JP2015189592A - Raw material for phosphate fertilizer and production method thereof - Google Patents

Raw material for phosphate fertilizer and production method thereof Download PDF

Info

Publication number
JP2015189592A
JP2015189592A JP2014065847A JP2014065847A JP2015189592A JP 2015189592 A JP2015189592 A JP 2015189592A JP 2014065847 A JP2014065847 A JP 2014065847A JP 2014065847 A JP2014065847 A JP 2014065847A JP 2015189592 A JP2015189592 A JP 2015189592A
Authority
JP
Japan
Prior art keywords
mass
phase
raw material
phosphoric acid
fertilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014065847A
Other languages
Japanese (ja)
Other versions
JP6326904B2 (en
Inventor
基紘 坂元
Motohiro Sakamoto
基紘 坂元
佐々木 直人
Naoto Sasaki
直人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014065847A priority Critical patent/JP6326904B2/en
Publication of JP2015189592A publication Critical patent/JP2015189592A/en
Application granted granted Critical
Publication of JP6326904B2 publication Critical patent/JP6326904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance fertilizer effects of a raw material for fertilizers using steel slag as raw material.SOLUTION: A raw material for phosphate fertilizers contains CaO, SiO, POand iron oxide, based on Fe, in a total of 55 mass% or higher and includes 10 mass% or higher of a Ca(PO)phase in which 1-5 mass% of Si is solid-dissolved.

Description

本発明は、肥料効果の高いりん酸肥料原料とその製造方法に関する。   The present invention relates to a phosphate fertilizer raw material having a high fertilizer effect and a method for producing the same.

我が国は降水量が多いので、土壌は、ミネラル分が流出して、酸性化し易い。そのため、植物を生育する際に使用するりん酸肥料には、土壌中のりん酸濃度だけでなく、同時に、土壌pHも増加させる塩基性りん酸肥料が広く使用されている。   In Japan, there is a lot of precipitation, so the soil tends to acidify due to the outflow of minerals. Therefore, basic phosphate fertilizers that increase not only the phosphate concentration in soil but also the soil pH are widely used as phosphate fertilizers used when growing plants.

現在、塩基性りん酸肥料としては、アルカリ分を多く含む溶成りん酸肥料(りん酸濃度は20%前後で、りん含有鉱物相は、ガラス相。燐鉱石と酸化マグネシウムを融解及び混合して、ジェット水流で急冷して製造。)が、肥料効果が高いので、最も多く利用されている。   At present, the basic phosphate fertilizer is a soluble acid fertilizer containing a large amount of alkali (phosphoric acid concentration is around 20%, the phosphorus-containing mineral phase is a glass phase. Melting and mixing phosphate ore and magnesium oxide. , Manufactured by quenching with a jet water stream)), but it is most often used because of its high fertilizer effect.

しかし、溶成りん酸肥料を製鋼スラグから製造すると、結晶化を促進するFeOが製鋼スラグから不可避的に混入するので、肥料効果が低下する。   However, when a soluble acid fertilizer is produced from steelmaking slag, FeO that promotes crystallization is inevitably mixed from the steelmaking slag, so the fertilizer effect is reduced.

過去には、非特許文献1に示すように、トーマス製鋼法の副産物であるトーマスりん肥が、塩基性りん酸肥料(りん酸濃度は20%前後)として利用されてきた。   In the past, as shown in Non-Patent Document 1, Thomas phosphorus fertilizer, a byproduct of the Thomas steelmaking method, has been used as a basic phosphate fertilizer (phosphoric acid concentration is around 20%).

トーマスりん肥は、りん濃度が1.7〜2.1%程度の溶銑に石灰を添加し、空気を吹き込んで脱りんを行った際に生成するスラグを原料とする肥料で、りん含有鉱物相は、Ca3(PO42−Ca2SiO4固溶体相、5CaO・SiO2・P25相、又は、7CaO・2SiO2・P25相(以下総称して「固溶体」という。)であり、肥料効果は優れている。 Thomas Phosphorus Fertilizer is a fertilizer made from slag produced when dephosphorization is performed by adding lime to hot metal with a phosphorus concentration of about 1.7-2.1%. Is a Ca 3 (PO 4 ) 2 —Ca 2 SiO 4 solid solution phase, 5CaO · SiO 2 · P 2 O 5 phase, or 7CaO · 2SiO 2 · P 2 O 5 phase (hereinafter collectively referred to as “solid solution”). The fertilizer effect is excellent.

しかし、トーマス製鋼法は衰退し、現在、製鋼法として使われていないため、トーマスりん肥は製造されていない。   However, the Thomas steelmaking method has declined and is not currently used as a steelmaking method.

高炉から出銑された溶銑には、不純物として、約0.1%のりんが含まれているが、りんは、製鋼工程で、フラックス添加と酸素吹込みで酸化されて、製鋼スラグとして排出される。   The hot metal discharged from the blast furnace contains about 0.1% phosphorus as an impurity. Phosphorus is oxidized by flux addition and oxygen blowing in the steelmaking process and discharged as steelmaking slag. The

特許文献1に示すように、製鋼スラグのりん酸濃度は1〜4質量%程度であり、りん酸肥料として十分な濃度ではないが、製鋼スラグは、フラックス由来のCaOや、溶銑から酸化除去されたSiO2を多量に含んでいるので、石灰原やケイ酸肥料として利用されている。 As shown in Patent Document 1, the phosphoric acid concentration of steelmaking slag is about 1 to 4% by mass, which is not a sufficient concentration as a phosphate fertilizer, but steelmaking slag is oxidized and removed from flux-derived CaO and hot metal. Since it contains a large amount of SiO 2 , it is used as lime raw material or silicic acid fertilizer.

現在でも、りん酸肥料の原料のりん鉱石の全量を輸入に依存している我が国では、所要量のりん酸を含む製鋼スラグは、有用なりん酸肥料資源である。   Even today, steelmaking slag containing the required amount of phosphoric acid is a useful phosphate fertilizer resource in Japan, which relies on imports for the entire amount of phosphate ore, the raw material for phosphate fertilizer.

そして、特許文献2〜4に示すように、製鋼スラグ中のりん酸を濃縮して高りん酸スラグを製造し、製鋼スラグをりん酸肥料化する取組みが、これまで幾つかなされている。   And as shown to patent documents 2-4, the approach which concentrates the phosphoric acid in steelmaking slag, manufactures high phosphoric acid slag, and makes steelmaking slag into phosphoric acid fertilizer has been made until now.

