JP2015188850A - Method and apparatus for treating geothermal water - Google Patents

Method and apparatus for treating geothermal water Download PDF

Info

Publication number
JP2015188850A
JP2015188850A JP2014069025A JP2014069025A JP2015188850A JP 2015188850 A JP2015188850 A JP 2015188850A JP 2014069025 A JP2014069025 A JP 2014069025A JP 2014069025 A JP2014069025 A JP 2014069025A JP 2015188850 A JP2015188850 A JP 2015188850A
Authority
JP
Japan
Prior art keywords
tank
sludge
geothermal water
polymerization reaction
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014069025A
Other languages
Japanese (ja)
Inventor
匡晃 黒須
Masaaki Kurosu
匡晃 黒須
勇一 村松
Yuichi Muramatsu
勇一 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014069025A priority Critical patent/JP2015188850A/en
Publication of JP2015188850A publication Critical patent/JP2015188850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating geothermal water, in each of which silica in the geothermal water can be removed satisfactorily and the purity of the silica in the produced sludge can be made higher.SOLUTION: The method for treating geothermal water comprises: a polymerization reaction step of bringing raw water into contact with the returned sludge to polymerize silicic acid in the raw water; an anion polymer addition step of adding an anion polymer to the liquid obtained at the polymerization reaction step; a cation polymer addition step of adding a cation polymer to the liquid obtained at the anion polymer addition step; a solid-liquid separation step of subjecting the liquid obtained at the cation polymer addition step to solid-liquid separation; and a sludge return step of returning at least a part of the sludge separated at the solid-liquid separation step to the polymerization reaction step. The apparatus for treating geothermal water is also provided.

Description

本発明は、シリカを過飽和で含有する地熱水の処理方法及び処理装置に係り、特に地熱水中のシリカを効率的に除去し、かつ含水率の低いシリカ含有固形物を回収できるようにした地熱水の処理方法及び装置に関する。   The present invention relates to a method and an apparatus for treating geothermal water containing silica in a supersaturated state, and more particularly, to remove silica in geothermal water efficiently and recover a silica-containing solid having a low water content. The present invention relates to a hot water treatment method and apparatus.

地熱発電は、地中の高温地熱流体を噴出させ、分離された水蒸気を用いて発電を行うものであるが、この場合、水蒸気とともにシリカを数百ppmの濃度で含む地熱水(地熱熱水)が噴出する。噴出した地熱水は、地下還元井を経て地中に還流されるが、地熱流体の温度が250℃〜350℃であるのに対し、還流される地熱水の温度はオープン還元式で90℃〜95℃、高温還元式で110℃〜140℃、フラッシュバイナリー式やダブルフラッシュ式で90℃〜95℃と低温であるため、地熱水におけるシリカの溶解度は相対的に低下する。しかも、水蒸気との分離に伴いシリカが濃縮されることから、地熱水に含まれるシリカの一部は過飽和状態となる。   Geothermal power generation involves generating high-temperature geothermal fluid in the ground and generating power using separated water vapor. In this case, geothermal water (geothermal water) containing silica at a concentration of several hundred ppm with water vapor is used. ) Erupts. The ejected geothermal water is returned to the ground through an underground reduction well, whereas the temperature of the geothermal fluid is 250 ° C. to 350 ° C., whereas the temperature of the returned geothermal water is 90 in an open reduction type. Since the temperature is as low as 110 ° C. to 95 ° C., 110 ° C. to 140 ° C. in the high temperature reduction method, and 90 ° C. to 95 ° C. in the flash binary method or the double flash method, the solubility of silica in geothermal water is relatively lowered. Moreover, since silica is concentrated with the separation from water vapor, a part of the silica contained in the geothermal water is supersaturated.

この過飽和シリカはシリカスケールとして地熱発電所内の熱水経路や前記地下還元井の内壁等に析出、付着しやすいため、熱交換器の熱効率低下や前記熱水経路の閉塞、あるいは前記地下還元井の容量減少等の原因となっている。しかも、このシリカスケールは前記内壁等に強固に付着して除去が困難であるため、シリカスケールの付着が進行した場合には、前記熱水経路あるいは地下還元井の使用を中断し、シリカスケールを除去しなければならない。このように、地熱水中におけるシリカの存在は、地熱水の利用上大きな障害となっている。   This supersaturated silica is likely to deposit and adhere as a silica scale on the hot water path in the geothermal power plant and the inner wall of the underground reduction well, etc., so that the heat efficiency of the heat exchanger is reduced, the hot water path is blocked, or the underground reduction well This causes a decrease in capacity. In addition, since the silica scale adheres firmly to the inner wall and the like and is difficult to remove, when the silica scale adheres, the use of the hot water path or the underground reduction well is interrupted, and the silica scale is removed. Must be removed. Thus, the presence of silica in geothermal water is a major obstacle to the use of geothermal water.

地熱水中に含有されるシリカを除去し、前記熱水経路あるいは地下還元井に対するシリカスケールの付着を防止するための方法として、特公平3−24278(特開昭58−86864)には、噴出直後または蒸気生産後の地熱水を滞留槽に滞留させて該地熱水中の過飽和シリカを重合シリカへ変えた後、凝集沈殿槽にて無機凝集剤(Al塩、Fe塩、Ca塩又はMg塩)で凝集沈殿処理し、熱水中のシリカを飽和溶解度以下まで除去する方法が記載されている。   Japanese Patent Publication No. 3-24278 (Japanese Patent Laid-Open No. 58-86864) discloses a method for removing silica contained in geothermal water and preventing silica scale from adhering to the hydrothermal channel or underground reduction well. Alternatively, the geothermal water after steam production is retained in a retention tank and the supersaturated silica in the geothermal water is changed to polymerized silica, and then an inorganic flocculant (Al salt, Fe salt, Ca salt or Mg salt) in the coagulation sedimentation tank. Describes a method of coagulating and precipitating to remove silica in hot water to a saturation solubility or lower.

また、特開平7−24475には、地熱水にシリカ吸着性を有するシードを添加し、地熱水中のシリカをシードに吸着させた後、固液分離し、得られた固形分の一部をシードとして再使用する地熱水の処理方法であって、地熱水に必要に応じ塩化カルシウムを添加した後、地熱水中のシリカがゲル化するまで地熱水を加熱濃縮し、得られたゲルの一部を前記シードとして再使用する方法が記載されている。   Further, in JP-A-7-24475, a seed having silica adsorptivity is added to geothermal water, and silica in geothermal water is adsorbed to the seed, followed by solid-liquid separation, and a part of the obtained solid content is obtained. A method for treating geothermal water to be reused as a seed, and after adding calcium chloride to the geothermal water as necessary, the gel is obtained by heating and concentrating the geothermal water until the silica in the geothermal water gels. A method is described in which a part of is reused as the seed.

