providing a flap protruding downward from the lower part of the vehicle body in front of the front tire and changing the direction of the air flow in the width direction or downward of the vehicle body.

例えば、下記特許文献1に開示された車体下部整流構造は、前記フラップとして、フロントフェンダパネルの内側に設けられたフェンダプロテクタの前端部と、車体前部の底面を覆うアンダーカバーとの後端部とに、アンダーカバーの一般部の高さよりも下方に突き出し、前輪よりも幅広に形成されたフランジがそれぞれ設けられている。前記フェンダプロテクタのフランジとアンダーカバーのフランジは、一体的に接合されている。   For example, the lower body rectifying structure disclosed in Patent Document 1 below includes, as the flap, a rear end portion of a front end portion of a fender protector provided inside a front fender panel and an under cover that covers the bottom surface of the front portion of the vehicle body. In addition, flanges that protrude downward from the height of the general portion of the undercover and that are wider than the front wheels are provided. The flange of the fender protector and the flange of the under cover are integrally joined.

特開平10―305784号公報Japanese Patent Laid-Open No. 10-305784

上記特許文献1に開示された車体下部整流構造は、フェンダプロテクタ、或いはアンダーカバーを利用して車両の空力特性を向上させることを目的としているが、その機能は、既に種々公知のフラップと何ら変わるところはない。   The vehicle body lower rectification structure disclosed in Patent Document 1 is intended to improve the aerodynamic characteristics of a vehicle using a fender protector or an undercover, but its function is different from various known flaps. There is no place.

即ち、上記したように種々開示された車体下部整流構造のフラップは、気流がタイヤと干渉することを軽減し、タイヤ収納部へ流入し乱流が発生する事態を防止して、空気抵抗を低減できる効果をもたらす。
しかし、車体の下側に流入しフラップへ到達した気流は、フラップの特に上端における圧力上昇により、その流れが剥離するため、フラップの車体下方へ突き出す長さにかかわらず、気流の向きを車体の下方へ十分に変更できない場合がある。そのため、前記フラップだけでは、十分に車両の空力特性を向上できない場合がある。
That is, as described above, the variously disclosed flaps of the lower body rectification structure reduce the air resistance by reducing the airflow from interfering with the tire, preventing the occurrence of turbulence by flowing into the tire storage section. The effect that can be done.
However, since the airflow that flows into the lower side of the vehicle body and reaches the flap is separated due to the pressure increase at the upper end of the flap, the direction of the airflow is changed regardless of the length of the flap protruding downward. In some cases, it cannot be changed sufficiently downward. For this reason, the aerodynamic characteristics of the vehicle may not be sufficiently improved only with the flap.

本発明は、上記課題に鑑みてなされたものであり、車両走行中に車体の下側に発生する気流を整えて、空気抵抗を低減することができ、良好な空力特性を得ることができる車体下部整流構造を提供することである。   The present invention has been made in view of the above problems, and can adjust the air flow generated on the lower side of the vehicle body while the vehicle is running, reduce the air resistance, and obtain good aerodynamic characteristics. It is to provide a lower rectifying structure.

上記の課題を解決する手段として、請求項1に記載した発明に係る車体下部整流構造は、タイヤの前方に車体の下部から下方へ突き出すフラップを備えた車体下部整流構造であって、前記フラップ前方の車体下部から下方へ突き出す凸部を有し、前記凸部で、車体の下側を通って前方から後方に向かう気流を車体幅方向へ分流させる整流部材を備えたことを特徴とする。   As a means for solving the above problem, the vehicle body lower rectifying structure according to the invention described in claim 1 is a vehicle body lower rectifying structure provided with a flap protruding downward from the lower portion of the vehicle body in front of the tire, and the front of the flap. And a rectifying member for diverting an airflow from the front to the rear through the lower side of the vehicle body in the vehicle body width direction.

請求項2に記載した発明は、請求項1に記載した発明に係る車体下部整流構造において、前記整流部材の凸部は、前端部が先細形状を成し、左右の側面が前記前端部から前記フラップへ向かって車体幅方向へ広がる略三角形状であることを特徴とする。   According to a second aspect of the present invention, in the lower body rectifying structure according to the first aspect of the present invention, the convex portion of the rectifying member has a tapered front end, and the left and right side surfaces extend from the front end. It is characterized by a substantially triangular shape spreading in the vehicle body width direction toward the flap.

請求項3に記載した発明は、請求項1又は2に記載した発明に係る車体下部整流構造において、前記整流部材の凸部は、前記フラップへ向かって気流を案内する溝型の流路を有することを特徴とする。   According to a third aspect of the present invention, in the lower body rectification structure according to the first or second aspect of the present invention, the convex portion of the rectifying member has a groove-type flow path that guides the airflow toward the flap. It is characterized by that.

請求項4に記載した発明は、請求項3に記載した発明に係る車体下部整流構造において、前記流路は、車体前方から前記フラップへ向かって幅狭となるように形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the lower body rectifying structure according to the third aspect of the present invention, the flow path is formed so as to become narrower from the front of the vehicle body toward the flap. And

請求項5に記載した発明は、請求項3又は4に記載した発明に係る車体下部整流構造において、前記流路は、車体前方から前記フラップへ向かって上方へ傾斜させた形状であることを特徴とする。   According to a fifth aspect of the present invention, in the vehicle body lower rectifying structure according to the third or fourth aspect of the invention, the flow path has a shape inclined upward from the front of the vehicle body toward the flap. And

請求項6に記載した発明は、請求項5に記載した発明に係る車体下部整流構造において、前記流路の中央を通る中心線は、前記フラップの下端位置と略同一高さにおけるタイヤの幅方向の中央部を基点として、前記中央部における直進方向から車体の内側に向かって10度以上25度以下の角度範囲の位置に設けられていることを特徴とする。   According to a sixth aspect of the present invention, in the lower body rectifying structure according to the fifth aspect of the present invention, the center line passing through the center of the flow path has a tire width direction at substantially the same height as the lower end position of the flap. The center portion is provided at a position in an angle range of 10 degrees or more and 25 degrees or less from the straight direction in the center portion toward the inside of the vehicle body.

請求項7に記載した発明は、請求項3〜6のいずれか一に記載した発明に係る車体下部整流構造において、前記流路は、前記フラップから車体前方に向かって直交する距離をd[m]、前記フラップからの距離d[m]の位置における前記流路の断面積をA[m]、前記流路の最上部における断面積をA[m]としたとき、d≦0.1[m]で、{(A[m]/A[m])−1}>1.7d[m]の要件を満たし、かつ、前記フラップへ向かって上方へ10度以下の角度で傾斜させた形状であることを特徴とする。 According to a seventh aspect of the present invention, in the vehicle body lower rectifying structure according to any one of the third to sixth aspects, the flow path has a distance perpendicular to the front of the vehicle body from the flap, d [m ], Where A d [m 2 ] is the cross-sectional area of the flow path at a distance d [m] from the flap, and A 0 [m 2 ] is the cross-sectional area at the top of the flow path, d ≦ 0.1 [m], {(A d [m 2 ] / A 0 [m 2 ]) − 1}> 1.7 d [m] is satisfied, and 10 degrees upward toward the flap The shape is inclined at the following angles.

本発明に係る車体下部整流構造によれば、車両走行中に車体の下側に発生する気流を、フラップよりも前方の上流位置に設置した整流部材の凸部で分流することができるから、前記フラップで制御する流量を軽減させることができる。
また、前記凸部に形成された溝型の流路で、分流した気流の一部をフラップへ向かって案内するので、前記気流を車体の下面から剥離させることなく沿わせることができる。
よって、空気抵抗を低減させることができ、良好な空力特性を得ることができる。
According to the vehicle body lower rectifying structure according to the present invention, the airflow generated on the lower side of the vehicle body during traveling of the vehicle can be diverted by the convex portion of the rectifying member installed at the upstream position in front of the flap. The flow rate controlled by the flap can be reduced.
In addition, since a part of the diverted airflow is guided toward the flap by the groove-shaped flow path formed in the convex portion, the airflow can be allowed to follow without being peeled from the lower surface of the vehicle body.
Therefore, the air resistance can be reduced and good aerodynamic characteristics can be obtained.