例えば、特許文献4には、燐含有の製鋼スラグを還元処理し、燐を0.5質量%以上含む高燐高マンガン銑鉄を製造し、順次、マンガン処理、脱燐処理を行って、燐濃度が0.10質量%以下の溶銑を製造するとともに、脱燐処理で生成したスラグを燐酸肥料原料として使用することが開示されている。   For example, in Patent Document 4, a steel-containing slag containing phosphorus is subjected to reduction treatment to produce a high-phosphorus high manganese pig iron containing 0.5 mass% or more of phosphorus, followed by manganese treatment and dephosphorization treatment to obtain a phosphorus concentration. Manufactures hot metal containing 0.10% by mass or less, and uses slag produced by dephosphorization as a phosphate fertilizer raw material.

上記燐酸肥料原料は、塩基度0.5〜2.0、P2515%以上、MnO8%以下で、りん含有鉱物相はCa3(PO42相と想定しているが、その肥料効果は不明である。 The phosphate fertilizer raw material has a basicity of 0.5 to 2.0, P 2 O 5 of 15% or more and MnO of 8% or less, and the phosphorus-containing mineral phase is assumed to be a Ca 3 (PO 4 ) 2 phase. The fertilizer effect is unknown.

特許第5105322号公報Japanese Patent No. 5105322 特開平11−158526号公報JP-A-11-158526 特開2009−132544号公報JP 2009-132544 A 特開2011−208277号公報JP 2011-208277 A

日本土壌肥料学雑誌、第13巻、p93Japan Soil Fertilizer Journal, Vol. 13, p93

りん酸肥料の原料のりん鉱石を海外から輸入している我が国では、溶銑中のりんはりん酸肥料資源として有用であるが、製鋼スラグを原料としてりん酸肥料を製造する際、結晶化を促進する酸化鉄がりん酸肥料へ混入するのは不可避である。そのため、製鋼スラグを原料とするりん酸肥料の肥料効果は安定しない。   In Japan, where phosphate ore, the raw material for phosphate fertilizer, is imported from overseas, phosphorus in hot metal is useful as a phosphate fertilizer resource, but it promotes crystallization when producing phosphate fertilizer from steelmaking slag. It is inevitable that iron oxide to be mixed into phosphate fertilizer. Therefore, the fertilizer effect of the phosphate fertilizer made from steelmaking slag is not stable.

また、製鋼スラグから高りん酸肥料を製造する場合、固溶体相が析出するりん酸濃度には上限があり、それ以上のりん酸濃度では肥料効果が下がるという問題が有った。   Moreover, when manufacturing a high-phosphate fertilizer from steelmaking slag, there existed a problem that there existed an upper limit in the phosphoric acid density | concentration which a solid solution phase precipitates, and the fertilizer effect fell with the phosphoric acid density | concentration beyond it.

それ故、製鋼スラグを原料とするりん酸濃度が高くかつ肥料効果の高いりん酸肥料原料や、その製造方法は、現状では確立されていない。酸化鉄を含むけれど、りん酸濃度が高く、肥料効果が高いりん酸肥料とその製造方法の開発が望まれている。   Therefore, a phosphoric acid fertilizer raw material having a high phosphoric acid concentration and a high fertilizer effect using steelmaking slag as a raw material and a manufacturing method thereof have not been established at present. Development of a phosphoric acid fertilizer that contains iron oxide but has a high phosphoric acid concentration and a high fertilizer effect and its manufacturing method is desired.

そこで、本発明は、上記現状を踏まえ、製鋼スラグを原料とするりん酸肥料原料の肥料効果を高めることを課題とし、該課題を解決する、酸化鉄を含むが、りん酸濃度が高く、肥料効果が高いりん酸肥料原料と、その製造方法を提供することを目的とする。   In view of the above, the present invention has an object to improve the fertilizer effect of a phosphate fertilizer raw material using steelmaking slag as a raw material, and solves the problem. It aims at providing the phosphate fertilizer raw material with a high effect, and its manufacturing method.

一般に、りん酸肥料原料中にCa3(PO42相(以下「C3P相」ということがある。)が存在すると、肥料効果は向上せず、C3P相とCa2SiO4相の固溶体が存在すると、肥料効果は向上する。そこで、本発明者らは、C3P相と、Ca2SiO4相中のSiに着目し、上記課題を解決する手法について鋭意検討した。 Generally, if a Ca 3 (PO 4 ) 2 phase (hereinafter sometimes referred to as “C 3 P phase”) is present in a phosphate fertilizer raw material, the fertilizer effect is not improved, and the C 3 P phase and Ca 2 SiO 4 are not improved. The fertilizer effect is improved when a solid solution of the phase is present. Therefore, the present inventors paid attention to the C 3 P phase and the Si in the Ca 2 SiO 4 phase, and intensively studied a method for solving the above problem.

その結果、りん酸肥料原料に、Siを所要量固溶したC3P相が所要量含まれていると、肥料効果の指標である可溶性りん酸率が著しく高まることを見いだした。 As a result, it has been found that when a required amount of C 3 P phase in which a required amount of Si is dissolved in the phosphate fertilizer raw material is contained, the soluble phosphate ratio, which is an index of fertilizer effect, is remarkably increased.

また、製鋼スラグからりん酸肥料原料を製造する際、りん酸肥料原料の組成及び冷却速度を制御することにより、可溶性りん酸率が著しく高いりん酸肥料原料を製造できることを見いだした。   Moreover, when manufacturing the phosphate fertilizer raw material from steelmaking slag, it discovered that the phosphate fertilizer raw material with a remarkably high soluble phosphate rate could be manufactured by controlling the composition and cooling rate of a phosphate fertilizer raw material.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上含有する
ことを特徴とするりん酸肥料原料。
(1) A Ca 3 (PO 4 ) 2 phase in which CaO, SiO 2 , P 2 O 5 , and iron oxide (in terms of Fe) total 55 mass% or more and Si is dissolved in 1 to 5 mass%. Phosphoric acid fertilizer raw material characterized by containing 10 mass% or more.

(2)CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上含有し、塩基度α(=CaO/SiO2)が0.8〜2.0で、かつ、りん酸濃度が(−6α2+27α−6)(α:塩基度)質量%超、40質量%以下である
ことを特徴とするりん酸肥料原料。
(2) Ca 3 (PO 4 ) 2 phase in which CaO, SiO 2 , P 2 O 5 and iron oxide (in terms of Fe) total 55 mass% or more and Si is dissolved in 1 to 5 mass%. 10% by mass or more, basicity α (= CaO / SiO 2 ) is 0.8 to 2.0, and phosphoric acid concentration exceeds (−6α 2 + 27α-6) (α: basicity) mass% The phosphate fertilizer raw material characterized by being 40 mass% or less.

