JP2015190069A - Antibacterial and deodorant cloth having excellent durability - Google Patents

Antibacterial and deodorant cloth having excellent durability Download PDF

Info

Publication number
JP2015190069A
JP2015190069A JP2014066511A JP2014066511A JP2015190069A JP 2015190069 A JP2015190069 A JP 2015190069A JP 2014066511 A JP2014066511 A JP 2014066511A JP 2014066511 A JP2014066511 A JP 2014066511A JP 2015190069 A JP2015190069 A JP 2015190069A
Authority
JP
Japan
Prior art keywords
fabric
fine particles
antibacterial
metal chelate
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014066511A
Other languages
Japanese (ja)
Inventor
潔 義田
Kiyoshi Yoshida
義田  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2014066511A priority Critical patent/JP2015190069A/en
Publication of JP2015190069A publication Critical patent/JP2015190069A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an antibacterial and deodorant cloth that is treated with a metal chelate fine particle water dispersion having excellent antibacterial and deodorant performance, the cloth having excellent washing durability.SOLUTION: This invention provides an antibacterial and deodorant cloth that is a cloth on which metal chelate fine particles with an average particle diameter of 50 nm or less are deposited, wherein the number of metal chelate fine particles more than 50 nm in particle size are two or less per cloth surface area 500 nm.

Description

本発明は、抗菌消臭性能の耐久性に優れる布帛に関する。さらに詳しくは、本発明は、抗菌消臭性能を有する金属キレート微粒子水分散体で布帛を処理し、金属キレート微粒子を布帛表面に付着させることを特徴とする抗菌性能と消臭性能に対する優れた耐久性を有するとともに、吸水拡散性能に優れ、発色性および染色堅牢度にも優れる布帛に関する。   The present invention relates to a fabric excellent in durability of antibacterial deodorizing performance. More specifically, the present invention is characterized in that the fabric is treated with an aqueous dispersion of metal chelate fine particles having antibacterial and deodorant performance, and the metal chelate fine particles are adhered to the surface of the fabric. In addition, the present invention relates to a fabric having excellent water absorption / diffusion performance, color development and dyeing fastness.

近年、衣服着用時の快適性、特に夏場における日常生活の中での快適性を満足させるための機能として、抗菌性能や消臭性能が求められている。特に夏のシーズンにおいて長期に渡る気温25℃以上の夏日や真夏日での環境下において、快適性および着心地を持続させるには抗菌性能と消臭性能の耐久性を有するとともに、汗をかいたときに速やかに吸水し拡散させることが、着心地のよさを実感する上で重要である。
抗菌消臭性能を発現させるために亜鉛等の金属微粒子を付与した繊維製品が提案されているが、その多くは夏のシーズンに頻繁に洗濯される環境下での耐久性が低かったり、風合が悪く着用時の着心地が悪いという問題がある。
In recent years, antibacterial performance and deodorizing performance have been demanded as functions for satisfying comfort when wearing clothes, particularly comfort in daily life in summer. Especially in the summer season, long-term temperatures of 25 ° C or higher, such as in summer and midsummer environments, it has antibacterial and deodorant durability to maintain comfort and comfort, and sweat. Immediately absorbing water and diffusing when it is present is important to realize the comfort of wearing.
In order to achieve antibacterial and deodorant performance, textile products with metal fine particles such as zinc have been proposed, but many of them have low durability or a texture in environments where they are frequently washed in the summer season. There is a problem that it is bad and is not comfortable to wear.

下記特許文献1には、紡糸時のポリマー浴中に微粒子酸化亜鉛を添加してポリアミド繊維を製糸し、得られた繊維から布帛を形成した後に、キトサンを付与することでアンモニア消臭性能と抗菌性能に優れた布帛が得られることが開示されている。しかしながら、酸性臭に対する消臭効果が悪いとともに、洗濯50回以上の耐久性に問題があり、吸水拡散性能が悪いことから汗をかいたときの着心地が悪いものである。
また、下記特許文献2には、亜鉛化合物微粒子とジルコニウム化合物微粒子を水可溶性バインダー樹脂と共に繊維表面に付与することにより、抗菌消臭性能を有する繊維が得られることが開示されている。しかしながら、金属微粒子をバインダーとともに繊維表面に直接付与していることから、しなやかさがなく、また吸水拡散性能が悪く、その結果、着心地が悪く、さらに洗濯50回以上の抗菌消臭性能がないという問題がある。
In Patent Document 1 below, a fine zinc oxide is added to a polymer bath at the time of spinning to produce a polyamide fiber, a fabric is formed from the obtained fiber, and then chitosan is added to give ammonia deodorizing performance and antibacterial properties. It is disclosed that a fabric excellent in performance can be obtained. However, the deodorizing effect on the acidic odor is poor, there is a problem in durability of washing 50 times or more, and the water absorption / diffusion performance is poor, so that the comfort when sweating is poor.
Patent Document 2 below discloses that a fiber having antibacterial and deodorant performance can be obtained by applying zinc compound fine particles and zirconium compound fine particles together with a water-soluble binder resin to the fiber surface. However, since the metal fine particles are directly applied to the fiber surface together with the binder, there is no flexibility, the water absorption / diffusion performance is poor, and as a result, the comfort is not good, and the antibacterial deodorizing performance is not more than 50 times of washing. There is a problem.

また、下記特許文献3には、キトサンとカルボン酸ポリマーと酸化亜鉛とバインダー樹脂を含む処理液で繊維を処理することで消臭性能が得られることが開示されている。しかしながら、バインダー樹脂を使用していることからしなやかさがないとともに、吸水拡散性能が悪く、着心地の悪いものであり、抗菌効果がないという問題がある。
さらに、下記特許文献4には、プラチナナノコロイドの水溶液或いはこの水溶液と抗菌防臭剤又は抗菌消臭剤との混合液を布帛に付与することで抗菌、消臭および吸水・速乾性能に優れる布帛が得られることが開示されている。しかしながら、綿繊維からなる布帛に対する抗菌消臭効果は良好なものの、セルロース繊維と合成繊維との混用布帛、特に長繊維複合布帛に加工した場合は、洗濯50回後の消臭効果が悪く、吸水拡散性が悪く着心地が悪いという問題がある。
Patent Document 3 below discloses that deodorization performance can be obtained by treating fibers with a treatment liquid containing chitosan, a carboxylic acid polymer, zinc oxide, and a binder resin. However, since the binder resin is used, there is a problem that it is not flexible, has poor water absorption and diffusion performance, is not comfortable to wear, and has no antibacterial effect.
Further, in Patent Document 4 below, a fabric excellent in antibacterial, deodorant, water absorption and quick-drying performance by applying an aqueous solution of platinum nanocolloid or a mixed solution of this aqueous solution and an antibacterial deodorant or antibacterial deodorant to the fabric. Is disclosed. However, although the antibacterial deodorizing effect on the fabric made of cotton fibers is good, when processed into a mixed fabric of cellulose fibers and synthetic fibers, especially a long fiber composite fabric, the deodorizing effect after 50 washings is poor and the water absorption There is a problem of poor diffusibility and poor comfort.

このように、現状では、バインダー樹脂を使用しないで仕上げた染色布帛において、抗菌性能と消臭性能に優れ、かつこれらの性能の洗濯耐久性に優れ、吸水拡散性能に優れ、肌面へのベタツキがなく、しなやかな風合を有し着心地がよく、発色性および染色堅牢度性能に優れた染色製品は得られていない。   In this way, at present, dyed fabrics that are finished without using a binder resin have excellent antibacterial and deodorant performances, and are excellent in washing durability and water absorption / diffusion performance of these performances. There is no dyed product that has a supple feel, is comfortable to wear, and has excellent color development and dyeing fastness performance.

特許第3550816号公報Japanese Patent No. 3550816 特許第3568613号公報Japanese Patent No. 3568613 特許第3787675号公報Japanese Patent No. 3787675 国際公開第2012/086204号パンフレットInternational Publication No. 2012/086204 Pamphlet

本発明が解決しようとする課題は、抗菌消臭性能に優れた金属キレート微粒子水分散体中の金属キレート微粒子を布帛表面に樹脂バインダーを使用せずに直接強固に付着させることにより抗菌性能および消臭性能の洗濯耐久性に優れた布帛を提供することである。   The problem to be solved by the present invention is that the metal chelate fine particles in the aqueous dispersion of metal chelate fine particles having excellent antibacterial and deodorant performance are directly and firmly attached to the fabric surface without using a resin binder, and thus the antibacterial performance and antibacterial properties are eliminated. An object of the present invention is to provide a fabric excellent in washing durability with odor performance.