本発明の第1実施形態に係る車体下部整流構造を適用した車両の車体前部を模式的に示した側面図である。It is the side view which showed typically the vehicle body front part of the vehicle to which the vehicle body lower part rectification | straightening structure which concerns on 1st Embodiment of this invention is applied. 本発明の第1実施形態に係る車体下部整流構造の拡大斜視図である。1 is an enlarged perspective view of a lower body rectifying structure according to a first embodiment of the present invention. 本発明の第1実施形態に係る車体下部整流構造を適用した場合における気流の流れを示した説明図である。It is explanatory drawing which showed the flow of the airflow at the time of applying the vehicle body lower part rectification | straightening structure which concerns on 1st Embodiment of this invention. 図2で指示したA−A線矢視断面図である。FIG. 3 is a cross-sectional view taken along line AA indicated in FIG. 2. 図2で指示したB−B線矢視断面図である。FIG. 3 is a cross-sectional view taken along the line BB indicated in FIG. 2. 図2で指示したC−C線矢視断面図である。It is CC sectional view taken on the line instruct | indicated in FIG. 図2で指示したD−D線矢視断面図である。FIG. 3 is a cross-sectional view taken along line DD indicated in FIG. 2. 本発明の第1実施形態に係る車体下部整流構造を車体前部の下方側から見た拡大図である。It is the enlarged view which looked at the vehicle body lower part rectification | straightening structure which concerns on 1st Embodiment of this invention from the downward side of the vehicle body front part. 本発明の第2実施形態に係る車体下部整流構造の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vehicle body lower part rectification | straightening structure which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る車体下部整流構造の構成を示す後面断面図である。It is a rear surface sectional view showing the composition of the lower body rectification structure concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る制御系を示すブロック図である。It is a block diagram which shows the control system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る車体下部整流構造の動作説明図である。It is operation | movement explanatory drawing of the vehicle body lower part rectification | straightening structure which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る車体下部整流構造の動作説明図である。It is operation | movement explanatory drawing of the vehicle body lower part rectification | straightening structure which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る車体下部整流構造の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vehicle body lower part rectification | straightening structure which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る車体下部整流構造の動作説明図である。It is operation | movement explanatory drawing of the vehicle body lower part rectification | straightening structure which concerns on 3rd Embodiment of this invention.

図1乃至図8は、本発明の第1実施形態を示すものである。   1 to 8 show a first embodiment of the present invention.

図1は、本発明に係る車体下部整流構造を適用した車両の車体前部を側面方向から示している。図2は、車体前部を下方側から見た状態を示している。図3は、本発明に係る車体下部整流構造を適用した場合における気流の流れを示している。
なお、本実施の形態は、車両1の車幅方向左側に設けた車体下部整流構造について説明する。
FIG. 1 shows a vehicle body front portion of a vehicle to which a vehicle body lower rectifying structure according to the present invention is applied, from a side surface direction. FIG. 2 shows a state in which the front part of the vehicle body is viewed from below. FIG. 3 shows the flow of airflow when the lower body rectification structure according to the present invention is applied.
In the present embodiment, a lower body rectification structure provided on the left side in the vehicle width direction of the vehicle 1 will be described.

前記車両1の車体前部は、図1及び図2に示したように、車体10に取り付けられるタイヤ11と、前記タイヤ11を収納するタイヤ収納部12と、緩衝装置としてのフロントバンパ13と、機器類を保護するアンダーカバー14と、気流による空気抵抗を低減させるフラップ2とを有する。   As shown in FIGS. 1 and 2, the vehicle body front portion of the vehicle 1 includes a tire 11 attached to the vehicle body 10, a tire storage portion 12 for storing the tire 11, a front bumper 13 as a shock absorber, It has the under cover 14 which protects equipment, and the flap 2 which reduces the air resistance by an airflow.

前記車体10に取り付けられるタイヤ11は、車体10の前方と後方(図示は省略)のそれぞれに1対ずつ設けられている。前記各タイヤ11は、前記車体10に形成されたタイヤ収納部12に収納されている。   One pair of tires 11 attached to the vehicle body 10 is provided on each of the front and rear (not shown) of the vehicle body 10. Each of the tires 11 is stored in a tire storage portion 12 formed in the vehicle body 10.

前記タイヤ収納部12は、前記フロントバンパ13の後部に設けられており、前記車体10の一部に設けられた略半円筒形状の凹形状に形成され、図示例では、操舵輪である前輪タイヤ11を収納している。
因みに、前記前輪タイヤ11は、同前輪タイヤ11の上面と前記タイヤ収納部12の外面との間に、転舵代を見込んだ十分な間隔(空間)を設けて取り付けられている。
The tire storage portion 12 is provided at a rear portion of the front bumper 13 and is formed in a substantially semi-cylindrical concave shape provided in a part of the vehicle body 10. In the illustrated example, the front tire is a steering wheel. 11 is stored.
Incidentally, the front wheel tire 11 is attached between the upper surface of the front wheel tire 11 and the outer surface of the tire storage portion 12 with a sufficient space (space) that allows for a steering margin.

前記フロントバンパ13は、前方からの衝撃(荷重)を吸収するために設けるもので、例えば金属製や樹脂製のものがあり、車両1の最前端部に車幅方向に延設される緩衝装置である。前記フロントバンパ13は、空力性能面や見栄えを考慮して、左右両側で車両側面に沿うように後方に滑らかに曲折する。   The front bumper 13 is provided to absorb an impact (load) from the front. For example, the front bumper 13 is made of metal or resin, and is a shock absorber extended in the vehicle width direction at the foremost end of the vehicle 1. It is. The front bumper 13 is smoothly bent rearward along the side surface of the vehicle on both the left and right sides in consideration of aerodynamic performance and appearance.

図2に示したアンダーカバー14は、車体10の下側に配置されたエンジンの一部やトランスミッション、排気管等の機器に直接走行風が当たって、走行風が乱れて空気抵抗が増大しないように、前記機器類を覆うように車体10の下面部に装着されている。   The under cover 14 shown in FIG. 2 prevents a traveling wind from being directly applied to a part of the engine, a transmission, an exhaust pipe, or the like disposed on the lower side of the vehicle body 10 so that the traveling wind is disturbed and the air resistance is not increased. Further, it is mounted on the lower surface of the vehicle body 10 so as to cover the devices.

前記フラップ2は、車両走行時に、フロントバンパ13の下側を通って前記車体10の下側の気流を、車体10の下方へ逸らすためのもので、略板状に形成されており、図1及び2に示したように、前記車体10の幅方向に延在され、気流に対して正対する配置で設けられている。
前記フラップ2は、前記アンダーカバー14又は前記タイヤ収納部12に上縁がクリップ等により取り付けられている。
The flap 2 is formed in a substantially plate shape for diverting the airflow below the vehicle body 10 to the lower side of the vehicle body 10 through the lower side of the front bumper 13 when the vehicle travels. 2 and 2, the vehicle body 10 extends in the width direction and is arranged in a position facing the airflow.
An upper edge of the flap 2 is attached to the under cover 14 or the tire storage portion 12 with a clip or the like.