(3)CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55%質量以上含有し、塩基度α(=CaO/SiO2)が0.8〜2.0で、かつ、りん酸濃度が(−6α2+27α−6)(α:塩基度)%超、40質量%以下の製鋼スラグを、1000℃以上1700℃以下に加熱して溶融し、次いで、冷却速度15℃/分以上で冷却する
ことを特徴とするりん酸肥料原料の製造方法。
(3) CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion) are contained in a total of 55% by mass or more, and the basicity α (= CaO / SiO 2 ) is 0.8 to 2.0. In addition, the steelmaking slag having a phosphoric acid concentration of more than (−6α 2 + 27α-6) (α: basicity)% and 40% by mass or less is heated to 1000 ° C. or more and 1700 ° C. or less to melt, and then the cooling rate A method for producing a phosphate fertilizer raw material, characterized by cooling at 15 ° C./min or more.

本発明によれば、酸化鉄を含むが、りん酸濃度が高く、肥料効果が高いりん酸肥料原料とその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, although ferric oxide is included, the phosphoric acid fertilizer raw material with a high phosphoric acid density | concentration and a high fertilizer effect and its manufacturing method can be provided.

製鋼工程において、りん酸含有スラグを製造する工程の一例を示す図である。It is a figure which shows an example of the process of manufacturing a phosphoric acid containing slag in a steelmaking process. 可溶性りん酸率(=可溶性りん酸濃度/全りん酸濃度に対する割合)と、C3P相のSi濃度の関係を示す図である。Soluble phosphate rate (= proportion of the soluble phosphate concentration / total phosphorus acid concentration), is a diagram showing the relationship between the Si concentration of C 3 P phase. 3P相の析出と、塩基度α及びりん酸濃度(質量%)の関係を示す図である。And precipitation of C 3 P phase is a diagram showing the relationship of basicity α and phosphoric acid concentration (wt%). 冷却速度(℃/分)とC3P相のSi濃度(質量%)の関係を示す図である。It is a diagram showing a relationship between cooling rate Si concentration (° C. / min) and C 3 P-phase (mass%).

以下、本発明について説明する。   The present invention will be described below.

本発明のりん酸肥料原料(以下「本発明肥料原料」ということがある。)は、
CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上含有する
ことを特徴とする。
The phosphate fertilizer raw material of the present invention (hereinafter sometimes referred to as “the present fertilizer raw material”)
CaO, SiO 2 , P 2 O 5 , and iron oxide (in terms of Fe) are 55% by mass or more, and 10% by mass of Ca 3 (PO 4 ) 2 phase in which Si is dissolved in 1 to 5% by mass. It contains above.

また、本発明肥料原料は、
CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上含有し、塩基度α(=CaO/SiO2)が0.8〜2.0で、かつ、りん酸濃度が(−6α2+27α−6)(α:塩基度)質量%超、40質量%以下である
ことを特徴とする。
The fertilizer raw material of the present invention is
CaO, SiO 2 , P 2 O 5 , and iron oxide (in terms of Fe) are 55% by mass or more, and 10% by mass of Ca 3 (PO 4 ) 2 phase in which Si is dissolved in 1 to 5% by mass. The basicity α (= CaO / SiO 2 ) is 0.8 to 2.0, and the phosphoric acid concentration is (−6α 2 + 27α-6) (α: basicity) more than 40% by mass, 40% by mass. % Or less.

本発明のりん酸肥料原料の製造方法(以下「本発明製造方法」ということがある。)は、本発明肥料原料の製造方法において、
CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55%質量以上含有し、塩基度α(=CaO/SiO2)が0.8〜2.0で、かつ、りん酸濃度が(−6α2+27α−6)(α:塩基度)%超、40質量%以下の製鋼スラグを、1000℃以上1700℃以下に加熱して溶融し、次いで、冷却速度15℃/分以上で冷却する
ことを特徴とする。
The method for producing a phosphate fertilizer raw material of the present invention (hereinafter sometimes referred to as “the present invention production method”) is a method for producing a fertilizer raw material of the present invention.
CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion) are contained in a total of 55% by mass or more, the basicity α (= CaO / SiO 2 ) is 0.8 to 2.0, and Steelmaking slag having a phosphoric acid concentration of more than (−6α 2 + 27α-6) (α: basicity)% and 40% by mass or less is heated to 1000 ° C. or more and 1700 ° C. or less, and then cooled at a cooling rate of 15 ° C. / It is characterized by cooling in minutes or more.

まず、植物育成用のりん酸肥料の原料(りん酸肥料原料)として使用可能なりん酸含有スラグの製造について説明する。図1に、製鋼工程において、りん酸含有スラグを製造する工程の一例を示す。   First, production of phosphoric acid-containing slag that can be used as a raw material for phosphoric acid fertilizer for plant growth (phosphoric acid fertilizer raw material) will be described. FIG. 1 shows an example of a process for producing phosphoric acid-containing slag in the steelmaking process.

図1に示すように、製鋼工程においては、高炉で製造した溶銑を転炉に移送し、溶銑の上にスラグを形成し、酸素源を吹き込んで、溶銑とスラグの反応で、溶銑の脱りん処理S01を行う。   As shown in FIG. 1, in the steelmaking process, the hot metal produced in a blast furnace is transferred to a converter, slag is formed on the hot metal, an oxygen source is blown, and the hot metal and slag are reacted to remove phosphorus from the hot metal. Process S01 is performed.

脱りん処理S01によって生成した転炉脱りんスラグ41を転炉から排出し、その後、転炉内の溶銑の上に、再度、スラグを形成し、酸素源を吹き込んで、脱炭処理S02を行う。脱炭処理S02で得られた溶鋼に2次製錬S03を施した後、連続鋳造S04で鋼片を製造する。   The converter dephosphorization slag 41 generated by the dephosphorization process S01 is discharged from the converter, and then slag is formed again on the hot metal in the converter, and an oxygen source is blown to perform the decarburization process S02. . After subjecting the molten steel obtained in the decarburization treatment S02 to secondary smelting S03, a steel slab is produced in continuous casting S04.

