JP2015193009A - Metal joint material - Google Patents

Metal joint material Download PDF

Info

Publication number
JP2015193009A
JP2015193009A JP2014071191A JP2014071191A JP2015193009A JP 2015193009 A JP2015193009 A JP 2015193009A JP 2014071191 A JP2014071191 A JP 2014071191A JP 2014071191 A JP2014071191 A JP 2014071191A JP 2015193009 A JP2015193009 A JP 2015193009A
Authority
JP
Japan
Prior art keywords
metal
bonding material
metal particles
metal bonding
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071191A
Other languages
Japanese (ja)
Other versions
JP6355949B2 (en
Inventor
正人 廣瀬
Masato Hirose
正人 廣瀬
貴則 嶋崎
Takanori Shimazaki
貴則 嶋崎
裕樹 横田
Hiroki Yokota
裕樹 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2014071191A priority Critical patent/JP6355949B2/en
Publication of JP2015193009A publication Critical patent/JP2015193009A/en
Application granted granted Critical
Publication of JP6355949B2 publication Critical patent/JP6355949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a metal joint material excellent in conductivity of a joint whose joint strength after sintering is strong, in which the thickness of the joint can be control to be small.SOLUTION: A metal joint material includes (A) metal particles and (B) an organic solvent whose boiling point is 243-275°C, and vapor pressure at 25°C is 0.010-4.0 Pa, the metal particles consisting of first metal particles whose particle size distribution of an average primary particle diameter is in the range of 100-6000 nm, and second metal particles whose particle size distribution of an average primary particle diameter is in the range of 0.5-10 μm.

Description

本発明は、金属粒子と有機溶媒を含有した金属接合材料、より詳細には、基板へのスクリーン印刷法やインクジェット印刷法などの公知の印刷方法や、ディスペンサー法など、公知の吐出方法を用いた塗布により、低温(例えば、200℃程度)の熱処理にて、前記基板上に電子部品を接合できる金属接合材料に関するものである。   The present invention uses a metal bonding material containing metal particles and an organic solvent, more specifically, a known printing method such as a screen printing method or an ink jet printing method on a substrate, or a known ejection method such as a dispenser method. The present invention relates to a metal bonding material capable of bonding an electronic component onto the substrate by heat treatment at a low temperature (for example, about 200 ° C.) by coating.

基板に電子部品を実装する分野において、電気的接合は、鉛フリーはんだ、例えば、スズ‐銀系、スズ‐銅系、スズ-銀-銅系のはんだが主流となっている(特許文献1)。しかし、鉛フリーはんだは高融点であり、実装温度が250℃以上と高くなる。よって、電子部品や基板が熱損傷を起こすことがあり、全ての電子部品や基板に対応できるものではない。そこで、PETなど耐熱性に劣った基板を用いる場合やモジュールの耐熱性の問題等で低温にて接合せざるを得ない場合には、比較的低温で電気的接合が可能なビスマスやインジウム系合金を使用していた。しかし、ビスマスは接合強度や合金の脆さに問題があり、インジウム系合金は高価という問題がある。   In the field of mounting electronic components on a substrate, lead-free solder, for example, tin-silver solder, tin-copper solder, tin-silver-copper solder is mainly used for electrical joining (Patent Document 1). . However, lead-free solder has a high melting point, and the mounting temperature is as high as 250 ° C. or higher. Therefore, the electronic component or the substrate may be thermally damaged, and it cannot be applied to all the electronic components and the substrate. Therefore, when using a substrate with poor heat resistance, such as PET, or when it must be bonded at a low temperature due to the heat resistance problem of the module, etc., bismuth and indium alloys that can be electrically bonded at a relatively low temperature Was used. However, bismuth has a problem in bonding strength and alloy brittleness, and an indium alloy has a problem in that it is expensive.

一方で、耐熱性の点ではんだ付けに不向きな電子部品の実装やモジュールの組み立てには、比較的低温で電気的接合が可能な銀ペーストが用いられ、導通抵抗の上昇を防止するために、銀ペーストに低融点金属や導電フィラー、金属ナノ粒子を添加することが行なわれている。金属ナノ粒子は、比表面積が大きく反応活性が高いので、金属バルクと比較して、低温で融着する低温焼結という特性を有する。例えば、銀ナノ粒子の場合、本来の融点964℃より格段に低い200℃程度の加熱処理で融着接合現象が起こり、金属バルクと同等程度の導通性を示すことが知られている。しかし、導電性、接合強度が不十分であるという問題がある。   On the other hand, silver paste that can be electrically joined at a relatively low temperature is used for mounting electronic components and modules that are unsuitable for soldering in terms of heat resistance, in order to prevent an increase in conduction resistance. Addition of a low melting point metal, a conductive filler, or metal nanoparticles to the silver paste is performed. Since metal nanoparticles have a large specific surface area and high reaction activity, they have the characteristic of low-temperature sintering that fuses at a low temperature compared to metal bulk. For example, in the case of silver nanoparticles, it is known that a fusion-bonding phenomenon occurs by heat treatment at about 200 ° C., which is much lower than the original melting point of 964 ° C., and exhibits the same level of conductivity as a metal bulk. However, there is a problem that conductivity and bonding strength are insufficient.

また、近年、電子部品が発する熱による熱損傷を防止するために、200℃程度の加熱処理で融着接合現象が起こるだけではなく、高放熱性を有する接合材料が求められている。そこで、高放熱材料である銀粒子等の金属粒子に環状構造を有する飽和炭化水素などの有機溶剤を添加した金属接合材料を用い、該金属接合材料を200℃程度の加熱処理で焼結(以下、「低温焼結」ということがある。)することで、基板に電子部品を実装することも行われている。   In recent years, in order to prevent thermal damage due to heat generated by electronic components, there is a demand for a bonding material that not only causes a fusion bonding phenomenon by heat treatment at about 200 ° C. but also has high heat dissipation. Therefore, a metal bonding material in which an organic solvent such as saturated hydrocarbon having a cyclic structure is added to metal particles such as silver particles which are high heat dissipation materials is used, and the metal bonding material is sintered by heat treatment at about 200 ° C. In some cases, electronic components are mounted on a substrate.

