JP2015184098A - optical encoder - Google Patents

optical encoder Download PDF

Info

Publication number
JP2015184098A
JP2015184098A JP2014059764A JP2014059764A JP2015184098A JP 2015184098 A JP2015184098 A JP 2015184098A JP 2014059764 A JP2014059764 A JP 2014059764A JP 2014059764 A JP2014059764 A JP 2014059764A JP 2015184098 A JP2015184098 A JP 2015184098A
Authority
JP
Japan
Prior art keywords
light
light emitting
diffraction grating
scale
optical encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014059764A
Other languages
Japanese (ja)
Other versions
JP6157392B2 (en
Inventor
仲嶋 一
Hajime Nakajima
一 仲嶋
琢也 野口
Takuya Noguchi
琢也 野口
秀 多久島
Shu Takushima
秀 多久島
武史 武舎
Takeshi Musha
武史 武舎
滋紀 竹田
Shigeki Takeda
滋紀 竹田
関 真規人
Makito Seki
真規人 関
隆史 平位
Takashi Hirai
隆史 平位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014059764A priority Critical patent/JP6157392B2/en
Publication of JP2015184098A publication Critical patent/JP2015184098A/en
Application granted granted Critical
Publication of JP6157392B2 publication Critical patent/JP6157392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical encoder with high utilization efficiency of light allowable mounting accuracy of an element and capable of obtaining stable output at high S/N ratio.SOLUTION: The optical encoder includes: a scale 5 with a signal pattern 6 formed linearly or circularly in which a reflective index periodically changes; a light emitting unit 1 that emits a beam of light toward the scale 5; a detection section 3 that detects one-dimensional distribution of the light reflected by the scale 5; and a diffraction grating 7 disposed between the light emitting unit 1 and the scale 5 for correcting the one-dimensional distribution of the light detected by the detection section 3.

Description

本発明は、スケール上のパターンを光学的に検出して、スケールの位置または変位量を計測するための光学式エンコーダに関する。   The present invention relates to an optical encoder for optically detecting a pattern on a scale and measuring the position or displacement of the scale.

光学式エンコーダは、サーボシステムなどにおいて、モータなどの物体の回転運動または並進運動を光学的に検出して、位置または速度を求めるために用いられる。一般の光学式エンコーダは、LED等からなる発光部と、位置または角度を検出するための信号パターンが形成されたスケールと、スケールの信号パターンが投影された光を電気信号に変換して検出するための複数の検出素子を備えた検出部と、検出部で検出された電気信号から位置または角度を演算するための演算部とで構成される。   An optical encoder is used in a servo system or the like to optically detect a rotational motion or translational motion of an object such as a motor to obtain a position or velocity. A general optical encoder detects a light emitting unit composed of an LED or the like, a scale on which a signal pattern for detecting a position or an angle is formed, and light on which the scale signal pattern is projected is converted into an electric signal. And a calculation unit for calculating a position or an angle from an electric signal detected by the detection unit.

光学式エンコーダの構成に関して、発光部と検出部の間にスケールを配置し、スケールを透過した光の光量分布を検出する透過式と、発光部および検出部をスケールに対して同じ側に配置し、スケールから反射した光の光量分布を検出する反射式とに分類される。近年はエンコーダの薄型化の要求から、反射式の構成が多く用いられている。   Regarding the configuration of the optical encoder, a scale is placed between the light emitting unit and the detecting unit, and the transmission type that detects the light quantity distribution of the light that has passed through the scale, and the light emitting unit and the detecting unit are arranged on the same side of the scale And a reflection type for detecting the light quantity distribution of the light reflected from the scale. In recent years, a reflection type configuration is often used because of a demand for a thinner encoder.

図12は、従来の光学式エンコーダの一例を示す側面図である。発光部51および検出部53が基板上に設置され、信号パターン56が形成されたスケール55が基板に対して平行に設置される。基板およびスケール55のいずれか一方がX方向に沿って相対移動する。エンコーダを薄型化するためには、スケール55と発光部51および検出部53との間のギャップgは極力狭くする必要がある。こうした狭ギャップの反射光学系では、光学部品を配置するスペースが無いことから、コリメート用のレンズを使用しない構成が一般に採用される。   FIG. 12 is a side view showing an example of a conventional optical encoder. The light emitting unit 51 and the detection unit 53 are installed on the substrate, and the scale 55 on which the signal pattern 56 is formed is installed in parallel to the substrate. Either the substrate or the scale 55 moves relatively along the X direction. In order to reduce the thickness of the encoder, the gap g between the scale 55, the light emitting unit 51, and the detecting unit 53 needs to be as narrow as possible. In such a narrow gap reflective optical system, since there is no space for placing optical components, a configuration that does not use a collimating lens is generally employed.