脱りん処理S01後、転炉から排出された転炉脱りんスラグ41は、溶銑中のりんが酸化したりん酸ととともに、多量の鉄分を含んでいる。そこで、転炉脱りんスラグ41から鉄やりん等の有価元素を回収するために、転炉脱りんスラグ41に還元・改質処理S11を施す。   After the dephosphorization treatment S01, the converter dephosphorization slag 41 discharged from the converter contains a large amount of iron together with phosphoric acid obtained by oxidizing phosphorus in the hot metal. Therefore, in order to recover valuable elements such as iron and phosphorus from the converter dephosphorization slag 41, the converter dephosphorization slag 41 is subjected to reduction / reformation treatment S11.

還元・改質処理S11においては、転炉脱りんスラグ41を溶融し、還元剤及び改質剤として、微粉炭、Al23源、SiO2源を添加して、りんを多く含有する高りん溶銑42を製造する。 In the reduction / reformation treatment S11, the converter dephosphorization slag 41 is melted, and pulverized coal, an Al 2 O 3 source, a SiO 2 source are added as a reducing agent and a modifying agent, and a high phosphorus-containing high content is obtained. Phosphor molten iron 42 is produced.

高りん溶銑42のCr含有量が多い場合には、高りん溶銑42に脱Cr処理S12を施す。次に、高りん溶銑42に、生石灰やSiO2などを原料とするフラックスを添加し酸素を吹き込んで、脱りん処理S13を施して、植物育成用のりん酸肥料の原料(りん酸肥料原料)として使用可能なりん酸含有スラグ50を製造する。 When the Cr content of the high phosphorus hot metal 42 is large, the high phosphorus hot metal 42 is subjected to a Cr removal treatment S12. Next, a flux made of quick lime, SiO 2 or the like is added to the high phosphorus hot metal 42, oxygen is blown, and a dephosphorization treatment S13 is performed, so that a phosphate fertilizer raw material for plant growth (phosphate fertilizer raw material) The phosphoric acid containing slag 50 which can be used as is manufactured.

なお、脱りん処理S13によって脱りんされた溶銑51は、高炉で製造した溶銑とともに転炉へ供給される。   The hot metal 51 dephosphorized by the dephosphorization process S13 is supplied to the converter together with the hot metal produced in the blast furnace.

りん酸肥料原料は、CaO、SiO2、P25、及び、酸化鉄と、Ca3(PO42相を含むものであるが、本発明肥料原料は、CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相(C3P相)を10質量%以上含むことを特徴とする。 The phosphate fertilizer raw material includes CaO, SiO 2 , P 2 O 5 , iron oxide, and Ca 3 (PO 4 ) 2 phase. The fertilizer raw material of the present invention includes CaO, SiO 2 , P 2 O 5. In addition, the total amount of iron oxide (Fe conversion) is 55% by mass or more, and the Ca 3 (PO 4 ) 2 phase (C 3 P phase) in which Si is 1 to 5% by mass is contained in an amount of 10% by mass or more. It is characterized by.

本発明肥料原料中の主成分の“CaO、SiO2、P25、及び、酸化鉄(Fe換算)”は合計で55質量%以上とする。55質量%未満であると、上記以外の成分とりん酸が化合物を形成し、りん酸含有鉱物相の生成を制御することができなくなる。好ましくは65質量%以上である。 “CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion)” as the main components in the fertilizer raw material of the present invention is 55% by mass or more in total. If it is less than 55% by mass, components other than the above and phosphoric acid form a compound, and the production of the phosphoric acid-containing mineral phase cannot be controlled. Preferably it is 65 mass% or more.

製鋼スラグから製造したりん酸肥料原料は、本来的にC3P相を含んでいるが、本発明肥料原料においては、Siが1〜5質量%固溶するC3P相を10%以上存在させる。Siが1〜5質量%固溶するC3P相が10%以上存在すると、肥料効果が顕著に向上する。この点が、本発明者らが見いだし、本発明肥料原料の基礎とする知見である。 The phosphate fertilizer raw material manufactured from steelmaking slag inherently contains a C 3 P phase, but in the fertilizer raw material of the present invention, 10% or more of a C 3 P phase in which 1 to 5 mass% of Si is dissolved is present. Let If 10% or more of the C 3 P phase in which 1 to 5% by mass of Si is dissolved is present, the fertilizer effect is significantly improved. This is the finding that the present inventors have found and the basis of the fertilizer raw material of the present invention.

ここで、Siが1〜5%固溶するC3P相と肥料効果の相関について説明する。 Here, the correlation between the C 3 P phase in which Si is dissolved in 1 to 5% and the fertilizer effect will be described.

本発明者らは、Ca3(PO42とCa2SiO4を所定量秤量し、湿式で混合した後、混合粉の圧粉体を製造した。圧粉体を、1200〜1600℃で2時間焼成し、その後、冷却速度15℃/分で冷却して、実験的に、りん酸肥料原料を製造し、X線構造解析(XRD)で、生成した鉱物相を評価した。結果を表1に示す。 The present inventors weighed a predetermined amount of Ca 3 (PO 4 ) 2 and Ca 2 SiO 4 and mixed them in a wet manner, and then manufactured a green compact of the mixed powder. The green compact is fired at 1200-1600 ° C. for 2 hours and then cooled at a cooling rate of 15 ° C./min to experimentally produce a phosphate fertilizer raw material, which is generated by X-ray structural analysis (XRD). The mineral phase was evaluated. The results are shown in Table 1.

Figure 2015189592
Figure 2015189592

表1に示すように、C3P相のSi濃度が5質量%以下であると、C3P相の単相での生成が確認され、C3P相のSi濃度が5質量%を超えると、C3P相の他、固溶体相(Ca5SiP212)の生成が確認された。この結果から、C3P相のSi濃度は5質量%までしか高めることができないことが解る。 As shown in Table 1, when the Si concentration of the C 3 P phase is 5% by mass or less, formation of the C 3 P phase in a single phase is confirmed, and the Si concentration of the C 3 P phase exceeds 5% by mass. In addition to the C 3 P phase, formation of a solid solution phase (Ca 5 SiP 2 O 12 ) was confirmed. From this result, it can be seen that the Si concentration of the C 3 P phase can only be increased to 5% by mass.

次に、肥料効果を、可溶性りん酸率(=可溶性りん酸濃度/全りん酸濃度に対する割合)で、C3P相のSi濃度との相関で評価した。結果を表1と図2に示す。 Next, the fertilizer effect was evaluated based on the correlation with the Si concentration of the C 3 P phase at the soluble phosphoric acid ratio (= ratio of soluble phosphoric acid concentration / total phosphoric acid concentration). The results are shown in Table 1 and FIG.