本発明者は、上記課題を解決すべく鋭意検討し、実験を重ねたところ、キレート剤の存在下で金属化合物を超音波照射処理すると抗菌消臭性能に優れた金属キレート微粒子が得られ、この微粒子を布帛に樹脂バインダーを使用せずに付与することで抗菌性能および消臭性能の洗濯耐久性が優れるとともに吸水拡散性能の高い布帛が得られることを見出し、本発明を完成するに至った。
すなわち本発明は、以下のとおりのものである。
The present inventor has intensively studied to solve the above-mentioned problems and repeated experiments, and when the metal compound is subjected to ultrasonic irradiation treatment in the presence of a chelating agent, metal chelate fine particles having excellent antibacterial and deodorant performance can be obtained. It has been found that by applying fine particles to a fabric without using a resin binder, a fabric having excellent antibacterial and deodorant washing durability and high water absorption and diffusion performance can be obtained, and the present invention has been completed.
That is, the present invention is as follows.

[1]平均粒子径が50nm以下の金属キレート微粒子が付着した布帛であって、布帛表面積500nm2あたり粒子径が50nmを超える金属キレート微粒子が2個以下であることを特徴とする抗菌消臭性布帛。
[2]金属キレート微粒子をpH3.5〜5.0の酸性溶液に分散させた分散液に布帛を浸漬させ、100〜135℃の温度で15分〜45分間処理することを特徴とする上記[1]に記載の抗菌消臭性布帛の製造方法。
[1] Antibacterial deodorizing property characterized in that it is a fabric to which metal chelate fine particles having an average particle size of 50 nm or less are adhered, and has 2 or less metal chelate fine particles having a particle size of more than 50 nm per 500 nm 2 of fabric surface area. Fabric.
[2] The above, wherein the fabric is immersed in a dispersion obtained by dispersing metal chelate fine particles in an acidic solution having a pH of 3.5 to 5.0 and treated at a temperature of 100 to 135 ° C. for 15 to 45 minutes. The method for producing an antibacterial and deodorant fabric according to 1).

本発明で用いられる金属キレート微粒子水分散体は優れた抗菌消臭性能を有し、この水分散体で布帛を処理することにより、優れた抗菌消臭性能を有し、その抗菌消臭性能の洗濯耐久性に優れるとともに、しなやかな風合を有し、吸水拡散性に優れ着心地のよい、発色性および染色堅牢度に優れた布帛が得られる。   The metal chelate fine particle aqueous dispersion used in the present invention has an excellent antibacterial deodorizing performance, and by treating the fabric with this aqueous dispersion, it has an excellent antibacterial deodorizing performance. A fabric excellent in washing durability, having a supple feel, excellent in water diffusibility and comfort, and excellent in color development and dyeing fastness can be obtained.

以下、本発明について詳細に説明する。
本発明で用いられる金属キレート微粒子水分散体は、金属がキレート剤にてキレート化された構造の微粒子水分散体である。金属キレート微粒子水分散体は、金属化合物とキレート剤と水をアルコールに溶解させた溶液に超音波照射を行い、金属をキレート化させるとともに微粒子化させた後、水に分散させることにより得ることができる。
Hereinafter, the present invention will be described in detail.
The metal chelate fine particle aqueous dispersion used in the present invention is a fine particle aqueous dispersion having a structure in which a metal is chelated with a chelating agent. The metal chelate fine particle water dispersion can be obtained by irradiating a solution of a metal compound, a chelating agent and water dissolved in alcohol with ultrasonic irradiation to chelate the metal and make it fine, and then disperse in water. it can.

一般に金属酸化物の粒子径が小さくなると粒子同士の相互作用が発現し、粒子は凝集しやすくなる問題があるが、本発明においては金属化合物をキレート剤と水の存在下で超音波照射することで金属がキレート化されるとともに微粒子化されるので、さらに水に分散させたときに凝集することなく、分散性の優れた金属キレート微粒子水分散体が得られやすい特徴がある。   In general, when the particle size of the metal oxide is reduced, there is a problem that the interaction between particles appears and the particles tend to aggregate. In the present invention, the metal compound is irradiated with ultrasonic waves in the presence of a chelating agent and water. Since the metal is chelated and finely divided, the metal chelate fine particle aqueous dispersion having excellent dispersibility can be easily obtained without aggregation when further dispersed in water.

本発明でいうキレート剤とは、2,4−ペンタンジオール、アセト酢酸エチル等のジケトン系、1,2−プロパンジオール、ジエチレングリコール等の多価アルコール系、N,N−ジメチルエタノールアミン、トリエタノールアミン等のアルカノールアミン系、グリコール酸、乳酸、クエン酸、リンゴ酸等のオキシカルボン酸系をいい、それぞれ単独で又は複数組み合わせて使用することができ、なかでもオキシカルボン酸を使用するのが、金属キレート微粒子の粒子サイズのバラツキを小さくすることができ、水に分散させたときに凝集のない分散体を得やすく、ノンバインダーにて布帛へ吸着させやすいので好ましい。またキレート剤はあらかじめ水に溶解させたのちアルコールに添加し、溶解させるのが好ましい。   The chelating agent referred to in the present invention is a diketone such as 2,4-pentanediol and ethyl acetoacetate, a polyhydric alcohol such as 1,2-propanediol and diethylene glycol, N, N-dimethylethanolamine, and triethanolamine. Alkanolamines such as glycolic acid, lactic acid, citric acid, malic acid, etc., each of which can be used alone or in combination, and among them, oxycarboxylic acid is a metal It is preferable because variation in the particle size of the chelate fine particles can be reduced, and when dispersed in water, it is easy to obtain a dispersion free of aggregation and is easily adsorbed to the fabric by a non-binder. The chelating agent is preferably dissolved in water and then added to the alcohol for dissolution.

本発明に用いる金属は、銀、銅、亜鉛、金、白金のうち少なくとも1種を用いればよい。また、本発明で用いる金属化合物は、金属の硝酸塩、塩化物、硫酸塩、炭酸塩等の無機塩、または酢酸塩、クエン酸塩等の親水性有機酸塩等より選べばよく、中でも、酢酸塩がアルコールに易溶であり、キレート化後の金属キレート微粒子を水に分散させたときに凝集のない分散体を得やすいので好ましい。   The metal used in the present invention may be at least one selected from silver, copper, zinc, gold, and platinum. The metal compound used in the present invention may be selected from inorganic salts such as metal nitrates, chlorides, sulfates and carbonates, or hydrophilic organic acid salts such as acetates and citrates. It is preferable because the salt is easily soluble in alcohol, and when the chelated metal chelate fine particles are dispersed in water, a dispersion free from aggregation is easily obtained.

本発明で用いるアルコールは、エタノールやメタノール等の脂肪族アルコール系より選べばよいが、なかでもメタノールを使用するのが超音波処理により得られる金属キレート微粒子の粒子サイズのバラツキが小さく、平均粒子径が50nm以下、好ましくは20nm以下の微粒子が得やすく好ましい。   The alcohol used in the present invention may be selected from aliphatic alcohols such as ethanol and methanol. Among them, the use of methanol has a small variation in the particle size of the metal chelate fine particles obtained by ultrasonic treatment, and the average particle size. Is preferable because it is easy to obtain fine particles of 50 nm or less, preferably 20 nm or less.

本発明においては、水に溶解させたキレート剤をアルコールに添加し、溶解させ、さらに金属化合物を溶解させた溶液に、超音波照射することで、平均粒子径が50nm以下、好ましくは20nm以下の金属キレート微粒子を得ることができる。このとき、水に溶解させるキレート剤と水の比率は、モル比率で1:1が好ましい。また、水に溶解させたキレート剤をアルコールに添加し、溶解させるときは、おおよそ10〜50倍の容量のアルコールに添加し、溶解させることが好ましい。このキレート剤を溶解させたアルコール溶液に溶解させる金属化合物の濃度は0.001mol/L以上が好ましい。   In the present invention, an average particle size of 50 nm or less, preferably 20 nm or less is obtained by adding a chelating agent dissolved in water to an alcohol, dissolving the solution, and further irradiating the solution in which the metal compound is dissolved with an ultrasonic wave. Metal chelate fine particles can be obtained. At this time, the molar ratio of the chelating agent to be dissolved in water and water is preferably 1: 1. Moreover, when the chelating agent dissolved in water is added to the alcohol and dissolved, it is preferably added to and dissolved in approximately 10 to 50 times the volume of alcohol. The concentration of the metal compound dissolved in the alcohol solution in which the chelating agent is dissolved is preferably 0.001 mol / L or more.

本発明においては、バインダー樹脂を使用せずに布帛表面に金属キレート微粒子を直接付着させるためには、金属キレート微粒子の平均粒子径が50nm以下、好ましくは20nm以下に微粒子化する必要があり、超音波処理により達成することができきる。   In the present invention, in order to directly attach the metal chelate fine particles to the fabric surface without using a binder resin, the metal chelate fine particles must have an average particle size of 50 nm or less, preferably 20 nm or less. This can be achieved by sonication.