しかし、上記金属接合材料でも、依然として、接合強度は不十分であった。さらに、上記金属接合材料では、塗布の際に金属接合材料の厚みを薄く制御することが難しいので、電子部品から放出される熱や焼結時の熱が接合部で蓄積され易く、放熱性が十分ではないという問題があった。   However, even with the metal bonding material, the bonding strength is still insufficient. Furthermore, with the above metal bonding material, it is difficult to control the thickness of the metal bonding material thinly during application, so heat released from electronic components and heat during sintering are likely to accumulate at the bonded portion, and heat dissipation is improved. There was a problem that it was not enough.

特開2013−258399号公報JP 2013-258399 A

本発明は、上記事情に鑑み、接合部の導電性に優れ、焼結後の接合強度が高く、接合部の厚みを薄く制御することができる金属接合材料を提供することを目的とする。   An object of this invention is to provide the metal joining material which is excellent in the electroconductivity of a junction part, has high joint strength after sintering, and can control the thickness of a junction part thinly in view of the said situation.

本発明の態様は、(A)金属粒子と、(B)沸点が243℃〜275℃及び25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒と、を含有する金属接合材料である。   An aspect of the present invention is a metal bonding material containing (A) metal particles and (B) an organic solvent having a boiling point of 243 ° C. to 275 ° C. and a vapor pressure of 25 ° C. of 0.010 Pa to 4.0 Pa. is there.

本発明の態様は、前記(B)有機溶媒が、グリコールエーテル系である金属接合材料である。「グリコールエーテル系」とは、グリコールが脱水縮合した構造を主骨格とした化学構造を意味する。   An aspect of the present invention is the metal bonding material in which the organic solvent (B) is a glycol ether type. The “glycol ether type” means a chemical structure having a structure in which glycol is dehydrated and condensed as a main skeleton.

本発明の態様は、前記(A)金属粒子が、(A1)平均一次粒子径の粒度分布が100nm〜6000nmの範囲にある第1の金属粒子と(A2)平均一次粒子径の粒度分布が0.5μm〜10μmの範囲にある第2の金属粒子とからなる金属接合材料である。   In the aspect of the present invention, the (A) metal particles have (A1) first metal particles having an average primary particle size particle size distribution in the range of 100 nm to 6000 nm and (A2) an average primary particle size particle size distribution of 0. A metal bonding material comprising second metal particles in the range of 5 μm to 10 μm.

本発明の態様は、前記(A1)第1の金属粒子及び前記(A2)第2の金属粒子が、銀、銀合金、または銀若しくは銀合金で被覆された銅である金属接合材料である。   An aspect of the present invention is a metal bonding material in which the (A1) first metal particles and the (A2) second metal particles are silver, a silver alloy, or copper coated with silver or a silver alloy.

本発明の態様は、前記(A1)第1の金属粒子の質量:前記(A2)第2の金属粒子の質量が、3:7〜7:3である金属接合材料である。   An aspect of the present invention is a metal bonding material in which (A1) the mass of the first metal particles: (A2) the mass of the second metal particles is 3: 7 to 7: 3.

本発明の態様は、さらに、(C)分散剤が含まれる金属接合材料である。   An embodiment of the present invention is a metal bonding material further comprising (C) a dispersant.

本発明の態様は、上記金属接合材料を用いて、基板に電子部品を実装した電子部品接合体である。   An aspect of the present invention is an electronic component assembly in which an electronic component is mounted on a substrate using the metal bonding material.

前記電子部品が、LED素子またはパワーデバイスである電子部品接合体である。   The electronic component is an electronic component assembly that is an LED element or a power device.

本発明の態様によれば、金属接合材料に沸点が243℃〜275℃及び25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒を配合することで、良好な導電性を有するだけではなく、接合強度に優れ、接合部の厚みを薄く制御することができる。これは、上記有機溶媒は、室温で行われる基板等への塗布時だけではなく塗布後も長期間にわたって揮発しにくいのに対し、200℃程度の加熱処理にて電子部品と基板とを接合する際には、塗布した金属接合材料から円滑に揮発することから、良好な接合強度が得られ、さらには、電子部品を基板に搭載する際に所定の荷重をかけることで、接合部が所望の厚さに調整できるためと考えられる。従って、本発明の金属接合材料は、微少な塗布量であっても、塗布時及び塗布後とも揮発しにくいので、接合部を所望の厚さにすることができる。   According to the aspect of the present invention, the metal bonding material is blended with an organic solvent having a boiling point of 243 ° C. to 275 ° C. and a vapor pressure of 25 ° C. of 0.010 Pa to 4.0 Pa. Instead, the joint strength is excellent, and the thickness of the joint can be controlled thin. This is because the organic solvent does not volatilize over a long period of time not only when applied to a substrate or the like performed at room temperature, but bonds the electronic component and the substrate by a heat treatment of about 200 ° C. In this case, since the applied metal bonding material volatilizes smoothly, a good bonding strength can be obtained. Further, when a predetermined load is applied when the electronic component is mounted on the substrate, the bonding portion is desired. This is probably because the thickness can be adjusted. Therefore, the metal bonding material of the present invention is less likely to volatilize at the time of application and after application even at a small application amount, so that the junction can be made to have a desired thickness.

本発明の態様によれば、前記有機溶媒がグリコールエーテル系であることにより、導電性がより向上する。   According to the aspect of the present invention, when the organic solvent is a glycol ether, conductivity is further improved.

本発明の態様によれば、(A)金属粒子が、(A1)平均一次粒子径の粒度分布が100nm〜6000nmの範囲にある第1の金属粒子と(A2)平均一次粒子径の粒度分布が0.5μm〜10μmの範囲にある第2の金属粒子とからなることにより、確実に、機械的接合強度を有しつつ、200℃程度の加熱処理で融着接合現象が生じる。   According to an aspect of the present invention, (A) the metal particles are (A1) the first primary metal particles having an average primary particle size distribution in the range of 100 nm to 6000 nm and (A2) the average primary particle size distribution is By comprising the second metal particles in the range of 0.5 μm to 10 μm, the fusion bonding phenomenon occurs by heat treatment at about 200 ° C. with surely having mechanical bonding strength.

