JP2015184544A - Catadioptric optical system and imaging device having the same - Google Patents

Catadioptric optical system and imaging device having the same Download PDF

Info

Publication number
JP2015184544A
JP2015184544A JP2014061999A JP2014061999A JP2015184544A JP 2015184544 A JP2015184544 A JP 2015184544A JP 2014061999 A JP2014061999 A JP 2014061999A JP 2014061999 A JP2014061999 A JP 2014061999A JP 2015184544 A JP2015184544 A JP 2015184544A
Authority
JP
Japan
Prior art keywords
light
optical system
image
catadioptric
aperture stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014061999A
Other languages
Japanese (ja)
Inventor
鈴木 雅之
Masayuki Suzuki
雅之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014061999A priority Critical patent/JP2015184544A/en
Publication of JP2015184544A publication Critical patent/JP2015184544A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a catadioptric optical system that corrects various aberrations over a broad wavelength and a broad filed of view area, and is resistant against even a deviation of an image pickup element in an optical direction.SOLUTION: A catadioptric optical system comprises, in order from an object side to an image side: a first optical element (M1) that has a first light transmission unit (M1T) transmitting light from an object in a first area including an optical axis, and a first light reflection unit (M1R) reflecting the light in a surface on the object side of a second area further away from the optical axis than the first area; and a second optical element (M2) that has an aperture stop (AS), a second light transmission unit (M2T) transmitting the light in a third area including the optical axis, and a second light reflection unit (M2R) reflecting the light in a surface on the image side of a fourth area further away from the optical axis than the third area. The aperture stop is configured to be arranged at a position where an angle formed with a principal ray of a principal wavelength of light incident upon the image surface and the optical axis is equal to or less than 0.5°.

Description

本発明は、反射屈折光学系に関し、特に、試料(物体)を拡大し、観察する際に使用される反射屈折光学系に関する。   The present invention relates to a catadioptric optical system, and more particularly to a catadioptric optical system used when a sample (object) is magnified and observed.

近年、病理標本を画像データとして取り込み、ディスプレイ上で観察するバーチャル顕微鏡と呼ばれるものが利用されている。バーチャル顕微鏡では病理標本の画像データをディスプレイ上で観察できるため、複数人で同時に観察することができる。またこのバーチャル顕微鏡を用いると画像データを遠方の病理医と共有して診断を仰ぐこともできるなど多くの利点がある。しかし、この方法は、病理標本を撮像して画像データとして取り込むために時間がかかるという問題があった。   In recent years, a so-called virtual microscope that takes a pathological specimen as image data and observes it on a display has been used. In a virtual microscope, image data of a pathological specimen can be observed on a display, so that a plurality of persons can observe it simultaneously. In addition, the use of this virtual microscope has many advantages such as sharing image data with a distant pathologist for diagnosis. However, this method has a problem that it takes time to capture a pathological specimen and capture it as image data.

時間がかかる原因の1つとして、大きな撮像範囲の病理標本を顕微鏡の狭い撮像領域を用いて画像データとして取り込まねばならないことが挙げられる。顕微鏡の撮像領域が狭い場合、複数回撮像して、もしくはスキャンしながら撮像してそれらを繋げることで一枚の画像とする必要がある。従来よりも撮像回数を少なくして画像データを取り込む時間を短縮するために、広い撮像領域を持った光学系(撮像光学系)が求められている。   One of the causes of time consuming is that a pathological specimen in a large imaging range must be captured as image data using a narrow imaging region of a microscope. When the imaging area of the microscope is small, it is necessary to capture a plurality of times or to capture a single image by connecting the images while scanning. An optical system (imaging optical system) having a wide imaging area is required in order to reduce the number of times of imaging than before and to shorten the time for capturing image data.

またこの他、病理標本を観察する上で、広い撮像領域が求められていると同時に可視領域(広い波長域)での高い解像力を持った光学系が要望されている。高い解像力を持った光学系は病理診断の用途に限らず様々な分野で要望されている。屈折光学系より成り可視光全域に渡って収差を良好に低減した生体細胞などの観察に好適な顕微鏡対物レンズが知られている(特許文献1)。   In addition to this, when observing a pathological specimen, a wide imaging region is required, and at the same time, an optical system having a high resolving power in the visible region (wide wavelength region) is desired. Optical systems having high resolving power are required not only for pathological diagnosis but also in various fields. A microscope objective lens suitable for observation of a living cell or the like that is composed of a refractive optical system and has excellent aberrations reduced over the entire visible light region is known (Patent Document 1).

また、集積回路やフォトマスクに存在する欠陥を検査するため反射屈折光学系を用いて紫外の広波長帯域に渡って高い解像力を有した超広帯域紫外顕微鏡映像システムが知られている(特許文献2)。また、広い領域に微細なパターンを露光して半導体素子を製造するのに好適な反射屈折光学系が知られている(特許文献3)。   In addition, there is known an ultra-wideband ultraviolet microscope imaging system having a high resolving power over a wide ultraviolet wavelength band using a catadioptric optical system for inspecting defects existing in an integrated circuit or a photomask (Patent Document 2). ). Further, a catadioptric optical system suitable for manufacturing a semiconductor element by exposing a fine pattern over a wide area is known (Patent Document 3).

特公昭60−034737号公報Japanese Examined Patent Publication No. 60-034737 特表2007−514179号公報Special table 2007-514179 gazette 国際公開第00/039623号International Publication No. 00/039623

特許文献1に開示されている顕微鏡対物レンズは、可視光全域に渡って諸収差を良好に低減しているが、観察領域の大きさが必ずしも十分でない。また、特許文献2に開示されている広帯域顕微鏡カタディオプトリック結像系は広波長帯域に渡って収差を良好に低減し、高い解像力を持っているものの視野領域の大きさが必ずしも十分でない。   Although the microscope objective lens disclosed in Patent Document 1 reduces various aberrations well over the entire visible light region, the size of the observation region is not always sufficient. Moreover, although the wide-band microscope catadioptric imaging system disclosed in Patent Document 2 reduces aberrations well over a wide wavelength band and has high resolution, the size of the field of view is not always sufficient.

また、特許文献3に開示されている反射屈折結像光学系は広い領域に渡って、高い解像力を持っているが収差が良好に補正されている波長域の広さが必ずしも十分でない。   Further, the catadioptric imaging optical system disclosed in Patent Document 3 has high resolution over a wide area, but the width of the wavelength range in which aberrations are well corrected is not necessarily sufficient.

試料を拡大して観察するための顕微鏡レンズとしては、観察領域が大きく、かつ広い波長範囲にわたり高い光学性能を有することが求められている。更に、撮像装置としては、画像を取り込むための撮像素子が光軸方向にずれても倍率が変化しない特性を有することが望ましい。   A microscope lens for enlarging and observing a sample is required to have a large observation region and high optical performance over a wide wavelength range. Further, it is desirable that the imaging apparatus has a characteristic that the magnification does not change even when an imaging element for capturing an image is displaced in the optical axis direction.

本発明は、広い波長域且つ広い視野領域に亘って諸収差を良好に補正し、かつ、撮像素子の光軸方向へのずれにも強い反射屈折光学系及びそれを有する撮像装置を提供することを目的とする。   The present invention provides a catadioptric optical system that corrects various aberrations satisfactorily over a wide wavelength range and a wide visual field range and that is resistant to displacement in the optical axis direction of an image sensor, and an imaging apparatus having the same. With the goal.

本発明の一側面としての反射屈折光学系は、物体側から像側に向かって順に、光軸を含む第1領域において物体からの光を透過する第1光透過部と、前記第1領域よりも前記光軸から離れた第2領域の前記物体側の面において前記光を反射する第1光反射部と、を有する第1光学素子と、開口絞りと、前記光軸を含む第3領域において前記光を透過する第2光透過部と、前記第3領域よりも光軸から離れた第4領域の前記像側の面において前記光を反射する第2光反射部と、を有する第2光学素子と、を備え、前記開口絞りは、像面に入射する光の主波長の主光線と前記光軸とのなす角度が0.5度以下となる位置に配置されていることを特徴とする。   The catadioptric optical system according to one aspect of the present invention includes, in order from the object side to the image side, a first light transmission unit that transmits light from the object in the first region including the optical axis, and the first region. A first optical element having a first light reflecting portion that reflects the light on the object-side surface of the second region away from the optical axis, an aperture stop, and a third region including the optical axis. A second optical transmission unit including: a second optical transmission unit configured to transmit the light; and a second optical reflection unit configured to reflect the light on the image-side surface of the fourth region farther from the optical axis than the third region. And the aperture stop is arranged at a position where an angle formed between a principal ray of a principal wavelength of light incident on an image plane and the optical axis is 0.5 degrees or less. .