超音波処理における超音波の周波数は、10〜200kHzであることが好ましく、この範囲であると金属キレート微粒子は平均粒子径が1.5〜20nmのものが得られる。周波数が10kHz未満では、キャビテーション強度が強すぎて粒子サイズのバラツキが大きくなるので好ましくなく、また200kHzを超える場合はキャビテーション効果が小さくなるので金属のキレート化が不十分であるとともに、平均粒子径が50nmより大きくなり好ましくない。超音波処理は、超音波ホモジナイザー、超音波分散機、超音波洗浄機等を用いて行うことができる。   The frequency of ultrasonic waves in the ultrasonic treatment is preferably 10 to 200 kHz, and metal chelate fine particles having an average particle diameter of 1.5 to 20 nm are obtained within this range. If the frequency is less than 10 kHz, the cavitation strength is too strong and the particle size variation is large, which is not preferable, and if it exceeds 200 kHz, the cavitation effect is small, so that the chelation of the metal is insufficient and the average particle size is too small. It becomes larger than 50 nm and is not preferable. The ultrasonic treatment can be performed using an ultrasonic homogenizer, an ultrasonic disperser, an ultrasonic cleaner, or the like.

また、超音波照射処理における金属のキレート化の程度および金属キレート微粒子の粒径等を制御する手段は、アルコール濃度、アルコールに溶解させるキレート剤と金属化合物の比率、処理温度および時間が挙げられ、アルコール濃度は金属化合物の重量に対し5〜20倍程度とし、キレート剤と金属化合物の比率はモル濃度比率で1:1から1:4程度とし、処理温度は35〜65℃であり、処理時間は30分〜300分である。
また、超音波処理を行うときは、密閉系で処理することで金属キレート微粒子の平均粒子径が50nm以下の安定したものができるので好ましい。
In addition, means for controlling the degree of metal chelation and the particle size of metal chelate fine particles in ultrasonic irradiation treatment include the alcohol concentration, the ratio of the chelating agent and metal compound dissolved in alcohol, the treatment temperature and time, The alcohol concentration is about 5 to 20 times the weight of the metal compound, the ratio of the chelating agent to the metal compound is about 1: 1 to 1: 4, the treatment temperature is 35 to 65 ° C., and the treatment time Is 30 to 300 minutes.
In addition, when ultrasonic treatment is performed, it is preferable to perform the treatment in a closed system because the metal chelate fine particles have a stable average particle size of 50 nm or less.

また、本発明において、金属が超音波処理にてキレート化されたか否かは、超音波処理後の溶液をFT−IRにて分析することで確認することができる。キレート化の判断はキレート剤に使用した化合物に応じIRチャートのピークが移動しているかで判断することができ、例えば、金属化合物として酢酸亜鉛を用い、キレート剤に乳酸を使用した場合、1420cm-1、1580cm-1におけるカルボキシイオンのOHの面外変角振動にてピークが移動していることでキレート化されていると判断することができ、この際のピークの移動距離が5cm-1以上であればキレート化されていると判断することができる。 Moreover, in this invention, it can be confirmed by analyzing the solution after ultrasonication by FT-IR whether the metal was chelated by ultrasonication. Judgment of chelation can be judged by whether the peak of the IR chart is shifted according to the compound used for the chelating agent. For example, when zinc acetate is used as the metal compound and lactic acid is used as the chelating agent, 1420 cm − 1, 1580 cm can peak at out-of-plane deformation vibration of OH carboxymethyl ions determined to be chelated by moving in -1, the moving distance of the peak at this time is 5 cm -1 or more If it is, it can be judged that it is chelated.

次に、超音波処理された溶液を水に希釈し金属キレート微粒子の水分散体を得るが、この際の金属キレート微粒子の濃度は0.01〜2.0重量%が好ましく、0.05〜1.5重量%がより好ましい。この濃度が0.01重量%未満では、布帛を処理した場合、抗菌消臭性能が不十分である。一方、2.0重量%を超えると分散安定性が悪く、凝集を起こし粒子径50nm以下のものが得られない。水への分散のやり方は、マグネチックスターラ等で水を攪拌しながら、この水の中に金属キレート微粒子を投入し、10〜20分ほど攪拌すれば、凝集のない透明な金属キレート微粒子水分散体が得やすいので好ましい。この際、水溶液のpHは3.5〜5.0の範囲にあると凝集することなく分散性が安定である。   Next, the sonicated solution is diluted with water to obtain an aqueous dispersion of metal chelate fine particles. In this case, the concentration of the metal chelate fine particles is preferably 0.01 to 2.0% by weight, 1.5% by weight is more preferred. If this concentration is less than 0.01% by weight, the antibacterial deodorizing performance is insufficient when the fabric is treated. On the other hand, when the content exceeds 2.0% by weight, the dispersion stability is poor, and aggregation occurs and particles having a particle diameter of 50 nm or less cannot be obtained. To disperse in water, stirring the water with a magnetic stirrer, etc., throwing the metal chelate fine particles into this water and stirring for about 10 to 20 minutes. Since a body is easy to obtain, it is preferable. At this time, when the pH of the aqueous solution is in the range of 3.5 to 5.0, the dispersibility is stable without aggregation.

本発明においては金属がキレート化されているので凝集をおこすことなく、平均粒子径が4〜50nmの金属キレート微粒子水分散体が得られ、キレート剤としてオキシカルボン酸を使用した場合、凝集のない無色透明な水分散体を得やすく、金属キレート微粒子水分散体のゼータ電位が−5〜−70mVの範囲に制御しやすく布帛への吸着性が高まり好ましい。このようにして得られた金属キレート微粒子水分散体の用途は、布帛の抗菌消臭剤として使用することができる。   In the present invention, since the metal is chelated, an aqueous dispersion of metal chelate fine particles having an average particle diameter of 4 to 50 nm is obtained without causing aggregation, and when oxycarboxylic acid is used as a chelating agent, there is no aggregation. A colorless and transparent aqueous dispersion is easily obtained, and the zeta potential of the metal chelate fine particle aqueous dispersion can be easily controlled in the range of −5 to −70 mV, which is preferable because the adsorptivity to the fabric is increased. The metal chelate fine particle aqueous dispersion thus obtained can be used as an antibacterial deodorant for fabrics.

本発明において、金属キレート微粒子を布帛に付着させるために、金属キレート微粒子水分散体で布帛を処理する方法は、浸漬加工、パディング加工、スプレー加工、インクジェット加工等いかなる方法でもよいが、工業生産において効率よく吸着させやすく、吸着効率の高い浸漬加工が好ましい。   In the present invention, in order to attach the metal chelate fine particles to the fabric, the method of treating the fabric with the metal chelate fine particle aqueous dispersion may be any method such as dipping, padding, spraying, and inkjet processing. Dipping processing that facilitates efficient adsorption and high adsorption efficiency is preferred.

本発明の布帛を構成する繊維は、綿、麻、絹、羊毛等の天然繊維やビスコースレーヨン、銅アンモニアレーヨン、ポリノジック等の再生セルロース繊維やポリエステル、アクリル、ポリアミド等の合成繊維が好ましく、中でもポリエステル繊維を酸性基にて改質した塩基性染料可染型繊維が金属キレート微粒子の吸着性が高く、洗濯耐久性が優れているので特に好ましい。   The fibers constituting the fabric of the present invention are preferably natural fibers such as cotton, hemp, silk and wool, regenerated cellulose fibers such as viscose rayon, copper ammonia rayon and polynosic, and synthetic fibers such as polyester, acrylic and polyamide. A basic dye-dyeable fiber obtained by modifying a polyester fiber with an acidic group is particularly preferable because it has high adsorptivity to metal chelate fine particles and excellent washing durability.

本発明において塩基性染料可染型繊維とは、ポリエチレンテレフタレート、ポリブチレンテレフタレート又はポリピロピレンテレフタレート単位を主たる構成成分とし、塩基性染料染着座席成分を共重合したポリエステルからなる繊維である。   In the present invention, the basic dye-dyeable fiber is a fiber made of polyester in which a polyethylene terephthalate, polybutylene terephthalate or polypyropylene terephthalate unit is a main constituent component and a basic dye-dyed seating component is copolymerized.