表1及び図2から、C3P相のSi濃度が1%未満であると、可溶性りん酸率が小さく、肥料効果が低いことが解る。即ち、C3P相中にSiを1質量%以上固溶させることにより、C3P相の可溶性りん酸濃度が著しく高めることができることが解る。 From Table 1 and FIG. 2, it can be seen that when the Si concentration of the C 3 P phase is less than 1%, the soluble phosphoric acid ratio is small and the fertilizer effect is low. That, C 3 by solid solution Si 1 mass% or more P phase, the soluble phosphate concentration of C 3 P phase it can be seen that it is possible to increase significantly.

一方、C3P相のSi濃度が5%を超えると、C3P相がC3P相として存在できなくなる(固溶体が生成する)。それ故、C3P相のSi濃度は1〜5質量%とする。 On the other hand, when the Si concentration of C 3 P phase exceeds 5%, C 3 P phase is (solid solution is produced) can not exist as a C 3 P phase. Therefore, the Si concentration of the C 3 P phase is 1 to 5% by mass.

次に、本発明肥料原料において、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上と規定する理由について説明する。 Next, the reason for prescribing the Ca 3 (PO 4 ) 2 phase in which 1 to 5 mass% of Si is dissolved in the fertilizer raw material of the present invention as 10 mass% or more will be described.

3P相の濃度(りん酸濃度)が10質量%未満であると肥料効果が低下するわけではない。肥料として使用するときは、単位面積あたりに撒くりん酸量を一定にする必要があるので、施肥量はりん酸濃度に反比例する。それ故、C3P相の濃度(りん酸濃度)は高い方が好ましいが、C3P相の濃度(りん酸濃度)が低くても、所要の肥料効果は確保できる。 If the concentration of C 3 P phase (phosphoric acid concentration) is less than 10% by mass, the fertilizer effect does not decrease. When used as a fertilizer, it is necessary to make the amount of phosphoric acid per unit area constant, so the amount of fertilizer applied is inversely proportional to the phosphoric acid concentration. Therefore, although it is preferable that the concentration of C 3 P phase (phosphoric acid concentration) is high, the required fertilizer effect can be ensured even if the concentration of C 3 P phase (phosphoric acid concentration) is low.

ただし、りん酸肥料原料として販売するためには、りん酸濃度を5%以上(ク溶性りん酸濃度で3%以上)確保する必要があり、そのため、C3P相が10質量%以上ないと、りん酸肥料として登録できない。それ故、C3P相は10質量%以上とする。 However, in order to sell it as a phosphate fertilizer raw material, it is necessary to secure a phosphoric acid concentration of 5% or more (a soluble phosphoric acid concentration of 3% or more). Therefore, the C 3 P phase must be 10% by mass or more. Cannot be registered as phosphate fertilizer. Therefore, the C 3 P phase is 10% by mass or more.

塩基度αとりん酸濃度(質量%)は、C3P相の析出に影響するので、本発明者らは、C3P相の析出と、塩基度α及びりん酸濃度(質量%)の関係を調査した。 Since the basicity α and the phosphoric acid concentration (mass%) affect the precipitation of the C 3 P phase, the present inventors have determined the precipitation of the C 3 P phase and the basicity α and the phosphoric acid concentration (mass%). The relationship was investigated.

Fe(酸化物のFe換算):10質量%、MnO:5質量%、MgO:5質量%、Al23:3質量%で、塩基度αを変えた製鋼スラグ試料を、1600℃から15℃/分で冷却して、析出相とりん酸濃度(質量%)を調査した。結果を図3に示す。 A steelmaking slag sample in which the basicity α was changed from 1600 ° C. to 15% with Fe (as oxide Fe equivalent): 10% by mass, MnO: 5% by mass, MgO: 5% by mass, Al 2 O 3 : 3% by mass. After cooling at ° C./min, the precipitated phase and phosphoric acid concentration (mass%) were investigated. The results are shown in FIG.

図3において、○は、Siが1〜5質量%固溶したC3P相(Si固溶C3P相)が析出した場合を示し、■は、固溶体操が析出した場合を示し、×は、C3P相(単相)が析出した場合を示す。塩基度(=CaO/SiO2)が0.8〜2.0であると、Si固溶C3P相が析出し、肥料効果が向上する。 In FIG. 3, ◯ indicates a case where a C 3 P phase (Si solid solution C 3 P phase) in which 1 to 5% by mass of Si is dissolved is precipitated, ■ indicates a case where a solid solution operation is precipitated, and × Indicates a case where a C 3 P phase (single phase) is precipitated. When the basicity (= CaO / SiO 2 ) is 0.8 to 2.0, the Si solid solution C 3 P phase is precipitated, and the fertilizer effect is improved.

塩基度αが、0.8未満又は2.0超であるとSiが固溶していないC3P相(単相)が析出し、肥料効果が低下する。それ故、本発明肥料原料において、塩基度α(=CaO/SiO2)は0.8〜2.0が好ましい。なお、塩基度αの調整は、脱りん処理時、生石灰やSiO2の添加量を調整して行う。 If the basicity α is less than 0.8 or more than 2.0, a C 3 P phase (single phase) in which Si is not dissolved is precipitated, and the fertilizer effect is reduced. Therefore, in the fertilizer raw material of the present invention, the basicity α (= CaO / SiO 2 ) is preferably 0.8 to 2.0. The basicity α is adjusted by adjusting the amount of quicklime and SiO 2 added during the dephosphorization process.

さらに、本発明者らは、図3において、Si固溶C3P相が析出する臨界線を求めた。その結果、図3の点線で示す通り、Si固溶C3P相は、りん酸濃度が(−6α2+27α−6)質量%を超えると存在できることが解った。それ故、本発明肥料原料において、りん酸濃度は(−6α2+27α−6)(α:塩基度)%超が好ましい。 Furthermore, the present inventors determined the critical line in which the Si solid solution C 3 P phase precipitates in FIG. As a result, as indicated by the dotted line in FIG. 3, it was found that the Si solid solution C 3 P phase can exist when the phosphoric acid concentration exceeds (−6α 2 + 27α-6) mass%. Therefore, in the fertilizer raw material of the present invention, the phosphoric acid concentration is preferably more than (−6α 2 + 27α-6) (α: basicity)%.