本発明の他の目的及び特徴は、以下の実施例において説明される。   Other objects and features of the present invention are illustrated in the following examples.

本発明によれば、広い波長域且つ広い視野領域に亘って諸収差を良好に補正し、かつ、撮像素子の光軸方向へのずれにも強い反射屈折光学系を得ることができる。   According to the present invention, it is possible to obtain a catadioptric optical system that corrects various aberrations satisfactorily over a wide wavelength region and a wide field of view, and that is resistant to displacement of the image sensor in the optical axis direction.

本発明の全実施例に共通した撮像装置の概略断面図である。It is a schematic sectional drawing of the imaging device common to all the Examples of this invention. 実施例1の反射屈折光学系の要部概略図である。1 is a schematic diagram of a main part of a catadioptric optical system of Example 1. FIG. 実施例1の反射屈折光学系の収差図である。FIG. 3 is an aberration diagram of the catadioptric optical system of Example 1. 実施例2の反射屈折光学系の要部概略図である。FIG. 6 is a schematic diagram of a main part of a catadioptric optical system of Example 2. 実施例2の反射屈折光学系の収差図である。FIG. 6 is an aberration diagram of the catadioptric optical system of Example 2.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same members are denoted by the same reference numerals, and redundant description is omitted.

本発明の反射屈折光学系104は、物体(試料)103からの光束を集光して物体の中間像IMを形成する反射屈折部を含む第1結像光学系G1と、中間像IMを像面(撮像素子面)105に結像させる屈折部を含む第2結像光学系G2と、を有する。本発明の撮像装置1000は、光源101と、光源101からの光束で物体103を照明する照明光学系102と、物体103を結像する反射屈折光学系104を有している。更に撮像装置1000は反射屈折光学系104によって結像された物体像を光電変換する撮像素子105と、撮像素子105からのデータより画像データを生成する画像処理系106と画像処理系106で生成した画像データを表示する表示手段107とを有する。   The catadioptric optical system 104 of the present invention includes a first imaging optical system G1 including a catadioptric unit that collects a light beam from an object (sample) 103 and forms an intermediate image IM of the object, and an intermediate image IM. And a second imaging optical system G2 including a refracting part that forms an image on the surface (imaging element surface) 105. The imaging apparatus 1000 of the present invention includes a light source 101, an illumination optical system 102 that illuminates an object 103 with a light beam from the light source 101, and a catadioptric optical system 104 that forms an image of the object 103. Further, the image pickup apparatus 1000 is generated by an image pickup element 105 that photoelectrically converts an object image formed by the catadioptric optical system 104, an image processing system 106 that generates image data from data from the image pickup element 105, and an image processing system 106. Display means 107 for displaying image data.

本発明の反射屈折光学系104を構成する第1結像光学系G1は、光軸周辺の中央部が光透過部、該中央部の周辺にある周辺部のうち物体側の面に反射膜を施し、裏面反射部とした第1光学素子M1を有する。更に、光軸周辺の中央部が光透過部、該中央部の周辺にある周辺部のうち像側の面に反射膜を施し、裏面反射部とした第2光学素子M2とを有する。   In the first imaging optical system G1 constituting the catadioptric optical system 104 of the present invention, the central part around the optical axis is a light transmitting part, and a reflecting film is provided on the object side surface in the peripheral part around the central part. And has a first optical element M1 as a back-surface reflecting portion. Further, a central portion around the optical axis has a light transmitting portion, and a second optical element M2 is formed by applying a reflective film to the image-side surface of the peripheral portions around the central portion to form a back reflecting portion.

更に反射屈折光学系104は第1光学素子M1と第2光学素子M2との間の光路中に開口絞りASを有する。ここで開口絞りASを第2結像光学系G2側に設けても良い。この開口絞りASの光軸上の位置は、拡大倍率側(像側)で像面に入射する主波長の主光線が光軸となす角が0.5度以下になるように決定する。   Further, the catadioptric optical system 104 has an aperture stop AS in the optical path between the first optical element M1 and the second optical element M2. Here, the aperture stop AS may be provided on the second imaging optical system G2 side. The position of the aperture stop AS on the optical axis is determined so that the angle formed by the principal ray of the principal wavelength incident on the image plane on the magnification side (image side) and the optical axis is 0.5 degrees or less.

図1は本発明の撮像装置の要部概略図である。図2は本発明の反射屈折光学系の実施例1の要部概略図である。図3は本発明の反射屈折光学系の実施例1の収差図である。図4は本発明の反射屈折光学系の実施例2の要部概略図である。図5は本発明の反射屈折光学系の実施例2の収差図である。
[実施例1]
以下、図1を参照して、本発明の反射屈折光学系104を有する撮像装置1000の構成について詳細に説明する。ここで図1は、本発明の撮像装置1000の概略断面図である。撮像装置1000は、光源101からの光を照明光学系102によって集光して試料(物体)103を均一に照明する。このとき使用する光は可視光(例えば、波長400nm〜波長700nm)が用いられる。可視光としては波長486nm〜波長656nmの範囲内の光束が含まれていれば良い。反射屈折光学系104は試料(物体)103の像を撮像素子105上に結像する。換言すれば、撮像装置1000は、可視光を照射する光源101と、該光源からの光で物体103を照明する照明光学系102と、該物体からの光が入射する反射屈折光学系104と、該反射屈折光学系から射出した光を光電変換する撮像素子105と、を有する。画像処理系106は、撮像素子105で取得したデータ(画像情報)に基づき、画像データを生成する。生成した画像データは、表示手段107などに表示される。この他、生成した画像データは、不図示の記録媒体(記録手段)に記録されてもよい。画像処理系106では、反射屈折光学系104で補正しきれなかった収差を補正したり、または、撮像位置(撮像領域)の異なった画像データを繋げて一枚の画像データに合成したりするなど用途に応じた処理が行われる。
FIG. 1 is a schematic diagram of a main part of an imaging apparatus according to the present invention. FIG. 2 is a schematic view of the essential portions of Embodiment 1 of the catadioptric optical system of the present invention. FIG. 3 is an aberration diagram of Example 1 of the catadioptric optical system of the present invention. FIG. 4 is a schematic view of the essential portions of Embodiment 2 of the catadioptric optical system of the present invention. FIG. 5 is an aberration diagram of Example 2 of the catadioptric optical system of the present invention.
[Example 1]
Hereinafter, the configuration of the imaging apparatus 1000 having the catadioptric optical system 104 of the present invention will be described in detail with reference to FIG. Here, FIG. 1 is a schematic sectional view of an imaging apparatus 1000 according to the present invention. The imaging apparatus 1000 condenses the light from the light source 101 by the illumination optical system 102 and uniformly illuminates the sample (object) 103. The light used at this time is visible light (for example, wavelength 400 nm to wavelength 700 nm). Visible light only needs to contain a light beam in the wavelength range of 486 nm to 656 nm. The catadioptric optical system 104 forms an image of the sample (object) 103 on the image sensor 105. In other words, the imaging apparatus 1000 includes a light source 101 that emits visible light, an illumination optical system 102 that illuminates the object 103 with light from the light source, a catadioptric optical system 104 that receives light from the object, An image sensor 105 that photoelectrically converts light emitted from the catadioptric optical system. The image processing system 106 generates image data based on data (image information) acquired by the image sensor 105. The generated image data is displayed on the display means 107 or the like. In addition, the generated image data may be recorded on a recording medium (recording unit) (not shown). In the image processing system 106, aberrations that cannot be corrected by the catadioptric optical system 104 are corrected, or image data with different imaging positions (imaging regions) are connected to be combined into a single piece of image data. Processing according to the application is performed.