塩基性染料染着座席成分としては、スルホイソフタル酸のアルカリ金属塩およびスルホイソフタル酸のホスホニウム塩並びにこれらから誘導されるエステル形成性誘導体を挙げることができる。具体的には、5−ナトリウムスルホイソフタル酸および5−リチウムスルホイソフタル酸等のスルホイソフタル酸のアルカリ金属塩並びに5−(テトラアルキル)ホスホニウムスルホイソフタル酸及びこれから誘導されるエステル形成性誘導体等が挙げられる。中でも消臭性能の点から、5−ナトリウムスルホイソフタル酸、5−リチウムスルホイソフタル酸、5−(テトラブチル)ホスホニウムスルホイソフタル酸及び5−(テトラエチル)ホスホニウムスルホイソフタル酸が好ましい。   Examples of the basic dye-dyed seating component include alkali metal salts of sulfoisophthalic acid and phosphonium salts of sulfoisophthalic acid, and ester-forming derivatives derived therefrom. Specific examples include alkali metal salts of sulfoisophthalic acid such as 5-sodium sulfoisophthalic acid and 5-lithium sulfoisophthalic acid, and 5- (tetraalkyl) phosphonium sulfoisophthalic acid and ester-forming derivatives derived therefrom. It is done. Of these, 5-sodium sulfoisophthalic acid, 5-lithium sulfoisophthalic acid, 5- (tetrabutyl) phosphonium sulfoisophthalic acid and 5- (tetraethyl) phosphonium sulfoisophthalic acid are preferred from the viewpoint of deodorizing performance.

また、塩基性染料染着座席成分の共重合量は、消臭性能の観点から、全酸成分に対して0.1〜5モル%が好ましく、より好ましくは0.5〜3.5モル%である。共重合量が0.1モル%未満では、消臭性能が得られず、一方、5モル%を超える場合、原糸強度および耐光性の低下が顕在化するため好ましくない。
本発明で用いる塩基性染料可染型繊維は、アルキルベンゼンスルホン酸塩等の界面活性剤、従来公知の抗酸化剤、着色防止剤、耐光剤および帯電防止剤、酸化チタン並びにアルカリ金属等を含有していてもよく、従来公知の方法にて製造することができる。
The copolymerization amount of the basic dye-dyed seat component is preferably 0.1 to 5 mol%, more preferably 0.5 to 3.5 mol%, based on the total acid component, from the viewpoint of deodorizing performance. It is. If the copolymerization amount is less than 0.1 mol%, the deodorizing performance cannot be obtained. On the other hand, if it exceeds 5 mol%, a decrease in the yarn strength and light resistance becomes apparent, which is not preferable.
The basic dye-dyeable fiber used in the present invention contains a surfactant such as an alkylbenzene sulfonate, a conventionally known antioxidant, a coloring inhibitor, a light-proofing agent and an antistatic agent, titanium oxide and an alkali metal. And can be produced by a conventionally known method.

本発明で用いる塩基性染料可染型繊維は、特に限定はしないが、総繊度が20〜200デシテックスであることが好ましい。さらに断面形状は、丸型以外に扁平、くびれ付扁平、三角形、四角形、3以上の多葉形、C型、H型、W型、X型または中空断面のいずれであってもよいが、しなやかな風合および消臭性能面より異形断面が好ましく、単糸繊度は0.6〜1.8デシテックスが好ましい。   The basic dyeable fiber used in the present invention is not particularly limited, but the total fineness is preferably 20 to 200 dtex. Further, the cross-sectional shape may be flat, constricted flat, triangular, quadrilateral, three or more multi-leaf shape, C-type, H-type, W-type, X-type or hollow cross-section in addition to the round shape. An irregular cross section is preferable from the viewpoint of smooth texture and deodorizing performance, and the single yarn fineness is preferably 0.6 to 1.8 dtex.

また、本発明で用いる塩基性染料可染型繊維中に、他の繊維、例えば絹、ウール、ポリエステル、ポリアミドおよびポリアクリル繊維が70%まで含まれていてもよい。
また繊維の形態は、長繊維でも短繊維でもよく、長さ方向に均一なものや太細のあるものでもよい。繊維が加工された糸条の形態の例としては、リング紡績糸、オープンエンド紡績糸およびエアジェット精紡糸等の紡績糸、甘撚糸〜強撚糸、仮撚加工糸、空気噴射加工糸、押し込み加工糸並びにニットデニット加工糸等が挙げられる。
Further, the basic dye-dyeable fiber used in the present invention may contain up to 70% of other fibers such as silk, wool, polyester, polyamide and polyacrylic fibers.
The form of the fibers may be long fibers or short fibers, and may be uniform or thick in the length direction. Examples of the form of the yarn in which the fiber is processed include ring spun yarn, open-end spun yarn and air-jet fine spun yarn, sweet-twisted yarn to high-twisted yarn, false twisted yarn, air-jet processed yarn, indentation processing Examples thereof include yarn and knitted knitted yarn.

また、塩基性染料可染型繊維と他の繊維を混用する形態は、糸状の段階で複合して混用糸状とする形態と、塩基性染料可染型繊維と他の繊維を用いて製編織し、布帛にする時に混用布帛とする形態に大別される。   In addition, the basic dye-dyeable fiber and other fibers can be mixed in the form of a composite yarn mixed at the yarn stage, and the basic dye-dyeable fiber and other fibers are used for knitting and weaving. In the case of making a fabric, it is roughly classified into a mixed fabric.

塩基性染料可染型繊維と他の繊維を混用する場合の糸条の形態の例としては、混紡(混綿、フリース混紡、スライバー混紡、コアヤーン、サイロスパン、サイロフィル、ホロースピンドル等)、交絡混繊、交撚、意匠撚糸、カバリング(シングル、ダブル)、複合仮撚(同時仮撚、先撚仮撚)、伸度差仮撚、位相差、仮撚加工後に後混繊、および2フィード(同時フィードやフィード差)空気噴射加工等による混用形態が挙げられる。   Examples of yarn forms when using basic dye dyeable fibers and other fibers are blended (mixed cotton, fleece blended, sliver blended, core yarn, silospan, silofil, hollow spindle, etc.), entangled blended fibers , Cross twist, design twist yarn, covering (single, double), composite false twist (simultaneous false twist, pre-twist false false twist), elongation difference false twist, phase difference, post-mixing after false twisting, and 2 feeds (simultaneous Feed and feed difference) Mixed use forms such as air injection processing.

布帛にする時に混用する布帛形態としては、編物、織物、不織布、及びこれらの複合布帛(例えば、積層布等)が挙げられる。具体例としては、いわゆる機上混用品があり、製編織時に塩基性染料可染型繊維と他の繊維を引き揃えて又は合糸して混用した編織物が挙げられる。   Examples of the form of the cloth to be mixed when making the cloth include a knitted fabric, a woven fabric, a non-woven fabric, and a composite fabric thereof (for example, a laminated fabric). As a specific example, there is a so-called on-machine mixed article, which includes a knitted fabric in which basic dye-dyeable fibers and other fibers are mixed together by knitting or weaving.

本発明において、布帛へ金属キレート微粒子を付着させる方法は、工業生産において効率よく吸着させやすい浸漬法での加工が好ましい。浸漬加工は、布帛の染色と同時又は、染色した後に実施することができ、加工液のpHを3.5〜5.0の酸性に調整した浴に金属キレート微粒子水分散体を添加し、浴比は1:10〜30で、処理温度は100〜135℃で、処理時間は15〜45分で加工するのが金属キレート微粒子を安定して吸着させ易く、洗濯耐久性が高いので好ましい。このとき、処理温度が100℃未満の場合、金属キレート微粒子の吸着性が悪く、洗濯耐久性も悪い。一方、処理温度が135℃を超えると、設備が大掛かりになりコスト高となり好ましくない。加工液のpHが3.5未満や5.0を超える場合、金属キレート微粒子の吸着性が悪くなり好ましくない。   In the present invention, the metal chelate fine particles are preferably attached to the fabric by a dipping method that facilitates efficient adsorption in industrial production. The dipping process can be performed simultaneously with the dyeing of the fabric or after the dyeing. The metal chelate fine particle aqueous dispersion is added to a bath in which the pH of the processing liquid is adjusted to an acidity of 3.5 to 5.0. It is preferable that the ratio is 1:10 to 30, the processing temperature is 100 to 135 ° C., and the processing time is 15 to 45 minutes, because the metal chelate fine particles are easily adsorbed stably and the washing durability is high. At this time, when the treatment temperature is less than 100 ° C., the adsorptivity of the metal chelate fine particles is poor and the washing durability is also poor. On the other hand, if the processing temperature exceeds 135 ° C., the equipment becomes large and the cost is high, which is not preferable. When the pH of the processing liquid is less than 3.5 or exceeds 5.0, the adsorptivity of the metal chelate fine particles deteriorates, which is not preferable.