前記フラップ2は、一例として縦幅が4cm、横幅が30cm程度、厚さ3mm程度で実施される。また、前記フラップ2は、図示例の場合、車体10の後方へ若干傾斜させて設けられるが、これに限るものではない。例えば、垂直下方へ突き出すように設けた構成で実施することもできる。   As an example, the flap 2 is implemented with a vertical width of 4 cm, a horizontal width of about 30 cm, and a thickness of about 3 mm. Further, in the illustrated example, the flap 2 is provided to be slightly inclined toward the rear of the vehicle body 10, but is not limited thereto. For example, it can also be implemented with a configuration provided so as to protrude vertically downward.

なお、図示した前記フラップ2は、一例として板状に形成された構成を示したが、前記形状に限定されず、前記走行風による気流を車体10の下方へ整流できる構成であれば良い。例えば、既に公開された種々の技術として、本願の出願人が既に出願した車両用整流装置(特開2012−56499)に記載されたフラップや、上記特許文献1に記載された車体下部整流構造のフラップを用いた構成であっても良い。   The illustrated flap 2 has a configuration formed in a plate shape as an example, but is not limited to the shape, and may be any configuration that can rectify the airflow generated by the traveling wind to the lower side of the vehicle body 10. For example, as various technologies already disclosed, the flap described in the vehicle rectifier (Japanese Patent Application Laid-Open No. 2012-56499) already filed by the applicant of the present application, and the vehicle body lower rectifier structure described in Patent Document 1 above. The structure using a flap may be sufficient.

上記構成の車両1において、車両走行時に発生する走行流は、フロントバンパ13の上側を車体10の上方の前方から後方に向かって流れる通る上気流と、フロントバンパ13の下側を通って車体10の下方の前方から後方に向かって流れる下気流とがある。前記走行流のうち、下気流が前輪タイヤ11へ干渉すると、該前輪タイヤ11の回転により気流が乱れ、空気抵抗が大きくなり、操縦安定性が不安定になる。   In the vehicle 1 configured as described above, the traveling flow generated when the vehicle travels is such that the upper airflow of the front bumper 13 flows from the front above the vehicle body 10 toward the rear and the vehicle body 10 passes through the lower side of the front bumper 13. There is a lower airflow that flows from the lower front to the rear. If the lower airflow interferes with the front tire 11 in the traveling flow, the airflow is disturbed by the rotation of the front tire 11, the air resistance increases, and the steering stability becomes unstable.

本発明に係る車体下部整流構造は、上記構成の車両1において、車両走行時に、フロントバンパ13の下側へ流入し、車体10の下方の前方から後方に向かって発生した気流(下気流)を、前記フラップ2よりも前方の上流位置において、車体幅方向へ分流させることを特徴とする。   The vehicle body lower rectification structure according to the present invention flows an airflow (downstream airflow) that flows into the lower side of the front bumper 13 and travels from the lower front side to the rear side of the vehicle body 10 when the vehicle travels. In the upstream position ahead of the flap 2, the current is diverted in the vehicle body width direction.

具体的には、図1及び図2に示したように、前記フラップ2前方の車体下部から下方へ突き出す凸部4を有する整流部材3が、前記フラップ2前方の車体下部において、既設のアンダーカバー14の外面に取り付けられている。   Specifically, as shown in FIGS. 1 and 2, the rectifying member 3 having the convex portion 4 protruding downward from the lower body of the vehicle in front of the flap 2 is formed on the existing under cover at the lower portion of the vehicle in front of the flap 2. 14 is attached to the outer surface.

前記整流部材3の凸部4は、図2に示したように、前端部41が先細形状を成し、平面的に見て、左右の両側面40、40が前記前端部41から前記フラップ2へ向かって車体幅方向へ漸次広がる略三角形状に形成されている。前記凸部4の前端部41は、気流の最も上流に位置する配置で設けられており、車両走行中に発生した気流は、図3に示したように、前記凸部4の前端部41を境に、左右の両側面40、40に沿って、車体幅方向へ分流させることができる。   As shown in FIG. 2, the convex portion 4 of the rectifying member 3 has a front end portion 41 having a tapered shape, and the left and right side surfaces 40, 40 are seen from the front end portion 41 to the flap 2 as viewed in a plan view. It is formed in a substantially triangular shape that gradually expands in the vehicle body width direction. The front end portion 41 of the convex portion 4 is provided in an arrangement located at the most upstream side of the airflow, and the airflow generated during the traveling of the vehicle has the front end portion 41 of the convex portion 4 as shown in FIG. At the boundary, it can be diverted in the vehicle body width direction along the left and right side surfaces 40, 40.

前記凸部4は、図2に示したように、気流を車体幅方向へ分流させる前方凸部42と、左右の後方凸部43、43とを有している。前記凸部4には、同凸部4の頂部から前記フラップ2へ向かって延び、前記フラップ2へ向かって気流を案内する溝型の流路5が形成されている。   As shown in FIG. 2, the convex portion 4 includes a front convex portion 42 that diverts an airflow in the vehicle body width direction, and left and right rear convex portions 43 and 43. The convex portion 4 is formed with a groove-shaped flow path 5 that extends from the top of the convex portion 4 toward the flap 2 and guides the airflow toward the flap 2.

前記前方凸部42は、図2及び図4に示しように、車体10の下面から下方へ、一例として30mm程度突き出し、その頂部は、図1及び図7に示したように、側面方向から見ると後方に向かって曲線を描く滑らかな形状を成して流路5へ続き、前記前方凸部42を乗り越えた気流を剥離させることなく車体10の下面に沿って、前記流路5へ確実に誘導させることができる。   As shown in FIGS. 2 and 4, the front protrusion 42 protrudes downward from the lower surface of the vehicle body 10 by about 30 mm as an example, and the top portion is viewed from the side as shown in FIGS. A smooth shape that draws a curve toward the rear is continued to the flow path 5, and the air flow over the front convex portion 42 is reliably separated into the flow path 5 along the lower surface of the vehicle body 10 without peeling off. Can be induced.

前記後方凸部43、43は、図4と図5を比較すると分かりやすいように、車体10の下方へ向かって、前記前方凸部42の高さよりも若干低く形成されている。
前記フラップ2は、同フラップ2の下端と地面との間に一定の距離を確保する必要があるため、長さが制約される。前記後方凸部43の高さが高いと、前記後方凸部43によって、前記整流部材3の下方へ突き出る前記フラップ2の突き出し量が短くなるため、前記後方凸部43の高さを前記前方凸部42の高さよりも低く形成している。
The rear convex portions 43 and 43 are formed slightly lower than the height of the front convex portion 42 toward the lower side of the vehicle body 10 so as to be easily understood when FIG. 4 and FIG. 5 are compared.
The flap 2 is restricted in length because it is necessary to ensure a certain distance between the lower end of the flap 2 and the ground. When the height of the rear convex portion 43 is high, the amount of protrusion of the flap 2 that protrudes downward from the rectifying member 3 is shortened by the rear convex portion 43. Therefore, the height of the rear convex portion 43 is set to the front convex portion. It is formed lower than the height of the portion 42.

前記流路5は、図2、図5及び図6に示すように、前記車体前方から前記フラップ2へ向かって幅狭となるように形成されており、前記流路5を通る気流を前記フラップ2へ向かって縮小させることで、同気流の速度を速めることができる。つまり、気流は、前記フラップ2の特に上端における圧力上昇に対しても、車体10の下面及び前記フラップ2から剥離することがなく、気流の向きを車体10の下方へ確実に変更させることができる。   As shown in FIGS. 2, 5 and 6, the flow path 5 is formed so as to become narrower from the front of the vehicle body toward the flap 2, and the airflow passing through the flow path 5 is transferred to the flap. By reducing toward 2, the speed of the airflow can be increased. In other words, the airflow can be reliably changed to the lower side of the vehicle body 10 without peeling from the lower surface of the vehicle body 10 and the flap 2 even when the pressure rises at the upper end of the flap 2 in particular. .