図2は、図1の反射屈折光学系104の構成を説明するための概略図である。図2において、104A(他の実施例では104B)は反射屈折光学系、103は物体(試料)が配置される物体面、105は撮像素子が配置される像面である。AXは反射屈折光学系104Aの光軸である。   FIG. 2 is a schematic diagram for explaining the configuration of the catadioptric optical system 104 of FIG. 2, 104A (104B in another embodiment) is a catadioptric optical system, 103 is an object plane on which an object (sample) is arranged, and 105 is an image plane on which an image sensor is arranged. AX is the optical axis of the catadioptric optical system 104A.

反射屈折光学系104Aは、物体103からの光束を集光し、所定面に中間像IMを形成する反射面M1R,M2Rと開口絞りASとを含む第1結像光学系G1を有する。   The catadioptric optical system 104A has a first imaging optical system G1 that includes the reflecting surfaces M1R and M2R that condense the light beam from the object 103 and form an intermediate image IM on a predetermined surface, and an aperture stop AS.

中間像IMが形成される位置にはフィールドレンズ部FLが配置されている。フィールドレンズ部FLは中間像IMからの光束を第2結像光学系G2に効率良く導光している。尚、フィールドレンズ部FLは省略しても良い。   A field lens portion FL is disposed at a position where the intermediate image IM is formed. The field lens unit FL efficiently guides the light beam from the intermediate image IM to the second imaging optical system G2. The field lens portion FL may be omitted.

また、反射屈折光学系104Aは、中間像IMを像面105に結像する屈折面を含む第2結像光学系G2を有する。   The catadioptric optical system 104 </ b> A includes a second imaging optical system G <b> 2 including a refractive surface that forms the intermediate image IM on the image plane 105.

第1結像光学系G1は、物体側から順に第1光学素子(マンジャンミラー)M1、開口絞りAS、第2光学素子(マンジャンミラー)M2を有している。   The first imaging optical system G1 includes, in order from the object side, a first optical element (Mangin mirror) M1, an aperture stop AS, and a second optical element (Mangin mirror) M2.

図2は、物体面103から像面105に至る光束が示されている。第1結像光学系G1の第1光学素子M1は、物体103側の面M1aが凸形状で、光軸付近(すなわち、反射屈折光学系の光軸を含む第1領域、換言すれば、中央部)が正の屈折力の光透過部M1T(第1光透過部)で形成されている。また、周辺部(すなわち、第1領域よりも(外側の)光軸から離れた第2領域)のうち物体側の面M1aに反射膜M1R(第1光反射部)を施し、裏面反射部としている。面M1aは非球面形状より成っている。M1bは第1光学素子M1の像側の面である。   FIG. 2 shows a light flux from the object plane 103 to the image plane 105. The first optical element M1 of the first imaging optical system G1 has a surface M1a on the object 103 side having a convex shape and a vicinity of the optical axis (that is, a first region including the optical axis of the catadioptric optical system, in other words, the center. Part) is formed of a light transmission part M1T (first light transmission part) having a positive refractive power. In addition, a reflective film M1R (first light reflecting portion) is applied to the object-side surface M1a in the peripheral portion (that is, the second region away from the optical axis (outside) from the first region) to form a back surface reflecting portion. Yes. The surface M1a has an aspherical shape. M1b is an image side surface of the first optical element M1.

第2光学素子M2は物体側に凹面を向けたメニスカス形状で、光軸付近(すなわち、反射屈折光学系の光軸を含む第3領域、換言すれば、中央部)が負の屈折力の光透過部M2T(第2光透過部)で形成されている。また、周辺部(すなわち、第3領域よりも(外側の)光軸から離れた第4領域)のうち像側の面M2bに反射膜M2R(第2光反射部)を施し、裏面反射部としている。M2aは第2光学素子M2の物体側の面である。面M2bは非球面形状である。第1光学素子M1と第2光学素子M2は互いに裏面反射部M1R、M2Rが対向するように配置されている。第1光学素子M1と第2光学素子M2の間に開口絞りASが配置されている。   The second optical element M2 has a meniscus shape with a concave surface directed toward the object side, and light having a negative refractive power in the vicinity of the optical axis (that is, the third region including the optical axis of the catadioptric optical system, in other words, the central portion). The transmission part M2T (second light transmission part) is formed. In addition, a reflective film M2R (second light reflecting portion) is applied to the image-side surface M2b of the peripheral portion (that is, the fourth region away from the optical axis (outside) than the third region) to form a back surface reflecting portion. Yes. M2a is the object side surface of the second optical element M2. The surface M2b has an aspheric shape. The first optical element M1 and the second optical element M2 are arranged so that the back surface reflecting portions M1R and M2R face each other. An aperture stop AS is disposed between the first optical element M1 and the second optical element M2.

換言すれば、反射屈折光学系104Aは、物体面から像面に向かって順に、第1光学素子M1、開口絞りAS、第2光学素子M2を有する。第1光学素子M1は、物体面に配置された物体103からの光を透過する第1光透過部M1Tが光軸AXを含む第1領域に形成されている。また、物体からの光を反射する第1光反射部M1Rが第1領域よりも光軸から離れた第2領域の物体側の面M1aに形成されている。第2光学素子M2は、物体103からの光を透過する第2光透過部M2Tが光軸AXを含む第3領域に形成されている。また、物体からの光を反射する第2光反射部M2Rが第3領域よりも光軸から離れた第4領域の像側の面M2bに形成されている。   In other words, the catadioptric optical system 104A includes the first optical element M1, the aperture stop AS, and the second optical element M2 in order from the object plane to the image plane. In the first optical element M1, a first light transmission portion M1T that transmits light from the object 103 disposed on the object plane is formed in a first region including the optical axis AX. In addition, a first light reflecting portion M1R that reflects light from an object is formed on the object-side surface M1a of the second region that is further away from the optical axis than the first region. In the second optical element M2, a second light transmission portion M2T that transmits light from the object 103 is formed in a third region including the optical axis AX. A second light reflecting portion M2R that reflects light from the object is formed on the image-side surface M2b of the fourth region that is further away from the optical axis than the third region.

図2に示す反射屈折光学系104Aでは、照明光学系102からの光束で照明され、物体103から出射した光束は第1光学素子M1の中央透過部M1Tを通過する。その後、開口絞りASを通過し、第2光学素子M2の屈折面M2aに入射する。その後、裏面反射部M2Rで反射し集光されて、屈折面M2a、開口絞りASを通過して第1光学素子M1の屈折面M1bに入射する。その後、第1光学素子M1の裏面反射部M1Rで反射する。そして、屈折面M1b、開口絞りASを通過し、第2光学素子M2の中央透過部M2Tを通過し、第2結像光学系G2側へ出射する。その後フィールドレンズ部FLの近傍に物体103の中間像IMを形成する。   In the catadioptric optical system 104A shown in FIG. 2, the light beam illuminated from the illumination optical system 102 and emitted from the object 103 passes through the central transmission part M1T of the first optical element M1. Thereafter, the light passes through the aperture stop AS and enters the refractive surface M2a of the second optical element M2. Thereafter, the light is reflected and condensed by the back surface reflection portion M2R, passes through the refractive surface M2a and the aperture stop AS, and enters the refractive surface M1b of the first optical element M1. Then, it reflects with the back surface reflection part M1R of the 1st optical element M1. Then, the light passes through the refractive surface M1b and the aperture stop AS, passes through the central transmission part M2T of the second optical element M2, and exits toward the second imaging optical system G2. Thereafter, an intermediate image IM of the object 103 is formed in the vicinity of the field lens portion FL.

本実施例において、フィールドレンズ部FLを配置せずに中間像IMを形成する構成としても良い。中間像IMからの発散光束は、複数のレンズから構成される第2結像光学系G2を通過し、像面105に入射する。そして像面105上に物体103の像を拡大結像する。撮像素子105に結像された物体103の像は画像処理系106によって処理されて表示手段107に表示される。   In this embodiment, the intermediate image IM may be formed without the field lens portion FL. The divergent light beam from the intermediate image IM passes through the second imaging optical system G2 composed of a plurality of lenses and enters the image plane 105. Then, the image of the object 103 is enlarged on the image plane 105. The image of the object 103 formed on the image sensor 105 is processed by the image processing system 106 and displayed on the display unit 107.