本発明においては、布帛表面に金属キレート微粒子が直接吸着するので、バインダー樹脂を使用しなくても金属キレート微粒子の洗濯耐久性は高まる。特に、酸性基で改質した塩基性染料可染型繊維を用いた場合、より強固に吸着し、吸着率も高いことから洗濯50回以上の耐久性に優れ、洗濯50回後の金属キレート微粒子の脱落率は10%以下である。また、金属キレート微粒子をバインダー樹脂を使用せずに付着させるので、しなやかな風合が得られるとともに吸水性能の低下を抑制できる。   In the present invention, since the metal chelate fine particles are directly adsorbed on the fabric surface, the washing durability of the metal chelate fine particles is enhanced without using a binder resin. In particular, when a basic dye-dyeable fiber modified with an acidic group is used, it is more strongly adsorbed and has a higher adsorption rate, so it has excellent durability over 50 washings, and metal chelate fine particles after 50 washings The dropout rate is 10% or less. Moreover, since the metal chelate fine particles are adhered without using a binder resin, a supple texture can be obtained and a decrease in water absorption performance can be suppressed.

また、金属キレート微粒子の布帛への付着量は、0.01〜0.5重量%が好ましく、より好ましくは0.05〜0.3重量%である。金属キレート微粒子の付着量が0.01重量%未満では洗濯50回後の抗菌消臭性能が不良であり、0.5重量%を超えるとコスト高となり好ましくない。   The amount of metal chelate fine particles attached to the fabric is preferably 0.01 to 0.5% by weight, more preferably 0.05 to 0.3% by weight. If the adhesion amount of the metal chelate fine particles is less than 0.01% by weight, the antibacterial deodorizing performance after 50 washings is poor, and if it exceeds 0.5% by weight, the cost is increased, which is not preferable.

本発明において、例えば金属化合物として酢酸亜鉛を用い、乳酸にてキレート化させた亜鉛キレート微粒子を布帛表面に吸着させたときの微粒子の粒径は、電子顕微鏡で観察され、布帛表面積500nm2当たり、粒子径が50nmを超えるものは2個以下であり、粒子径が50nm以下の微粒子が付着していることが観察できる。特に繊維として塩基性染料可染型繊維を用いた場合、粒子径20nm以下の亜鉛キレート微粒子にて布帛表面が被覆されていることが観察できる。洗濯50回を繰り返し行ってもこの状態は同じで、耐久性の高いものである。 In the present invention, for example, when zinc acetate fine particles chelated with lactic acid are adsorbed on the fabric surface using zinc acetate as the metal compound, the particle size of the fine particles is observed with an electron microscope, and per 500 nm 2 of the fabric surface area, The number of particles having a particle diameter exceeding 50 nm is 2 or less, and it can be observed that fine particles having a particle diameter of 50 nm or less are adhered. In particular, when a basic dye dyeable fiber is used as the fiber, it can be observed that the surface of the fabric is coated with zinc chelate fine particles having a particle diameter of 20 nm or less. This state is the same even after repeated washing 50 times, and the durability is high.

本発明の布帛の染色については、通常実施されている条件であればいずれの条件も適用することができる。
また、塩基性染料可染型繊維からなる布帛のカチオン染料による染色と同時に、金属キレート微粒子を布帛に付着させた場合、金属キレート微粒子の吸着効率が高く、洗濯耐久性の高いものが得られるとともに、発色性の高いものが得られる。
Any condition can be applied to the dyeing of the fabric of the present invention as long as it is a commonly practiced condition.
In addition, when metal chelate fine particles are attached to the fabric simultaneously with the dyeing of the fabric composed of the basic dye-dyeable fiber with the cationic dye, the metal chelate fine particle adsorption efficiency is high and the washing durability is high. A product with high color developability is obtained.

また、衣服の着用時、汗をかいたときに快適に感じるには、布帛が水分を吸い取る力を有することが必要であるが、汗を吸い取るだけでは一ヶ所に水分が保持されるのでベタツキ感が解消されずに不快感を感じたままである。ベタツキ感を解消するためには、吸い取った水分をすばやく拡散させる必要がある。本発明においては、布帛表面に金属キレート微粒子が直接吸着しているので、布帛表面上に超微細な起伏ができ、この起伏と表面積の増大により水分をすばやく拡散させる力を発揮する。着用時、汗をかいたときの快適性は水滴消失時間と吸水拡散面積で表すことができる。夏場に着用する肌着衣料やスポーツ衣料のように洗濯回数の多い用途においては、少なくとも洗濯50回の耐久性は必要である。本発明では水滴消失時間と吸水拡散面積と快適性との関係について検討した結果、洗濯50回後の水滴消失時間が2秒以下、好ましくは1秒以下で、吸水拡散面積が10cm2以上、好ましくは12cm2以上であると布帛製品の着用快適性に優れる。また、洗濯50回後の吸水拡散面積の変化率が、未洗濯時の吸水拡散面積の50%以下であるとさらに好ましい。 In order to feel comfortable when sweating while wearing clothes, it is necessary for the fabric to have the ability to absorb moisture. Remains uncomfortable without being resolved. In order to eliminate the sticky feeling, it is necessary to quickly diffuse the absorbed water. In the present invention, since the metal chelate fine particles are directly adsorbed on the fabric surface, ultra fine undulations can be formed on the fabric surface, and the ability to quickly diffuse moisture by increasing the undulations and surface area is exhibited. The comfort when sweating when worn can be expressed by the water drop disappearance time and the water absorption diffusion area. In applications where the number of times of washing is large, such as underwear or sports clothing worn in the summer, at least 50 times of durability is required. In the present invention, as a result of examining the relationship between the water drop disappearance time, the water absorption diffusion area, and the comfort, the water drop disappearance time after 50 washings is 2 seconds or less, preferably 1 second or less, and the water absorption diffusion area is 10 cm 2 or more, preferably When it is 12 cm 2 or more, the wearing comfort of the fabric product is excellent. Moreover, it is more preferable that the rate of change of the water absorption and diffusion area after 50 washings is 50% or less of the water absorption and diffusion area when not washed.

また、染色布帛の仕上加工法は、通常実施されている条件であればいずれも適用することができ、布帛の特性に応じ適宜設定すればよい。また、仕上布帛の生地pHが弱酸性にあると消臭性能が安定して得られるので、仕上剤浴中に不揮発性の有機酸を添加し、調整することが好ましい。   Moreover, as long as it is the conditions currently normally implemented, all can be applied for the finishing method of a dyed fabric, and what is necessary is just to set suitably according to the characteristic of a fabric. Moreover, since the deodorizing performance is stably obtained when the fabric pH of the finished fabric is weakly acidic, it is preferable to add and adjust a non-volatile organic acid in the finish agent bath.

このようにして得られた布帛は、繊維製品衛生加工評議会(SEK)が定める認証基準に規定されている抗菌性能に優れる。具体的には後述する黄色ブドウ球菌における静菌活性値が2.2以上、好ましくは2.5以上である。また、社団法人繊維評価技術協議会が定める消臭加工繊維製品認証基準(2010年4月1日版)に規定されている汗臭に対する消臭性能に優れる。具体的には後述する、JTETC消臭性区分「汗臭」消臭試験における、JTETCが定める消臭加工繊維製品認証基準によるアンモニアの減少率は70%以上、好ましくは75%以上、酢酸の減少率は80%以上、好ましくは85%以上、イソ吉草酸の減少率は85%以上、好ましくは90%以上である。   The fabric thus obtained is excellent in antibacterial performance as defined in the certification standard established by the Textile Products Sanitary Processing Council (SEK). Specifically, the bacteriostatic activity value in Staphylococcus aureus described later is 2.2 or more, preferably 2.5 or more. Moreover, it is excellent in the deodorizing performance with respect to the sweat odor prescribed | regulated by the deodorant processed textile product certification standard (April 1, 2010 edition) which a corporation | organization corporation fiber evaluation technology meeting establishes. Specifically, in the JTETC deodorant classification “sweat odor” deodorization test, which will be described later, the reduction rate of ammonia is 70% or more, preferably 75% or more, and the decrease in acetic acid according to the deodorant processed fiber product certification standard established by JTETC. The rate is 80% or more, preferably 85% or more, and the reduction rate of isovaleric acid is 85% or more, preferably 90% or more.