特公平3−242783-24278 特開平7−24475JP-A-7-24475

特許文献1のように、地熱水を滞留させて重合させた後、Al塩、Fe塩、Ca塩又はMg塩を添加してシリカを凝集させ、除去する方法では、シリカを効率よく除去でき、かつ含水率の低い汚泥を得ることができるが、上記塩を添加したことにより汚泥中のシリカ純度が低くなり、セメント原料等の有価物として有効利用するのは難しい。   As described in Patent Document 1, after the geothermal water is retained and polymerized, the silica is efficiently removed by adding the Al salt, Fe salt, Ca salt or Mg salt to agglomerate and remove the silica. In addition, sludge having a low moisture content can be obtained. However, the addition of the above salt lowers the silica purity in the sludge, making it difficult to effectively use it as a valuable material such as a cement raw material.

特許文献2のように、シリカゲルを生成させてシードとして地熱水に添加する方法では、重合反応面積を高めることで水中の溶存シリカを効率よく除去でき、かつ純度の高いシリカが回収できるが、添加したシリカゲルが地熱水から除去されない場合は、シリカゲルがスケールの核として処理水とともに還元井に戻ることになり、却ってシリカスケーリングリスクが高まる可能性がある。なお、単なるシリカゲルの循環による重合反応では、シリカポリマー表面のシラノール基の活性化反応(≡Si−OH+OH⇔≡Si−O+HO)や、シラノール基活性サイトと分子状シリカモノマーの重合反応(≡Si−O+Si(OH)⇔≡Si−O−Si(OH)+OH)等の反応が十分には進行しにくい。 As in Patent Document 2, in the method of generating silica gel and adding it to geothermal water as a seed, dissolved silica in water can be efficiently removed by increasing the polymerization reaction area, and high-purity silica can be recovered. If the added silica gel is not removed from the geothermal water, the silica will return to the reduction well along with the treated water as a scale nucleus, which may increase the silica scaling risk. In the polymerization reaction by circulation of mere silica gel, activated reactive silanol groups of the silica polymer surface (≡Si-OH + OH - ⇔≡Si -O - + H 2 O) and the polymerization of the silanol group active sites and molecular silica monomer Reactions such as reaction (≡Si—O + Si (OH) 4 ⇔≡Si—O—Si (OH) 3 + OH ) do not proceed sufficiently.

本発明は、上記従来の問題点を解消し、地熱水のシリカを十分に除去することができ、また、生成する汚泥中のシリカ純度も高い地熱水の処理方法及び装置を提供することを目的とする。   The present invention provides a method and apparatus for treating geothermal water that solves the above-mentioned conventional problems, can sufficiently remove silica of geothermal water, and has high silica purity in the generated sludge. With the goal.

本発明の地熱水の処理方法は、地熱水と返送汚泥とを接触させ、地熱水中のシリカを重合させる重合反応工程と、重合反応工程からの液にアニオンポリマーを添加するアニオンポリマー添加工程と、該アニオンポリマー添加工程からの液にカチオンポリマーを添加するカチオンポリマー添加工程と、該カチオンポリマー添加工程からの液を固液分離する固液分離工程と、固液分離工程で分離された汚泥の少なくとも一部を前記重合反応工程に返送する汚泥返送工程とを有する。   The method for treating geothermal water of the present invention includes a polymerization reaction step in which geothermal water and return sludge are brought into contact with each other to polymerize silica in geothermal water, and an anionic polymer addition step in which an anionic polymer is added to the liquid from the polymerization reaction step. A cationic polymer addition step for adding a cationic polymer to the liquid from the anionic polymer addition step, a solid-liquid separation step for solid-liquid separation of the liquid from the cationic polymer addition step, and sludge separated in the solid-liquid separation step A sludge returning step of returning at least a part of the sludge to the polymerization reaction step.

本発明の地熱水の処理装置は、地熱水と返送汚泥とを接触させ、地熱水中のシリカを重合させる重合反応槽と、重合反応槽からの液にアニオンポリマーを添加するアニオンポリマー添加槽と、該アニオンポリマー添加槽からの液にカチオンポリマーを添加するカチオンポリマー添加槽と、該カチオンポリマー添加槽からの液を固液分離する固液分離手段と、固液分離手段で分離された汚泥の少なくとも一部を前記重合反応工程に返送する汚泥返送手段とを有する。   The geothermal water treatment apparatus of the present invention comprises a polymerization reaction tank for bringing geothermal water and return sludge into contact with each other to polymerize silica in geothermal water, and an anionic polymer addition tank for adding an anionic polymer to the liquid from the polymerization reaction tank. A cationic polymer addition tank for adding a cationic polymer to the liquid from the anion polymer addition tank, a solid-liquid separation means for solid-liquid separation of the liquid from the cationic polymer addition tank, and sludge separated by the solid-liquid separation means And a sludge returning means for returning at least a part thereof to the polymerization reaction step.

本発明では、重合反応工程におけるpHを7.0〜8.7とすることが好ましい。なお、原水pHが7.0より低い場合は、酸添加工程を加えて前記pHとなるように調整する。上記の酸としては、特に制限はないが、塩酸、硫酸などを用いることができる。   In the present invention, the pH in the polymerization reaction step is preferably 7.0 to 8.7. In addition, when raw | natural water pH is lower than 7.0, an acid addition process is added and it adjusts so that it may become the said pH. Although there is no restriction | limiting in particular as said acid, Hydrochloric acid, a sulfuric acid, etc. can be used.

本発明では、返送汚泥の一部または全量にアルカリをpH8.5〜11となるように添加した後、重合反応工程に返送することが好ましい。   In the present invention, it is preferable to add alkali to part or all of the returned sludge so that the pH becomes 8.5 to 11, and then return it to the polymerization reaction step.

本発明では、カチオンポリマー添加工程からの液又は固液分離工程からの分離水の濁度を測定してカチオンポリマー添加量を調節することが好ましい。   In the present invention, it is preferable to adjust the addition amount of the cationic polymer by measuring the turbidity of the liquid from the cationic polymer addition step or the separated water from the solid-liquid separation step.

本発明では、地熱水をpH7.0〜8.7とすることにより、地熱水中のシリカを重合させ、次いで、アニオンポリマーを添加し、その後カチオンポリマーを添加してフロックを生成させ、このフロックを固液分離により地熱水と分離する。このアニオンポリマーの添加により、重合したシリカが地熱水中に均一に分散し、その後のカチオンポリマーの添加により、重合シリカがアニオンポリマーを巻き込んだ形で凝集し、固液分離性の良好なフロックが成長する。このフロックを固液分離することにより、シリカ濃度の低い処理水が得られる。   In the present invention, the silica in the geothermal water is polymerized by adjusting the pH of the geothermal water to 7.0 to 8.7, then an anionic polymer is added, and then a cationic polymer is added to generate a floc. Is separated from geothermal water by solid-liquid separation. By the addition of this anionic polymer, the polymerized silica is uniformly dispersed in geothermal water, and the subsequent addition of the cationic polymer causes the polymerized silica to agglomerate in a form involving the anionic polymer, thereby growing a floc with good solid-liquid separation properties. To do. By separating this floc into solid and liquid, treated water having a low silica concentration can be obtained.