また、前記流路5は、図7に示したように、前記車体前方から前記フラップ2へ向かって車体10の上方へ、10度以下(好ましくは10度)の角度範囲で傾斜させており、前記フラップ2の近傍位置において最も車体10の上方(最も深く)となるように形成されている。気流を前記車体10の下面から剥離させることなく沿わせ、前記フラップ2へ確実に誘導させるためである。   Further, as shown in FIG. 7, the flow path 5 is inclined in an angular range of 10 degrees or less (preferably 10 degrees) from the front of the vehicle body toward the flap 2 and above the vehicle body 10. It is formed so as to be the uppermost (deepest) portion of the vehicle body 10 at a position near the flap 2. This is because the air flow is allowed to follow along the lower surface of the vehicle body 10 and is surely guided to the flap 2.

前記流路5の中央を通る中心線Pは、図8に示したように、前記フラップ2の下端と略同一高さにおけるタイヤの幅方向の中央部Sを基点として、前記中央部Sにおける直進方向から車体10の内側に向かって10度以上25度以下の角度範囲の位置に設けられている。
その理由は、前記フロントバンパ13が車体前部の左右両側で後方に滑らかに曲折する関係上、前輪タイヤ11に影響を及ぼす気流の方向は、ちょうど前記角度範囲(10度以上25度以下)となる。そこで、前記中心線Pを前記角度範囲(10度以上25度以下)に位置するように設けることで、空気抵抗を効果的に低減させることができるからである。
As shown in FIG. 8, the center line P passing through the center of the flow path 5 goes straight in the center portion S with the center portion S in the width direction of the tire at substantially the same height as the lower end of the flap 2. It is provided at a position in an angle range of 10 degrees to 25 degrees from the direction toward the inside of the vehicle body 10.
The reason is that the direction of the airflow affecting the front wheel tire 11 is just the angle range (10 degrees to 25 degrees) because the front bumper 13 bends smoothly on the left and right sides of the front part of the vehicle body. Become. Therefore, the air resistance can be effectively reduced by providing the center line P so as to be located in the angular range (10 degrees to 25 degrees).

次に、前記流路5の形状及び大きさについて説明する。
前記流路5の形状、大きさは、本出願の発明者が本発明に係る車体下部整流構造の有効性について行った風洞試験の結果に基づき算出された下記の条件より定める。
Next, the shape and size of the flow path 5 will be described.
The shape and size of the flow path 5 are determined from the following conditions calculated based on the results of a wind tunnel test conducted by the inventors of the present application on the effectiveness of the lower body rectifying structure according to the present invention.

前記流路5は、図2に示した前記フラップ2から車体10の前方に向かって直交する距離をd[m]、図5に示した前記フラップ2からの距離d[m]の位置における前記流路5の断面積をA[m]、図6に示した前記流路5の最上部における断面積をA[m]としたとき、d≦0.1[m]で、{(A[m]/A[m])−1}>1.7d[m]の要件を満たし、かつ、上記したようにフラップ2へ向かって車体上方へ10度以下の角度範囲で傾斜させた形状に形成される。 The flow path 5 has the distance d [m] perpendicular to the front of the vehicle body 10 from the flap 2 shown in FIG. 2 and the distance d [m] from the flap 2 shown in FIG. When the cross-sectional area of the channel 5 is A d [m 2 ] and the cross-sectional area at the top of the channel 5 shown in FIG. 6 is A 0 [m 2 ], d ≦ 0.1 [m] {(A d [m 2 ] / A 0 [m 2 ])-1}> 1.7 d [m] and satisfies the requirement of 10 ° or less upward toward the flap 2 toward the flap 2 as described above It is formed in a shape inclined in the range.

試験結果により、空気抵抗を効果的に低減させる上で、前記流路5の最も重要な箇所は、前記フラップ2から車体10の前方に向かって直交する距離をd[m]までの間であることが確認された。そのため、上記条件に当てはまる形状、大きさが、最も効果的であると確認されたものである。   According to the test results, in order to effectively reduce the air resistance, the most important part of the flow path 5 is a distance perpendicular to the front of the vehicle body 10 from the flap 2 to d [m]. It was confirmed. Therefore, the shape and size that meet the above conditions have been confirmed to be the most effective.

具体例として、前記フラップ2から車体10の前方に向かって直交する距離d=0.1[m]としたとき、前記フラップ2からの距離d[m]の位置のおける前記流路5の断面積A=1070[mm]とし、前記流路5の最上部における断面積A=667[mm]とすることが好ましい。 As a specific example, when the distance d orthogonal to the front of the vehicle body 10 from the flap 2 is set to 0.1 [m], the breakage of the flow path 5 at the position of the distance d [m] from the flap 2 will be described. It is preferable that the area A d = 1070 [mm 2 ] and the cross-sectional area A 0 = 667 [mm 2 ] at the uppermost portion of the flow path 5 be set.

なお、上記構成の車体下部整流構造は、車体前方の左側部分に設けた実施例について説明したが、車体方向右側部分にも同様の構成で設ける。   In addition, although the vehicle body lower part rectification | straightening structure of the said structure demonstrated the Example provided in the left side part ahead of a vehicle body, it provides with the same structure also in a vehicle body direction right side part.

本発明に係る車体下部整流構造は、上記構成であるから、図3に示したように、車両走行時に、車両1が受ける走行流のうちフロントバンパ13の下側へ流入した気流を、先ず、前記凸部4の前端部41を境に、左右の両側面40、40に沿って、車体幅方向へ分流させる。前記分流された気流の大部分が、車体幅方向へ逸れるので、前記フラップ2に到達して制御する気流の流量を大幅に軽減させることができる。   Since the vehicle body lower rectification structure according to the present invention has the above-described configuration, as shown in FIG. 3, first of all, the airflow that flows into the lower side of the front bumper 13 among the traveling flows received by the vehicle 1 when the vehicle travels, The flow is diverted in the vehicle body width direction along the left and right side surfaces 40, 40 with the front end portion 41 of the convex portion 4 as a boundary. Since most of the diverted airflow is deviated in the vehicle body width direction, the flow rate of the airflow that reaches the flap 2 and is controlled can be greatly reduced.

そして、前記凸部4で分流した気流のうち、分流しきれなかった気流の一部は、前記流路5へと流れ、同流路5により整流される。このとき、前記流路5がフラップ2に向かって狭幅に形成されているので、前記流路5を通る気流を前記フラップ2へ向かって縮小させて速度を速めることができ、前記フラップ2の上端における圧力上昇に対しても、車体10の下面及び前記フラップ2から剥離することなく沿わせることができる。よって、前記フラップ2によって、気流の向きを車体10の下方へ確実に変更させることができる。
したがって、前記前輪タイヤ11と干渉する気流を軽減でき、前記タイヤ収納部12へ流入し乱流が発生する事態を防止できるから、空気抵抗を確実に低減できる効果をもたらし、ひいては、空力特性を向上させることができる。
A part of the airflow that cannot be divided among the airflows divided by the convex portion 4 flows to the flow path 5 and is rectified by the flow path 5. At this time, since the flow path 5 is formed narrow toward the flap 2, the airflow passing through the flow path 5 can be reduced toward the flap 2 to increase the speed. It is possible to follow the pressure rise at the upper end without peeling from the lower surface of the vehicle body 10 and the flap 2. Therefore, the direction of the airflow can be reliably changed to the lower side of the vehicle body 10 by the flap 2.
Therefore, the airflow that interferes with the front wheel tire 11 can be reduced, and the situation where the turbulent flow is caused by flowing into the tire storage portion 12 can be prevented. Thus, the effect of reliably reducing the air resistance can be brought about and the aerodynamic characteristics can be improved. Can be made.