りん酸濃度が(−6α2+27α−6)質量%未満であると、固溶体相が生成し、Siが固溶したC3P相が生成し難くなる。一方、りん酸濃度が40質量%を超えると、Ca3Mg3416相が析出し肥料効果が低下する。それ故、本願発明肥料原料のりん酸濃度は(−6α2+27α−6)質量%超、40質量%以下が好ましい。より好ましくは(−6α2+27α−6)質量%超、35質量%以下である。 When the phosphoric acid concentration is less than (−6α 2 + 27α-6) mass%, a solid solution phase is generated, and a C 3 P phase in which Si is dissolved is difficult to generate. On the other hand, when the phosphoric acid concentration exceeds 40% by mass, the Ca 3 Mg 3 P 4 O 16 phase is precipitated and the fertilizer effect is lowered. Therefore, the phosphoric acid concentration of the fertilizer raw material of the present invention is preferably more than (−6α 2 + 27α-6) mass% and 40 mass% or less. More preferably, it is more than (−6α 2 + 27α-6) mass% and not more than 35 mass%.

次に、本発明製造方法について説明する。   Next, the manufacturing method of the present invention will be described.

まず、CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55%質量以上含有する製鋼スラグを、1000℃以上1700℃以下に加熱して溶融する。通常、一旦冷却した製鋼スラグを1000℃以上1700℃以下に加熱して溶融するが、転炉から排出された溶融状態の製鋼スラグを、直接、使用してもよい。 First, steelmaking slag containing 55% by mass or more in total of CaO, SiO 2 , P 2 O 5 and iron oxide (Fe conversion) is heated to 1000 ° C. to 1700 ° C. and melted. Usually, once cooled steelmaking slag is heated to 1000 ° C. or higher and 1700 ° C. or lower and melted, but the molten steelmaking slag discharged from the converter may be used directly.

加熱温度が1000℃未満であると、製鋼スラグが溶融せずに所望の鉱物相を得られない可能性があるので、1000℃以上とする。好ましくは1100℃以上である。   If the heating temperature is less than 1000 ° C, the steelmaking slag may not melt and a desired mineral phase may not be obtained. Preferably it is 1100 degreeC or more.

加熱温度が1700℃を超えると、設備上の問題で製造できないので、1700℃以下とする。好ましくは1600℃以下である。   If the heating temperature exceeds 1700 ° C., it cannot be produced due to equipment problems. Preferably it is 1600 degrees C or less.

次に、溶融状態の製鋼スラグを、冷却速度15℃/分以上で冷却する。この冷却で、本発明肥料原料中に、Siが1〜5質量%固溶したC3P相(Si固溶C3P相)を生成させることができる。 Next, the molten steelmaking slag is cooled at a cooling rate of 15 ° C./min or more. By this cooling, a C 3 P phase (Si solid solution C 3 P phase) in which 1 to 5% by mass of Si is dissolved in the fertilizer raw material of the present invention can be generated.

表2に、各種成分組成の製鋼スラグ試料を、1500〜1600℃に加熱して溶融し、所要の冷却速度で冷却して、生成するりん酸鉱物相と、生成したC3P相のSi濃度(質量%)を調査した結果を示す。なお、表2中、“t.Fe”は、酸化鉄の組成をFeに換算した組成である。 In Table 2, steelmaking slag samples of various composition are heated to 1500-1600 ° C. and melted, cooled at a required cooling rate, and the resulting phosphate mineral phase and the Si concentration of the generated C 3 P phase The result of having investigated (mass%) is shown. In Table 2, “t.Fe” is a composition in which the composition of iron oxide is converted to Fe.

Figure 2015189592
Figure 2015189592

冷却速度が15℃/分未満であると、試料No.15及び16に示すように、C3P相が析出しても、C3P相のSi濃度は1質量%未満である。 When the cooling rate was less than 15 ° C./minute, the sample No. As shown in 15 and 16, even if the C 3 P phase is precipitated, the Si concentration of the C 3 P phase is less than 1% by mass.

冷却速度が15℃/分の試料No.10〜13においては、Siが1〜5質量%の範囲で固溶したC3P相が析出している。冷却速度が50℃/分の試料No.17においても、Siが1〜5質量%の範囲で固溶したC3P相が析出している。 Sample No. with a cooling rate of 15 ° C./min. In 10 to 13, Si is C 3 P phase solid solution in the range of 1 to 5 mass% is precipitated. Sample No. with a cooling rate of 50 ° C./min. In C17, a C 3 P phase in which Si is dissolved in the range of 1 to 5% by mass is precipitated.

試料No.7〜9では、冷却速度が15℃/分でも、Siが固溶したりん酸鉱物相が析出していないが、これは、りん酸濃度が低いために、図3に示すように、固溶体相が析出する領域であるからである。また、No.14では、りん濃度が高すぎるために、別の鉱物相であるCa3Mg3416が析出している。 Sample No. 7 to 9, even though the cooling rate was 15 ° C./min, the phosphate mineral phase in which Si was dissolved was not precipitated. This is because the phosphate concentration is low, as shown in FIG. It is because it is an area | region which precipitates. No. In No. 14, since the phosphorus concentration is too high, another mineral phase, Ca 3 Mg 3 P 4 O 16, is precipitated.

ここで、図4に、冷却速度(℃/分)とC3P相のSi濃度(質量%)の関係を示す。1000℃以上1700℃以下に加熱して溶融状態にある製鋼スラグを、15℃/分以上の冷却速度で冷却すると、Siが1〜5質量%の範囲で固溶したC3P相を析出させることができる。 Here, FIG. 4 shows the relationship between the cooling rate (° C./min) and the Si concentration (mass%) of the C 3 P phase. When steelmaking slag in a molten state is heated to 1000 ° C. or higher and 1700 ° C. or lower and cooled at a cooling rate of 15 ° C./min or higher, a C 3 P phase in which Si is dissolved in a range of 1 to 5% by mass is precipitated. be able to.

製鋼スラグの塩基度α(=CaO/SiO2)は、特に制約されないが、0.8〜2.0であると、Siが1〜5質量%の範囲で固溶したC3P相が析出し易い。それ故、製鋼スラグの塩基度αは0.8〜2.0が好ましい。 The basicity α (= CaO / SiO 2 ) of the steelmaking slag is not particularly limited, but when it is 0.8 to 2.0, a C 3 P phase in which Si is dissolved in the range of 1 to 5% by mass is precipitated. Easy to do. Therefore, the basicity α of the steelmaking slag is preferably 0.8 to 2.0.