本発明の抗菌消臭性布帛は上記抗菌消臭性能に加え、吸水性能にも優れ、具体的には洗濯50回後の水滴消失時間が2秒以下で、吸水拡散面積が10cm2以上であり、堅牢度性能も良好であり、具体的には、JIS−L−0848 A法における汗アルカリ堅牢度が3級以上である商品価値の高い染色品である。 The antibacterial deodorant fabric of the present invention is excellent in water absorption performance in addition to the above antibacterial deodorization performance. Specifically, the water drop disappearance time after 50 washings is 2 seconds or less, and the water absorption diffusion area is 10 cm 2 or more. The fastness performance is also good, and specifically, it is a dyed product with high commercial value in which the fastness to sweat alkali in the JIS-L-0848 A method is grade 3 or higher.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
以下、実施例等で用いた特性値の測定法を示す。
(1)金属キレート微粒子のキレート化の確認
FT−IR装置(Nicolet製,Magna760)を用い、下記の測定条件にて超音波処理前後の溶液の測定を行ない、ピークトップの変動度合いを確認し、5cm-1以上変動している場合、キレート化していると判断した。
測定手法:1回反射ATR法(S.T.Japan社製 DuraScope ダイヤモンドATR結晶)
測定領域:700〜4000cm-1
分解能:4cm-1
積算回数:32回
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited only to these examples.
The characteristic value measurement method used in the examples and the like will be described below.
(1) Confirmation of chelation of metal chelate fine particles Using an FT-IR apparatus (manufactured by Nicolet, Magna 760), measure the solution before and after sonication under the following measurement conditions, and confirm the peak top variation degree. When it fluctuated by 5 cm −1 or more, it was judged that chelation was performed.
Measurement method: single reflection ATR method (DuraScope diamond ATR crystal manufactured by STJapan)
Measurement area: 700 to 4000 cm −1
Resolution: 4cm -1
Integration count: 32 times

(2)分散体中の金属キレート微粒子の粒子径
超音波処理後の溶液及び水に希釈分散させた溶液中の金属キレート微粒子の粒径をMALVERN社製 Zetasizer Nano ZSの装置にて、5回測定し、その平均値を求めた。
(3)布帛表面上の金属キレート微粒子の粒子径
サンプル布帛を電子顕微鏡上で観察した写真から金属キレート微粒子の投影面積を算出し、それと等しい面積を持つ円の直径を求め、金属キレート微粒子の粒子径とした。サンプル布帛の任意の5箇所について表面積500nm2中に存在する全ての金属キレート微粒子の粒子径を測定し、平均した。
(2) Particle size of metal chelate fine particles in dispersion The particle size of metal chelate fine particles in a solution after ultrasonic treatment and in a solution diluted and dispersed in water is measured five times with a Zetasizer Nano ZS device manufactured by MALVERN. The average value was obtained.
(3) Particle size of metal chelate fine particles on fabric surface The projected area of metal chelate fine particles is calculated from a photograph of a sample fabric observed with an electron microscope, and the diameter of a circle having the same area is obtained. The diameter. The particle diameters of all the metal chelate fine particles existing in a surface area of 500 nm 2 were measured at any five locations on the sample fabric and averaged.

(4)金属キレート微粒子の洗濯耐久性
金属キレート微粒子を付着させた布帛の洗濯前後について、蛍光X線装置(リガク製,RIX3001)にて元素分析を行い、金属元素強度を測定し、次式にて脱落率を算出した。尚、任意の5箇所を測定し、平均した。
金属キレート微粒子の脱落率(%)=((洗濯前の元素強度−洗濯後の元素強度)/洗濯前の元素強度)×100
(4) Durability of washing with metal chelate fine particles Before and after washing of a fabric to which metal chelate fine particles are adhered, elemental analysis is performed with a fluorescent X-ray apparatus (Rigaku, RIX3001), and the metal element strength is measured. The dropout rate was calculated. In addition, arbitrary 5 places were measured and averaged.
Dropping rate of metal chelate fine particles (%) = ((element strength before washing−element strength after washing) / element strength before washing) × 100

(5)抗菌性評価
繊維製品衛生加工評議会(SEK)の統一試験法に順じて行った。減菌後クリーンベンチ内で乾燥した検体(1辺が約18mmの正方形の試験片0.4g)に、予め高圧蒸気減菌した後水冷した1/20濃度のニュートリエントプロスで、生菌数を(1±0.3)×105個/mlに調整した試験菌懸濁液0.2mlを検体全体に均一に浸みるように接種し、減菌したキャップを締め付ける。これを37±1℃で18時間培養し、培養後の生菌数を測定した。
検体は、標準布(抗菌防臭加工製品の加工効果評価試験マニュアルに規定された布)と試験布の2種類であり、試験菌としては、黄色ブドウ球菌(Staphylococcus aurcus ATCC 6538P)を用い、下記式により抗菌性の指標である静菌活性値を算出し、静菌活性値が2.2以上のものを抗菌性ありと判断した。但し、(LogB−LogA)>1.5を満たすことを試験成立条件とした。
静菌活性値=LogB−LogC
ここで、Aは標準布の接種直後に回収した菌数平均値であり、Bは標準布の18時間培養後の菌数平均値であり、Cは試験布の18時間培養後の菌数平均値である。
(5) Evaluation of antibacterial properties The antibacterial properties were evaluated in accordance with the unified testing method of the Textile Products Sanitary Processing Council (SEK). After sterilization, dry specimens in a clean bench (square test piece 0.4 g with a side of about 18 mm) were sterilized with high-pressure steam in advance and then cooled with water. Inoculate 0.2 ml of the test bacteria suspension adjusted to (1 ± 0.3) × 10 5 cells / ml so that the entire specimen is uniformly immersed, and tighten the sterilized cap. This was cultured at 37 ± 1 ° C. for 18 hours, and the number of viable bacteria after the culture was measured.
There are two types of specimens: standard cloth (cloth specified in the processing effect evaluation test manual for antibacterial and deodorant processed products) and test cloth. Staphylococcus aurcus ATCC 6538P is used as the test bacteria, and the following formula: The bacteriostatic activity value, which is an index of antibacterial activity, was calculated, and those having a bacteriostatic activity value of 2.2 or more were judged to have antibacterial activity. However, the condition for satisfying the test was to satisfy (LogB-LogA)> 1.5.
Bacteriostatic activity value = LogB-LogC
Here, A is the average number of bacteria collected immediately after inoculation with the standard cloth, B is the average number of bacteria after 18 hours of culture of the standard cloth, and C is the average number of bacteria after 18 hours of culture of the test cloth. Value.

(6)JTETC消臭性区分「汗臭」消臭試験
臭気成分としてアンモニア、酢酸、イソ吉草酸の3成分を用いて消臭試験を行い、下記の方法により消臭性能を評価した。
<消臭性能評価>
1.機器分析試験:JTETCが定める消臭加工繊維製品認証基準に従い、上記3成分について機器分析を行った。即ち、容器に臭気成分とサンプルを入れ、2時間放置後の臭気成分の残留濃度(2時間後の試料試験濃度)を測定した。臭気成分のみを入れた容器の残留濃度を空試験濃度として、下記式により、臭気成分の減少率を計算した。
減少率(%)=(2時間後の空試験濃度−2時間後の試料試験濃度)/(2時間後
の空試験濃度)×100
なおアンモニアと酢酸は検知管法により、イソ吉草酸はガスクロマトグラフィー法により測定した。判定は、アンモニアの減少率70%以上および酢酸の減少率80%以上およびイソ吉草酸の減少率85%以上の条件を満足する場合を合格「○」、それ以外を不合格「×」とした。
(6) JTETC deodorant classification “sweat odor” deodorization test Deodorization performance was evaluated using three components of ammonia, acetic acid and isovaleric acid as odor components, and the deodorization performance was evaluated by the following method.
<Deodorization performance evaluation>
1. Instrument analysis test: Instrument analysis was conducted on the above three components in accordance with the deodorant processed fiber product certification standard defined by JTETC. That is, the odor component and the sample were put in a container, and the residual concentration of the odor component after being left for 2 hours (sample test concentration after 2 hours) was measured. The reduction rate of the odor component was calculated by the following formula using the residual concentration of the container containing only the odor component as the blank test concentration.
Decrease rate (%) = (Blank test concentration after 2 hours−Sample test concentration after 2 hours) / (After 2 hours)
Empty test concentration) x 100
Ammonia and acetic acid were measured by a detector tube method, and isovaleric acid was measured by a gas chromatography method. In the judgment, a case where the conditions of ammonia reduction rate of 70% or more, acetic acid reduction rate of 80% or more and isovaleric acid reduction rate of 85% or more are satisfied is judged as “good”, and other cases are judged as “good”. .

2.官能試験:フラスコに臭気成分とサンプルを入れ、2時間放置後のサンプル生地とフラスコ内の臭気について、判定臭気と比較し、判定者6名のうち、5名以上が下記基準により臭気を弱と判断した場合を合格とした。
臭気「強」:判定臭ガスより強い場合
臭気「弱」:判定臭ガスと比較して同等又はより弱い場合
なお、判定臭気としては、臭気強度2.0のアンモニア、酢酸、イソ吉草酸ガスを用いた。
2. Sensory test: Put odor component and sample into flask, compare sample odor and odor in flask after standing for 2 hours with judgment odor. The case where it judged was set as the pass.
Odor “strong”: When stronger than the judgment odor gas Odor “weak”: When equal or weaker than the judgment odor gas Note that the judgment odor includes ammonia, acetic acid, and isovaleric acid gas with an odor intensity of 2.0. Using.