本発明の態様によれば、さらに、(C)分散剤が含まれることにより、金属接合材料中における金属粒子と有機溶媒との分離を防止できるので、塗布装置の吐出口における金属接合材料の詰まりや塗布量の不均一化を抑制できる。従って、精度よく微細(例えば、100μm〜200μm程度の大きさ)な塗布を行うことができる。   According to the aspect of the present invention, since (C) the dispersant is further contained, separation of the metal particles and the organic solvent in the metal bonding material can be prevented, so that the metal bonding material is clogged at the discharge port of the coating apparatus. And uneven application amount can be suppressed. Accordingly, it is possible to perform fine and fine coating (for example, a size of about 100 μm to 200 μm) with high accuracy.

試験片である基板表面の温度プロファイルを説明する図である。It is a figure explaining the temperature profile of the substrate surface which is a test piece.

次に、本発明の金属接合材料について説明する。本発明の金属接合材料は、(A)金属粒子と、(B)沸点が243℃〜275℃及び25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒と、を含有する。   Next, the metal bonding material of the present invention will be described. The metal bonding material of the present invention contains (A) metal particles and (B) an organic solvent having a boiling point of 243 ° C. to 275 ° C. and a vapor pressure of 25 ° C. of 0.010 Pa to 4.0 Pa.

(A)金属粒子
金属粒子は、導電性を有する粉末状のものであれば、種類、粒子径とも、特に限定されない。金属種としては、例えば、金、銀、銅、白金、パラジウム、ニッケル、ビスマス、鉛、インジウム、スズ、亜鉛、チタン、アルミニウム及びアンチモンなど、はんだに使用される金属単体や上記金属種を含有する金属合金を挙げることができる。上記金属種のうち、導電性と高い放熱性の点から、銀、銀合金、または銀若しくは銀合金で被覆された銅が好ましい。上記金属は、単独で使用してもよく、2種以上を混合して使用してもよい。
(A) Metal particles The metal particles are not particularly limited in terms of type and particle diameter as long as the particles are conductive powder. As a metal seed | species, the metal simple substance used for solder, such as gold | metal | money, silver, copper, platinum, palladium, nickel, bismuth, lead, indium, tin, zinc, titanium, aluminum, and antimony, and the said metal seed | species are contained, for example. Mention may be made of metal alloys. Among the above metal species, silver, a silver alloy, or copper coated with silver or a silver alloy is preferable from the viewpoint of conductivity and high heat dissipation. The said metal may be used individually and may be used in mixture of 2 or more types.

金属粒子の粒子径としては、例えば、平均一次粒子径10nm〜10μmであり、比表面積が大きく粒子表面の反応活性が高くなることから金属本来の融点よりもはるかに低い加熱温度で電子部品を基板に電気的に接合できる点から、ナノオーダーの平均一次粒子径(すなわち、平均一次粒子径10nm以上1000μm未満)の金属粒子を含むことが好ましく、ボイドの発生を抑制して良好な機械的接合強度を得る点から、(A1)平均一次粒子径の粒度分布が100nm〜6000nmの範囲にある第1の金属粒子と(A2)平均一次粒子径の粒度分布が0.5μm〜10μmの範囲にある第2の金属粒子とからなる金属粒子が特に好ましい。   The particle diameter of the metal particles is, for example, an average primary particle diameter of 10 nm to 10 μm, and since the specific surface area is large and the reaction activity on the particle surface is high, the electronic component is boarded at a heating temperature much lower than the original melting point of the metal. It is preferable to include metal particles having an average primary particle size of nano-order (that is, an average primary particle size of 10 nm or more and less than 1000 μm) from the point of being able to be electrically bonded to the metal, and good mechanical bonding strength by suppressing generation of voids. (A1) first metal particles having an average primary particle size distribution in the range of 100 nm to 6000 nm and (A2) particles having an average primary particle size distribution in the range of 0.5 μm to 10 μm. Particularly preferred are metal particles comprising 2 metal particles.

また、(A1)第1の金属粒子と(A2)第2の金属粒子の、それぞれの最大ピーク一次粒子径は、特に限定されないが、ボイドの発生を確実に防止して、機械的接合強度に優れた金属接合部を得る点から、(A1)第1の金属粒子の、最大ピーク一次粒子径は、200nm〜800nmが好ましく、(A2)第2の金属粒子の、最大ピーク一次粒子径は、500nm〜2200nmが好ましい。さらに、(A1)第1の金属粒子の質量:(A2)第2の金属粒子の質量は、特に限定されないが、粒度分布を広範囲とすることで高密度の接合を形成する点から3:7〜7:3が好ましい。   In addition, the maximum peak primary particle diameter of each of the (A1) first metal particles and the (A2) second metal particles is not particularly limited. From the viewpoint of obtaining an excellent metal joint, (A1) the maximum peak primary particle diameter of the first metal particles is preferably 200 nm to 800 nm, and (A2) the maximum peak primary particle diameter of the second metal particles is 500 nm to 2200 nm is preferable. Further, (A1) Mass of the first metal particles: (A2) The mass of the second metal particles is not particularly limited, but it is 3: 7 from the viewpoint of forming a high-density joint by widening the particle size distribution. ~ 7: 3 is preferred.

また、(A)成分である金属粒子の配合割合は、適宜選択可能であるが、例えば、その下限値は、良好な導電性を有する接合部を得る点から、金属接合材料中に80質量%含まれるのが好ましく、90質量%が特に好ましい。一方、前記配合割合の上限値は、(B)成分である有機溶剤の配合の点から96質量%が好ましく、95質量%が特に好ましい。   Further, the blending ratio of the metal particles as the component (A) can be appropriately selected. For example, the lower limit is 80% by mass in the metal bonding material from the viewpoint of obtaining a bonded portion having good conductivity. It is preferably included, and 90% by mass is particularly preferable. On the other hand, the upper limit of the blending ratio is preferably 96% by weight, particularly preferably 95% by weight, from the viewpoint of blending the organic solvent which is the component (B).