本実施例の中間像IMを形成する第1結像光学系G1の特徴について説明する。マンジャンミラーよりなる第1光学素子M1とマンジャンミラーよりなる第2光学素子M2の光路間に開口絞りASを配置している。これによって、像面105側でテレセントリック性を完全に満足するように、開口絞りASの位置が決められる。本実施例では、第2光学素子M2よりも第1光学素子M1に近い位置に開口絞りASが配置される。本発明に於いては、像面105側でテレセントリック性を完全に満足するとは、主波長での主光線が像面105に入射するときに光軸となす角が何れの像高においても0.5度以下であることを指している。換言すれば、開口絞りASは、像側で像面105に入射する光の主波長の主光線と光軸とのなす角度が0.5度以下となる位置に配置される。また、テレセントリック性を完全に満足するために、好ましくは、開口絞りASは、像側で像面105に入射する光の主波長の主光線と光軸とのなす角度が0.1度以下となる位置に配置されるとよい。さらに好ましくは、開口絞りASの位置は、像側で像面105に入射する光の主波長の主光線が光軸となす角度が0.05度以下となる位置にあるとよい。主光線とは物点から出て開口絞りASの中心を通る光線であるとする。本光学系は中央遮蔽のある光学系なので、開口絞りの中心を通る光線というのは実際には存在しないが、仮想的には考えることができ、計算することができる。尚、第1結像光学系G1に於いて、光束は開口絞りASの位置を合計3回通過するが、ASが光束を制限する開口絞りの役割を果たすのは2回目の通過のときである。従って、上述の開口絞りASの中心を通る光線とは、ASの2回目の通過のときのものである。本実施例では、主波長は、可視光の波長の範囲内にある波長である。ここでいう、主波長とは、像面105に入射する光のうち最も多く含まれている光の波長をいう。具体的には、主波長はd線の587.6nmであるが、目的によって適切な主波長を選択すればよい。   The characteristics of the first imaging optical system G1 that forms the intermediate image IM of this embodiment will be described. An aperture stop AS is disposed between the optical paths of the first optical element M1 made of a Mangin mirror and the second optical element M2 made of a Mangin mirror. Accordingly, the position of the aperture stop AS is determined so that the telecentricity is completely satisfied on the image plane 105 side. In this embodiment, the aperture stop AS is disposed at a position closer to the first optical element M1 than to the second optical element M2. In the present invention, “telecentricity is completely satisfied on the image plane 105 side” means that the angle formed with the optical axis when the principal ray at the principal wavelength is incident on the image plane 105 is 0. It means that it is 5 degrees or less. In other words, the aperture stop AS is disposed at a position where the angle formed between the principal ray of the principal wavelength of light incident on the image plane 105 on the image side and the optical axis is 0.5 degrees or less. In order to completely satisfy telecentricity, it is preferable that the aperture stop AS has an angle formed between the principal ray of the principal wavelength of light incident on the image plane 105 on the image side and the optical axis is 0.1 degrees or less. It is good to arrange at the position. More preferably, the position of the aperture stop AS is at a position where the angle formed by the principal ray of the principal wavelength of light incident on the image plane 105 on the image side and the optical axis is 0.05 degrees or less. The principal ray is assumed to be a ray that goes out from the object point and passes through the center of the aperture stop AS. Since this optical system is an optical system with a central shield, there is actually no light beam passing through the center of the aperture stop, but it can be virtually considered and calculated. In the first imaging optical system G1, the light beam passes through the position of the aperture stop AS a total of three times, but the AS functions as an aperture stop that restricts the light beam during the second pass. . Therefore, the light beam passing through the center of the aperture stop AS described above is the one when the AS passes the second time. In the present embodiment, the dominant wavelength is a wavelength within the range of visible light wavelengths. As used herein, the dominant wavelength refers to the wavelength of the most contained light among the light incident on the image plane 105. Specifically, the dominant wavelength is 587.6 nm of d-line, but an appropriate dominant wavelength may be selected depending on the purpose.

像面側でテレセントリック性を完全に満足することにより、撮像素子105に垂直に光線を入射することができるため、撮像素子の開口率が像面上の全領域で均一になるため、高品質の画像を得ることができる。また、撮像素子105が大きく光軸方向にずれても倍率は変化しないため、高品質な画像を得ることができる。更にまた、第2結像光学系G2と撮像素子105との間に平行平面板を入れて像面上の全領域で球面収差(及び軸上色収差)のみを発生させることが可能である。換言すれば、第2結像光学系G2よりも像側に平行平面板を配置してもよい。この平行平面板はカバーガラスの厚み補正などに利用することができる。   By completely satisfying the telecentricity on the image plane side, light can be incident on the image sensor 105 perpendicularly, so that the aperture ratio of the image sensor becomes uniform in the entire area on the image plane. An image can be obtained. Further, since the magnification does not change even when the image sensor 105 is largely displaced in the optical axis direction, a high quality image can be obtained. Furthermore, it is possible to introduce only a spherical aberration (and axial chromatic aberration) in the entire area on the image plane by inserting a plane-parallel plate between the second imaging optical system G2 and the image sensor 105. In other words, a plane parallel plate may be disposed on the image side with respect to the second imaging optical system G2. This plane-parallel plate can be used for thickness correction of the cover glass.

像面側でのテレセントリック性が完全でなければ、換言すれば、主波長での主光線が像面105に入射するときの光軸となす角が0.5度を超えるならば、像面上の場所によって開口率のむらが生じ、高品質の画像の観点からは好ましくない。また、撮像素子105が光軸方向に大きくずれたときに倍率が変わるため高品質の画像の観点からは好ましくない。また、第2結像光学系G2と撮像素子105との間に平行平面板を入れると像面湾曲が生じるため、平行平面板を入れて球面収差のみを変化させる用途には使えなくなる。   If the telecentricity on the image plane side is not perfect, in other words, if the angle formed by the optical axis when the chief ray at the principal wavelength is incident on the image plane 105 exceeds 0.5 degrees, Depending on the location, the aperture ratio varies, which is not preferable from the viewpoint of high quality images. In addition, since the magnification changes when the image sensor 105 is largely displaced in the optical axis direction, it is not preferable from the viewpoint of a high-quality image. In addition, if a plane-parallel plate is inserted between the second imaging optical system G2 and the image sensor 105, field curvature occurs, so that it cannot be used for applications in which only the plane aberration is changed by inserting a plane-parallel plate.

また、本実施例では、反射屈折光学系104Aの横倍率の絶対値をβとすると、縮小側(物体側)で物体面から射出する主波長の主光線が光軸となす角が、β度以下となるように、開口絞り位置を設定している。換言すれば、開口絞りASの位置は、反射屈折光学系104Aの横倍率の絶対値をβとすると、物体側で物体から射出する光の主波長の主光線が光軸となす角度が、β度以下となる位置にある。   In this embodiment, when the absolute value of the lateral magnification of the catadioptric optical system 104A is β, the angle formed by the principal wavelength of the principal wavelength emitted from the object plane on the reduction side (object side) and the optical axis is β degrees. The aperture stop position is set so as to be as follows. In other words, when the absolute value of the lateral magnification of the catadioptric optical system 104A is β, the position of the aperture stop AS is the angle between the principal ray of the principal wavelength of the light emitted from the object on the object side and the optical axis is β It is in the position where it is below

これによって、物体面が光軸方向にずれたときの倍率の変化を比較的小さく抑えることが可能である。β度を超えると、倍率の変化が目立ち、高品質の画像の観点からは好ましくない。   As a result, the change in magnification when the object plane is displaced in the optical axis direction can be kept relatively small. If it exceeds β degrees, the change in magnification is conspicuous, which is not preferable from the viewpoint of a high-quality image.

また、本実施例では、開口絞りASは絞りの径が変えられる可変絞りになっている。   In this embodiment, the aperture stop AS is a variable stop whose diameter can be changed.

これによって、解像度または焦点深度のコントロールが可能となり、目的や測定対象に合った解像度または焦点深度の選択が可能となる。   This makes it possible to control the resolution or depth of focus, and to select the resolution or depth of focus that suits the purpose and measurement target.