因みに、本出願の発明者が前輪タイヤ11の前方に板状のフラップ2を設けただけの従来の車体下部整流構造と比較した実験を行ったところ、本発明に係る車体下部整流構造は、従来の車体下部整流構造よりも空気抵抗が改善されることが確認され、有効性が確認された。   Incidentally, when the inventor of the present application conducted an experiment in comparison with a conventional lower body rectification structure in which a plate-like flap 2 was provided in front of the front wheel tire 11, the lower rectification structure according to the present invention was It was confirmed that the air resistance was improved compared to the car body lower rectification structure, and its effectiveness was confirmed.

図9乃至図13は、本発明の第2実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。   9 to 13 show a second embodiment of the present invention. In addition, the same code | symbol is attached | subjected and shown to the component similar to the said embodiment.

本実施形態の車体下部整流構造は、凸部4の流路5が位置する部分を下方に突出させるための突出手段を備えている。   The vehicle body lower part rectification structure of the present embodiment includes projecting means for projecting a portion where the flow path 5 of the convex portion 4 is located downward.

凸部4は、図9及び図10に示すように、外周部に沿って設けられ、剛性の高い部材からなる枠部4aと、枠部4aを下方から覆うように設けられ、所定以上の力を作用させることで上下方向に変形可能な可動部4bと、を有している。   As shown in FIGS. 9 and 10, the convex portion 4 is provided along the outer peripheral portion, and is provided so as to cover the frame portion 4a made of a highly rigid member and the frame portion 4a from below. And a movable portion 4b that can be deformed in the vertical direction.

また、凸部4の内側には、可動部4bと可動部4bの上方に位置する車体10側の部材とを互いに接続することで、可動部4bを上方に付勢する付勢部材51と、可動部4bに設けられたフェライト磁石等の磁石52と、磁石52の上方の車体10側の部材に設けられた電磁石53と、が設けられている。   Further, on the inner side of the convex portion 4, a biasing member 51 that biases the movable portion 4b upward by connecting the movable portion 4b and a member on the vehicle body 10 located above the movable portion 4b to each other; A magnet 52 such as a ferrite magnet provided in the movable portion 4 b and an electromagnet 53 provided on a member on the vehicle body 10 side above the magnet 52 are provided.

また、凸部4を備えた車両は、電磁石53の通電と通電の停止の切り換えを制御するためのコントローラ60を備えている。   Further, the vehicle including the convex portion 4 includes a controller 60 for controlling switching between energization of the electromagnet 53 and stop of energization.

コントローラ60は、CPU、ROM、RAM等からなる。コントローラ200は、入力側に接続された装置からの入力信号を受信すると、CPUが、入力信号に基づいてROMに記憶されたプログラムを読み出すとともに、入力信号によって検出された状態をRAMに記憶したり、出力側に接続された装置に出力信号を送信したりする。   The controller 60 includes a CPU, a ROM, a RAM, and the like. When the controller 200 receives an input signal from a device connected to the input side, the CPU reads a program stored in the ROM based on the input signal and stores a state detected by the input signal in the RAM. The output signal is transmitted to a device connected to the output side.

コントローラ60の入力側には、図11に示すように、例えば、押しボタン等のスイッチであり、搭乗者が所定の操作入力を行うための操作入力部61と、車両1の走行速度を検出するための車速検出器62と、が接続されている。また、コントローラ60の出力側には、車体10の幅方向両側のそれぞれの凸部4に設けられた電磁石53が接続されている。   On the input side of the controller 60, as shown in FIG. 11, for example, a switch such as a push button, and an operation input unit 61 for a passenger to perform a predetermined operation input, and a traveling speed of the vehicle 1 are detected. A vehicle speed detector 62 is connected. Further, electromagnets 53 provided on the respective convex portions 4 on both sides in the width direction of the vehicle body 10 are connected to the output side of the controller 60.

以上のように構成された車体下部整流構造では、車両1の搭乗者による操作入力部61の操作で、一対の凸部4に対して流路5が形成された状態と、凸部4の流路5が位置する部分が下方に突出した状態と、をそれぞれ切り換えることが可能である。   In the vehicle body lower part rectification structure configured as described above, the flow path 5 is formed in the state in which the flow path 5 is formed with respect to the pair of convex portions 4 by the operation of the operation input unit 61 by the passenger of the vehicle 1. It is possible to switch between the state in which the portion where the path 5 is located protrudes downward.

凸部4は、電磁石53に通電していない状態において、図9及び図10に示すように、付勢部材51の付勢力によって流路5の形状が保持される。また、凸部4は、電磁石53に通電した状態において、図12及び図13に示すように、磁石52と電磁石53との間に生じる斥力によって可動部4bの流路5が位置する部分が付勢部材51の付勢力に抗して下方に移動し、下方に突出した状態となる。可動部4bの流路5が位置する部分が下方に突出した状態の凸部4は、車体10の前後方向において前方から後方に向かって徐々に高さ寸法が大きくなり、車体10の幅方向において上方から下方に向かって徐々に幅寸法が小さくなる。   In the state where the electromagnet 53 is not energized, the convex portion 4 maintains the shape of the flow path 5 by the urging force of the urging member 51 as shown in FIGS. 9 and 10. Further, as shown in FIGS. 12 and 13, the convex portion 4 is attached with a portion where the flow path 5 of the movable portion 4 b is located due to repulsive force generated between the magnet 52 and the electromagnet 53 when the electromagnet 53 is energized. It moves downward against the urging force of the urging member 51 and protrudes downward. The convex portion 4 in a state in which the portion where the flow path 5 of the movable portion 4b is located projects downward is gradually increased in height from the front to the rear in the longitudinal direction of the vehicle body 10, and in the width direction of the vehicle body 10. The width dimension gradually decreases from above to below.

車両1の走行時において、流路5が形成された状態の凸部4では、フラップ2の前方の気流を前端部41において分流するとともに、分流しきれなかった気流の一部を流路5を流通させることで、前輪タイヤ11に衝突する気流の流量を低減し、空気抵抗を低減している。この場合には、フラップ2の前方において気流の圧力が高くなるため、前輪タイヤ11の接地荷重が低下し、操縦安定性が低下する。   When the vehicle 1 travels, the convex portion 4 in the state where the flow path 5 is formed diverts the airflow in front of the flap 2 at the front end portion 41, and part of the airflow that could not be diverted through the flow path 5. By making it circulate, the flow volume of the airflow which collides with the front-wheel tire 11 is reduced, and air resistance is reduced. In this case, since the pressure of the airflow increases in front of the flap 2, the ground load of the front wheel tire 11 decreases, and the steering stability decreases.

一方、車両1の走行時において、可動部4bの流路5の位置する部分を下方に突出させた状態の凸部4では、フラップ2の前方の気流の大部分を、前端部41において前輪タイヤ11の幅方向両側に分流することで、前輪タイヤ11に衝突する気流の流量を低減し、空気抵抗を低減している。この場合には、フラップ2の前方における気流の圧力が高くなることがないため、前輪タイヤ11の接地荷重が低下することがなく、操縦安定性の低下を防止することができる。しかし、可動部4bの流路5の位置する部分を下方に突出させた状態の凸部4では、車体10の下面からの突出寸法が大きくなるため、前輪タイヤ11の外周面及び凸部4の最下部を通る接線の水平面に対する角度である所謂アプローチアングルが小さくなる。   On the other hand, when the vehicle 1 is running, the convex portion 4 in a state where the portion where the flow path 5 of the movable portion 4b is located is projected downward, most of the airflow in front of the flap 2 is transferred to the front tire 41 at the front end portion 41. By diverting to the both sides in the width direction 11, the flow rate of the airflow colliding with the front tire 11 is reduced, and the air resistance is reduced. In this case, since the pressure of the airflow in front of the flap 2 does not increase, the ground load of the front wheel tire 11 does not decrease, and the steering stability can be prevented from decreasing. However, in the convex part 4 in a state in which the portion where the flow path 5 of the movable part 4b is located is projected downward, the projecting dimension from the lower surface of the vehicle body 10 is large, so the outer peripheral surface of the front tire 11 and the convex part 4 The so-called approach angle, which is the angle of the tangent line passing through the lowest part with respect to the horizontal plane, becomes small.