発光部51は、一般にLED(発光ダイオード)などを備え、発光領域52から放射される光の放射角分布Dは、通常、ランバーシアン特性を有している。ランバーシアン特性を有する光源による照度分布は、発光面に垂直な光軸での光量を基準とし、照射光が前記光軸と成す放射角θを用いて、cosθの関数となる。また、検出部53での照射面において光軸を原点とし、発光領域52から検出部53までの光路長で規格化した位置をxとすると、θ=tan−1xとなり、下記の式(1)に示すように、コサインの4乗に比例する光量分布Iとなる。
I(x)=cos(tan−1x) …(1)
The light emitting unit 51 generally includes an LED (light emitting diode) or the like, and the radiation angle distribution D of light emitted from the light emitting region 52 usually has a Lambertian characteristic. The illuminance distribution by the light source having the Lambertian characteristic is a function of cos 4 θ using the light amount on the optical axis perpendicular to the light emitting surface as a reference and using the radiation angle θ formed by the irradiated light with the optical axis. Further, assuming that the optical axis on the irradiation surface of the detection unit 53 is the origin and the position normalized by the optical path length from the light emitting region 52 to the detection unit 53 is x, θ = tan −1 x, and the following equation (1) ), The light quantity distribution I is proportional to the fourth power of cosine.
I (x) = cos 4 (tan −1 x) (1)

図13(a)は、図12に示した光学系を平面に展開した説明図であり、発光領域52から放射された光が検出部53を照射する様子を示す。図13(b)は、検出部53の受光領域での光照射強度分布を示すグラフである。横軸は、照射位置を、発光領域52から検出部53までの光路長で規格化しており、x=0は光軸が通る中心、X=1は受光領域の右端、X=−1が受光領域の左端にそれぞれ対応する。縦軸についても光照射強度の最大値で規格化している。検出部53での光照射強度は、中心から左右周辺に向かって急速に低下する特性を示すことが判る。   FIG. 13A is an explanatory diagram in which the optical system shown in FIG. 12 is developed on a plane, and shows how the light emitted from the light emitting region 52 irradiates the detection unit 53. FIG. 13B is a graph showing the light irradiation intensity distribution in the light receiving region of the detection unit 53. The horizontal axis normalizes the irradiation position by the optical path length from the light emitting region 52 to the detection unit 53, where x = 0 is the center through which the optical axis passes, X = 1 is the right end of the light receiving region, and X = −1 is the light received. Each corresponds to the left edge of the region. The vertical axis is also normalized by the maximum value of light irradiation intensity. It can be seen that the light irradiation intensity at the detection unit 53 exhibits a characteristic of rapidly decreasing from the center toward the left and right periphery.

反射式のエンコーダでは、投影像の距離によるボケと部品の実装上のマージンとのトレードオフの関係から、ギャップgは1mm程度に設計されることが多い。検出部53の位置で長さ6mm程度の検出素子を確保するためには、x=±1程度の受光領域が必要になり、この場合、受光領域端部での光照射強度は最大値の約0.2まで低下する。   In the reflective encoder, the gap g is often designed to be about 1 mm because of the trade-off relationship between the blur due to the distance of the projected image and the margin for mounting the component. In order to secure a detection element having a length of about 6 mm at the position of the detection unit 53, a light receiving region of about x = ± 1 is required. In this case, the light irradiation intensity at the end of the light receiving region is about the maximum value. Decreases to 0.2.

こうした光量変動の対策として、下記特許文献1では、検出部53に複数の検出素子54を設置し、各検出素子54の受光面積を中心から左右周辺に向かって増加させることが提案されている。これにより光照射強度が高い中心付近にある検出素子の出力と、光照射強度が低い端部付近にある検出素子の出力とがほぼ等しくなり、図13(c)のグラフに示すように、各検出素子からの出力の均一性を向上させている。   As a countermeasure against such light quantity fluctuation, Patent Document 1 below proposes that a plurality of detection elements 54 are installed in the detection unit 53 and the light receiving area of each detection element 54 is increased from the center toward the left and right periphery. As a result, the output of the detection element in the vicinity of the center where the light irradiation intensity is high and the output of the detection element in the vicinity of the end portion where the light irradiation intensity is low are substantially equal. As shown in the graph of FIG. The uniformity of the output from the detection element is improved.

特開2009−168625号公報JP 2009-168625 A

特許文献1で提案された光学式エンコーダでは、図13に示すように、中心から左右周辺に向かって急速に低下する光照射強度を補償し、各検出素子からの出力を均一化できるように、各検出素子の受光面積を変化させている。   In the optical encoder proposed in Patent Document 1, as shown in FIG. 13, so as to compensate for the light irradiation intensity that rapidly decreases from the center toward the left and right periphery, and to uniformize the output from each detection element, The light receiving area of each detection element is changed.

しかしながら、エンコーダを製造する際、素子の取付け誤差を許容する必要があることから、検出素子54のスリット配列方向に垂直な幅方向の最大値が制限される。このため、受光領域の端部における検出素子54の幅を増加させる代わりに、中心付近での検出素子4の幅を減少させて受光量を低下させ、光量分布の均一化を図ることになる。その結果、光の利用効率の低下を招くことになる。   However, when manufacturing an encoder, it is necessary to allow an element mounting error, so that the maximum value in the width direction perpendicular to the slit arrangement direction of the detection elements 54 is limited. For this reason, instead of increasing the width of the detection element 54 at the end of the light receiving region, the width of the detection element 4 near the center is decreased to reduce the amount of received light, thereby making the light quantity distribution uniform. As a result, the light utilization efficiency is reduced.

また、図13(b)に示したような光量分布カーブの逆数を示す受光感度特性を検出部53に付与しているため、組立時の取付け誤差、動作時の温度変化等に起因して、照射光量分布と検出部53の位置関係にずれが生じた場合、出力の均一性が崩れてしまい、位置検出特性の低下を招くことになる。   In addition, since the light receiving sensitivity characteristic indicating the reciprocal of the light amount distribution curve as shown in FIG. 13B is given to the detection unit 53, due to mounting errors during assembly, temperature changes during operation, etc., When a deviation occurs in the positional relationship between the irradiation light amount distribution and the detection unit 53, the output uniformity is lost, and the position detection characteristics are deteriorated.