本実施例の反射屈折型光学系は、後述する数値実施例をmm単位で表したとき視野領域をφ(直径)3mm以上としている。視野領域(撮像領域)がこれ以下であると、物体面全体を分割撮像する場合の撮像回数が増えて、撮像全体に掛かる時間が長くなるため好ましくない。   The catadioptric optical system of the present embodiment has a visual field area of φ (diameter) of 3 mm or more when a numerical example described later is expressed in mm. If the field of view area (imaging area) is less than this, it is not preferable because the number of times of imaging when the entire object plane is divided and imaged increases, and the time taken for the entire imaging becomes longer.

視野領域をφ3mm以上とすることにより、分割撮像の分割数が少なくなるので撮像時間の短縮が容易となる。更に、視野領域がφ10mm以上であれば更に好ましく、物体面の一括撮像が容易になるので、撮像時間の大幅な短縮が容易になる。   By setting the field of view to φ3 mm or more, the number of division imaging is reduced, so that the imaging time can be easily reduced. Further, it is more preferable that the visual field area is φ10 mm or more, and batch imaging of the object surface becomes easy, so that the imaging time can be greatly shortened.

本実施例において第1、第2光学素子M1、M2の裏面の反射部は何れも凹形状であり、且つ、何れも非球面形状としている。このように2つの非球面形状を用いることにより、色収差を増加させることなく、球面収差とコマ収差等の諸収差の発生を抑えている。   In the present embodiment, the reflecting portions on the back surfaces of the first and second optical elements M1 and M2 are both concave and aspheric. By using two aspheric shapes in this way, the occurrence of various aberrations such as spherical aberration and coma aberration is suppressed without increasing chromatic aberration.

実施例1の反射屈折光学系104Aにおいて、物体側の開口数は0.7であって、倍率は7.97倍、物体高は7.2mm、視野領域はφ14.4mmである。視野領域はφ3mm以上を満たしており、且つφ10mm以上も満たしている。   In the catadioptric optical system 104A of Example 1, the numerical aperture on the object side is 0.7, the magnification is 7.97 times, the object height is 7.2 mm, and the viewing area is φ14.4 mm. The visual field region satisfies φ3 mm or more and also satisfies φ10 mm or more.

主波長(587.6nm)での主光線の光軸となす角は物体面では0.6度以下、像面では0.03度以下になっている。また、可視域の波長486nm〜656nmの範囲をカバーする白色光での波面収差が50mλrms以下に抑えられている。   The angle formed by the optical axis of the principal ray at the principal wavelength (587.6 nm) is 0.6 degrees or less on the object plane and 0.03 degrees or less on the image plane. Further, the wavefront aberration in white light covering the visible wavelength range of 486 nm to 656 nm is suppressed to 50 mλrms or less.

図3は実施例1の像面(撮像素子面)における横収差を示しており、軸上、軸外とも、可視域の広い波長帯域で収差が良好に補正されている。収差図においてYは物高である。   FIG. 3 shows lateral aberrations on the image plane (imaging device surface) of Example 1, and the aberrations are well corrected in a wide wavelength band in the visible range both on and off the axis. In the aberration diagram, Y is the object height.

本実施例によれば、広い波長域(可視域)且つ広い視野領域(撮像領域)に亘って諸収差を良好に補正し、かつ、撮像素子の光軸方向へのずれにも強い反射屈折光学系を得ることができる。
[実施例2]
図4の実施例2の反射屈折光学系104Bについて説明する。なお、特に述べない部分については実施例1と同様である。実施例2の反射屈折光学系104Bにおいて、物体側の開口数は0.7であって、倍率は9.46倍、物体高は7.2mm、視野領域はφ14.4mmである。視野領域はφ3mm以上を満たしており、且つφ10mm以上も満たしている。
According to the present embodiment, the catadioptric optics that corrects various aberrations well over a wide wavelength range (visible range) and a wide visual field range (imaging range) and is resistant to displacement of the image sensor in the optical axis direction. A system can be obtained.
[Example 2]
The catadioptric optical system 104B of Example 2 in FIG. 4 will be described. The parts not specifically mentioned are the same as those in the first embodiment. In the catadioptric optical system 104B of Example 2, the numerical aperture on the object side is 0.7, the magnification is 9.46 times, the object height is 7.2 mm, and the viewing area is φ14.4 mm. The visual field region satisfies φ3 mm or more and also satisfies φ10 mm or more.

主波長(587.6nm)での主光線の光軸となす角は物体面では0.6度以下、像面では0.03度以下になっている。また、可視域の波長486nm〜656nmの範囲をカバーする白色光での波面収差が50mλrms以下に抑えられている。   The angle formed by the optical axis of the principal ray at the principal wavelength (587.6 nm) is 0.6 degrees or less on the object plane and 0.03 degrees or less on the image plane. Further, the wavefront aberration in white light covering the visible wavelength range of 486 nm to 656 nm is suppressed to 50 mλrms or less.

図5は実施例2の像面(撮像素子面)における横収差を示しており、軸上、軸外とも、可視域の広い波長帯域で収差が良好に補正されている。   FIG. 5 shows lateral aberrations on the image surface (imaging device surface) of Example 2, and aberrations are well corrected in a wide wavelength band in the visible range both on and off the axis.

以上のように各実施例によれば、広い波長域(可視域)且つ広い視野領域(撮像領域)に亘って諸収差を低減し、かつ、撮像素子の光軸方向へのずれにも強い反射屈折光学系及びそれを用いた撮像装置が得られる。以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形、及び、変更が可能である。

以下、各実施例の数値実施例を示す。面番号は物体面(試料面)から像面まで数えた光が通過する順の光学面である。rは第i番目の光学面の曲率半径である。dは第i番目と第i+1番目の間隔である(符号は物体側から像面側へ測ったときを(光が進行するときを)正、逆方向を負としている)。Nd、νdは波長587.6nmに対する材料の屈折率とアッベ数をそれぞれ示している。非球面の形状は、以下の式に示す一般的な非球面の式で表される。以下の式において、Zは光軸方向の座標であり、cは曲率(曲率半径rの逆数)であり、hは光軸からの高さであり、kは円錐係数である。また、A、B、C、D、E、F、G、H、J・・・は各々、4次、6次、8次、10次、12次、14次、16次、18次、20次、・・・の非球面係数である。
As described above, according to each embodiment, various aberrations are reduced over a wide wavelength region (visible region) and a wide visual field region (imaging region), and reflection is also strong against displacement of the image sensor in the optical axis direction. A refractive optical system and an imaging apparatus using the same can be obtained. The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

Hereinafter, numerical examples of the respective examples will be shown. The surface number is an optical surface in the order in which light counted from the object surface (sample surface) to the image surface passes. r is the radius of curvature of the i-th optical surface. d is the i-th and (i + 1) -th interval (the sign is positive when measured from the object side to the image plane side (when light travels) and negative in the reverse direction). Nd and νd indicate the refractive index and Abbe number of the material for a wavelength of 587.6 nm, respectively. The shape of the aspheric surface is represented by a general aspherical expression shown in the following expression. In the following equation, Z is a coordinate in the optical axis direction, c is a curvature (the reciprocal of the radius of curvature r), h is a height from the optical axis, and k is a cone coefficient. A, B, C, D, E, F, G, H, J... Are 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th, 20th, respectively. The following are aspherical coefficients.