また、製鋼スラグのりん酸濃度は、(−6α2+27α−6)質量%超、40質量%以下が好ましい。 Further, the phosphoric acid concentration of the steelmaking slag is preferably more than (−6α 2 + 27α-6) mass% and 40 mass% or less.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
Ca3(PO42とCa2SiO4を所定量秤量し、湿式で混合した後、混合粉の圧粉体を製造した。圧粉体を、1200〜1600℃で2時間焼成し、その後、冷却速度15℃/分で冷却して、X線構造解析(XRD)で、生成した鉱物相を解析し、また、その後、可溶性りん酸率を評価した。
(Example 1)
A predetermined amount of Ca 3 (PO 4 ) 2 and Ca 2 SiO 4 was weighed and mixed in a wet manner, and then a green compact of mixed powder was produced. The green compact is fired at 1200 to 1600 ° C. for 2 hours, then cooled at a cooling rate of 15 ° C./min, and the generated mineral phase is analyzed by X-ray structural analysis (XRD). The phosphoric acid rate was evaluated.

可溶性りん酸率が0.5未満の試料は×、0.5以上0.7未満の試料は○、0.7以上は◎として、りん酸肥料としての性能を評価した。結果を表3に示す。   Samples having a soluble phosphoric acid ratio of less than 0.5 were evaluated as “×”, samples of 0.5 or more and less than 0.7 were evaluated as “◯”, and samples of 0.7 or more were evaluated as “◎”. The results are shown in Table 3.

Figure 2015189592
Figure 2015189592

比較例1では、C3P相がSiを含有しないので、評価は×である。これに対し、発明例1〜3では、Si濃度が1〜5質量%のC3P相が確認され、かつ、評価が◎である。なお、参考例2と3では、評価は◎であるものの、固溶体相の析出が確認された。 In Comparative Example 1, since the C 3 P phase does not contain Si, the evaluation is x. On the other hand, in Invention Examples 1 to 3, a C 3 P phase having a Si concentration of 1 to 5% by mass is confirmed, and the evaluation is ◎. In Reference Examples 2 and 3, although the evaluation was ◎, precipitation of a solid solution phase was confirmed.

(実施例2)
表4に示す成分組成の製鋼スラグ試料を、1500〜1600℃に加熱して溶融し、次いで、所要の冷却速度で冷却して、りん酸肥料原料を製造した。りん酸肥料原料中に生成したりん酸鉱物相と、生成したC3P相のSi濃度(質量%)と存在比率、可溶性りん酸率を、併せて表4に示す。
(Example 2)
A steelmaking slag sample having the component composition shown in Table 4 was heated to 1500 to 1600 ° C to melt, and then cooled at a required cooling rate to produce a phosphate fertilizer raw material. Table 4 shows the Si concentration (mass%), the abundance ratio, and the soluble phosphoric acid ratio of the phosphate mineral phase generated in the phosphate fertilizer raw material and the generated C 3 P phase.

Figure 2015189592
Figure 2015189592

可溶性りん酸率が0.5未満の試料は×、0.5以上0.7未満の試料は○、0.7以上は◎として、りん酸肥料としての性能を評価した。C3P相のSi濃度(質量%)は、X線による結晶相解析と、SEM−EDSで測定した。なお、表4中、“t.Fe”は、酸化鉄の組成をFeに換算した組成である。発明例4〜7及び8では、評価が◎である。 Samples having a soluble phosphoric acid ratio of less than 0.5 were evaluated as “×”, samples of 0.5 or more and less than 0.7 were evaluated as “◯”, and samples of 0.7 or more were evaluated as “◎”. The Si concentration (% by mass) of the C 3 P phase was measured by X-ray crystal phase analysis and SEM-EDS. In Table 4, “t.Fe” is a composition in which the composition of iron oxide is converted to Fe. In invention examples 4-7 and 8, evaluation is (double-circle).

(実施例3)
3P相のSi濃度の差異による肥料効果の違いを確認するため、ヒロシマ菜を育て、生育が良かったものを◎、全く生育しなかったものを×として評価した。結果を表5に示す。
(Example 3)
In order to confirm the difference in fertilizer effect due to the difference in the Si concentration of the C 3 P phase, Hiroshima vegetables were grown and evaluated as を for those that grew well, and × for those that did not grow at all. The results are shown in Table 5.

Figure 2015189592
Figure 2015189592

本発明肥料原料を用いた発明例8では、評価が◎である。   In Invention Example 8 using the fertilizer raw material of the present invention, the evaluation is ◎.

前述したように、本発明によれば、酸化鉄を含むが、りん酸濃度が高く、肥料効果が高いりん酸肥料原料とその製造方法を提供することができる。よって、本発明は、鉄鋼産業及び植物育成産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a phosphate fertilizer raw material that contains iron oxide but has a high phosphate concentration and a high fertilizer effect, and a method for producing the same. Therefore, the present invention has high applicability in the steel industry and the plant breeding industry.

S00 高炉
S01 溶銑の脱りん処理
S02 脱炭処理
S03 2次製錬
S04 連続鋳造
S00 Blast furnace
S01 Dephosphorization of hot metal
S02 Decarburization treatment
S03 Secondary smelting
S04 Continuous casting

S11 還元・改質処理
S12 脱Cr処理
S13 脱りん処理
41 転炉脱りんスラグ
42 高りん溶銑
50 りん酸含有スラグ
51 溶銑
S11 Reduction / reformation treatment
S12 Cr removal treatment
S13 Dephosphorization 41 Converter dephosphorization slag 42 High phosphorus hot metal 50 Phosphoric acid containing slag 51 Hot metal

Claims (3)

CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上含有する
ことを特徴とするりん酸肥料原料。
CaO, SiO 2 , P 2 O 5 , and iron oxide (in terms of Fe) are 55% by mass or more, and 10% by mass of Ca 3 (PO 4 ) 2 phase in which Si is dissolved in 1 to 5% by mass. The phosphate fertilizer raw material characterized by containing above.
CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55質量%以上、及び、Siが1〜5質量%固溶するCa3(PO42相を10質量%以上含有し、塩基度α(=CaO/SiO2)が0.8〜2.0で、かつ、りん酸濃度が(−6α2+27α−6)(α:塩基度)質量%超、40質量%以下である
ことを特徴とするりん酸肥料原料。
CaO, SiO 2 , P 2 O 5 , and iron oxide (in terms of Fe) are 55% by mass or more, and 10% by mass of Ca 3 (PO 4 ) 2 phase in which Si is dissolved in 1 to 5% by mass. The basicity α (= CaO / SiO 2 ) is 0.8 to 2.0, and the phosphoric acid concentration is (−6α 2 + 27α-6) (α: basicity) more than 40% by mass, 40% by mass. Phosphate fertilizer raw material characterized by being less than or equal to%.
CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で55%質量以上含有し、塩基度α(=CaO/SiO2)が0.8〜2.0で、かつ、りん酸濃度が(−6α2+27α−6)(α:塩基度)%超、40質量%以下の製鋼スラグを、1000℃以上1700℃以下に加熱して溶融し、次いで、冷却速度15℃/分以上で冷却する
ことを特徴とするりん酸肥料原料の製造方法。
CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion) are contained in a total of 55% by mass or more, the basicity α (= CaO / SiO 2 ) is 0.8 to 2.0, and Steelmaking slag having a phosphoric acid concentration of more than (−6α 2 + 27α-6) (α: basicity)% and 40% by mass or less is heated to 1000 ° C. or more and 1700 ° C. or less, and then cooled at a cooling rate of 15 ° C. / The manufacturing method of the phosphate fertilizer raw material characterized by cooling in more than minutes.
JP2014065847A 2014-03-27 2014-03-27 Phosphate fertilizer raw material and method for producing the same Active JP6326904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014065847A JP6326904B2 (en) 2014-03-27 2014-03-27 Phosphate fertilizer raw material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065847A JP6326904B2 (en) 2014-03-27 2014-03-27 Phosphate fertilizer raw material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015189592A true JP2015189592A (en) 2015-11-02
JP6326904B2 JP6326904B2 (en) 2018-05-23

Family

ID=54424424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065847A Active JP6326904B2 (en) 2014-03-27 2014-03-27 Phosphate fertilizer raw material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6326904B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654155B2 (en) 2015-02-15 2017-05-16 Skyworks Solutions, Inc. Cascode amplifier segmentation for enhanced thermal ruggedness
CN106967440A (en) * 2017-04-14 2017-07-21 东南大学 Medicament and production and application method suitable for repairing Compound Heavy Metals soil
TWI686369B (en) * 2017-10-20 2020-03-01 日商日本製鐵股份有限公司 Dechrome method for melting milling and method for manufacturing raw material of phosphate fertilizer
JP2021091586A (en) * 2019-12-12 2021-06-17 Tdk株式会社 Dielectric composition and electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727991A (en) * 1980-07-22 1982-02-15 Kouhoku Sangyo Kk Manufacture of fused calcium magnesium phosphate
JP2004137136A (en) * 2001-10-31 2004-05-13 Jfe Steel Kk Raw material for silicate phosphate fertilizer, and its manufacturing method
WO2005123629A1 (en) * 2004-06-21 2005-12-29 Sanki Engineering Co., Ltd. Method and apparatus for producing phosphate fertilizer utilizing incineration ash

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727991A (en) * 1980-07-22 1982-02-15 Kouhoku Sangyo Kk Manufacture of fused calcium magnesium phosphate
JP2004137136A (en) * 2001-10-31 2004-05-13 Jfe Steel Kk Raw material for silicate phosphate fertilizer, and its manufacturing method
WO2005123629A1 (en) * 2004-06-21 2005-12-29 Sanki Engineering Co., Ltd. Method and apparatus for producing phosphate fertilizer utilizing incineration ash

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654155B2 (en) 2015-02-15 2017-05-16 Skyworks Solutions, Inc. Cascode amplifier segmentation for enhanced thermal ruggedness
CN106967440A (en) * 2017-04-14 2017-07-21 东南大学 Medicament and production and application method suitable for repairing Compound Heavy Metals soil
CN106967440B (en) * 2017-04-14 2020-09-11 东南大学 Medicament suitable for repairing composite heavy metal polluted soil and production and use methods thereof
TWI686369B (en) * 2017-10-20 2020-03-01 日商日本製鐵股份有限公司 Dechrome method for melting milling and method for manufacturing raw material of phosphate fertilizer
EP3699308A4 (en) * 2017-10-20 2021-03-17 Nippon Steel Corporation Method for dechromizing hot metal and method for producing phosphate fertilizer raw material
US11254992B2 (en) 2017-10-20 2022-02-22 Nippon Steel Corporation Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
JP2021091586A (en) * 2019-12-12 2021-06-17 Tdk株式会社 Dielectric composition and electronic component
JP7351205B2 (en) 2019-12-12 2023-09-27 Tdk株式会社 Dielectric compositions and electronic components

Also Published As

Publication number Publication date
JP6326904B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6458449B2 (en) Method for producing phosphate fertilizer raw material
JP6631265B2 (en) Method for producing derinsed slag
JP6119361B2 (en) Method for producing phosphoric acid-containing slag for fertilizer
JP6326904B2 (en) Phosphate fertilizer raw material and method for producing the same
JP6387776B2 (en) Method for producing phosphate fertilizer raw material from dephosphorized slag
JP6003911B2 (en) Phosphate fertilizer raw material, phosphate fertilizer and production method thereof
JP6303696B2 (en) Phosphate fertilizer raw material and production method thereof
JP6471640B2 (en) Phosphate fertilizer raw material and production method thereof
JP6969476B2 (en) Manufacturing method of high phosphorus content slag and slag fertilizer and phosphoric acid fertilizer
JP6988580B2 (en) Manufacturing method of phosphoric acid fertilizer raw material
JP6988532B2 (en) Phosphoric acid fertilizer raw material, silicic acid phosphoric acid fertilizer raw material and their manufacturing method
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
CN100449010C (en) Process for smelting ferrovanadium by extraction of vanadium from vanadium-containing errophosphorus
JP2019172547A (en) Manufacturing method of phosphoric acid fertilizer, and phosphoric acid fertilizer
JP6776892B2 (en) Phosphate fertilizer raw material and its manufacturing method
JP2019002060A (en) Method for separation and recovery of phosphorus from steelmaking slag
US11254992B2 (en) Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
JP6011556B2 (en) Method for producing phosphate fertilizer raw material
JP2011084777A (en) Steel-making refining method performed by using electric furnace
CN107849624B (en) Bessemerize method
US1979753A (en) Open-hearth slag utilization
JP4119923B2 (en) Silicic fertilizer
US821744A (en) Manufacture of steel from phosphoritic iron.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6326904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350