本発明の目的は、光の利用効率が高く、素子の取付け精度を許容でき、高S/N比で安定した出力が得られる光学式エンコーダを提供することである。   An object of the present invention is to provide an optical encoder that has a high light utilization efficiency, can tolerate the mounting accuracy of an element, and can obtain a stable output at a high S / N ratio.

上記目的を達成するために、本発明に係る光学式エンコーダは、
反射率が周期的に変化した信号パターンが直線状または円弧状に形成されたスケールと、
前記スケールに向けて光を照射する発光部と、
前記スケールで反射した光の1次元分布を検出する検出部と、
前記発光部と前記スケールとの間に設けられ、前記検出部で検出される光の1次元分布を補正するための回折格子と、を備えることを特徴とする。
In order to achieve the above object, an optical encoder according to the present invention includes:
A scale in which a signal pattern in which the reflectance is periodically changed is formed in a linear or arc shape;
A light emitting unit that emits light toward the scale;
A detection unit for detecting a one-dimensional distribution of light reflected by the scale;
And a diffraction grating provided between the light emitting unit and the scale for correcting a one-dimensional distribution of light detected by the detection unit.

本発明によれば、発光部とスケールとの間にある回折格子を用いて光の1次元分布を補正しているため、光の利用効率を低下させることなく照射強度分布の均一化が図られる。また、素子の取付け精度を許容でき、高S/N比で安定した出力が得られる。   According to the present invention, since the one-dimensional distribution of light is corrected using the diffraction grating between the light emitting portion and the scale, the irradiation intensity distribution can be made uniform without reducing the light utilization efficiency. . Moreover, the mounting accuracy of the element can be allowed, and a stable output can be obtained with a high S / N ratio.

本発明の実施の形態1を示す斜視図である。It is a perspective view which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す側面図である。It is a side view which shows Embodiment 1 of this invention. 図3(a)は発光部および回折格子を拡大した正面図であり、図3(b)は光線追跡シミュレーションを用いて得られた検出素子上での照射強度分布を示すグラフである。FIG. 3A is an enlarged front view of the light emitting section and the diffraction grating, and FIG. 3B is a graph showing the irradiation intensity distribution on the detection element obtained by using the ray tracing simulation. 検出素子上での照射強度分布の詳細を示すグラフである。It is a graph which shows the detail of irradiation intensity distribution on a detection element. 照射強度分布の変動率を計算した結果を示す3次元グラフである。It is a three-dimensional graph which shows the result of having calculated the fluctuation rate of irradiation intensity distribution. 照射強度分布の変動率を計算した結果を示す等高線図である。It is a contour map which shows the result of having calculated the fluctuation rate of irradiation intensity distribution. 本発明の実施の形態2を示す斜視図である。It is a perspective view which shows Embodiment 2 of this invention. 図8(a)は発光部およびブレーズド回折格子を拡大した正面図であり、図8(b)は光線追跡シミュレーションを用いて得られた検出素子上での照射強度分布を示すグラフである。FIG. 8A is an enlarged front view of the light emitting section and the blazed diffraction grating, and FIG. 8B is a graph showing the irradiation intensity distribution on the detection element obtained by using the ray tracing simulation. 図9(a)は分離した2つの発光領域を有する発光部およびブレーズド回折格子を拡大した正面図であり、図9(b)は光線追跡シミュレーションを用いて得られた検出素子上での照射強度分布を示すグラフである。FIG. 9A is an enlarged front view of a light emitting unit having two separated light emitting regions and a blazed diffraction grating, and FIG. 9B is an irradiation intensity on a detection element obtained by using a ray tracing simulation. It is a graph which shows distribution. 本発明の実施の形態3を示す斜視図である。It is a perspective view which shows Embodiment 3 of this invention. 図11(a)は傾斜ブレーズド回折格子をZ方向から見た平面図、図11(b)はY方向に見た正面図、図11(c)はX方向から見た側面図である。11A is a plan view of the tilted blazed diffraction grating as viewed from the Z direction, FIG. 11B is a front view as viewed in the Y direction, and FIG. 11C is a side view as viewed from the X direction. 従来の光学式エンコーダの一例を示す側面図である。It is a side view which shows an example of the conventional optical encoder. 図13(a)は図12に示した光学系を平面に展開した説明図であり、図13(b)は検出部53の受光領域での光照射強度分布を示すグラフであり、図13(c)は検出出力の分布を示すグラフである。FIG. 13A is an explanatory diagram in which the optical system shown in FIG. 12 is developed in a plane, and FIG. 13B is a graph showing the light irradiation intensity distribution in the light receiving region of the detection unit 53, and FIG. c) is a graph showing a distribution of detection outputs.