このため、車両1の搭乗者は、車両1の走行速度や走行場所に応じて凸部4の形状を切り換えながら車両1を走行させる。例えば、車両1が一般道や未舗装の道路を走行する場合には、道路上に所定以上の段差があることが想定されるため、凸部4に流路5が形成された状態とする。また、車両1が高速道路を走行する場合には、所定以上の大きな段差がないものと想定されるため、アプローチアングルが小さい凸部4の流路5が形成された部分が下方に突出した状態とする。   For this reason, the occupant of the vehicle 1 causes the vehicle 1 to travel while switching the shape of the convex portion 4 in accordance with the traveling speed or traveling location of the vehicle 1. For example, when the vehicle 1 travels on a general road or an unpaved road, it is assumed that there is a level difference of a predetermined level or more on the road, so that the flow path 5 is formed in the convex portion 4. Further, when the vehicle 1 travels on an expressway, it is assumed that there is no greater step than a predetermined level, and therefore the portion where the flow path 5 of the convex portion 4 having a small approach angle is formed projects downward. And

また、可動部4bの流路5の位置する部分を下方に突出させた状態の凸部4は、可動部4bが電磁石53の斥力によって下方に突出している。このため、車両1の走行時において、凸部4が路面に接触した場合には、可動部4bが斥力に抗して上方に移動するため、凸部4の損傷を抑制することが可能となる。   Further, in the convex portion 4 in a state where the portion where the flow path 5 of the movable portion 4 b is located is projected downward, the movable portion 4 b protrudes downward due to the repulsive force of the electromagnet 53. For this reason, when the convex part 4 contacts the road surface during traveling of the vehicle 1, the movable part 4 b moves upward against the repulsive force, so that it is possible to suppress damage to the convex part 4. .

また、車両1の搭乗者は、操作入力部61の操作で、凸部4に対して流路5が形成された状態と、凸部4の流路5が位置する部分が下方に突出した状態と、を車両1の走行速度に基づいて切り換える自動切換モードの選択が可能である。ここで、凸部4に対して流路5が形成された状態と、凸部4の流路5が位置する部分が下方に突出した状態と、を切り換える基準となる走行速度は、搭乗者が操作入力部61の操作によって任意に設定可能である。   Moreover, the passenger of the vehicle 1 is in a state in which the flow channel 5 is formed with respect to the convex portion 4 and the portion where the flow channel 5 of the convex portion 4 is located protrudes downward by the operation of the operation input unit 61. Can be selected based on the traveling speed of the vehicle 1. Here, the traveling speed as a reference for switching between the state in which the flow path 5 is formed with respect to the convex portion 4 and the state in which the portion of the convex portion 4 where the flow path 5 is located projects downward is determined by the passenger. It can be arbitrarily set by operating the operation input unit 61.

自動切換モードでは、車速件検出器62の検出速度が、例えば、時速80km未満の場合に、凸部4に対して流路5が形成された状態とする。また、車速検出器62の検出速度が、時速80km以上の場合に、凸部4の流路5が位置する部分が下方に突出した状態とする。ここで、車両1の走行速度が時速80km以上となる場合には、例えば高速道路を走行する場合等、車両1が走行する路面の段差は小さいため、アプローチアングルが小さくても、道路上の段差に凸部4が接触する等の問題が生じにくい。   In the automatic switching mode, the flow path 5 is formed on the convex portion 4 when the detection speed of the vehicle speed detector 62 is, for example, less than 80 km / h. Further, when the detection speed of the vehicle speed detector 62 is 80 km / h or higher, the portion of the convex portion 4 where the flow path 5 is located is projected downward. Here, when the traveling speed of the vehicle 1 is 80 km / h or more, for example, when traveling on a highway, the road surface on which the vehicle 1 travels is small, so even if the approach angle is small, the step on the road It is difficult to cause problems such as the convex portion 4 coming into contact.

このように、本実施形態の車体下部整流構造によれば、凸部4の流路5が位置する部分を下方に突出させる突出手段を備えている。   Thus, according to the vehicle body lower part rectification structure of this embodiment, the protrusion means which protrudes the part in which the flow path 5 of the convex part 4 is located below is provided.

これにより、凸部4の流路5が位置する部分を下方に突出させて、フラップ2の前方の気流の大部分を前輪タイヤ11の幅方向両側に分流することができるので、空気抵抗を低減するとともに、前輪タイヤ11の接地荷重の低下を防止して操縦安定性を向上させることが可能となる。   As a result, the portion of the convex portion 4 where the flow path 5 is located can be projected downward, and most of the airflow in front of the flap 2 can be diverted to both sides of the front tire 11 in the width direction, thereby reducing air resistance. In addition, it is possible to improve the steering stability by preventing the contact load of the front tire 11 from decreasing.

また、搭乗者が所定の操作入力を行う操作入力部61を備え、操作入力部61の操作に基づいて凸部4の流路5が位置する部分を下方に突出させている。   In addition, an operation input unit 61 for a passenger to perform a predetermined operation input is provided, and a portion of the convex portion 4 where the flow path 5 is located protrudes downward based on an operation of the operation input unit 61.

これにより、搭乗者の判断によって凸部4の状態を切り換えること可能となるので、搭乗者の好みに応じた車両1の走行を行うことが可能となる。   As a result, the state of the convex portion 4 can be switched based on the judgment of the passenger, so that the vehicle 1 can travel according to the passenger's preference.

尚、第2実施形態では、可動部4bの流路5に位置する部分を磁石52及び電磁石53によって下方向に移動させるようにしたものを示したが、これに限られるものではない。例えば、凸部4内にリニア式のソレノイドを設けるとともに、ソレノイドのプランジャを可動部4bに接続し、ソレノイドの通電と通電の停止を切り換えることで、可動部4bを上下方向に移動させるようにしてもよい。また、凸部4内に電動モータを設けるとともに、電動モータの回転力によって上下方向に移動するロッドを可動部4bに接続し、電動モータを駆動させることで、可動部4bを上下方向に移動させるようにしてもよい。   In the second embodiment, the portion in the flow path 5 of the movable portion 4b is moved downward by the magnet 52 and the electromagnet 53. However, the present invention is not limited to this. For example, a linear solenoid is provided in the convex portion 4, and a plunger of the solenoid is connected to the movable portion 4b, and the movable portion 4b is moved in the vertical direction by switching between energization and stop of energization of the solenoid. Also good. Moreover, while providing the electric motor in the convex part 4, the rod which moves to an up-down direction with the rotational force of an electric motor is connected to the movable part 4b, and the movable part 4b is moved to an up-down direction by driving an electric motor. You may do it.

図14及び図15は、本発明の第3実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。   14 and 15 show a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected and shown to the component similar to the said embodiment.

本実施形態の車体下部整流構造は、第2実施形態と同様に、凸部4が、枠部4a及び可動部4bとを有し、凸部4の内側には、可動部4bを上方に付勢することで、流路5が形成された状態を保持する付勢部材51が設けられている。   In the lower body rectification structure of the present embodiment, as in the second embodiment, the convex portion 4 has a frame portion 4a and a movable portion 4b, and the movable portion 4b is attached to the upper side of the convex portion 4. A biasing member 51 that holds the state in which the flow path 5 is formed by being biased is provided.