本発明では、Al塩、Fe塩、Ca塩又はMg塩を一切添加せずに、シリカの重合反応及び凝集反応を進行させるため、純度の高いシリカを回収することができ、セメント原料等の有価物としての利用が可能となる。   In the present invention, the silica polymerization reaction and agglomeration reaction are allowed to proceed without adding any Al salt, Fe salt, Ca salt or Mg salt, so that high-purity silica can be recovered. It can be used as a product.

本発明の地熱水の処理方法及び装置を説明するフロー図である。It is a flowchart explaining the processing method and apparatus of the geothermal water of this invention. 実施例で用いた装置のフロー図である。It is a flowchart of the apparatus used in the Example.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明で処理対象となる地熱水は、噴出直後又は蒸気生産後の熱水(通常80℃以上、pHは7.0〜9.0)である。この地熱水中には、通常シリカが500〜1000mg/L程度含まれている。   The geothermal water to be treated in the present invention is hot water immediately after jetting or after steam production (usually 80 ° C. or higher, pH is 7.0 to 9.0). The geothermal water usually contains about 500 to 1000 mg / L of silica.

本発明では、このシリカを図1の通り、以下の4ステップで除去する。
1)地熱水を重合反応槽1に導入し、後段の工程からのシリカ除去物の汚泥(その少なくとも一部は化学反応槽2で改質されている。)を添加しシリカを重合反応させる。この重合反応によりSS量が増加する。
2)第1凝集槽3でアニオンポリマーを添加し、均一に分散させる。
3)第2凝集槽4でカチオンポリマーを添加し、重合シリカとアニオンポリマーを架橋させて沈降性の良いフロックを形成(凝集)させる。
4)固液分離手段(図1では沈殿槽)5でフロックを除去する。
In the present invention, this silica is removed in the following four steps as shown in FIG.
1) Geothermal water is introduced into the polymerization reaction tank 1, and silica sludge (at least part of which is modified in the chemical reaction tank 2) from the subsequent stage is added to cause the silica to undergo a polymerization reaction. . This polymerization reaction increases the amount of SS.
2) Add an anionic polymer in the first coagulation tank 3 and disperse it uniformly.
3) A cationic polymer is added in the second aggregating tank 4 to crosslink the polymerized silica and the anionic polymer to form (aggregate) flocs with good sedimentation.
4) The floc is removed by the solid-liquid separation means (precipitation tank in FIG. 1) 5.

上記重合反応槽1での重合反応が十分に進行するほど、第2凝集槽4におけるシリカとアニオンポリマーの荷電中和に必要なカチオンポリマーの添加量を低減できる。重合反応槽1の滞留時間は0.1〜1h特に0.3〜0.6h程度が好ましい。重合反応槽1のpHは7.0〜8.7、特に7.4〜8.3が好ましい。pHが低すぎると重合反応が進行しにくくなり、pHが高すぎてもシリカがイオン化しやすくなり、重合したとしても溶解しやすくなる。また、水中のホウ素や重炭酸イオンがpH緩衝剤となるため、原水pHから乖離するほど酸・アルカリ使用量に大きく影響する。   As the polymerization reaction in the polymerization reaction tank 1 proceeds sufficiently, the addition amount of the cationic polymer necessary for charge neutralization of the silica and the anion polymer in the second aggregation tank 4 can be reduced. The residence time in the polymerization reactor 1 is preferably about 0.1 to 1 h, particularly about 0.3 to 0.6 h. The pH of the polymerization reactor 1 is preferably 7.0 to 8.7, particularly preferably 7.4 to 8.3. If the pH is too low, the polymerization reaction is difficult to proceed. If the pH is too high, the silica is easily ionized, and even if polymerized, it is easily dissolved. Further, since boron and bicarbonate ions in water serve as a pH buffer, the amount of acid / alkali used is greatly affected as the pH deviates from the raw water pH.

第1凝集槽3におけるアニオンポリマー添加量は、アモルファス(全)シリカ濃度を800mg/Lから400mg/L程度にまで低減する場合は、1〜10mg/L程度、特に2〜5mg/Lが好ましい。アニオンポリマー添加量は、地熱水中のシリカ濃度に比例して、この添加量を基準として決定するのが好ましい。アニオンポリマーの添加量が多すぎると、アニオンポリマー由来の荷電を中和するために第2凝集槽4におけるカチオンポリマーの必要添加量が増加してしまう。アニオンポリマーの添加量が少なすぎると、フロックの強度が十分でなく、沈降性が悪化する。上記のアニオンポリマーとしては、特に制限はないが、ポリアクリル酸、アクリル酸とアクリルアミドの共重合体、ポリアクリルアミド加水分解物、アクリルアミドと2−メチルプロパンスルホン酸の共重合体、これらの重合体の塩などを用いることができ、その添加量はポリマーのアニオン度にもよるが、1〜10mg/L特に2〜5mg/L程度が好ましい。   When the amorphous (total) silica concentration is reduced from about 800 mg / L to about 400 mg / L, the amount of the anionic polymer added in the first aggregating tank 3 is preferably about 1 to 10 mg / L, particularly preferably 2 to 5 mg / L. The addition amount of the anionic polymer is preferably determined based on this addition amount in proportion to the silica concentration in the geothermal water. When there is too much addition amount of an anionic polymer, in order to neutralize the charge derived from an anion polymer, the required addition amount of the cationic polymer in the 2nd aggregation tank 4 will increase. When the amount of the anionic polymer added is too small, the floc strength is not sufficient and the sedimentation property is deteriorated. The anionic polymer is not particularly limited, but polyacrylic acid, a copolymer of acrylic acid and acrylamide, a polyacrylamide hydrolyzate, a copolymer of acrylamide and 2-methylpropanesulfonic acid, A salt or the like can be used, and the addition amount depends on the anion degree of the polymer, but is preferably about 1 to 10 mg / L, particularly about 2 to 5 mg / L.