実施の形態1.
図1は本発明の実施の形態1を示す斜視図であり、図2はその側面図である。光学式エンコーダは、互いに相対移動可能なスケール5およびヘッド8と、演算部40などで構成される。ここでは、スケール5およびヘッド8が直線方向に沿って相対移動するリニアエンコーダを例示するが、スケール5およびヘッド8が半径Rの円周方向に沿って相対移動し、スケール5も半径Rの円弧状に形成されたロータリエンコーダについても本発明は同様に適用可能である。ここで理解容易のため、スケール5の移動方向をX方向とし、ヘッド8の表面の法線方向をZ方向とし、X方向およびZ方向に垂直な方向をY方向としている。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing Embodiment 1 of the present invention, and FIG. 2 is a side view thereof. The optical encoder includes a scale 5 and a head 8 that can move relative to each other, a calculation unit 40, and the like. Here, a linear encoder in which the scale 5 and the head 8 are relatively moved along the linear direction is illustrated, but the scale 5 and the head 8 are relatively moved along the circumferential direction of the radius R, and the scale 5 is also a circle of the radius R. The present invention can be similarly applied to a rotary encoder formed in an arc shape. Here, for easy understanding, the moving direction of the scale 5 is the X direction, the normal direction of the surface of the head 8 is the Z direction, and the X direction and the direction perpendicular to the Z direction are the Y direction.

スケール5は、板状の部材で構成され、その下面には高反射率区画と低反射率区画が交互に配列し、反射率が周期的に変化した信号パターン6が形成される。リニアエンコーダの場合、信号パターン6はX方向に沿って直線状に形成され、ロータリエンコーダの場合、信号パターン6はX方向に延びる直線と接する円弧状に形成される。   The scale 5 is composed of a plate-like member, and a high-reflectance section and a low-reflectance section are alternately arranged on the lower surface thereof, and a signal pattern 6 in which the reflectance changes periodically is formed. In the case of a linear encoder, the signal pattern 6 is formed in a straight line shape along the X direction, and in the case of a rotary encoder, the signal pattern 6 is formed in an arc shape in contact with a straight line extending in the X direction.

ヘッド8は、発光部1と、回折格子7と、検出部3などを備える。発光部1は、LEDなどで構成され、スケール5に向けて光を発生する発光領域2を有する。検出部3は、X方向に沿ってアレイ状に配置された複数の検出素子4で構成され、スケール5で反射した光の1次元分布を検出する。回折格子7は、発光部1とスケール5との間に設けられ、検出部3で検出される光の1次元分布を補正する機能を有する。   The head 8 includes a light emitting unit 1, a diffraction grating 7, a detection unit 3, and the like. The light emitting unit 1 is configured by an LED or the like and has a light emitting region 2 that generates light toward the scale 5. The detection unit 3 includes a plurality of detection elements 4 arranged in an array along the X direction, and detects a one-dimensional distribution of light reflected by the scale 5. The diffraction grating 7 is provided between the light emitting unit 1 and the scale 5 and has a function of correcting the one-dimensional distribution of light detected by the detection unit 3.

演算部40は、マイクロプロセッサなどで構成され、検出部3からの出力信号に基づいてスケール5の位置または変位量を演算する機能を有する。   The calculation unit 40 is configured by a microprocessor or the like, and has a function of calculating the position or displacement amount of the scale 5 based on the output signal from the detection unit 3.

光学系に関して、図2に示すように、発光部1の発光領域2、信号パターン6、回折格子7および検出部3の検出面は互いに平行に配置される。発光領域2からZ方向に対して傾斜した角度で出射した光は、回折格子7を通過し、スケール5で斜めに反射する際に信号パターン6によって強度変調を受けた後、検出部3に到達する。信号パターン6および検出部3は、発光部1からX方向に沿って所定量ずらしてそれぞれ配置される。   Regarding the optical system, as shown in FIG. 2, the light emitting region 2 of the light emitting unit 1, the signal pattern 6, the diffraction grating 7, and the detection surface of the detecting unit 3 are arranged in parallel to each other. The light emitted from the light emitting region 2 at an angle inclined with respect to the Z direction passes through the diffraction grating 7, undergoes intensity modulation by the signal pattern 6 when reflected obliquely by the scale 5, and then reaches the detection unit 3. To do. The signal pattern 6 and the detection unit 3 are arranged with a predetermined amount shifted from the light emitting unit 1 along the X direction.

また、発光領域2から出射して信号パターン6を照射する光の全てが回折格子7を通過できるように、回折格子7の位置および寸法が設定される。回折格子7は、Y方向に延びる直線状の格子がX方向に沿って多数配列して構成される。光が回折格子7を通過する際、入射光の光軸およびX方向の両方に対して垂直な面内で光の回折が生ずる。   Further, the position and size of the diffraction grating 7 are set so that all of the light emitted from the light emitting region 2 and irradiating the signal pattern 6 can pass through the diffraction grating 7. The diffraction grating 7 is configured by arranging a large number of linear gratings extending in the Y direction along the X direction. When light passes through the diffraction grating 7, light diffraction occurs in a plane perpendicular to both the optical axis of the incident light and the X direction.

図3(a)は発光部1および回折格子7を拡大した正面図であり、図3(b)は光線追跡シミュレーションを用いて得られた検出素子4上での照射強度分布を示すグラフである。図3(a)では、発光領域2の中心から特定方向に出射した光だけを例示し、それ以外の光については図示を省略している。発光領域2の中心から出射した光は、0次回折光および±n次回折光(nは1以上の整数)を発生する。こうしたn次回折光の出射角は、光の波長、回折格子7への入射角および格子周期に応じて決定される。以下、理解容易のために0次および±1次回折光を例として説明する。   FIG. 3A is an enlarged front view of the light emitting unit 1 and the diffraction grating 7, and FIG. 3B is a graph showing an irradiation intensity distribution on the detection element 4 obtained by using a ray tracing simulation. . In FIG. 3A, only light emitted in a specific direction from the center of the light emitting region 2 is illustrated, and illustration of the other light is omitted. The light emitted from the center of the light emitting region 2 generates 0th order diffracted light and ± nth order diffracted light (n is an integer of 1 or more). The exit angle of such n-order diffracted light is determined according to the wavelength of light, the angle of incidence on the diffraction grating 7 and the grating period. Hereinafter, for ease of understanding, the 0th order and ± 1st order diffracted light will be described as examples.