(7)染色布帛のpH
JIS L−1096による抽出液のpHをB法(ISO法)にて測定し、布帛のpHを求めた。
(8)洗濯条件
JIS L−0217 103法に従って、50回行った。尚、洗剤は、花王製アタック(1g/L)を用いた。
(9)水滴消失時間
JIS L−1097 滴下法に従って水滴消失時間を評価した。サンプル毎に5回ずつ測定を行い、平均水滴消失時間を求めた。尚、このときの水滴1滴の平均量は0.039mlであった。
(7) pH of dyed fabric
The pH of the extract according to JIS L-1096 was measured by the B method (ISO method) to determine the pH of the fabric.
(8) Washing condition 50 times according to JIS L-0217 103 method. The detergent used was Kao Attack (1 g / L).
(9) Water drop disappearance time The water drop disappearance time was evaluated according to JIS L-1097 dropping method. Measurement was performed five times for each sample, and the average water droplet disappearance time was determined. At this time, the average amount of one water droplet was 0.039 ml.

(10)吸水拡散面積
布帛を直径15cmの刺繍用の丸枠に取り付け、布帛表面に水溶性青染料(C.I.アシッドブルー62を0.005wt%含有)を0.1ml滴下し、3分後に濡れ拡がった吸水拡散面積を次式により求める。
吸水拡散面積(cm2)=[縦の直径(cm)×横の直径(cm)]×π÷4
サンプル毎に測定を5回行い、平均吸水拡散面積を求めた。
(10) Water-absorbing diffusion area The fabric is attached to a round frame for embroidery with a diameter of 15 cm, and 0.1 ml of water-soluble blue dye (containing 0.005 wt% of CI Acid Blue 62) is dropped on the fabric surface for 3 minutes. The water-absorbing and diffusing area that was later wetted and spread is determined by the following equation.
Water absorption diffusion area (cm 2 ) = [vertical diameter (cm) × horizontal diameter (cm)] × π ÷ 4
Measurement was performed 5 times for each sample, and the average water absorption and diffusion area was determined.

(11)発色性の評価
染色品につき、布帛の分光反射率Rを測定し、以下に示すKubelka−Munkの式より求めた。この値が大きいほど発色性が高い(表面濃度が高い)こと、即ち、良く発色されていることを示す。当該染料の最大吸収波長である610nmでの値を採用した。
K/S=(1−R)2/2R
(11) Evaluation of color development The spectral reflectance R of the fabric was measured for the dyed product, and was determined from the Kubelka-Munk equation shown below. Larger values indicate higher color developability (higher surface concentration), that is, better color development. The value at 610 nm, which is the maximum absorption wavelength of the dye, was adopted.
K / S = (1-R) 2 / 2R

(12)風合評価
検査者30人の感触によって染色仕上品を次の基準で相対評価し、21人以上の感触で得られた基準を示した。
○:しなやかで肌触りがよく着心地がよい
△:しなやか感、肌触り感がやや劣る
×:硬く、肌触り感が悪い
(12) Texture evaluation Relative evaluation of the dyed finished product was performed according to the following criteria based on the feeling of 30 inspectors, and the criteria obtained with the feeling of 21 or more were shown.
○: supple, soft and comfortable to wear
Δ: Slightly inferior and soft to the touch
×: Hard and unpleasant to the touch

(13)汗アルカリ堅牢度
染色品について、JIS−L−0848−A法に準じて汗アルカリ人工汗液を用いて評価した。試験片の変褪色と添付白布片の汚染の程度を、それぞれ、変褪色用グレースケール、汚染用グレースケールと比較して判定した。
(13) Fastness to sweat alkali The dyed product was evaluated using a sweat alkali artificial sweat according to the JIS-L-0848-A method. The degree of contamination of the test piece and the attached white cloth piece were judged by comparing with the gray scale for color change and the gray scale for contamination, respectively.

[実施例1〜3]
<金属キレート微粒子水分散体の作製>
乳酸5.4gを水1.08gに溶解した溶液をメタノール100ml中に添加して均一に混合し、得られた溶液中に酢酸亜鉛(2水塩)13.2gを攪拌しながら溶解させた。
次に、この溶液を50℃に加温しながら、超音波装置を用い、高周波出力80W、発信周波数40kHzにて2時間、密閉状態で超音波照射した。
[Examples 1 to 3]
<Preparation of metal chelate fine particle aqueous dispersion>
A solution in which 5.4 g of lactic acid was dissolved in 1.08 g of water was added to 100 ml of methanol and mixed uniformly, and 13.2 g of zinc acetate (dihydrate) was dissolved in the resulting solution with stirring.
Next, while heating this solution to 50 ° C., ultrasonic irradiation was performed in a sealed state for 2 hours at a high frequency output of 80 W and a transmission frequency of 40 kHz using an ultrasonic device.

超音波処理前後の溶液をFT−IRによるチャート解析にてカルボキシルイオンのOHの面外変角振動を確認したところ、1450cm−1が1420cm−1に、1570cm−1が1580cm−1に変動していることから、亜鉛はキレート化されており、亜鉛キレート微粒子が生成していると判定した。次に生成した微粒子の粒径をZetasizer Nano ZSにて測定したところ平均粒子径が4.1nmであることを確認した。 Where before and after the ultrasonic treatment solution was confirmed out-of-plane deformation vibration of the OH of the carboxyl ion in the chart analysis by FT-IR, to 1450cm -1 is 1420cm -1, 1570cm -1 is varied to 1580cm -1 Therefore, it was determined that zinc was chelated and zinc chelate fine particles were generated. Next, when the particle diameter of the generated fine particles was measured with Zetasizer Nano ZS, it was confirmed that the average particle diameter was 4.1 nm.

次に得られた亜鉛キレート微粒子の分散液14.8gを水1000g中に添加し、マグネチックスターラにて10分間攪拌し、亜鉛キレート微粒子の0.2重量%の水分散体を得た。得られた水分散体は、pHが4.7で無色透明で凝集物のないものであり、亜鉛キレート微粒子の平均粒子径が7.8nmであった。   Next, 14.8 g of the obtained zinc chelate fine particle dispersion was added to 1000 g of water and stirred for 10 minutes with a magnetic stirrer to obtain a 0.2 wt% aqueous dispersion of zinc chelate fine particles. The obtained aqueous dispersion had a pH of 4.7, was colorless and transparent and had no aggregates, and the average particle size of the zinc chelate fine particles was 7.8 nm.

<金属キレート微粒子の布帛への付与>
三菱レイヨン(株)製の塩基性染料可染型ポリエステル繊維(商品名:A.H.Y.)70dtex/48fのPOYを常法により185℃にて仮撚加工を行い、76dtex/48fの複合糸を得た。次に、得られた複合糸を用い、常法により24ゲージにて、フライス丸編地を作製した。次いで、拡布状で60℃でプレウエットした後、185℃でプレセットを行なった後、下記に示す条件にて染色と同時に亜鉛キレート微粒子水分散体による処理を行なった。
<Applying metal chelate fine particles to fabric>
Mitsubishi Rayon Co., Ltd. basic dye-dyeable polyester fiber (trade name: AHY) 70 dtex / 48 f of POY is false twisted at 185 ° C. by a conventional method to obtain a 76 dtex / 48 f composite I got a thread. Next, using the obtained composite yarn, a milled circular knitted fabric was produced by a conventional method at 24 gauge. Then, after pre-wetting at 60 ° C. in a spread form, pre-setting at 185 ° C., and then treatment with an aqueous dispersion of zinc chelate fine particles simultaneously with dyeing under the conditions shown below.

<染色条件>
分散型カチオン染料:カヤクリル ブルー 2RL−ED:1.5%omf
pH:4.3(乳酸にて調整)
亜鉛キレート微粒子濃度:布帛への付着量が表1記載の量となるように調整
浴比:1:20
温度:120℃
時間:40分
染色後は、80℃で湯洗及び水洗をこの順序で2回繰り返した後、水の浴に可縫製向上剤と柔軟剤を添加し、布帛にパディング法にて付与した後、140℃の熱処理にて仕上げた。
<Dyeing conditions>
Dispersion type cationic dye: Kayacrill Blue 2RL-ED: 1.5% omf
pH: 4.3 (adjusted with lactic acid)
Zinc chelate fine particle concentration: adjusted so that the amount of adhesion to the fabric is the amount shown in Table 1. Bath ratio: 1:20
Temperature: 120 ° C
Time: 40 minutes After dyeing, hot water washing and water washing are repeated twice in this order at 80 ° C., then a sewing improver and a softening agent are added to the water bath and applied to the fabric by the padding method. Finished by heat treatment at 140 ° C.