第2凝集槽4におけるカチオンポリマー添加量は、少なすぎると固液分離後の処理水中に濁質が残留する。一方、過剰に添加してもフロックが分散し、濁質が多く発生する。沈降性の良好なフロックを生成させるためには、カチオンポリマー添加後の液又は固液分離処理後の処理水の濁度を測定し、この濁度が最小化するようにカチオンポリマーの添加量を調整することが好ましい。ここで、固液分離手段5が遠心分離機の場合は滞留時間が短いため、固液分離後の処理水の濁度を測定すればよいが、沈殿槽の場合は滞留時間が長く、カチオンポリマーの注入量の制御に大きく影響するため、沈殿槽を用いた場合の濁度測定箇所は、フロックが除去された上澄液が採取できるフィードウェル5aの上部が好ましい。   If the addition amount of the cationic polymer in the second flocculation tank 4 is too small, turbidity remains in the treated water after solid-liquid separation. On the other hand, even if added excessively, floc is dispersed and a lot of turbidity is generated. In order to generate flocs with good sedimentation properties, the turbidity of the liquid after the addition of the cationic polymer or the treated water after the solid-liquid separation treatment is measured, and the amount of the cationic polymer added is adjusted so that this turbidity is minimized. It is preferable to adjust. Here, since the residence time is short when the solid-liquid separation means 5 is a centrifuge, the turbidity of treated water after solid-liquid separation may be measured. Therefore, the turbidity measurement location in the case of using a sedimentation tank is preferably the upper part of the feed well 5a from which the supernatant from which the floc has been removed can be collected.

濁度計としては、透過光法、散乱光法、表面散乱光法等のいずれでもよいが、シリカスケールの影響を受けにくい非接触式の表面散乱光法が望ましい。ただし、耐熱性に限度があるため、純水や水道水で希釈・冷却してから測定する等の対策を講じるのが好ましい。また、採取した水に含まれる微量の成長フロックを除去し、難沈降性または非沈降性の濁質のみの濃度を測定するため、たとえば、沈殿槽フィードウェルと同等の水面積負荷を有する上向流速の固液分離槽を経た水について希釈・測定するのが望ましい。濁度の最小化の目安は20NTU以下、さらに望ましくは10NTU以下を目標とするのがよい。   The turbidimeter may be any of a transmitted light method, a scattered light method, a surface scattered light method and the like, but a non-contact type surface scattered light method which is not easily affected by silica scale is desirable. However, since there is a limit to heat resistance, it is preferable to take measures such as measurement after dilution and cooling with pure water or tap water. In addition, in order to remove a small amount of growth flocs contained in the collected water and measure the concentration of only turbidity that is difficult to settle or non-sediment, It is desirable to dilute and measure water that has passed through a solid-liquid separation tank at a flow rate. The standard for minimizing turbidity should be 20 NTU or less, more preferably 10 NTU or less.

通常は固液分離処理水の濁度が最小とするためにカチオンポリマー添加量を増やすよう制御するが、カチオンポリマー添加量を増やしても固液分離処理水の濁度が上昇傾向にある場合はカチオンポリマー添加量過剰とみなし、添加量を低減するように制御を切り替えるように制御するのが好ましい。上記のカチオンポリマーとしては、特に制限はないが、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリ(メタクリル酸2−ジメチルアミノエチル)、ポリ(2−ビニル−1−メチルピリニジウム)、ポリ(ジアリルジメチルアンモニウム)、ジアルキルアミン−エピクロルヒドリン重縮合物、ポリリジン、キトサンなどを用いることができ、その添加量はポリマーのカチオン度にもよるが、
1〜20mg/L特に2〜10mg/L程度が好ましい。
Normally, control is performed to increase the amount of cationic polymer added in order to minimize the turbidity of solid / liquid separation treated water, but if the turbidity of solid / liquid separation treated water tends to increase even if the amount of cationic polymer added is increased, It is preferable to perform control so as to switch the control so that the addition amount of the cationic polymer is regarded as excessive. The cationic polymer is not particularly limited, but polyethyleneimine, polyallylamine, polyvinylamine, poly (2-dimethylaminoethyl methacrylate), poly (2-vinyl-1-methylpyridinium), poly (diallyl) Dimethylammonium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, and the like, and the addition amount depends on the cation degree of the polymer,
1-20 mg / L, especially about 2-10 mg / L is preferable.

なお、第1凝集槽3でカチオンポリマーを添加し、第2凝集槽4でアニオンポリマーを添加してもシリカ除去処理は可能であるが、この場合はカチオンポリマー必要量の目安がはっきりしない。図1のフローによれば、フロックがある程度成長してから、液の濁度を測定してカチオンポリマーの必要量を決定することができるので、カチオンポリマーの添加量を適切に制御することができる。   The silica removal treatment is possible even if the cationic polymer is added in the first flocculating tank 3 and the anionic polymer is added in the second flocculating tank 4, but in this case, the required amount of the cationic polymer is not clear. According to the flow of FIG. 1, after the floc grows to some extent, the turbidity of the liquid can be measured to determine the necessary amount of the cationic polymer, so that the amount of the cationic polymer added can be appropriately controlled. .

固液分離手段5としては、沈殿槽、遠心分離機、MF膜等を使用することができるが、膜濾過ではコロイド状シリカによる目詰まりのおそれがあるので、沈殿槽又は遠心分離機が望ましい。固液分離手段5では処理水の濁度管理が非常に重要となる。上澄液の濁度を測定し、測定値が上昇した時は後段の非常用濾過装置で濾過する等の対応を行うのが好ましい。   As the solid-liquid separation means 5, a precipitation tank, a centrifuge, an MF membrane, or the like can be used. However, in membrane filtration, there is a possibility of clogging with colloidal silica, and thus a precipitation tank or a centrifuge is desirable. In the solid-liquid separation means 5, turbidity management of the treated water is very important. The turbidity of the supernatant is measured, and when the measured value rises, it is preferable to take measures such as filtering with a subsequent emergency filter.

固液分離手段5での固液分離により発生する汚泥は、汚泥ポンプ6によりその一部を引き抜いて遠心濃縮機等を用いて減容し、次いで遠心脱水機等を用いて脱水する。汚泥の残部は、返送ライン7,7aを介して重合反応槽1に返送するが、このとき、汚泥中のシリカのシラノール基を解離させて活性化するため、返送汚泥の一部または全量をライン7bを介して化学反応槽2に送り、ここで化学反応槽2のpHが8.5〜10程度となるように水酸化ナトリウムを添加するのが好ましい。シリカポリマー表面のシラノール基の活性化反応は、次式で表わされる。
≡Si−OH+OH⇔≡Si−O+H
A part of the sludge generated by the solid-liquid separation in the solid-liquid separation means 5 is pulled out by the sludge pump 6 and reduced using a centrifugal concentrator or the like, and then dehydrated using a centrifugal dehydrator or the like. The remainder of the sludge is returned to the polymerization reaction tank 1 through the return lines 7 and 7a. At this time, the silanol group of the silica in the sludge is dissociated and activated, so a part or all of the returned sludge is lined up. It is preferable to add sodium hydroxide so that the pH of the chemical reaction tank 2 is about 8.5 to 10 through the chemical reaction tank 2 via 7b. The activation reaction of the silanol group on the silica polymer surface is represented by the following formula.
≡Si—OH + OH ⇔≡Si—O + H 2 O

こうして活性化された汚泥は、ライン8を介して重合反応槽1に送られ、同じく重合反応槽1に流入する熱水中のシリカモノマーと反応して、重合反応が進行する。   The activated sludge is sent to the polymerization reaction tank 1 via the line 8 and reacts with the silica monomer in the hot water that also flows into the polymerization reaction tank 1 to proceed the polymerization reaction.