図3(b)に示すように、+X方向への回折によって現れるものを+1次回折とすると、照射強度分布には+X方向に偏った位置に+1次回折光強度分布9が現れる。同様に、−X方向への回折によって現れるものを−1次回折とすると、照射強度分布には−X方向に偏った位置に−1次回折光強度分布10が現れる。また、0次回折光強度分布11も一定量存在し、これらを全て加算したものが総光強度分布12となる。   As shown in FIG. 3 (b), if the one appearing by diffraction in the + X direction is + 1st order diffraction, the + 1st order diffracted light intensity distribution 9 appears at a position biased in the + X direction in the irradiation intensity distribution. Similarly, if the one that appears due to diffraction in the -X direction is -1st order diffraction, the -1st order diffracted light intensity distribution 10 appears at a position biased in the -X direction in the irradiation intensity distribution. There is also a certain amount of 0th-order diffracted light intensity distribution 11, and the total light intensity distribution 12 is obtained by adding all of them.

総光強度分布12は、±1次の回折によって回折方向に光分布が広がって、0次回折光および±1次回折光が混合した状態になり、その結果、回折格子が存在しない場合の分布と比べて中心付近での平坦性が向上する。こうした総光強度分布12は、1)0次回折光の強度に対する1次回折光の強度の比率をξとして、両者の比率である0次ピーク強度:1次ピーク強度=1−ξ:ξと、2)回折角度に対応する、回折格子周期Λと光の波長λとの比率β=λ/Λとにそれぞれ依存する。例えば、ξ=0.8、β=1.4の場合、図4のグラフに示すように中心付近に平坦な分布が現れる。   The total light intensity distribution 12 spreads in the diffraction direction due to ± 1st-order diffraction, resulting in a mixture of 0th-order diffracted light and ± 1st-order diffracted light. Thus, the flatness near the center is improved. Such a total light intensity distribution 12 is expressed as follows: 1) The ratio of the intensity of the first-order diffracted light to the intensity of the 0th-order diffracted light is ξ, and the ratio of both is 0th-order peak intensity: 1st-order peak intensity = 1−ξ: ξ ) Depending on the ratio β = λ / Λ of the diffraction grating period Λ and the wavelength λ of light corresponding to the diffraction angle. For example, when ξ = 0.8 and β = 1.4, a flat distribution appears near the center as shown in the graph of FIG.

上述したような光学エンコーダでは、スケール5とヘッド8との間隔は、組立性、部品公差の制限からあまり小さくすることができないが、一方、信号パターン6の像を許容範囲内の高いコントラストで検出部3に投影する必要があることから、あまり大きくすることも難しい。こうしたトレードオフの関係から、スケール5とヘッド8の間隔を1mm前後に設定する場合が多い。   In the optical encoder as described above, the distance between the scale 5 and the head 8 cannot be made very small due to limitations in assemblability and component tolerances. On the other hand, the image of the signal pattern 6 is detected with a high contrast within an allowable range. Since it is necessary to project to the part 3, it is difficult to make it too large. Because of this trade-off, the interval between the scale 5 and the head 8 is often set to about 1 mm.

また、検出部3の検出素子4の配列長は、信号パターン6の複数の周期を検出するために、5mm程度の長さを有しており、発光領域2から信号パターン6を経て検出素子4に至る光学距離の2倍程度に相当する検出素子の配列長、即ち照射領域を必要とする。この照射領域は、図4のように光路長で規格化した検出器上の位置xで示すと、−1≦x≦1の領域に対応しており、その領域内における最大値をMax、最小値をMinとおくと、領域内の変動率αは、α=1−Min/Max として計算される。   Further, the array length of the detection elements 4 of the detection unit 3 has a length of about 5 mm in order to detect a plurality of periods of the signal pattern 6, and the detection elements 4 pass through the signal pattern 6 from the light emitting region 2. An array length of detection elements corresponding to about two times the optical distance to reach, that is, an irradiation area is required. This irradiation area corresponds to an area of −1 ≦ x ≦ 1 when represented by a position x on the detector normalized by the optical path length as shown in FIG. 4, and the maximum value in that area is Max, and the minimum When the value is set to Min, the variation rate α in the region is calculated as α = 1−Min / Max.