(B)沸点が243℃〜275℃及び25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒
沸点が243℃〜275℃及び25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒を配合することにより、本発明の金属接合材料を金属間の接合に使用するにあたり、接合強度に優れ、さらに、接合部の厚みを薄く制御することができる。接合部の厚みを薄く制御することができるのは、上記有機溶媒は、室温(例えば、25℃)で揮発しにくいので、室温で行われる基板等への金属接合材料の塗布後、金属接合材料は室温にて長時間にわたりペースト状を維持でき、ひいては、電子部品等を基板に搭載する際に所定の荷重をかけることで塗布した金属接合材料を所望の厚さに調整できるためと考えられる。また、接合強度に優れるのは、電子部品等と基板とを接合する際に、金属接合材料がペースト状に維持された状態にて加熱処理(例えば、200℃程度)を行うと、上記有機溶媒が円滑に揮発するためと考えられる。
(B) Organic solvent having boiling points of 243 ° C. to 275 ° C. and 25 ° C. of vapor pressure of 0.010 Pa to 4.0 Pa Boiling points of 243 ° C. to 275 ° C. and vapor pressure of 25 ° C. of 0.010 Pa to 4.0 Pa By blending a certain organic solvent, when the metal bonding material of the present invention is used for bonding between metals, the bonding strength is excellent, and the thickness of the bonded portion can be controlled to be thin. The thickness of the bonded portion can be controlled thinly because the organic solvent is less likely to volatilize at room temperature (for example, 25 ° C.), so that the metal bonding material is applied after applying the metal bonding material to the substrate or the like performed at room temperature. This is presumably because the paste can be maintained at room temperature for a long time, and the applied metal bonding material can be adjusted to a desired thickness by applying a predetermined load when an electronic component or the like is mounted on a substrate. Further, the bonding strength is excellent when the heat treatment (for example, about 200 ° C.) is performed in a state where the metal bonding material is maintained in a paste state when bonding an electronic component or the like to the substrate. This is thought to be due to volatilization smoothly.

上記有機溶媒としては、例えば、水酸基、エステル結合及び/またはエーテル構造を有する化合物が挙げられ、具体的な例としては、水酸基を有する化合物として、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノエチルヘキシルエーテル等のC〜C14のグリコールエーテル類、ノナン-1-オール、ドデカン-1-オール、テトラデカン-1-オール等のC〜C14の非環式の脂肪族モノアルコール類、ペンタンジオール、ヘキサンジオール及びヘプタンジオール等のC〜Cの直鎖脂肪族ジアルコール類、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール等の分岐鎖を有する非環式のC〜C脂肪族ジアルコール類が挙げられる。また、水酸基を有さない化合物としては、ジエチレングリコールモノブチルエーテルアセテート等、上記グリコールエーテル類とアクリル酸またはメタクリル酸とのエステルなどのエステル類を挙げることができる。これらの化合物は、単独で使用してもよく、2種以上を混合して使用してもよい。 Examples of the organic solvent include compounds having a hydroxyl group, an ester bond, and / or an ether structure. Specific examples of the organic solvent include diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, and diethylene glycol monoethyl hexyl ether. C 9 -C 14 acyclic aliphatic monoalcohols such as C 8 -C 14 glycol ethers, such as nonan-1-ol, dodecan-1-ol, tetradecan-1-ol, etc., pentanediol, C 5 -C 7 straight chain aliphatic dialcohols such as hexanediol and heptanediol, etc., having branched chains such as 2-ethyl-1,3-hexanediol and 2,5-dimethyl-2,5-hexanediol C 6 -C 9 aliphatic dialcohols acyclic and the like. In addition, examples of the compound having no hydroxyl group include esters such as diethylene glycol monobutyl ether acetate and esters of the above glycol ethers with acrylic acid or methacrylic acid. These compounds may be used alone or in combination of two or more.

沸点が243℃〜275℃かつ25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒の配合割合は、適宜選択可能であるが、例えば、その下限値は、良好な接合強度を得る点から、金属接合材料中に2.0質量%含まれるのが好ましく、4.0質量%が特に好ましい。一方、前記配合割合の上限値は、接合強度の低下防止の点から20質量%が好ましく、10質量%が特に好ましい。   The blending ratio of the organic solvent having a boiling point of 243 ° C. to 275 ° C. and a vapor pressure of 25 ° C. of 0.010 Pa to 4.0 Pa can be selected as appropriate. For example, the lower limit value provides good bonding strength. From the viewpoint, it is preferable that 2.0% by mass is contained in the metal bonding material, and 4.0% by mass is particularly preferable. On the other hand, the upper limit of the blending ratio is preferably 20% by mass, particularly preferably 10% by mass, from the viewpoint of preventing a decrease in bonding strength.

(C)分散剤
本発明では、必要に応じて、(C)分散剤を配合してもよい。分散媒を配合することで、金属接合材料中における金属粒子と有機溶媒との分離を防止できるので、塗布装置の吐出口における金属接合材料の詰まりや塗布量の不均一化を抑制できる。
(C) Dispersant In this invention, you may mix | blend (C) a dispersant as needed. By blending the dispersion medium, separation of the metal particles and the organic solvent in the metal bonding material can be prevented, so that clogging of the metal bonding material at the discharge port of the coating apparatus and uneven application amount can be suppressed.

分散剤としては、特に限定されず、例えば、アクリル系コポリマー、メタクリル系コポリマー、ソルビトール系等の糖アルコール類、フッ素系等を挙げることができる。これらのうち、金属粒子と有機溶媒との分離防止性に優れ、金属接合材料の低温焼結性を維持できる点から、フッ素系分散剤が好ましい。   The dispersing agent is not particularly limited, and examples thereof include acrylic alcohols, methacrylic copolymers, sugar alcohols such as sorbitol, and fluorine. Among these, a fluorine-based dispersant is preferable because it is excellent in preventing separation between metal particles and an organic solvent and can maintain low-temperature sinterability of the metal bonding material.