重合反応槽1におけるシラノール基活性サイトと分子状シリカモノマーの重合反応は次式で表わされる。
≡Si−O+Si(OH)⇔≡Si−O−Si(OH)+OH
The polymerization reaction of the silanol group active site and the molecular silica monomer in the polymerization reaction tank 1 is represented by the following formula.
≡Si—O + Si (OH) 4 ⇔≡Si—O—Si (OH) 3 + OH

重合反応槽1内のSS濃度には特に制限はないが、SS濃度が高いほど熱水中のシリカモノマーとの反応場が増えるため、2000〜10000mg/L程度とするのが望ましく、この範囲に入るように返送汚泥量を制御するのが望ましい。返送量の目安としては、汚泥SS濃度にもよるが、熱水流入量に対し、1/10〜1/4容量程度が望ましい。   Although there is no restriction | limiting in particular in SS concentration in the polymerization reaction tank 1, Since the reaction field with the silica monomer in hot water increases so that SS concentration is high, it is desirable to set it as about 2000-10000 mg / L, and it is in this range. It is desirable to control the amount of returned sludge so that it enters. As a standard of the return amount, although it depends on the sludge SS concentration, about 1/10 to 1/4 capacity with respect to the inflow amount of hot water is desirable.

化学反応槽2への返送汚泥流入比率及び化学反応槽2へのNaOH添加量は特に限定しないが、化学反応槽2内のpHがシラノール基の活性化が起きやすいpH8.5〜10.0となるように調整するのが好ましい。残りの返送汚泥は活性こそ低いものの、シリカ重合の反応場として依然重要な役割を果たす。   There are no particular limitations on the ratio of the return sludge flow into the chemical reaction tank 2 and the amount of NaOH added to the chemical reaction tank 2, but the pH in the chemical reaction tank 2 tends to activate silanol groups and is 8.5 to 10.0. It is preferable to adjust so that it becomes. The remaining return sludge, although less active, still plays an important role as a reaction site for silica polymerization.

なお、本発明では、化学反応槽2は必須ではなく、シリカ除去の要求レベルによっては省略されてもよい。化学反応槽2を省略する場合は、重合反応槽1にNaOHを重合反応槽1のpHが7〜8.7特に7.4〜8.3となるように添加する。   In the present invention, the chemical reaction tank 2 is not essential and may be omitted depending on the required level of silica removal. When the chemical reaction tank 2 is omitted, NaOH is added to the polymerization reaction tank 1 so that the pH of the polymerization reaction tank 1 is 7 to 8.7, particularly 7.4 to 8.3.

一般に、シリカ重合反応ではpH計、撹拌羽根、装置内壁等へのシリカスケールの付着・成長が問題となる。スケール付着を抑制するには、重合反応槽1の内面をスケールが付着しにくい素材(例:フッ素樹脂コーティングした素材)で構成したり、pH計を2重化し、定期的にアルカリ浸漬洗浄する、返送汚泥量を増やしてシリカモノマーの汚泥への優先的な重合を促進するなどの対策をとるのが好ましい。   In general, in silica polymerization reaction, adhesion and growth of silica scale on a pH meter, a stirring blade, an inner wall of the apparatus and the like becomes a problem. In order to suppress the scale adhesion, the inner surface of the polymerization reaction tank 1 is made of a material that does not easily adhere to the scale (eg, a material coated with fluororesin), or the pH meter is doubled and periodically immersed in an alkali. It is preferable to take measures such as increasing the amount of returned sludge to promote preferential polymerization of silica monomer into sludge.

熱水によってはヒ素が含まれており、熱水から除去して回収するシリカ汚泥がヒ素を含むことがある。この汚泥中のヒ素大部分は、ヒ素を含まないタービン復水等により洗浄することで除去することができる。汚泥の洗浄方法としては、遠心脱水機で回収シリカ汚泥を脱水した後、洗浄水を注入して脱水ケーキに付着したヒ素を押し出す方法などがあげられる。   Some hot water contains arsenic, and silica sludge removed and recovered from hot water may contain arsenic. Most of the arsenic in the sludge can be removed by washing with a turbine condensate containing no arsenic. Examples of the sludge washing method include a method in which the recovered silica sludge is dehydrated by a centrifugal dehydrator and then the washing water is injected to extrude arsenic adhering to the dehydrated cake.

以上のプロセスを経ることで、少ない薬剤消費量で地熱水からシリカ重合物を回収することができ、シリカ濃度が低減された処理水を得ることができる。処理水は還元井に戻すが、その際に硫酸を添加してpHを低減することでさらにスケーリングリスクを低減できる。回収シリカの脱水ケーキは含水率80%程度となるが、自然乾燥や熱風乾燥を経たのちに、セメント原料等に利用することができる。   By passing through the above process, a silica polymer can be recovered from geothermal water with a small amount of chemical consumption, and treated water with a reduced silica concentration can be obtained. The treated water is returned to the reducing well, but the scaling risk can be further reduced by adding sulfuric acid to reduce the pH. The dehydrated cake of recovered silica has a moisture content of about 80%, but can be used as a cement raw material after natural drying or hot air drying.

以下、実施例及び比較例について説明する。以下の実施例及び比較例では図2に示す試験装置を用いた。   Hereinafter, examples and comparative examples will be described. In the following examples and comparative examples, the test apparatus shown in FIG. 2 was used.

この試験装置では、原水が原水槽11から原水ポンプ12によって容量5Lのプレ恒温槽13に導入される。このプレ恒温槽13はヒータ13aによって還元井への戻り温度とほぼ同等の90〜95℃に保たれる。   In this test apparatus, raw water is introduced from a raw water tank 11 into a 5 L pre-constant temperature tank 13 by a raw water pump 12. The pre-temperature bath 13 is maintained at 90 to 95 ° C., which is substantially equal to the return temperature to the reduction well by the heater 13a.