「E−X」は「10-X」を意味する。
[数値実施例1]

面番号 r d Nd νd
物体面 ∞ 6.47
1 751.86 12.05 1.5163 64.1
2 -1126.91 76.87
3 -89.99 6.84 1.5163 64.1
4 -122.34 -6.84 1.5163 64.1 反射面
5 -89.99 -66.87
6 ∞ -10.00 開口絞り
7 -1126.91 -12.05 1.5163 64.1
8 751.86 12.05 1.5163 64.1 反射面
9 -1126.91 76.87
10 -89.99 6.84 1.5163 64.1
11 -122.34 4.00
12 301.27 10.37 1.8040 46.6
13 -27.60 6.51 1.7174 29.5
14 -3489.31 0.51
15 95.08 7.58 1.5163 64.1
16 -92.56 0.50
17 125.41 7.00 1.4875 70.2
18 -249.24 5.41
19 45.90 13.36 1.7174 29.5
20 -110.11 24.96
21 -36.17 5.00 1.7380 32.3
22 -388.60 1.12
23 119.71 28.72 1.4875 70.2
24 -55.20 0.50
25 55.01 18.01 1.7170 47.9
26 -575.37 0.50
27 82.67 10.14 1.8044 39.6
28 106.75 1.79
29 42.65 8.06 1.7495 35.3
30 49.57 15.78
31 -43.98 5.00 1.8000 29.8
32 169.41 19.16
33 -36.98 5.00 1.5481 45.8
34 -1547.75 24.85
35 -184.01 29.79 1.8052 25.4
36 -98.54 0.50
37 343.81 20.62 1.8052 25.4
38 -161.90 18.44
像面

(非球面係数)
面番号
1, 8 k= 0.00E+00 A= 1.44E-08 B=-1.28E-12 C= 7.34E-16 D=-2.07E-19
E= 5.12E-23 F=-7.25E-27 G= 4.64E-31 H= 0.00E+00 J= 0.00E+00
4, 11 k= 0.00E+00 A= 1.21E-08 B= 9.97E-13 C= 5.89E-17 D= 8.62E-21
E=-6.17E-25 F= 1.04E-28 G=-4.33E-34 H= 0.00E+00 J= 0.00E+00
12 k= 0.00E+00 A=-7.58E-06 B=-3.65E-09 C= 1.22E-11 D= 1.73E-14
E=-1.79E-23 F=-2.04E-27 G=-4.53E-29 H= 0.00E+00 J= 0.00E+00
15 k= 0.00E+00 A= 3.43E-06 B=-4.55E-10 C=-1.33E-12 D=-2.76E-15
E=-1.91E-23 F=-2.14E-27 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
18 k= 0.00E+00 A= 1.96E-06 B= 2.53E-09 C=-4.54E-13 D=-2.65E-15
E=-7.93E-18 F=-2.04E-27 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
20 k= 0.00E+00 A= 1.10E-06 B= 1.66E-09 C= 3.13E-12 D=-4.12E-15
E= 7.14E-18 F= 0.00E+00 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
22 k= 0.00E+00 A=-3.80E-06 B= 1.54E-09 C=-2.87E-13 D=-2.64E-15
E= 3.74E-18 F= 5.36E-23 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
26 k= 0.00E+00 A= 1.07E-06 B=-7.88E-10 C= 7.49E-13 D=-3.03E-16
E= 4.21E-20 F= 8.60E-24 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
28 k= 0.00E+00 A= 8.57E-07 B= 1.40E-09 C=-1.10E-12 D= 4.08E-16
E=-2.62E-19 F=-3.09E-22 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
32 k= 0.00E+00 A= 7.31E-06 B=-4.03E-09 C=-1.31E-12 D= 5.42E-15
E=-9.28E-19 F=-2.27E-21 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
34 k= 0.00E+00 A=-4.98E-06 B= 3.12E-09 C=-2.81E-12 D= 1.54E-15
E=-5.36E-19 F= 0.00E+00 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
38 k= 0.00E+00 A= 1.71E-07 B=-5.85E-13 C=-7.84E-15 D= 4.72E-18
E=-1.41E-21 F= 2.21E-25 G=-1.44E-29 H= 0.00E+00 J= 0.00E+00

[数値実施例2]

面番号 r d Nd νd
物体面 ∞ 6.36
1 742.92 11.76 1.5163 64.1
2 -1089.93 76.75
3 -90.05 6.87 1.5163 64.1
4 -122.52 -6.87 1.5163 64.1 反射面
5 -90.05 -66.75
6 ∞ -10.00 開口絞り
7 -1089.93 -11.76 1.5163 64.1
8 742.92 11.76 1.5163 64.1 反射面
9 -1089.93 76.75
10 -90.05 6.87 1.5163 64.1
11 -122.52 3.83
12 381.53 8.96 1.7995 42.2
13 -27.22 5.45 1.7283 28.5
14 -258.64 2.39
15 244.10 7.17 1.5163 64.1
16 -72.51 0.50
17 61.22 6.23 1.4875 70.2
18 214.51 5.01
19 63.54 11.48 1.7495 35.3
20 -65.43 25.69
21 -36.84 5.01 1.7380 32.3
22 -379.12 1.57
23 142.83 25.18 1.4875 70.2
24 -53.47 3.15
25 54.13 19.47 1.6970 48.5
26 -505.98 0.50
27 82.07 10.46 1.8044 39.6
28 88.75 4.72
29 39.63 8.96 1.7234 38.0
30 50.12 16.01
31 -42.23 5.08 1.8340 37.2
32 208.10 18.08
33 -36.54 5.23 1.4875 70.2
34 2929.60 24.99
35 -197.90 30.00 1.7859 44.2
36 -90.83 18.44
37 380.08 30.00 1.7995 42.2
38 -214.76 4.50
像面

(非球面係数)
面番号
1, 8 k= 0.00E+00 A= 1.34E-08 B=-1.29E-12 C= 7.44E-16 D=-2.07E-19
E= 5.01E-23 F=-7.10E-27 G= 4.62E-31 H= 0.00E+00 J= 0.00E+00
4, 11 k= 0.00E+00 A= 1.21E-08 B= 9.69E-13 C= 5.95E-17 D= 7.33E-21
E=-2.96E-25 F= 6.16E-29 G= 1.56E-33 H= 0.00E+00 J= 0.00E+00
12 k= 0.00E+00 A=-7.34E-06 B=-8.06E-09 C= 6.24E-11 D=-1.10E-13
E=-1.79E-23 F=-2.04E-27 G=-4.53E-29 H= 0.00E+00 J= 0.00E+00
15 k= 0.00E+00 A= 4.96E-06 B=-6.12E-09 C=-2.06E-12 D=-6.61E-15
E=-1.91E-23 F=-2.14E-27 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
18 k= 0.00E+00 A= 6.51E-06 B= 1.60E-09 C= 7.35E-14 D=-1.57E-14
E=-7.93E-18 F=-2.04E-27 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
20 k= 0.00E+00 A=-8.63E-07 B= 1.52E-09 C= 2.49E-12 D=-2.08E-15
E= 7.14E-18 F= 0.00E+00 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
22 k= 0.00E+00 A=-4.08E-06 B= 1.82E-09 C=-6.40E-13 D=-2.42E-15
E= 3.74E-18 F= 5.36E-23 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
26 k= 0.00E+00 A= 1.31E-06 B=-7.15E-10 C= 6.57E-13 D=-3.31E-16
E= 8.97E-20 F=-8.55E-24 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
28 k= 0.00E+00 A= 9.11E-07 B= 1.22E-09 C=-8.29E-13 D= 2.68E-16
E=-6.07E-20 F=-3.09E-22 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
32 k= 0.00E+00 A= 7.18E-06 B=-2.79E-09 C=-3.33E-12 D= 5.81E-15
E=-9.73E-19 F=-2.27E-21 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
34 k= 0.00E+00 A=-4.88E-06 B= 2.91E-09 C=-2.44E-12 D= 1.27E-15
E=-4.25E-19 F= 0.00E+00 G= 0.00E+00 H= 0.00E+00 J= 0.00E+00
38 k= 0.00E+00 A= 1.43E-07 B=-3.55E-11 C= 6.45E-16 D= 6.26E-18
E=-2.42E-21 F= 3.70E-25 G=-2.08E-29 H= 0.00E+00 J= 0.00E+00
EX ” means “10 −X ”.
[Numerical Example 1]