また、フッ素系分散剤のうち、金属粒子と有機溶媒との分離を確実に防止して、ディスペンサーなどのノズル口径100〜200μmと微細な吐出装置でも、ノズル内の詰まりを防止し、かつ微少な供給量でも金属粒子の塗布量を均一化できる点から、下記一般式(I)   Further, among the fluorine-based dispersants, the separation of the metal particles and the organic solvent is surely prevented, and even in a fine discharge device with a nozzle diameter of 100 to 200 μm such as a dispenser, clogging in the nozzle is prevented, and the minute amount is small. From the point that the coating amount of metal particles can be made uniform even with the supply amount, the following general formula (I)

Figure 2015193009
Figure 2015193009

(式中、R、R、R、Rは、それぞれ、独立に、F、CF、CCF、Cを表す。)で表される化合物、前記一般式(I)で表される化合物のオリゴマー、または前記一般式(I)で表される化合物のオリゴマーを主骨格とする化合物が好ましく、前記一般式(I)で表される化合物は、ヘキサフルオロプロペンまたはヘキサフルオロプロペントリマーが特に好ましい。なお、上記「一般式(I)で表される化合物オリゴマー」とは、一般式(I)で表される化合物が2〜100個結合した重合体を意味する。これらの化合物は、単独で使用してもよく、2種以上を混合して使用してもよい。 (Wherein R 1 , R 2 , R 3 , and R 4 each independently represent F, CF 3 , C 2 CF 5 , and C 3 F 7 ), the above general formula ( A compound having a main skeleton of an oligomer of the compound represented by I) or an oligomer of the compound represented by the general formula (I) is preferable, and the compound represented by the general formula (I) is hexafluoropropene or Hexafluoropropene trimer is particularly preferred. The “compound oligomer represented by the general formula (I)” means a polymer in which 2 to 100 compounds represented by the general formula (I) are bonded. These compounds may be used alone or in combination of two or more.

分散剤の配合割合は、適宜選択可能であるが、例えば、その下限値は、金属接合材料の詰まりや塗布量の不均一化を抑制する点から、金属接合材料中に0.3質量%含まれるのが好ましく、0.4質量%が特に好ましい。一方、前記配合割合の上限値は、接合強度の低下防止の点から2.0質量%が好ましく、1.0質量%が特に好ましい。   The mixing ratio of the dispersing agent can be selected as appropriate. For example, the lower limit value is 0.3% by mass in the metal bonding material from the viewpoint of suppressing clogging of the metal bonding material and uneven application amount. It is preferably 0.4% by mass. On the other hand, the upper limit of the blending ratio is preferably 2.0% by mass, and particularly preferably 1.0% by mass from the viewpoint of preventing a decrease in bonding strength.

本発明の金属接合材料には、用途に応じて、適宜、慣用の添加剤を配合してもよい。添加剤としては、例えば、光沢付与剤、金属腐食防止剤、安定剤、流動性向上剤、増粘剤、粘度調整剤、保湿剤、消泡剤、殺菌剤、充填材などを挙げることができる。これらの添加剤は、単独で使用してもよく、2種以上を混合して使用してもよい。   In the metal bonding material of the present invention, a conventional additive may be appropriately blended depending on the application. Examples of the additive include a gloss imparting agent, a metal corrosion inhibitor, a stabilizer, a fluidity improver, a thickener, a viscosity modifier, a moisturizer, an antifoaming agent, a disinfectant, and a filler. . These additives may be used alone or in combination of two or more.

次に、本発明の金属接合材料の製造方法について説明する。本発明の金属接合材料の製造方法は、特に限定されず、例えば、上記(A)成分と(B)成分、および必要に応じてその他の成分を所定割合で配合後、室温にて、三本ロール、ボールミル、サンドミル等の混練手段、またはスーパーミキサー、プラネタリーミキサー等の攪拌手段により混練または混合して製造することができる。   Next, the manufacturing method of the metal joining material of this invention is demonstrated. The method for producing the metal bonding material of the present invention is not particularly limited. For example, after the above-mentioned components (A) and (B) and other components are blended at a predetermined ratio as required, three at room temperature are mixed. It can be produced by kneading or mixing with a kneading means such as a roll, a ball mill or a sand mill, or a stirring means such as a super mixer or a planetary mixer.

次に、本発明の金属接合材料の用途例について説明する。本発明の金属接合材料は、部品間を金属接合するための材料として広汎に使用することができ、例えば、200℃以下の低温で実装かつ接合部の厚さの低減が要求される高輝度LEDを基板に搭載するための材料、またはパワーデバイスを基板に接合するための材料等、配線板に電子部品を電気的かつ物理的に接合する導電性の接合材料として使用できる。   Next, application examples of the metal bonding material of the present invention will be described. The metal bonding material of the present invention can be widely used as a material for metal bonding between parts, for example, a high-brightness LED that is required to be mounted at a low temperature of 200 ° C. or lower and to reduce the thickness of the bonding portion. Can be used as a conductive bonding material for electrically and physically bonding an electronic component to a wiring board, such as a material for mounting the substrate on a substrate or a material for bonding a power device to the substrate.

次に、本発明の金属接合材料の使用例について説明する。本発明の金属接合材料を導電性の接合材料として使用する場合、例えば、基板上の電子部品(半導体等)を接合する位置に、本発明の金属接合材料を所定量塗布し、塗布した金属接合材料の上に電子部品を載置後、焼成処理して、基板上に電子部品を接合する。金属接合材料の塗布方法は、特に限定されず、例えば、スクリーン印刷法、ディスペンサー法、インクジェット法などが挙げられる。金属接合材料の塗布量は、適宜選択可能であり、例えば、1〜20μmの厚さ、幅100〜1000μmにて塗布する。焼成温度は、金属粒子が相互に融着して焼結する温度であれば、特に限定されず、例えば、金属粒子が、ナノオーダーの平均一次粒子径を有する金属粒子を含み、金属種が銅または銀の場合、180〜230℃であり、好ましくは190〜210℃である。また、焼成時間は、適宜選択可能であり、例えば、30〜120分である。   Next, usage examples of the metal bonding material of the present invention will be described. When the metal bonding material of the present invention is used as a conductive bonding material, for example, a predetermined amount of the metal bonding material of the present invention is applied to a position where an electronic component (semiconductor, etc.) on the substrate is bonded. After placing the electronic component on the material, the electronic component is bonded onto the substrate by baking. The method for applying the metal bonding material is not particularly limited, and examples thereof include a screen printing method, a dispenser method, and an ink jet method. The application amount of the metal bonding material can be selected as appropriate, and for example, it is applied with a thickness of 1 to 20 μm and a width of 100 to 1000 μm. The firing temperature is not particularly limited as long as the metal particles are fused to each other and sintered. For example, the metal particles include metal particles having an average primary particle diameter of nano-order, and the metal species is copper. Or in the case of silver, it is 180-230 degreeC, Preferably it is 190-210 degreeC. Moreover, baking time can be selected suitably and is 30 to 120 minutes, for example.

次に、実施例を用いて本発明の金属接合材料をさらに詳細に説明する。ただし、本発明の金属接合材料は、以下に示す実施例の態様に限定されるものではない。   Next, the metal bonding material of the present invention will be described in more detail using examples. However, the metal bonding material of the present invention is not limited to the embodiments shown below.