プレ恒温槽13内の原水は、中和槽14に導入され、塩酸タンク15内の20wt%濃度の塩酸がポンプ16によって添加され、pH約6とされ、一時的にシリカの重合反応を遅らせる。中和槽14内の液は第1反応槽17に導入(移流)される。第1反応槽(重合反応槽)17には、ライン18を介して化学反応槽33からの改質汚泥が添加可能とされ、ライン19を介して、沈殿槽29からの沈降汚泥が添加可能とされ、ライン20a及びポンプ20を介して苛性ソーダタンク21から25wt%濃度の苛性ソーダ水溶液が添加可能とされている。   The raw water in the pre-isothermal tank 13 is introduced into the neutralization tank 14, and 20 wt% hydrochloric acid in the hydrochloric acid tank 15 is added by the pump 16 to a pH of about 6 to temporarily delay the silica polymerization reaction. The liquid in the neutralization tank 14 is introduced (transferred) into the first reaction tank 17. In the first reaction tank (polymerization reaction tank) 17, the modified sludge from the chemical reaction tank 33 can be added via the line 18, and the precipitated sludge from the precipitation tank 29 can be added via the line 19. Then, a 25 wt% aqueous solution of caustic soda can be added from the caustic soda tank 21 via the line 20 a and the pump 20.

第1反応槽17内の液は、第2反応槽22に移流され、さらに該第2反応槽22から第1凝集槽23に移流される。この第1凝集槽23には、アニオンポリマータンク24からポンプ25を介してアニオンポリマー水溶液が添加可能とされている。アニオンポリマー水溶液としては、栗田工業株式会社製クリフロックPA−331の0.1%水溶液を用いた。   The liquid in the first reaction tank 17 is transferred to the second reaction tank 22, and further transferred from the second reaction tank 22 to the first aggregation tank 23. An anionic polymer aqueous solution can be added to the first flocculation tank 23 from an anionic polymer tank 24 through a pump 25. As the anionic polymer aqueous solution, a 0.1% aqueous solution of Cliff Rock PA-331 manufactured by Kurita Kogyo Co., Ltd. was used.

第1凝集槽23内の液は、第2凝集槽26に移流される。第2凝集槽26には、カチオンポリマータンク27からポンプ28を介してカチオンポリマー水溶液が添加可能とされている。カチオンポリマー水溶液としては、栗田工業株式会社製ゼータエースP−702の1%水溶液を用いた。   The liquid in the first flocculation tank 23 is transferred to the second flocculation tank 26. A cationic polymer aqueous solution can be added to the second flocculation tank 26 from a cationic polymer tank 27 via a pump 28. As the cationic polymer aqueous solution, a 1% aqueous solution of Zeta Ace P-702 manufactured by Kurita Kogyo Co., Ltd. was used.

第2凝集槽26内の液は、沈殿槽29の下部に導入され、沈殿槽29の上部から上澄水が処理水として流出する。沈殿槽29で沈降した汚泥は、ライン30及び汚泥ポンプ31を介して取り出される。取り出された汚泥の一部は、前記ライン19を介して第1反応槽17に返送される。汚泥の残部はライン32を介して化学反応槽33に導入される。この化学反応槽33には、前記苛性ソーダタンク21内の苛性ソーダがポンプ20及びライン20bを介して添加可能とされている。化学反応槽33内において苛性ソーダが添加及び混合された汚泥は、前記ライン18を介して第1反応槽17に返送可能とされている。   The liquid in the second flocculation tank 26 is introduced into the lower part of the precipitation tank 29, and the supernatant water flows out as treated water from the upper part of the precipitation tank 29. The sludge settled in the settling tank 29 is taken out via the line 30 and the sludge pump 31. A part of the extracted sludge is returned to the first reaction tank 17 via the line 19. The remainder of the sludge is introduced into the chemical reaction tank 33 via the line 32. Caustic soda in the caustic soda tank 21 can be added to the chemical reaction tank 33 via the pump 20 and the line 20b. Sludge to which caustic soda is added and mixed in the chemical reaction tank 33 can be returned to the first reaction tank 17 via the line 18.

槽14,17,22,23,26,29,33は、100℃の恒温槽40によって加温されている。槽14,17,22,23,26,33には撹拌機Mが設けられている。槽14,17にはpH計が設けられ、槽14,17内が所定pHとなるようにポンプ16,20の薬注量が制御される。槽13には温度計TIが設けられている。   The tanks 14, 17, 22, 23, 26, 29 and 33 are heated by a constant temperature bath 40 of 100 ° C. The tanks 14, 17, 22, 23, 26, 33 are provided with a stirrer M. The tanks 14 and 17 are provided with pH meters, and the dosages of the pumps 16 and 20 are controlled so that the tanks 14 and 17 have a predetermined pH. The tank 13 is provided with a thermometer TI.

各槽の容積V、滞留時間(RT)、pH等は次の通りである。   The volume V, residence time (RT), pH, etc. of each tank are as follows.

中和槽14:V=100mL、RT=1min、pH約6
第1反応槽17:V=2L、RT=16〜20min、pH:表1の通り
第2反応槽22:V=2L、RT=16〜20min、
pH:第1反応槽17とほぼ同等
第1凝集槽23:V=500mL、RT=4〜5min
第2凝集槽26:V=500mL、RT=4〜5min
沈殿槽29:水平断面積A=10cm、LV=6m/h
化学反応槽33:V=50mL、RT<5min、pH:表1の通り
原水槽11内の原水としては、全シリカ濃度800mg/L(25℃、pH12)の珪酸ナトリウム水溶液を用いた。
Neutralization tank 14: V = 100 mL, RT = 1 min, pH about 6
First reaction tank 17: V = 2L, RT = 16-20min, pH: as shown in Table 1 Second reaction tank 22: V = 2L, RT = 16-20min,
pH: almost the same as the first reaction tank 17 First coagulation tank 23: V = 500 mL, RT = 4-5 min
Second aggregation tank 26: V = 500 mL, RT = 4-5 min
Settling tank 29: horizontal sectional area A = 10 cm 2 , LV = 6 m / h
Chemical reaction tank 33: V = 50 mL, RT <5 min, pH: as shown in Table 1 As raw water in the raw water tank 11, a sodium silicate aqueous solution having a total silica concentration of 800 mg / L (25 ° C., pH 12) was used.

[実施例1]
図2に示す試験装置に上記原水を6L/hにて供給し、処理した。沈殿槽29で生じた汚泥を600mL/hの割合にて第1反応槽17に直接に返送し、化学反応槽33には汚泥を供給しなかった。アニオンポリマー添加量をポリマー量として4mg/Lとした。
[Example 1]
The raw water was supplied to the test apparatus shown in FIG. 2 at 6 L / h for treatment. The sludge generated in the sedimentation tank 29 was directly returned to the first reaction tank 17 at a rate of 600 mL / h, and no sludge was supplied to the chemical reaction tank 33. The amount of the anionic polymer added was 4 mg / L as the polymer amount.