この変動率αは、1次回折光の比率ξおよび回折格子周期と光波長の比率βに依存しており、0≦ξ≦1および1≦β≦1.5の範囲で変動率αを計算した結果を、図5に示す3次元グラフまたは図6に示す等高線図に示す。ここで、図6に記載したように、所望の変動率αが0.3以下である範囲を包含する2つの不等式L1,L2が定義できる。
ξ<a+b(β−1)、a=0.424−0.08α、b=1.02−1.4α …(L1)
ξ>a+b(β−1)、a=0.6(0.3−α)、b=4/3 …(L2)
This variation rate α depends on the ratio ξ of the first-order diffracted light and the ratio β of the diffraction grating period and the light wavelength, and the variation rate α was calculated in the range of 0 ≦ ξ ≦ 1 and 1 ≦ β ≦ 1.5. The results are shown in the three-dimensional graph shown in FIG. 5 or the contour map shown in FIG. Here, as described in FIG. 6, two inequalities L1 and L2 including a range in which the desired variation rate α is 0.3 or less can be defined.
ξ <a 1 + b 1 (β−1), a 1 = 0.424−0.08α, b 1 = 1.02−1.4α (L1)
ξ> a 2 + b 2 (β−1), a 2 = 0.6 (0.3−α), b 2 = 4/3 (L2)

これらの2つの不等式L1,L2の間の領域が、所望の変動率α≦0.3を維持できる好ましい領域になる。この領域を満たすように、回折格子7を設計することが好ましい。   A region between these two inequalities L1 and L2 is a preferable region in which the desired variation rate α ≦ 0.3 can be maintained. It is preferable to design the diffraction grating 7 so as to fill this region.

なお、本発明による回折格子は、振幅格子でも構成できるが、位相格子として構成することにより、光の利用効率が振幅格子に対して約2倍となるため、効率的にSN比を向上させることが可能になる。   Although the diffraction grating according to the present invention can also be configured as an amplitude grating, by using it as a phase grating, the light utilization efficiency is approximately twice that of the amplitude grating, so that the SN ratio can be improved efficiently. Is possible.

また、本実施形態では、レンズ削減の必要性がより高い反射式のエンコーダで説明したが、透過式エンコーダにおいても同様の構成が可能であり、発光部と検出部とを近接してコリメートレンズを削減する必要のある検出光学系であれば、光学式エンコーダ以外にも適用できる。   Further, in the present embodiment, the reflection type encoder having a higher necessity for lens reduction has been described. However, a similar configuration is possible in the transmission type encoder, and the collimating lens is arranged by bringing the light emitting unit and the detection unit close to each other. Any detection optical system that needs to be reduced can be applied to other than optical encoders.

実施の形態2.
図7は、本発明の実施の形態2を示す斜視図である。図8(a)は発光部1およびブレーズド回折格子13を拡大した正面図であり、図8(b)は光線追跡シミュレーションを用いて得られた検出素子4上での照射強度分布を示すグラフである。本実施形態は、実施の形態1と同様な構成を有するが、回折格子7の代わりにブレーズド回折格子13を使用している点で相違する。
Embodiment 2. FIG.
FIG. 7 is a perspective view showing Embodiment 2 of the present invention. FIG. 8A is an enlarged front view of the light emitting section 1 and the blazed diffraction grating 13, and FIG. 8B is a graph showing the irradiation intensity distribution on the detection element 4 obtained by using the ray tracing simulation. is there. This embodiment has the same configuration as that of the first embodiment, but differs in that a blazed diffraction grating 13 is used instead of the diffraction grating 7.

ブレーズド回折格子13は、+1次回折又は−1次回折の何れかの回折効率が高くなるように1方向に傾斜した鋸歯状の形状にブレーズド化されている。発光部1の中心を通過し、スケール5の法線を含む面を基準として+X方向側にあるA領域13aと−X方向側にあるB領域13bとでは、ブレーズド方向の異なる対称な格子パターンが形成されている。即ち、図8(a)に示すように、A領域13aでは、回折格子の法線方向に対して−X方向に傾斜したブレーズ角を有し、一方、B領域13bでは、回折格子の法線方向に対して+X方向に傾斜したブレーズ角を有する。これによりA領域13aからの回折光は、基準面から+X方向により離れるようになり、B領域13bからの回折光は、基準面から−X方向により離れるようになる。   The blazed diffraction grating 13 is blazed in a sawtooth shape inclined in one direction so that either + 1st order diffraction or −1st order diffraction has a high diffraction efficiency. Symmetrical lattice patterns with different blazed directions are formed in the A region 13a on the + X direction side and the B region 13b on the -X direction side with reference to the plane including the normal line of the scale 5 passing through the center of the light emitting unit 1. Is formed. That is, as shown in FIG. 8A, the A region 13a has a blaze angle inclined in the −X direction with respect to the normal direction of the diffraction grating, while the B region 13b has a normal line of the diffraction grating. It has a blaze angle inclined in the + X direction with respect to the direction. As a result, the diffracted light from the A region 13a is separated from the reference surface in the + X direction, and the diffracted light from the B region 13b is separated from the reference surface in the −X direction.

図8(b)に示すように、右側のA領域13aでは+X方向に傾く方向の回折光の効率が高くなることから、照射強度分布には+X方向に偏った位置に+1次回折光強度分布9が現れる。同様に、左側のB領域13bでは−X方向に傾く方向の回折光の効率が高くなることから、照射強度分布には−X方向に偏った位置に−1次回折光強度分布10が現れる。また、0次回折光強度分布11も一定量存在し、これらを全て加算したものが総光強度分布12となる。   As shown in FIG. 8B, since the efficiency of the diffracted light in the direction tilted in the + X direction is increased in the right A region 13a, the + 1st order diffracted light intensity distribution 9 is shifted to the position deviated in the + X direction. Appears. Similarly, since the efficiency of the diffracted light in the direction inclined in the −X direction is increased in the left B region 13b, the −1st order diffracted light intensity distribution 10 appears at a position biased in the −X direction in the irradiation intensity distribution. There is also a certain amount of 0th-order diffracted light intensity distribution 11, and the total light intensity distribution 12 is obtained by adding all of them.