また、凸部4の前方凸部42の上部には、図14に示すように、車両1の走行時に空気を凸部4内に取り込むための空気取込口44が設けられている。   Further, as shown in FIG. 14, an air intake port 44 for taking air into the convex portion 4 when the vehicle 1 is traveling is provided on the upper portion of the front convex portion 42 of the convex portion 4.

以上のように構成された車体下部整流構造では、車両1が走行することにより、図15に示すように、空気取込口44から凸部4内に空気が流入し、凸部4内に流入した空気によって凸部4の流路5が位置する部分が付勢部材51の付勢力に抗して下方に移動し、下方に突出した状態となる。このとき、空気取込口44から凸部4内に流入する空気の流量は、車両1の走行速度が高速となるに従って多くなる。このため、凸部4の下方への突出寸法は、車両1の走行速度が高速となるに従って、大きくなる。   In the lower body rectification structure configured as described above, when the vehicle 1 travels, air flows into the convex portion 4 from the air intake port 44 and flows into the convex portion 4 as shown in FIG. The part where the flow path 5 of the convex part 4 is located moves against the urging force of the urging member 51 due to the air, and protrudes downward. At this time, the flow rate of the air flowing into the convex portion 4 from the air intake port 44 increases as the traveling speed of the vehicle 1 increases. For this reason, the downward projecting dimension of the convex portion 4 increases as the traveling speed of the vehicle 1 increases.

これにより、フラップ2の前方の大部分の気流は、第2実施形態と同様に、前端部41において前輪タイヤ11の幅方向両側に分流されるため、前輪タイヤ11に衝突する気流の流量が低減され、空気抵抗の低減が可能となる。また、凸部4は、車両1の走行速度が高速となるに従って突出寸法が大きくなるため、車両1の高速走行時における空気抵抗の低減及び操縦安定性の向上が可能となる。ここで、車両1の走行速度が高速となる場合には、例えば高速道路を走行する場合等、車両1が走行する路面の段差は小さいため、アプローチアングルが小さくても、道路上の段差に凸部4が接触する等の問題が生じにくい。   As a result, most of the airflow in front of the flap 2 is diverted to both sides in the width direction of the front tire 11 at the front end portion 41 as in the second embodiment, so that the flow rate of the airflow that collides with the front tire 11 is reduced. Thus, the air resistance can be reduced. In addition, since the protrusion 4 has a protruding dimension that increases as the traveling speed of the vehicle 1 increases, it is possible to reduce air resistance and improve steering stability when the vehicle 1 travels at a high speed. Here, when the traveling speed of the vehicle 1 is high, for example, when traveling on an expressway, the road surface on which the vehicle 1 travels is small, so that even if the approach angle is small, the bump on the road is convex. Problems such as contact of the portion 4 are less likely to occur.

このように、本実施形態の車体下部整流構造によれば、第2実施形態と同様に、凸部4の流路5が位置する部分を下方に突出させることにより、フラップ2の前方の気流の大部分を前輪タイヤ11の幅方向両側に分流することができるので、空気抵抗を低減するとともに、前輪タイヤ11の接地荷重の低下を防止して操縦安定性を向上させることが可能となる。   Thus, according to the vehicle body lower part rectification structure of the present embodiment, as in the second embodiment, by projecting the portion where the flow path 5 of the convex portion 4 is located downward, the airflow in front of the flap 2 is Since most of the current can be diverted to both sides in the width direction of the front wheel tire 11, it is possible to reduce air resistance and prevent a decrease in the ground contact load of the front wheel tire 11 and improve steering stability.

また、凸部4は、車両1の走行速度に応じて流路5が位置する部分の突出寸法が変化する。   In addition, the protruding dimension of the convex portion 4 changes depending on the traveling speed of the vehicle 1 where the flow path 5 is located.

これにより、車両1の走行速度が高速となるに従って、空気抵抗の低減及び操縦安定性の向上を図ることが可能となるので、車両1の高速走行時の走行性能を向上させることが可能となる。   As a result, as the traveling speed of the vehicle 1 becomes higher, it is possible to reduce the air resistance and improve the steering stability. Therefore, it is possible to improve the traveling performance of the vehicle 1 when traveling at high speed. .

尚、第3実施形態では、車両1の走行時に空気を凸部4内に取り込むことにより、車両1の走行速度に応じて凸部4の流路5が位置する部分の突出寸法を変化させるようにしたものを示したが、これに限られるものではない。例えば、凸部4の流路が位置する部分の突出寸法を変化させる動作を、電動モータの駆動によって行い、車両1の走行速度に応じて突出寸法を変化させるようにしてもよい。   In the third embodiment, when the vehicle 1 travels, air is taken into the convex portion 4 so that the projecting dimension of the portion of the convex portion 4 where the flow path 5 is located is changed according to the traveling speed of the vehicle 1. However, the present invention is not limited to this. For example, the operation of changing the protruding dimension of the portion of the convex portion 4 where the flow path is located may be performed by driving an electric motor, and the protruding dimension may be changed according to the traveling speed of the vehicle 1.

以上に本発明に係る車体下部整流構造を、図面に示した実施例に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常行う設計変更や変形・応用のバリエーションの範囲を含むことを念のため付言する。   Although the vehicle body lower rectifying structure according to the present invention has been described above based on the embodiments shown in the drawings, the present invention is not limited to the illustrated examples, and those skilled in the art usually do not depart from the technical idea thereof. I will add it just in case to include the range of design changes to be made and variations of variations and applications.

例えば、詳細に図示することは省略したが、前記流路5を設けることなく、前記凸部4のみを備えた整流部材3を、前記フラップ2の前方の車体下部へ取り付けた構成で実施することもできる。
即ち、フロントバンパ13の下側へ流入した気流を、前記凸部4で車体幅方向へ分流させ、当該気流の大部分を車体幅方向へ逸らす。そして、分流しきれなかった気流の一部を、前記フラップ2で車体10の下方へ変更させる。
For example, although illustration is omitted in detail, the flow straightening member 3 having only the convex portion 4 is not provided and the rectifying member 3 having only the convex portion 4 is attached to the lower part of the vehicle body in front of the flap 2. You can also.
That is, the airflow that flows into the lower side of the front bumper 13 is diverted in the vehicle body width direction by the convex portion 4, and most of the airflow is diverted in the vehicle body width direction. Then, a part of the airflow that could not be diverted is changed downward of the vehicle body 10 by the flap 2.

また、前記実施形態では、車体10の前輪タイヤ11の前方にフラップ2及び凸部4を設けたものを示したが、車体10の後側のタイヤの前方にフラップ及び凸部を設けても前記実施形態と同様の効果を得ることが可能となる。   Moreover, in the said embodiment, although what provided the flap 2 and the convex part 4 ahead of the front-wheel tire 11 of the vehicle body 10 was shown, even if a flap and a convex part are provided ahead of the tire of the rear side of the vehicle body 10, it is the said. It is possible to obtain the same effect as the embodiment.