カチオンポリマー添加量については、沈殿槽29からの処理水(上澄水)の濁度が10NTU以下になるように5〜40mg/Lの範囲で制御した。この間の平均添加量は表1に示す通りである。以下の実施例2,3及び比較例1,2でも同様である。   The addition amount of the cationic polymer was controlled in the range of 5 to 40 mg / L so that the turbidity of the treated water (supernatant water) from the precipitation tank 29 was 10 NTU or less. The average addition amount during this period is as shown in Table 1. The same applies to Examples 2 and 3 and Comparative Examples 1 and 2 below.

1週間継続して処理を行い、この間、沈殿槽29内の汚泥界面高さが一定となるように必要に応じ沈殿槽29から汚泥を引き抜いた。1週間継続して処理を行った後、沈殿槽29内の汚泥を1L採取し、界面沈降試験し、汚泥最大界面沈降速度を求めた。また、沈殿槽29内から採取した汚泥を1kg/cmのプレス脱水装置で60min脱水処理した後の汚泥の含水率を測定した。さらに、処理水全シリカ濃度を測定した。結果を表1に示す。 The treatment was continued for one week, and during this time, the sludge was extracted from the settling tank 29 as necessary so that the sludge interface height in the settling tank 29 was constant. After one week of continuous treatment, 1 L of sludge in the sedimentation tank 29 was collected and subjected to an interfacial sedimentation test to determine the maximum sludge interfacial sedimentation rate. Further, the moisture content of the sludge after the sludge collected from the settling tank 29 was dehydrated for 60 minutes with a 1 kg / cm 2 press dehydrator was measured. Furthermore, the total silica concentration in the treated water was measured. The results are shown in Table 1.

[実施例2]
沈殿槽29からの汚泥のうち500mL/h分を第1反応槽17に直接に返送し、100mL/h分を化学反応槽33に導入した後、第1反応槽17に返送した。第1反応槽17のpHが7.8となるようにNaOHの添加量を調整した結果、化学反応槽33のpHは11前後で推移した。その他は実施例1と同一条件にて原水を処理し、同様の測定を行った。結果を表1に示す。
[Example 2]
Of the sludge from the sedimentation tank 29, 500 mL / h was directly returned to the first reaction tank 17, and after 100 mL / h was introduced into the chemical reaction tank 33, it was returned to the first reaction tank 17. As a result of adjusting the amount of NaOH added so that the pH of the first reaction tank 17 was 7.8, the pH of the chemical reaction tank 33 changed around 11. Other than that, raw water was treated under the same conditions as in Example 1, and the same measurement was performed. The results are shown in Table 1.

[実施例3]
沈殿槽29からの返送汚泥600mL/hの全量を化学反応槽33に導入し、第1反応槽17に返送した。第1反応槽17のpHが7.8となるようにNaOHの添加量を調整した結果、化学反応槽33のpHは10前後で推移した。その他は実施例1と同一条件にて原水を処理し、同様の測定を行った。結果を表1に示す。
[Example 3]
The entire amount of return sludge from the sedimentation tank 29 of 600 mL / h was introduced into the chemical reaction tank 33 and returned to the first reaction tank 17. As a result of adjusting the amount of NaOH added so that the pH of the first reaction tank 17 was 7.8, the pH of the chemical reaction tank 33 changed around 10. Other than that, raw water was treated under the same conditions as in Example 1, and the same measurement was performed. The results are shown in Table 1.

[比較例1]
汚泥を全く返送せず、またアニオンポリマーを添加せず、カチオンポリマー添加量を40mg/Lとした。その他は実施例1と同一条件にて原水を処理し、同様の測定を行った。結果を表1に示す。
[Comparative Example 1]
The sludge was not returned at all, the anionic polymer was not added, and the amount of cationic polymer added was 40 mg / L. Other than that, raw water was treated under the same conditions as in Example 1, and the same measurement was performed. The results are shown in Table 1.

[比較例2]
比較例1において、アニオンポリマーを4mg/L添加したこと以外は同一条件にて原水を処理し、同様の測定を行った。結果を表1に示す。
[Comparative Example 2]
In Comparative Example 1, raw water was treated under the same conditions except that 4 mg / L of an anionic polymer was added, and the same measurement was performed. The results are shown in Table 1.

[比較例3]
実施例1において、第1反応槽17のpHを6としたこと、カチオンポリマーを35mg/L添加したこと以外は同一条件にて原水を処理し、同様の測定を行った。結果を表1に示す。
[Comparative Example 3]
In Example 1, the raw water was treated under the same conditions except that the pH of the first reaction tank 17 was set to 6 and 35 mg / L of the cationic polymer was added, and the same measurement was performed. The results are shown in Table 1.

[比較例4]
実施例1において、第1反応槽17のpHを9としたこと以外は同一条件にて原水を処理し、同様の測定を行った。結果を表1に示す。
[Comparative Example 4]
In Example 1, raw water was treated under the same conditions except that the pH of the first reaction tank 17 was set to 9, and the same measurement was performed. The results are shown in Table 1.

Figure 2015188850
Figure 2015188850

表1から明らかな通り、実施例1〜3では、カチオンポリマー添加量が5mg/Lと低減し、汚泥界面沈降速度が20〜30m/hと改善されている。一方、比較例1〜3では、カチオンポリマー添加量が多く、汚泥界面沈降速度が減少しており、脱水汚泥含水率も実施例に比べ増加している。また、比較例4では汚泥界面沈降速度や脱水汚泥含水率は実施例とほぼ同等ではあるものの、処理水の全シリカ濃度は増えている。   As is apparent from Table 1, in Examples 1 to 3, the amount of cationic polymer added was reduced to 5 mg / L, and the sludge interface sedimentation rate was improved to 20 to 30 m / h. On the other hand, in Comparative Examples 1 to 3, the amount of cationic polymer added was large, the sludge interface sedimentation rate was decreased, and the dehydrated sludge moisture content was also increased compared to the Examples. In Comparative Example 4, although the sludge interface sedimentation rate and the dehydrated sludge moisture content are substantially the same as those in the example, the total silica concentration of the treated water is increased.

このように、本発明によると、カチオンポリマーの必要量、汚泥の界面沈降速度および脱水汚泥の含水率を大幅に改善できる。   Thus, according to the present invention, the required amount of the cationic polymer, the sludge interfacial sedimentation rate, and the water content of the dewatered sludge can be greatly improved.