実施例1〜6、比較例1〜5
下記表1に示す各成分を下記表1に示す配合割合にて配合し、3本ロールにて混合分散させて、実施例1〜6、比較例1〜5にて使用するペースト状の金属接合材料を調製した。そして、調製した金属接合材料を以下のように基板に塗布して試験片を作製した。なお、表1中の配合割合の数値は質量部を示し、配合割合の「−」部は0質量部を意味する。
Examples 1-6, Comparative Examples 1-5
Each component shown in the following Table 1 is blended in the blending ratio shown in the following Table 1, mixed and dispersed by three rolls, and used in Examples 1 to 6 and Comparative Examples 1 to 5 in a paste-like metal joint. The material was prepared. And the prepared metal joining material was apply | coated to the board | substrate as follows, and the test piece was produced. In addition, the numerical value of the mixture ratio in Table 1 shows a mass part, and the "-" part of a mixture ratio means 0 mass part.

焼成条件
焼成:200℃、60min、昇温速度0.8℃/min
山陽精工製リフローシミュレーター「SMT Scope SK-5000」にて基板表面温度が図1に示すプロファイルの温度条件で焼成した。
Firing conditions Firing: 200 ° C., 60 min, heating rate 0.8 ° C./min
The substrate surface temperature was baked with the reflow simulator “SMT Scope SK-5000” manufactured by Sanyo Seiko under the temperature condition of the profile shown in FIG.

評価
(1)体積抵抗率
スライドガラス上に、上記のように調製した金属接合材料のペーストを、50μm厚メタルマスクを用いて5cm×1cmの面積にスクリーン印刷により薄膜状に塗布し、上記の焼成条件にて薄膜を焼成し、得られた焼成薄膜に対して、JIS K 7194に準じた四探針法により、(株)三菱化学アナリテック製「ロレスターGP」により、体積抵抗(比抵抗)率を測定した。
Evaluation (1) Volume resistivity On the slide glass, the paste of the metal bonding material prepared as described above was applied in the form of a thin film by screen printing on an area of 5 cm × 1 cm using a 50 μm-thick metal mask, and the above firing was performed. The thin film was fired under the conditions, and the obtained fired thin film was subjected to a four-probe method according to JIS K 7194, and “Lorestar GP” manufactured by Mitsubishi Chemical Analytech Co., Ltd. Was measured.

(2)接合剪断強度
酢酸エチルで脱脂した10mm×10mm×厚さ1mmのAu/NiメッキCu基板にNordson EFD製ディスペンサー装置「DISPENSER ULTIMUS V 100PSI」を用いて、直径がφ150〜250μm、質量が8〜12μgになるように金属接合材料を塗布(吐出)し、YAMAHA製チップマウンタ「YV100Xg」を用いて1mm×1mmのAu/NiメッキSiダミーチップを搭載した。次に、上記の焼成条件にて焼成後、Nordson DAGE製ボンドテスタ「DAGE4000」を用いて83.3μm/sec(5mm/min)の速度で剪断強度を測定した。
結果は、○:チップの剪断強度が40MPa以上、△:チップの剪断強度が20MPa以上40MPa未満、×:チップの剪断強度が20MPa未満の3段階で評価した。
(2) Joint shear strength Using a Nordson EFD dispenser device “DISPENSER ULTIMUS V 100PSI” on a 10 mm × 10 mm × 1 mm thick Au / Ni plated Cu substrate degreased with ethyl acetate, the diameter is 150 to 250 μm, and the mass is 8 A metal bonding material was applied (discharged) to ˜12 μg, and a 1 mm × 1 mm Au / Ni plated Si dummy chip was mounted using a chip mounter “YV100Xg” manufactured by YAMAHA. Next, after firing under the above firing conditions, the shear strength was measured at a rate of 83.3 μm / sec (5 mm / min) using a bond tester “DAGE4000” manufactured by Nordson DAGE.
The results were evaluated in three stages: ◯: chip shear strength of 40 MPa or more, Δ: chip shear strength of 20 MPa or more and less than 40 MPa, and X: chip shear strength of less than 20 MPa.

(3)大気中放置後の接合剪断強度(乾燥性)
上記(2)における金属接合材料の塗布(吐出)後であってダミーチップを搭載する前に、25℃、湿度55%の環境下で1時間放置し、その後、上記(2)と同様の工程で、ダミーチップを搭載し、焼成をしたものについて、上記(2)と同様にして、剪断強度を測定した。
結果は、○:チップの剪断強度が40MPa以上、△:チップの剪断強度が20MPa以上40MPa未満、×:チップの剪断強度が20MPa未満の3段階で評価した。
(3) Bonding shear strength after drying in the air (drying property)
After applying (discharging) the metal bonding material in (2) above and before mounting the dummy chip, it is left for 1 hour in an environment of 25 ° C. and 55% humidity, and then the same process as in (2) above Then, the shear strength was measured in the same manner as in the above (2) for the sample that was mounted with a dummy chip and fired.
The results were evaluated in three stages: ◯: chip shear strength of 40 MPa or more, Δ: chip shear strength of 20 MPa or more and less than 40 MPa, and X: chip shear strength of less than 20 MPa.

(4)分離性
10ccのガラス瓶に約2gの金属接合材料を測り採り、2000rpm、1minの条件で遠心分離を行い、固液分離が生じているかどうかを目視で確認した。
結果は、○:液体の浮きが見られず、分離が起こっていない状態、△:表面に液体が浮き出ている状態、×:傾けると浮き出た液体が流動するくらいに分離している状態の3段階で評価した。
(4) Separability About 2 g of metal bonding material was measured in a 10 cc glass bottle, centrifuged at 2000 rpm for 1 min, and it was visually confirmed whether solid-liquid separation had occurred.
The results are as follows: ○: no liquid floating is observed, no separation occurs, Δ: liquid is floating on the surface, x: liquid is separated so that the liquid that floats when it is tilted 3 Rated by stage.