Surface number r d Nd νd
Object plane ∞ 6.47
1 751.86 12.05 1.5163 64.1
2 -1126.91 76.87
3 -89.99 6.84 1.5163 64.1
4 -122.34 -6.84 1.5163 64.1 Reflecting surface
5 -89.99 -66.87
6 ∞ -10.00 Aperture stop
7 -1126.91 -12.05 1.5163 64.1
8 751.86 12.05 1.5163 64.1 Reflecting surface
9 -1126.91 76.87
10 -89.99 6.84 1.5163 64.1
11 -122.34 4.00
12 301.27 10.37 1.8040 46.6
13 -27.60 6.51 1.7174 29.5
14 -3489.31 0.51
15 95.08 7.58 1.5163 64.1
16 -92.56 0.50
17 125.41 7.00 1.4875 70.2
18 -249.24 5.41
19 45.90 13.36 1.7174 29.5
20 -110.11 24.96
21 -36.17 5.00 1.7380 32.3
22 -388.60 1.12
23 119.71 28.72 1.4875 70.2
24 -55.20 0.50
25 55.01 18.01 1.7170 47.9
26 -575.37 0.50
27 82.67 10.14 1.8044 39.6
28 106.75 1.79
29 42.65 8.06 1.7495 35.3
30 49.57 15.78
31 -43.98 5.00 1.8000 29.8
32 169.41 19.16
33 -36.98 5.00 1.5481 45.8
34 -1547.75 24.85
35 -184.01 29.79 1.8052 25.4
36 -98.54 0.50
37 343.81 20.62 1.8052 25.4
38 -161.90 18.44
Image plane

(Aspheric coefficient)
Face number
1, 8 k = 0.00E + 00 A = 1.44E-08 B = -1.28E-12 C = 7.34E-16 D = -2.07E-19
E = 5.12E-23 F = -7.25E-27 G = 4.64E-31 H = 0.00E + 00 J = 0.00E + 00
4, 11 k = 0.00E + 00 A = 1.21E-08 B = 9.97E-13 C = 5.89E-17 D = 8.62E-21
E = -6.17E-25 F = 1.04E-28 G = -4.33E-34 H = 0.00E + 00 J = 0.00E + 00
12 k = 0.00E + 00 A = -7.58E-06 B = -3.65E-09 C = 1.22E-11 D = 1.73E-14
E = -1.79E-23 F = -2.04E-27 G = -4.53E-29 H = 0.00E + 00 J = 0.00E + 00
15 k = 0.00E + 00 A = 3.43E-06 B = -4.55E-10 C = -1.33E-12 D = -2.76E-15
E = -1.91E-23 F = -2.14E-27 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
18 k = 0.00E + 00 A = 1.96E-06 B = 2.53E-09 C = -4.54E-13 D = -2.65E-15
E = -7.93E-18 F = -2.04E-27 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
20 k = 0.00E + 00 A = 1.10E-06 B = 1.66E-09 C = 3.13E-12 D = -4.12E-15
E = 7.14E-18 F = 0.00E + 00 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
22 k = 0.00E + 00 A = -3.80E-06 B = 1.54E-09 C = -2.87E-13 D = -2.64E-15
E = 3.74E-18 F = 5.36E-23 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
26 k = 0.00E + 00 A = 1.07E-06 B = -7.88E-10 C = 7.49E-13 D = -3.03E-16
E = 4.21E-20 F = 8.60E-24 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
28 k = 0.00E + 00 A = 8.57E-07 B = 1.40E-09 C = -1.10E-12 D = 4.08E-16
E = -2.62E-19 F = -3.09E-22 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
32 k = 0.00E + 00 A = 7.31E-06 B = -4.03E-09 C = -1.31E-12 D = 5.42E-15
E = -9.28E-19 F = -2.27E-21 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
34 k = 0.00E + 00 A = -4.98E-06 B = 3.12E-09 C = -2.81E-12 D = 1.54E-15
E = -5.36E-19 F = 0.00E + 00 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
38 k = 0.00E + 00 A = 1.71E-07 B = -5.85E-13 C = -7.84E-15 D = 4.72E-18
E = -1.41E-21 F = 2.21E-25 G = -1.44E-29 H = 0.00E + 00 J = 0.00E + 00

[Numerical Example 2]

Surface number r d Nd νd
Object plane ∞ 6.36
1 742.92 11.76 1.5163 64.1
2 -1089.93 76.75
3 -90.05 6.87 1.5163 64.1
4 -122.52 -6.87 1.5163 64.1 Reflecting surface
5 -90.05 -66.75
6 ∞ -10.00 Aperture stop
7 -1089.93 -11.76 1.5163 64.1
8 742.92 11.76 1.5163 64.1 Reflecting surface
9 -1089.93 76.75
10 -90.05 6.87 1.5163 64.1
11 -122.52 3.83
12 381.53 8.96 1.7995 42.2
13 -27.22 5.45 1.7283 28.5
14 -258.64 2.39
15 244.10 7.17 1.5163 64.1
16 -72.51 0.50
17 61.22 6.23 1.4875 70.2
18 214.51 5.01
19 63.54 11.48 1.7495 35.3
20 -65.43 25.69
21 -36.84 5.01 1.7380 32.3
22 -379.12 1.57
23 142.83 25.18 1.4875 70.2
24 -53.47 3.15
25 54.13 19.47 1.6970 48.5
26 -505.98 0.50
27 82.07 10.46 1.8044 39.6
28 88.75 4.72
29 39.63 8.96 1.7234 38.0
30 50.12 16.01
31 -42.23 5.08 1.8340 37.2
32 208.10 18.08
33 -36.54 5.23 1.4875 70.2
34 2929.60 24.99
35 -197.90 30.00 1.7859 44.2
36 -90.83 18.44
37 380.08 30.00 1.7995 42.2
38 -214.76 4.50
Image plane

(Aspheric coefficient)
Face number
1, 8 k = 0.00E + 00 A = 1.34E-08 B = -1.29E-12 C = 7.44E-16 D = -2.07E-19
E = 5.01E-23 F = -7.10E-27 G = 4.62E-31 H = 0.00E + 00 J = 0.00E + 00
4, 11 k = 0.00E + 00 A = 1.21E-08 B = 9.69E-13 C = 5.95E-17 D = 7.33E-21
E = -2.96E-25 F = 6.16E-29 G = 1.56E-33 H = 0.00E + 00 J = 0.00E + 00
12 k = 0.00E + 00 A = -7.34E-06 B = -8.06E-09 C = 6.24E-11 D = -1.10E-13
E = -1.79E-23 F = -2.04E-27 G = -4.53E-29 H = 0.00E + 00 J = 0.00E + 00
15 k = 0.00E + 00 A = 4.96E-06 B = -6.12E-09 C = -2.06E-12 D = -6.61E-15
E = -1.91E-23 F = -2.14E-27 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
18 k = 0.00E + 00 A = 6.51E-06 B = 1.60E-09 C = 7.35E-14 D = -1.57E-14
E = -7.93E-18 F = -2.04E-27 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
20 k = 0.00E + 00 A = -8.63E-07 B = 1.52E-09 C = 2.49E-12 D = -2.08E-15
E = 7.14E-18 F = 0.00E + 00 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
22 k = 0.00E + 00 A = -4.08E-06 B = 1.82E-09 C = -6.40E-13 D = -2.42E-15
E = 3.74E-18 F = 5.36E-23 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
26 k = 0.00E + 00 A = 1.31E-06 B = -7.15E-10 C = 6.57E-13 D = -3.31E-16
E = 8.97E-20 F = -8.55E-24 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
28 k = 0.00E + 00 A = 9.11E-07 B = 1.22E-09 C = -8.29E-13 D = 2.68E-16
E = -6.07E-20 F = -3.09E-22 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
32 k = 0.00E + 00 A = 7.18E-06 B = -2.79E-09 C = -3.33E-12 D = 5.81E-15
E = -9.73E-19 F = -2.27E-21 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
34 k = 0.00E + 00 A = -4.88E-06 B = 2.91E-09 C = -2.44E-12 D = 1.27E-15
E = -4.25E-19 F = 0.00E + 00 G = 0.00E + 00 H = 0.00E + 00 J = 0.00E + 00
38 k = 0.00E + 00 A = 1.43E-07 B = -3.55E-11 C = 6.45E-16 D = 6.26E-18
E = -2.42E-21 F = 3.70E-25 G = -2.08E-29 H = 0.00E + 00 J = 0.00E + 00

本発明は、拡大した試料を撮像する撮像装置に搭載される反射屈折光学系に好適に利用できる。   The present invention can be suitably used for a catadioptric optical system mounted on an imaging apparatus that images an enlarged sample.