得られた染色布帛のpHは5.9、目付は147g/m2、コース密度は55/インチ、ウエル密度は33/インチ、厚みは0.52mmであった。得られた染色布帛を電子顕微鏡にて10万倍の倍率にて観察したとき、繊維表面積500nmあたり、粒子径が50nmを超える亜鉛キレート微粒子は1個も存在しておらず、粒子径20nm以下の亜鉛キレート微粒子で覆われていることが確認できた。この状態は洗濯50回後も同じであった。 The resulting dyed fabric had a pH of 5.9, a basis weight of 147 g / m 2 , a coarse density of 55 / inch, a well density of 33 / inch, and a thickness of 0.52 mm. When the obtained dyed fabric was observed with an electron microscope at a magnification of 100,000 times, no zinc chelate fine particles having a particle diameter exceeding 50 nm per 500 nm 2 of the fiber surface area, and the particle diameter was 20 nm or less. It was confirmed that it was covered with zinc chelate fine particles. This state was the same after washing 50 times.

得られた染色布帛の抗菌性能、消臭性能、吸水拡散性能、発色性、汗アルカリ堅牢度、風合の評価結果を表1に示す。表1の結果から、実施例1〜3で得られた布帛は、抗菌性能、消臭性能、吸水拡散性能、発色性、汗アルカリ堅牢度性能に優れ、しなやかな風合を有し商品価値の高い染色布帛であることが分かる。   Table 1 shows the evaluation results of the antibacterial performance, deodorization performance, water absorption / diffusion performance, color development, sweat alkali fastness, and texture of the obtained dyed fabric. From the results shown in Table 1, the fabrics obtained in Examples 1 to 3 have excellent antibacterial performance, deodorization performance, water absorption and diffusion performance, color development, and sweat alkali fastness performance, and have a supple texture and commercial value. It turns out that it is a high dyeing fabric.

[比較例1]
布帛の染色において亜鉛キレート微粒子を添加しなかったことを除いて、実施例と同様に染色布帛を得た。得られた染色布帛を下記に示す条件にて樹脂バインダー併用のもとに酸化亜鉛をパッド法にて付与し、140℃の熱処理にて仕上げた。
<仕上剤処方>
酸化亜鉛微粒子水分散体(住友大阪セメント製ZW−230B;平均粒子径67
nm):10重量部
シリコーンバインダー(大和化学製パインテックスS−200L):3重量部
得られた染色布帛の抗菌性能、消臭性能、吸水拡散性能、発色性、汗アルカリ堅牢度、風合の評価結果を表1に示す。
[Comparative Example 1]
A dyed fabric was obtained in the same manner as in Example except that zinc chelate fine particles were not added in the dyeing of the fabric. The obtained dyed fabric was subjected to a heat treatment at 140 ° C. by applying zinc oxide by a pad method under the conditions shown below in combination with a resin binder.
<Finish preparation formulation>
Zinc oxide fine particle water dispersion (Sumitomo Osaka Cement ZW-230B; average particle size 67
nm): 10 parts by weight Silicone binder (Pinetex S-200L, manufactured by Yamato Chemical): 3 parts by weight The antibacterial performance, deodorization performance, water absorption / diffusion performance, color development, fastness to sweat alkali, and texture of the obtained dyed fabric The evaluation results are shown in Table 1.

表1の結果から、本発明の実施例1〜3で得られた染色布帛は、比較例1で得られた布帛に比べ、抗菌性能、消臭性能、吸水拡散性能の耐久性に優れ、発色性が高く、風合にも優れ商品価値の高い染色布帛であることが分かる。   From the results in Table 1, the dyed fabrics obtained in Examples 1 to 3 of the present invention are superior in antibacterial performance, deodorant performance, and water absorption / diffusion performance durability compared to the fabric obtained in Comparative Example 1, and color development. It can be seen that this is a dyed fabric having high properties, excellent texture, and high commercial value.

Figure 2015190069
Figure 2015190069

本発明の金属キレート微粒子水分散体で処理した布帛は、抗菌性能、消臭性能および吸水拡散性能に優れ、色の発色性および堅牢度性能にも優れ、しなやかな風合を有し着用感に優れる抗菌消臭性布帛であるため、インナー分野およびスポーツ衣料分野、介護衣料分野で好適に利用可能である。   The fabric treated with the metal chelate fine particle aqueous dispersion of the present invention is excellent in antibacterial performance, deodorization performance and water absorption / diffusion performance, excellent in color developability and fastness performance, has a supple feel, and is comfortable to wear. Since it is an excellent antibacterial and deodorant fabric, it can be suitably used in the inner field, sports clothing field, and nursing clothing field.

Claims (2)

平均粒子径が50nm以下の金属キレート微粒子が付着した布帛であって、布帛表面積500nm2あたり粒子径が50nmを超える金属キレート微粒子が2個以下であることを特徴とする抗菌消臭性布帛。 An antibacterial deodorant fabric characterized in that it is a fabric to which metal chelate fine particles having an average particle size of 50 nm or less are adhered, and has 2 or less metal chelate fine particles having a particle size exceeding 50 nm per 500 nm 2 of the surface area of the fabric. 金属キレート微粒子をpH3.5〜5.0の酸性溶液に分散させた分散液に布帛を浸漬させ、100〜135℃の温度で15分〜45分間処理することを特徴とする請求項1に記載の抗菌消臭性布帛の製造方法。   The fabric is immersed in a dispersion in which metal chelate fine particles are dispersed in an acidic solution having a pH of 3.5 to 5.0, and is treated at a temperature of 100 to 135 ° C for 15 to 45 minutes. Of producing antibacterial and deodorant fabrics.
JP2014066511A 2014-03-27 2014-03-27 Antibacterial and deodorant cloth having excellent durability Pending JP2015190069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066511A JP2015190069A (en) 2014-03-27 2014-03-27 Antibacterial and deodorant cloth having excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066511A JP2015190069A (en) 2014-03-27 2014-03-27 Antibacterial and deodorant cloth having excellent durability

Publications (1)

Publication Number Publication Date
JP2015190069A true JP2015190069A (en) 2015-11-02

Family

ID=54424821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066511A Pending JP2015190069A (en) 2014-03-27 2014-03-27 Antibacterial and deodorant cloth having excellent durability

Country Status (1)

Country Link
JP (1) JP2015190069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130357A1 (en) * 2020-12-18 2022-06-23 Centitvc - Centro De Nanotecnologia E Materiais Técnicos Funcionais E Inteligentes Fabric anti-odour agent, method of production and uses thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130357A1 (en) * 2020-12-18 2022-06-23 Centitvc - Centro De Nanotecnologia E Materiais Técnicos Funcionais E Inteligentes Fabric anti-odour agent, method of production and uses thereof

Similar Documents

Publication Publication Date Title
CN113862852B (en) Polyester/cotton/sea island fiber blended core-spun yarn and production method thereof
JP6360319B2 (en) Long / short composite spun yarn and fabric using the same
CN105887279A (en) Non-ironing shirt fabric and method for manufacturing same
CN113089316A (en) Lysimachia christinae Hance fiber antibacterial textile fabric and preparation method thereof
CN113089321A (en) Vinyl monomer graft modified antibacterial fiber, preparation method thereof and application thereof in antibacterial socks
JP2014201859A (en) Deodorant antibacterial fiber fabric excellent in durability
KR100864802B1 (en) Manufacturing method of polysaccharide antibacterial staple fiber and spun yarn thereof and fabrics thereby and textile goods thereby
JP6577332B2 (en) Antibacterial synthetic fiber fabric with excellent antibacterial performance
JP2008111221A (en) Antibacterial dyed fabric
EP3150751A1 (en) Polyamide fibers, fiber structure using same, and clothing
JP2015190069A (en) Antibacterial and deodorant cloth having excellent durability
CN113106754A (en) Antibacterial yarn and production method thereof
JP2015101815A (en) Functional fiber, and heat retaining woven fabric to be constituted of the fiber
JP2015190071A (en) Metal chelate fine particle water dispersion
JP7179270B2 (en) Fiber with alginate coating and method for producing same
JP4590019B1 (en) Ultrafine fiber and ultrafine fiber fabric having antibacterial and water absorption properties
CN109137185B (en) Non-post-treatment bacteriostatic blend
CN106245337A (en) A kind of bamboo fiber blended fabric
CN109837603A (en) A kind of preparation method of sun-proof mosquito proof cool feeling fabric
KR102298553B1 (en) Yarn containing biotie particle, and method of manufacturing the same
KR20190110296A (en) Whole fabric radiating far-infrared ray and manufacturing process thereof
JP5972602B2 (en) Deodorant fiber fabric
JP6653583B2 (en) Antibacterial fiber fabric with excellent antibacterial performance
JP2022054936A (en) Antibacterial deodorant fabric and its manufacturing method
JP5339926B2 (en) Weaving and knitting for clothing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404