このように回折格子のレリーフ形状によって種々の回折効率が設計可能であり、実施形態1で説明したような回折格子の定数を適切に設定することによって、照射強度分布の平坦化が可能である。   As described above, various diffraction efficiencies can be designed according to the relief shape of the diffraction grating, and the irradiation intensity distribution can be flattened by appropriately setting the diffraction grating constant as described in the first embodiment.

次に光学原理に関して、ブレーズド回折格子13を出射した光線は、ブレーズド回折格子13を逆方向に通過し延長した図中の破線の方向に沿って到来する光線と等価的に見做すことができる。このため光線の発光位置が実際より中心寄りに移動したように振舞い、右側の発光領域2aは左方向に移動したように見え、左側の発光領域2bは右方向に移動したように見える。結果として、発光領域2のX寸法が回折方向に見掛け上小さくなる。発光領域2の縮小の度合いは、発光位置の見掛けの移動量に対応しており、発光領域の幅をD、ブレーズド回折格子13の回折角度をθとし、ブレーズド回折格子13の格子面と発光領域までの光学距離をGoとして、見掛けの移動量はGo×tanθである。   Next, regarding the optical principle, a light beam emitted from the blazed diffraction grating 13 can be regarded as equivalent to a light beam that passes along the blazed diffraction grating 13 in the reverse direction and extends along the direction of the broken line in the figure. . For this reason, the light emission position behaves as if it moved closer to the center, the right light emitting area 2a appears to move leftward, and the left light emitting area 2b appears to move rightward. As a result, the X dimension of the light emitting region 2 is apparently reduced in the diffraction direction. The degree of reduction of the light emitting region 2 corresponds to the apparent amount of movement of the light emitting position, the width of the light emitting region is D, the diffraction angle of the blazed diffraction grating 13 is θ, and the grating surface of the blazed diffraction grating 13 and the light emitting region The optical movement distance is Go, and the apparent movement amount is Go × tan θ.

この移動量がD/4であるとき、右側の発光領域2aと左側の発光領域2bの中心が重なり、見掛けの発光面積が最も小さくなる。更に移動量が大きくなり、移動量がD/2を超えると見掛けの発光領域幅が基の幅より大きくなる。従って、見掛けの発光領域を大きくしないためには、Go<D/2×cotθ を満たすようにブレーズド回折格子13を配置することが好ましい(cotθは、θの余接を表す)。   When the amount of movement is D / 4, the centers of the right side light emitting region 2a and the left side light emitting region 2b overlap, and the apparent light emitting area becomes the smallest. Further, the amount of movement increases, and when the amount of movement exceeds D / 2, the apparent light emitting region width becomes larger than the base width. Therefore, in order not to enlarge the apparent light emitting region, it is preferable to arrange the blazed diffraction grating 13 so as to satisfy Go <D / 2 × cot θ (cot θ represents the cotangent of θ).

なお、図8(a)に示すGpは物理距離を示しており、屈折率がnである距離をLn、屈折率が1である距離をLaとすると、光学距離Go=Ln/n+La で表される。但し、Gp=Ln+La である。   Note that Gp shown in FIG. 8A indicates a physical distance. When a distance having a refractive index n is Ln and a distance having a refractive index 1 is La, the optical distance Go = Ln / n + La. The However, Gp = Ln + La.

一般に、光学式エンコーダにおいては、投影される信号パターンのコントラストを遠方においてもなるべく維持するため、発光領域の径が200μm以下の点光源LEDがよく使われる。光源が小さくなるほど、LEDからの発光量が低下するため、なるべく大きな発光領域を持ちながら光学的な見掛けの発光領域寸法を縮小させることは、検出信号のSN比を向上させるうえで有効である。   In general, in an optical encoder, in order to maintain the contrast of a projected signal pattern as far as possible, a point light source LED having a light emitting area diameter of 200 μm or less is often used. Since the amount of light emitted from the LED decreases as the light source becomes smaller, reducing the apparent light emitting area size while having as large a light emitting area as possible is effective in improving the SN ratio of the detection signal.

図9(a)は分離した2つの発光領域2a,2bを有する発光部1およびブレーズド回折格子13を拡大した正面図であり、図9(b)は光線追跡シミュレーションを用いて得られた検出素子4上での照射強度分布を示すグラフである。上記のようなブレーズド回折格子13を使用した場合、見掛けの発光領域が最も小さくなるのは、見掛け上移動した右側の発光領域2aと左側の発光領域2bが重なったときであり、発光領域2a,2bの幅をD、発光領域2a,2bの中心間距離をWとして、Go=W/2×cotθである。そして、その位置からのずれは、発光領域の幅だけが許容され、(W−D)/2×cotθ<Go<(W+D)/2×cotθ で与えられる範囲にブレーズド回折格子13を配置することが好ましい。   FIG. 9A is an enlarged front view of the light emitting unit 1 having the two separated light emitting regions 2a and 2b and the blazed diffraction grating 13, and FIG. 9B is a detection element obtained using a ray tracing simulation. 4 is a graph showing an irradiation intensity distribution on 4. When the blazed diffraction grating 13 as described above is used, the apparent light emitting area becomes the smallest when the right light emitting area 2a and the left light emitting area 2b that are apparently moved overlap, and the light emitting areas 2a, 2a, Go = W / 2 × cot θ, where D is the width of 2b and W is the distance between the centers of the light emitting regions 2a and 2b. As for the deviation from the position, only the width of the light emitting region is allowed, and the blazed diffraction grating 13 is arranged in a range given by (WD) / 2 × cot θ <Go <(W + D) / 2 × cot θ. Is preferred.