(5)接合厚さ
上記(3)と同様にして作製した試験片を、エポキシ樹脂で封止し、機械研磨で断面出しを行った後、日本電子製FE-SEM「JSM−7001F」にて接合部分を観察し、金属接合材料の厚さを計測した。
結果は、○:接合厚さが10±2μm、△:接合厚さが13〜40μm、×:接合厚さが40μm超の3段階で評価した。
(5) Bonding thickness A test piece produced in the same manner as in (3) above was sealed with an epoxy resin, and a cross-section was obtained by mechanical polishing, followed by JEOL FE-SEM “JSM-7001F”. The joining portion was observed and the thickness of the metal joining material was measured.
The results were evaluated in three stages: ◯: junction thickness of 10 ± 2 μm, Δ: junction thickness of 13 to 40 μm, and x: junction thickness of more than 40 μm.

(6)初期特性を維持できる時間(乾燥時間)
上記(3)の項目において、金属接合材料が初期のペースト状態を維持できる時間を目視により観察した。
(6) Time for maintaining initial characteristics (drying time)
In the item (3), the time during which the metal bonding material can maintain the initial paste state was visually observed.

実施例1〜6、比較例1〜5についての各評価結果を下記表1に示す。なお、実施例にて使用した有機溶媒の沸点と25℃の蒸気圧を下記表2に示す。   Each evaluation result about Examples 1-6 and Comparative Examples 1-5 is shown in the following Table 1. The boiling point of the organic solvent used in the examples and the vapor pressure at 25 ° C. are shown in Table 2 below.

Figure 2015193009
Figure 2015193009

Figure 2015193009
Figure 2015193009

表1、2に示すように、沸点が243℃〜272℃かつ25℃の蒸気圧が0.013Pa〜3.9Paである有機溶媒を使用した実施例1〜6では、体積抵抗率の値を5.0Ω・cm以下に低減、つまり、導電性を損なうことなく、接合厚さを10±2μmに低減でき、また、金属接合材料が初期のペースト状態を維持できる時間が1時間以上と、塗布後長時間にわたってペースト状態を維持できた。さらに、接合厚さと初期特性を維持できる時間(乾燥時間)が良好な実施例1〜6では、接合剪断強度と大気中放置後の接合剪断強度ともに40MPa以上と良好であり、塗布後すぐの焼成でも、塗布後時間の経過した焼成でも、いずれも、機械的強度に優れた接合部を形成できた。   As shown in Tables 1 and 2, in Examples 1 to 6 using an organic solvent having a boiling point of 243 ° C. to 272 ° C. and a vapor pressure of 0.013 Pa to 3.9 Pa at 25 ° C., the value of volume resistivity is Reduced to 5.0 Ω · cm or less, that is, the bonding thickness can be reduced to 10 ± 2 μm without impairing conductivity, and the time that the metal bonding material can maintain the initial paste state is 1 hour or more. After that, the paste state could be maintained for a long time. Furthermore, in Examples 1 to 6, in which the bonding thickness and the time during which the initial characteristics can be maintained (drying time) are good, both the bonding shear strength and the bonding shear strength after being left in the atmosphere are as good as 40 MPa or more, and firing immediately after coating. However, in any case, the bonded portion excellent in mechanical strength could be formed even after baking after application.

実施例1と実施例3から、沸点が243℃〜272℃かつ25℃の蒸気圧が0.013Pa〜3.9Paである有機溶媒としてグリコールエーテル系を使用すると、導電性がより向上する傾向があった。また、実施例1〜5と実施例6から、(C)分散剤として、主骨格がヘキサフルオロプロペンであるフッ素系分散剤を使用すると、さらに、金属接合材料に固液分離が発生するのを防止でき、良好な分散性が得られた。   From Example 1 and Example 3, when a glycol ether system is used as an organic solvent having a boiling point of 243 ° C. to 272 ° C. and a vapor pressure of 25 ° C. of 0.013 Pa to 3.9 Pa, the conductivity tends to be further improved. there were. Further, from Examples 1 to 5 and Example 6, when a fluorine-based dispersant whose main skeleton is hexafluoropropene is used as the (C) dispersant, solid-liquid separation further occurs in the metal bonding material. And good dispersibility was obtained.

一方、比較例1〜5から、沸点が243℃〜272℃かつ25℃の蒸気圧が0.013Pa〜3.9Paである有機溶媒以外の有機溶媒を使用すると、接合厚さが13μm以上の厚さとなってしまい、初期特性を維持できる時間(乾燥時間)も30分以下に短縮してしまった。また、比較例1〜5では、剪断強度、特に、大気中放置後の接合剪断強度がいずれも40MPa未満に低下してしまった。また、比較例5から、ソルビトール系分散剤を使用すると、金属接合材料に固液分離が発生するのを防止でき、良好な分散性が得られたが、接合厚さが40μm超、初期特性を維持できる時間(乾燥時間)も10分以下となってしまい、接合剪断強度と大気中放置後の接合剪断強度ともに20MPa未満に低下してしまった。   On the other hand, when an organic solvent other than an organic solvent having a boiling point of 243 ° C. to 272 ° C. and a vapor pressure of 0.013 Pa to 3.9 Pa is used from Comparative Examples 1 to 5, the junction thickness is 13 μm or more. As a result, the time during which the initial characteristics can be maintained (drying time) has also been shortened to 30 minutes or less. Further, in Comparative Examples 1 to 5, the shear strength, particularly the joint shear strength after being left in the air, was lowered to less than 40 MPa. Further, from Comparative Example 5, when a sorbitol-based dispersant was used, it was possible to prevent the occurrence of solid-liquid separation in the metal bonding material, and good dispersibility was obtained, but the bonding thickness exceeded 40 μm and the initial characteristics were improved. The time that can be maintained (drying time) was also 10 minutes or less, and both the joint shear strength and the joint shear strength after being left in the air were reduced to less than 20 MPa.

本発明の金属接合材料は、接合部の導電性に優れ、焼結後の接合強度が高いので、金属間接合の接合剤として広汎に、例えば、LED素子やパワーデバイス等といった半導体部品の基板への搭載の分野で利用でき、また、本発明の金属接合材料は、接合部の厚みを薄く制御することができるので、基板との接合部における高い放熱性が要求される高輝度LED素子の実装の分野で利用できる。   The metal bonding material of the present invention has excellent bonding portion conductivity and high bonding strength after sintering. Therefore, it is widely used as a bonding agent for bonding between metals, for example, to substrates of semiconductor components such as LED elements and power devices. In addition, the metal bonding material of the present invention can control the thickness of the bonding portion to be thin, so that mounting of a high-luminance LED element that requires high heat dissipation at the bonding portion with the substrate is possible. Available in the field.