104 反射屈折光学系
AS 開口絞り
M1、M2 マンジャンミラー
104 Catadioptric optical system AS Aperture stop M1, M2 Mangin mirror

Claims (13)

物体側から像側に向かって順に、
光軸を含む第1領域において物体からの光を透過する第1光透過部と、前記第1領域よりも前記光軸から離れた第2領域の前記物体側の面において前記光を反射する第1光反射部と、を有する第1光学素子と、
開口絞りと、
前記光軸を含む第3領域において前記光を透過する第2光透過部と、前記第3領域よりも光軸から離れた第4領域の前記像側の面において前記光を反射する第2光反射部と、を有する第2光学素子と、を備え、
前記開口絞りは、像面に入射する光の主波長の主光線と前記光軸とのなす角度が0.5度以下となる位置に配置されていることを特徴とする反射屈折光学系。
From the object side to the image side,
A first light transmitting portion that transmits light from an object in a first region including the optical axis; and a second light that reflects the light on a surface of the second region that is further away from the optical axis than the first region. A first optical element having one light reflecting portion;
An aperture stop,
A second light transmitting portion that transmits the light in a third region including the optical axis, and a second light that reflects the light on the image-side surface of a fourth region farther from the optical axis than the third region. A second optical element having a reflection part,
The catadioptric optical system, wherein the aperture stop is disposed at a position where an angle formed between a principal ray having a principal wavelength of light incident on an image plane and the optical axis is 0.5 degrees or less.
前記開口絞りは、前記反射屈折光学系の横倍率の絶対値をβとすると、前記物体から射出する光の主波長の主光線と前記光軸とのなす角度が、β度以下となる位置に配置されていることを特徴とする請求項1に記載の反射屈折光学系。   When the absolute value of the lateral magnification of the catadioptric optical system is β, the aperture stop is at a position where the angle formed between the principal ray of the principal wavelength of the light emitted from the object and the optical axis is β degrees or less. The catadioptric optical system according to claim 1, wherein the catadioptric optical system is disposed. 前記反射屈折光学系は、
前記第1光学素子、前記開口絞り、および、前記第2光学素子を有し、前記物体からの光を集光して該物体の中間像を形成する第1結像光学系と、
前記中間像を前記像面に結像させる第2結像光学系と、を有することを特徴とする請求項1または2に記載の反射屈折光学系。
The catadioptric optical system is
A first imaging optical system having the first optical element, the aperture stop, and the second optical element, and condensing light from the object to form an intermediate image of the object;
The catadioptric optical system according to claim 1, further comprising: a second imaging optical system that forms the intermediate image on the image plane.
前記中間像が形成される位置にフィールドレンズを配置することを特徴とする請求項3に記載の反射屈折光学系。   4. The catadioptric optical system according to claim 3, wherein a field lens is disposed at a position where the intermediate image is formed. 前記第2結像光学系よりも像側に平行平面板を配置することを特徴とする請求項3または4に記載の反射屈折光学系。   5. The catadioptric optical system according to claim 3, wherein a plane-parallel plate is disposed closer to the image side than the second imaging optical system. 前記主波長は、可視光の波長の範囲内にあることを特徴とする請求項1ないし5のいずれか1項に記載の反射屈折光学系。   6. The catadioptric optical system according to claim 1, wherein the dominant wavelength is in a visible light wavelength range. 前記物体からの光は、前記第1光透過部を透過して前記開口絞りを通過して前記第2光反射部で反射され、該第2光反射部で反射された光は、前記開口絞りを通過して前記第1光反射部で反射され、該第1光反射部で反射された光は、前記開口絞りを通過して前記第2光透過部を透過することを特徴とする請求項1ないし6のいずれか1項に記載の反射屈折光学系。   The light from the object passes through the first light transmission portion, passes through the aperture stop, is reflected by the second light reflection portion, and the light reflected by the second light reflection portion is the aperture stop. The light reflected by the first light reflecting portion after passing through the first light reflecting portion passes through the aperture stop and passes through the second light transmitting portion. The catadioptric optical system according to any one of 1 to 6. 前記開口絞りは、可変絞りであることを特徴とする請求項1ないし7のいずれか1項に記載の反射屈折光学系。   The catadioptric optical system according to claim 1, wherein the aperture stop is a variable stop. 前記第1光反射部および前記第2光反射部は、凹形状、且つ、非球面形状を有していることを特徴とする請求項1ないし8のいずれか1項に記載の反射屈折光学系。   The catadioptric optical system according to any one of claims 1 to 8, wherein the first light reflecting portion and the second light reflecting portion have a concave shape and an aspherical shape. . 光源と、
前記光源からの光で物体を照明する照明光学系と、
前記物体からの光が入射する請求項1ないし9のいずれか1項に記載の反射屈折光学系と、
前記反射屈折光学系から射出した光を光電変換する撮像素子と、を有することを特徴とする撮像装置。
A light source;
An illumination optical system for illuminating an object with light from the light source;
The catadioptric optical system according to any one of claims 1 to 9, wherein light from the object is incident;
An image pickup apparatus comprising: an image pickup device that photoelectrically converts light emitted from the catadioptric optical system.
前記撮像素子によって取得されるデータから画像データを生成する画像処理系を有することを特徴とする請求項10に記載の撮像装置。   The imaging apparatus according to claim 10, further comprising an image processing system that generates image data from data acquired by the imaging element. 前記光源は、可視光を照射することを特徴とする請求項10または11に記載の撮像装置。   The imaging apparatus according to claim 10, wherein the light source emits visible light. 前記物体における視野領域がφ3mm以上であることを特徴とする請求項10ないし12のいずれか1項に記載の撮像装置。   The imaging device according to claim 10, wherein a visual field region of the object is φ3 mm or more.
JP2014061999A 2014-03-25 2014-03-25 Catadioptric optical system and imaging device having the same Pending JP2015184544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061999A JP2015184544A (en) 2014-03-25 2014-03-25 Catadioptric optical system and imaging device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061999A JP2015184544A (en) 2014-03-25 2014-03-25 Catadioptric optical system and imaging device having the same

Publications (1)

Publication Number Publication Date
JP2015184544A true JP2015184544A (en) 2015-10-22

Family

ID=54351121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061999A Pending JP2015184544A (en) 2014-03-25 2014-03-25 Catadioptric optical system and imaging device having the same

Country Status (1)

Country Link
JP (1) JP2015184544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302536A (en) * 2019-01-23 2021-08-24 株式会社尼康 Image capturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302536A (en) * 2019-01-23 2021-08-24 株式会社尼康 Image capturing apparatus
CN113302536B (en) * 2019-01-23 2023-04-18 株式会社尼康 Image capturing apparatus

Similar Documents

Publication Publication Date Title
US7253972B2 (en) Telephoto lens system
JP5479206B2 (en) Catadioptric optical system and imaging apparatus having the same
JP2015102758A (en) Liquid immersion microscope objective lens and microscope using the same
JP5675892B2 (en) Catadioptric optical system with high numerical aperture
JP5836686B2 (en) Catadioptric optical system and imaging apparatus having the same
JP5479224B2 (en) Catadioptric optical system and imaging apparatus having the same
US11048071B2 (en) Microscope objective
JP2017111260A (en) Microscope objective lens
JP5705014B2 (en) Imaging lens, imaging optical system, and microscope
JP5868063B2 (en) Imaging device
US20130063650A1 (en) Catadioptric system and image pickup apparatus equipped with same
JP2006276609A (en) Imaging lens
JP5656682B2 (en) Catadioptric optical system and imaging apparatus having the same
JP2015184544A (en) Catadioptric optical system and imaging device having the same
JP2015036706A (en) Imaging device
JP2015036706A5 (en)
JP2013015718A (en) Catadioptric system and imaging device having the same
JP6071541B2 (en) Endoscope optical system and endoscope
JP6392947B2 (en) Immersion microscope objective lens and microscope using the same
JPH08286112A (en) Objective lens for microscope
JP2015176134A (en) imaging device
JP5506576B2 (en) Viewfinder optical system and imaging apparatus having the same
JP2014081511A (en) Reflective/refractive optical system and imaging apparatus having the same
JP5627476B2 (en) Catadioptric optical system and imaging apparatus having the same
JP2006317761A (en) Objective lens