1 重合反応槽
2 化学反応槽
3 第1凝集槽
4 第2凝集槽
5 沈殿槽
DESCRIPTION OF SYMBOLS 1 Polymerization reaction tank 2 Chemical reaction tank 3 1st coagulation tank 4 2nd coagulation tank 5 Settling tank

Claims (8)

地熱水と返送汚泥とを接触させ、地熱水中のシリカを重合させる重合反応工程と、
重合反応工程からの液にアニオンポリマーを添加するアニオンポリマー添加工程と、
該アニオンポリマー添加工程からの液にカチオンポリマーを添加するカチオンポリマー添加工程と、
該カチオンポリマー添加工程からの液を固液分離する固液分離工程と、
固液分離工程で分離された汚泥の少なくとも一部を前記重合反応工程に返送する汚泥返送工程と
を有する地熱水の処理方法。
A polymerization reaction step of bringing geothermal water and return sludge into contact with each other and polymerizing silica in the geothermal water;
An anionic polymer addition step of adding an anionic polymer to the liquid from the polymerization reaction step;
A cationic polymer addition step of adding a cationic polymer to the liquid from the anionic polymer addition step;
A solid-liquid separation step for solid-liquid separation of the liquid from the cationic polymer addition step;
A method for treating geothermal water, comprising: a sludge return step of returning at least a part of the sludge separated in the solid-liquid separation step to the polymerization reaction step.
請求項1において、重合反応工程におけるpHを7.0〜8.7とすることを特徴とする地熱水の処理方法。   The method for treating geothermal water according to claim 1, wherein the pH in the polymerization reaction step is 7.0 to 8.7. 請求項1又は2において、返送汚泥の一部または全量にアルカリを添加した後、重合反応工程に返送することを特徴とする地熱水の処理方法。   The method for treating geothermal water according to claim 1 or 2, wherein an alkali is added to a part or all of the returned sludge and then returned to the polymerization reaction step. 請求項1ないし3のいずれか1項において、カチオンポリマー添加工程からの液又は固液分離工程からの分離水の濁度を測定してカチオンポリマー添加量を調節する工程を有することを特徴とする地熱水の処理方法。   4. The method according to claim 1, further comprising a step of adjusting the addition amount of the cationic polymer by measuring the turbidity of the liquid from the cationic polymer addition step or the separated water from the solid-liquid separation step. How to treat geothermal water. 地熱水と返送汚泥とを接触させ、地熱水中のシリカを重合させる重合反応槽と、
重合反応槽からの液にアニオンポリマーを添加するアニオンポリマー添加槽と、
該アニオンポリマー添加槽からの液にカチオンポリマーを添加するカチオンポリマー添加槽と、
該カチオンポリマー添加槽からの液を固液分離する固液分離手段と、
固液分離手段で分離された汚泥の少なくとも一部を前記重合反応工程に返送する汚泥返送手段と
を有する地熱水の処理装置。
A polymerization reaction tank in which geothermal water and returned sludge are contacted to polymerize silica in geothermal water;
An anionic polymer addition tank for adding an anionic polymer to the liquid from the polymerization reaction tank;
A cationic polymer addition tank for adding a cationic polymer to the liquid from the anion polymer addition tank;
Solid-liquid separation means for solid-liquid separation of the liquid from the cationic polymer addition tank;
An apparatus for treating geothermal water, comprising sludge return means for returning at least a part of the sludge separated by the solid-liquid separation means to the polymerization reaction step.
請求項5において、重合反応槽におけるpHを7.0〜8.7とするpH調整手段を有することを特徴とする地熱水の処理装置。   6. The apparatus for treating geothermal water according to claim 5, further comprising pH adjusting means for adjusting the pH in the polymerization reaction tank to 7.0 to 8.7. 請求項5又は6において、返送汚泥の一部または全量にアルカリ添加手段によってアルカリを添加した後、重合反応工程に返送する化学反応槽を備えたことを特徴とする地熱水の処理装置。   7. The geothermal water treatment apparatus according to claim 5 or 6, further comprising a chemical reaction tank for adding an alkali to a part or all of the returned sludge by an alkali adding means and then returning it to the polymerization reaction step. 請求項5ないし7のいずれか1項において、カチオンポリマー添加槽からの液又は固液分離手段からの分離水の濁度を測定してカチオンポリマー添加量を調節するカチオンポリマー添加制御手段を有することを特徴とする地熱水の処理装置。   8. The method according to claim 5, further comprising a cationic polymer addition control unit that adjusts the addition amount of the cationic polymer by measuring the turbidity of the liquid from the cationic polymer addition tank or the separated water from the solid-liquid separation unit. A geothermal water treatment device.
JP2014069025A 2014-03-28 2014-03-28 Method and apparatus for treating geothermal water Pending JP2015188850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069025A JP2015188850A (en) 2014-03-28 2014-03-28 Method and apparatus for treating geothermal water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069025A JP2015188850A (en) 2014-03-28 2014-03-28 Method and apparatus for treating geothermal water

Publications (1)

Publication Number Publication Date
JP2015188850A true JP2015188850A (en) 2015-11-02

Family

ID=54423843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069025A Pending JP2015188850A (en) 2014-03-28 2014-03-28 Method and apparatus for treating geothermal water

Country Status (1)

Country Link
JP (1) JP2015188850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126722A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
JP2020171870A (en) * 2019-04-08 2020-10-22 オルガノ株式会社 Flocculation sedimentation apparatus and flocculation sedimentation treatment method of silica-containing water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126722A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
JP2020171870A (en) * 2019-04-08 2020-10-22 オルガノ株式会社 Flocculation sedimentation apparatus and flocculation sedimentation treatment method of silica-containing water
JP7213125B2 (en) 2019-04-08 2023-01-26 オルガノ株式会社 Coagulation-sedimentation device for water containing silica and coagulation-sedimentation treatment method

Similar Documents

Publication Publication Date Title
CN104556331B (en) PAC (polyaluminium chloride)-modified sodium alginate inorganic-organic composite flocculant and preparation method thereof
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
Jiao et al. Roles of coagulant species and mechanisms on floc characteristics and filterability
JP6078379B2 (en) Silica-containing water treatment apparatus, water treatment system, and silica-containing water treatment method
JP4672531B2 (en) Green liquid processing method
JP2011139997A (en) Coagulation treatment method for waste water
CN104781196A (en) Potabilization process
JP2018524256A (en) Method for producing silica concentrate
CN110697935A (en) Refining system and refining method for byproduct brine
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP2015188850A (en) Method and apparatus for treating geothermal water
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
JP6731261B2 (en) Heavy metal-containing water treatment device and treatment method
KR101010733B1 (en) Method for treating wastewater including fluorine
JP7083274B2 (en) Water treatment method and water treatment equipment
CN212924676U (en) Silicon-containing wastewater treatment system
JP2009160513A (en) Method for charging flocculant in water purification
JP6912192B2 (en) Silica-containing water treatment equipment and treatment method
CN108191106A (en) A kind of method of silica in removal waste water
JP2012050948A (en) Device for treating waste water and method of treating the same
CN211896410U (en) Desulfurization waste water resource recovery system
Wu et al. Excellent coagulation performance of polysilicate aluminum ferric for treating oily wastewater from Daqing gasfield: Responses to polymer properties and coagulation mechanism
CN218115171U (en) Sewage continuity processing system
JP4020288B2 (en) How to treat geothermal water
JP2005007246A (en) Treatment method for organic waste water