Claims (8)

(A)金属粒子と、(B)沸点が243℃〜275℃及び25℃の蒸気圧が0.010Pa〜4.0Paである有機溶媒と、を含有する金属接合材料。   A metal bonding material comprising (A) metal particles and (B) an organic solvent having a boiling point of 243 ° C. to 275 ° C. and a vapor pressure of 25 ° C. of 0.010 Pa to 4.0 Pa. 前記(B)有機溶媒が、グリコールエーテル系である請求項1に記載の金属接合材料。   The metal bonding material according to claim 1, wherein the organic solvent (B) is a glycol ether type. 前記(A)金属粒子が、(A1)平均一次粒子径の粒度分布が100nm〜6000nmの範囲にある第1の金属粒子と(A2)平均一次粒子径の粒度分布が0.5μm〜10μmの範囲にある第2の金属粒子とからなる請求項1に記載の金属接合材料。   The (A) metal particles are (A1) first metal particles having an average primary particle size distribution in a range of 100 nm to 6000 nm and (A2) a particle size distribution of an average primary particle size in a range of 0.5 μm to 10 μm. The metal bonding material according to claim 1, wherein the metal bonding material comprises the second metal particles. 前記(A1)第1の金属粒子及び前記(A2)第2の金属粒子が、銀、銀合金、または銀若しくは銀合金で被覆された銅である請求項3に記載の金属接合材料。   The metal bonding material according to claim 3, wherein the (A1) first metal particles and the (A2) second metal particles are silver, a silver alloy, or copper coated with silver or a silver alloy. 前記(A1)第1の金属粒子の質量:前記(A2)第2の金属粒子の質量が、3:7〜7:3である請求項3または4に記載の金属接合材料。   The metal bonding material according to claim 3 or 4, wherein (A1) the mass of the first metal particles: the mass of the (A2) second metal particles is 3: 7 to 7: 3. さらに、(C)分散剤が含まれる請求項1乃至5のいずれか1項に記載の金属接合材料。   The metal bonding material according to claim 1, further comprising (C) a dispersant. 請求項1乃至6のいずれか1項に記載の金属接合材料を用いて、基板に電子部品を実装した電子部品接合体。   An electronic component assembly in which an electronic component is mounted on a substrate using the metal bonding material according to any one of claims 1 to 6. 前記電子部品が、LED素子またはパワーデバイスである請求項7に記載の電子部品接合体。   The electronic component assembly according to claim 7, wherein the electronic component is an LED element or a power device.
JP2014071191A 2014-03-31 2014-03-31 Metal bonding material Active JP6355949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071191A JP6355949B2 (en) 2014-03-31 2014-03-31 Metal bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071191A JP6355949B2 (en) 2014-03-31 2014-03-31 Metal bonding material

Publications (2)

Publication Number Publication Date
JP2015193009A true JP2015193009A (en) 2015-11-05
JP6355949B2 JP6355949B2 (en) 2018-07-11

Family

ID=54432571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071191A Active JP6355949B2 (en) 2014-03-31 2014-03-31 Metal bonding material

Country Status (1)

Country Link
JP (1) JP6355949B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171406A (en) * 1983-03-18 1984-09-27 昭栄化学工業株式会社 Conductive composition
JP2007052980A (en) * 2005-08-17 2007-03-01 Kamaya Denki Kk Conductive paste
JP2010053377A (en) * 2008-08-26 2010-03-11 Nippon Handa Kk Method for joining metallic member and method for producing metallic member-joined body
JP2012071337A (en) * 2010-09-29 2012-04-12 Koki:Kk Soldering paste and flux
JP2014214340A (en) * 2013-04-25 2014-11-17 Dowaエレクトロニクス株式会社 Silver-bismuth powder, conductive paste and conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171406A (en) * 1983-03-18 1984-09-27 昭栄化学工業株式会社 Conductive composition
JP2007052980A (en) * 2005-08-17 2007-03-01 Kamaya Denki Kk Conductive paste
JP2010053377A (en) * 2008-08-26 2010-03-11 Nippon Handa Kk Method for joining metallic member and method for producing metallic member-joined body
JP2012071337A (en) * 2010-09-29 2012-04-12 Koki:Kk Soldering paste and flux
JP2014214340A (en) * 2013-04-25 2014-11-17 Dowaエレクトロニクス株式会社 Silver-bismuth powder, conductive paste and conductive film

Also Published As

Publication number Publication date
JP6355949B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5887086B2 (en) Conductive material
JP5976684B2 (en) Bonding material and bonding method using the same
EP2511043B1 (en) Flux for solder paste, and solder paste
TWI716639B (en) Bonding material and bonding method using same
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
US8557146B1 (en) Polymer thick film solder alloy/metal conductor compositions
US9034417B2 (en) Photonic sintering of polymer thick film conductor compositions
US20220068518A1 (en) Method of manufacturing an electronic device and conductive paste for the same
CN107533988B (en) Metal conductive hot-melt paste based on thermoplastic polymer
US20150027589A1 (en) Solder Paste
US20140018482A1 (en) Polymer thick film solder alloy/metal conductor compositions
US20190131029A1 (en) Conductive paste for bonding and manufacturing method of electric device using thereof
US20170287587A1 (en) Copper-containing conductive pastes and electrodes made therefrom
JP6376802B2 (en) Metal bonding material
JP6355949B2 (en) Metal bonding material
US20170252874A1 (en) Bonding material and bonding method using same
JP6730833B2 (en) Solder alloy and solder composition
JP2016093830A (en) Ag NANOPASTE FOR FORMING RESIDUE-LESS TYPE JOINT
JP4152163B2 (en) Conductive adhesive and method for producing the same
JP2010059426A (en) Electroconductive adhesive and circuit using the same
WO2020017065A1 (en) Composition, bonding material, sintered compact, assembly, and method for producing assembly
JP5741806B2 (en) Solder underlayer forming paste
JP5821743B2 (en) Conductive composition and method for producing joined body
JP6844973B2 (en) Conductive paste for joining
TWI642148B (en) Conductive paste and electronic substrate and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180613

R150 Certificate of patent or registration of utility model

Ref document number: 6355949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150