1 車両
10 車体
11 タイヤ(前輪タイヤ)
12 タイヤ収納部
13 フロントバンパ
14 アンダーカバー
2 フラップ
3 整流部材
4 凸部
4a 枠部
4b 可動部
5 流路
44 空気取込口
51 付勢部材
52 磁石
53 電磁石
60 コントローラ
61 操作入力部
62 車速検出器
P 中心線
1 Vehicle 10 Body 11 Tire (front tire)
DESCRIPTION OF SYMBOLS 12 Tire storage part 13 Front bumper 14 Undercover 2 Flap 3 Rectification member 4 Convex part 4a Frame part 4b Movable part 5 Flow path 44 Air intake port 51 Energizing member 52 Magnet 53 Electromagnet 60 Controller 61 Operation input part 62 Vehicle speed detector P center line

Claims (10)

タイヤの前方に車体の下部から下方へ突き出すフラップを備えた車体下部整流構造であって、
前記フラップ前方の車体下部から下方へ突き出す凸部を有し、前記凸部で、車体の下側を通って前方から後方に向かう気流を車体幅方向へ分流させる整流部材を備えたことを特徴とする、車体下部整流構造。
A vehicle body lower rectification structure provided with a flap protruding downward from the lower part of the vehicle body in front of the tire,
It has a convex part projecting downward from the lower part of the vehicle body in front of the flap, and the convex part includes a rectifying member for diverting an air flow from the front to the rear through the lower side of the vehicle body in the vehicle body width direction. Car body lower rectification structure.
前記整流部材の凸部は、前端部が先細形状を成し、左右の側面が前記前端部から前記フラップへ向かって車体幅方向へ広がる略三角形状であることを特徴とする、請求項1に記載した車体下部整流構造。   The convex portion of the rectifying member has a substantially triangular shape in which a front end portion has a tapered shape, and left and right side surfaces extend in a vehicle body width direction from the front end portion toward the flap. Car body bottom rectification structure described. 前記整流部材の凸部は、前記フラップへ向かって気流を案内する溝型の流路を備えていることを特徴とする、請求項1又は2に記載した車体下部整流構造。   3. The lower body rectification structure according to claim 1, wherein the convex portion of the rectifying member includes a groove-type channel that guides an air flow toward the flap. 前記流路は、車体前方から前記フラップへ向かって幅狭となるように形成されていることを特徴とする、請求項3に記載した車体下部整流構造。   The vehicle body lower part rectification structure according to claim 3, wherein the flow path is formed so as to become narrower from the front of the vehicle body toward the flap. 前記流路は、車体前方から前記フラップへ向かって上方へ傾斜させた形状であることを特徴とする、請求項3又は4に記載した車体下部整流構造。   The vehicle body lower rectification structure according to claim 3 or 4, wherein the flow path has a shape inclined upward from the front of the vehicle body toward the flap. 前記流路の中央を通る中心線は、前記フラップの下端位置と略同一高さにおけるタイヤの幅方向の中央部を基点として、前記中央部における直進方向から車体の内側に向かって10度以上25度以下の角度範囲の位置に設けられていることを特徴とする、請求項5に記載した車体下部整流構造。   The center line passing through the center of the flow path is 10 degrees or more 25 degrees from the straight direction in the center toward the inside of the vehicle body, starting from the center in the width direction of the tire at substantially the same height as the lower end position of the flap. 6. The lower body rectifying structure according to claim 5, wherein the lower body rectifying structure is provided at a position in an angle range of less than or equal to degrees. 前記流路は、
前記フラップから車体前方に向かって直交する距離をd[m]、
前記フラップからの距離d[m]の位置における前記流路の断面積をA[m]、
前記流路の最上部における断面積をA[m]としたとき、
d≦0.1[m]で、{(A[m]/A[m])−1}>1.7d[m]の要件を満たし、かつ、前記フラップへ向かって上方へ10度以下の角度で傾斜させた形状であることを特徴とする、請求項3〜6のいずれか一に記載した車体下部整流構造。
The flow path is
The distance perpendicular to the front of the vehicle body from the flap is d [m],
A cross-sectional area of the flow path at a position of distance d [m] from the flap is A d [m 2 ],
When the cross-sectional area at the top of the channel is A 0 [m 2 ],
d ≦ 0.1 [m], {(A d [m 2 ] / A 0 [m 2 ]) − 1}> 1.7 d [m] is satisfied, and upward toward the flap The vehicle body lower part rectification structure according to any one of claims 3 to 6, wherein the lower body rectification structure has a shape inclined at an angle of 10 degrees or less.
前記凸部の前記流路が位置する部分を下方に突出させる突出手段を備えた
ことを特徴とする、請求項3〜7のいずれか一に記載した車体下部整流構造。
The vehicle body lower part rectification structure according to any one of claims 3 to 7, further comprising projecting means for projecting a portion of the convex portion where the flow path is located downward.
搭乗者が所定の操作入力を行う操作入力部を備え、
前記突出手段は、前記操作入力部の操作に基づいて前記流路が位置する部分を下方に突出させることを特徴とする、請求項8に記載した車体下部整流構造。
Provided with an operation input unit for the passenger to perform a predetermined operation input,
The vehicle body lower rectification structure according to claim 8, wherein the projecting means projects a portion where the flow path is located downward based on an operation of the operation input unit.
前記突出手段は、車体の走行速度に応じて前記流路が位置する部分の突出寸法が変化することを特徴とする、請求項8に記載した車体下部整流構造。   The vehicle body lower rectification structure according to claim 8, wherein the protrusion means changes a protrusion dimension of a portion where the flow path is located according to a traveling speed of the vehicle body.
JP2015056120A 2014-03-26 2015-03-19 Lower body rectification structure Active JP6537165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056120A JP6537165B2 (en) 2014-03-26 2015-03-19 Lower body rectification structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014063911 2014-03-26
JP2014063911 2014-03-26
JP2015056120A JP6537165B2 (en) 2014-03-26 2015-03-19 Lower body rectification structure

Publications (2)

Publication Number Publication Date
JP2015193372A true JP2015193372A (en) 2015-11-05
JP6537165B2 JP6537165B2 (en) 2019-07-03

Family

ID=54432824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056120A Active JP6537165B2 (en) 2014-03-26 2015-03-19 Lower body rectification structure

Country Status (1)

Country Link
JP (1) JP6537165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059308A (en) * 2017-09-26 2019-04-18 株式会社Subaru Vehicular undercover

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150913A (en) * 2014-02-12 2015-08-24 マツダ株式会社 Front rectification structure of automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150913A (en) * 2014-02-12 2015-08-24 マツダ株式会社 Front rectification structure of automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059308A (en) * 2017-09-26 2019-04-18 株式会社Subaru Vehicular undercover

Also Published As

Publication number Publication date
JP6537165B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US10464514B2 (en) Impact energy absorber member for a vehicle
JP5227063B2 (en) Intake duct for vehicle
CN109649509B (en) Vehicle body structure
CN105329327B (en) Motor vehicles with adjustable threshold bottom girder
US10933927B2 (en) Airflow deflector for a vehicle
CN104619575A (en) Vehicle lower structure
EP3702255B1 (en) Deflector structure for automobile, and automobile
WO2016055079A1 (en) Aerodynamic device to be fastened under a vehicle, and vehicle equipped with such an aerodynamic device
JP2019111965A (en) Airflow control device
WO2018163528A1 (en) Aerodynamic component for automobiles
US20160280289A1 (en) Vehicle aerodynamic structure
CN113998017A (en) Bottom cover structure
JP2011042353A (en) Vehicular side view mirror boundary airflow control device
EP2788248B1 (en) Fluid control apparatus
JP5888434B2 (en) Vehicle rectifier
JP6336883B2 (en) undercover
JP2015193372A (en) Flow straightening structure for lower part of vehicle body
JP5633473B2 (en) Air flow control device around side mirror of vehicle
CN113998016A (en) Bottom cover structure
JP2014076705A (en) Rectification structure for vehicle
US10913501B2 (en) Vehicle understructure
JP5879056B2 (en) Body structure
JP2014226953A (en) Cooling structure of drive unit in wheel
JP5569338B2 (en) Aerodynamic equipment for vehicles
JP3220598U (en) Door mirror cover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6537165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250