実施の形態3.
図10は、本発明の実施の形態3を示す斜視図である。本実施形態は、実施の形態2と同様な構成を有するが、ブレーズド回折格子13の代わりに傾斜ブレーズド回折格子14を使用している点で相違する。傾斜ブレーズド回折格子14は、実施の形態2と同様に、ブレーズド化された2個の領域14a,14bを有しており、各領域の回折方向は、回折格子の領域の分割線に対して垂直な方向ではなく、信号パターン6および検出素子4を見込む方向にも回折のベクトル成分を持つように構成される。
Embodiment 3 FIG.
FIG. 10 is a perspective view showing Embodiment 3 of the present invention. This embodiment has the same configuration as that of the second embodiment, but is different in that an inclined blazed diffraction grating 14 is used instead of the blazed diffraction grating 13. The tilted blazed diffraction grating 14 has two blazed regions 14a and 14b as in the second embodiment, and the diffraction direction of each region is perpendicular to the dividing line of the region of the diffraction grating. It is configured to have a diffraction vector component not only in a direction but also in a direction in which the signal pattern 6 and the detection element 4 are viewed.

図11(a)は傾斜ブレーズド回折格子14をZ方向から見た平面図、図11(b)はY方向に見た正面図、図11(c)はX方向から見た側面図である。図11(a)の平面図に斜線で示すように、領域14a,14bは、中心の分割線に対して傾斜した格子を有し、分割線に対して対称に構成される。   11A is a plan view of the tilted blazed diffraction grating 14 seen from the Z direction, FIG. 11B is a front view seen in the Y direction, and FIG. 11C is a side view seen from the X direction. As shown by the oblique lines in the plan view of FIG. 11A, the regions 14a and 14b have a lattice inclined with respect to the central dividing line and are configured symmetrically with respect to the dividing line.

この傾斜ブレーズド回折格子14による回折方向は、図11(a)の平面図中の矢印のように、Y方向に沿った検出方向のベクトル成分だけでなく、右側の領域14aでは+X方向のベクトル成分、左側の領域14bでは−X方向のベクトル成分をそれぞれ有しており、領域14aの回折光と領域14bの回折光とは互いに離れるようになる。即ち、図11(c)の側面図に示すように、この傾斜ブレーズド回折格子14に垂直に入射した光15は、同じベクトル方向16に折り曲げられる。しかし、図11(b)の正面図に示すように、光15のうち右側の領域14aに垂直に入射した光15aは、+X方向に傾斜したベクトル方向16aに折り曲げられ、光15のうち左側の領域14bに垂直に入射した光15bは、−X方向に傾斜したベクトル方向16bに折り曲げられる。   The diffraction direction by the tilted blazed diffraction grating 14 is not only the vector component in the detection direction along the Y direction as indicated by the arrow in the plan view of FIG. 11A, but also the vector component in the + X direction in the right region 14a. The left region 14b has a vector component in the −X direction, and the diffracted light in the region 14a and the diffracted light in the region 14b are separated from each other. That is, as shown in the side view of FIG. 11C, the light 15 incident perpendicularly to the tilted blazed diffraction grating 14 is bent in the same vector direction 16. However, as shown in the front view of FIG. 11B, the light 15a incident perpendicularly to the right region 14a of the light 15 is bent in the vector direction 16a inclined in the + X direction, and the left side of the light 15 The light 15b incident perpendicularly to the region 14b is bent in the vector direction 16b inclined in the −X direction.

本実施形態の構成では、照射強度分布を平滑化するための条件を満たす回折格子周期は、領域14a,14bの分割線に対して垂直な方向、即ち、信号パターン6の配列方向に対して平行なY方向の成分で規定される。発光領域2からの出射光の強度は垂直方向が最も強いため、垂直成分を信号パターン6および検出素子4に向けて傾けることで、検出素子4に入射する光量を向上することが可能になる。本実施形態の構成は、実施の形態2で説明した図9に示す2個の発光領域を持つ発光部を用いた構成にも適用可能であり、発光領域2の拡大を伴わずに照明光量を増加させることができる。   In the configuration of the present embodiment, the diffraction grating period that satisfies the conditions for smoothing the irradiation intensity distribution is parallel to the direction perpendicular to the dividing lines of the regions 14 a and 14 b, that is, the arrangement direction of the signal pattern 6. It is defined by a component in the Y direction. Since the intensity of the emitted light from the light emitting region 2 is strongest in the vertical direction, the amount of light incident on the detection element 4 can be improved by tilting the vertical component toward the signal pattern 6 and the detection element 4. The configuration of this embodiment can also be applied to the configuration using the light emitting section having the two light emitting areas shown in FIG. 9 described in the second embodiment, and the amount of illumination light can be reduced without enlarging the light emitting area 2. Can be increased.

1 発光部、 2 発光領域、 3 検出部、 4 検出素子、 5 スケール、
6 信号パターン、 7 回折格子、 8 ヘッド、 9 +1次回折光強度分布、
10 −1次回折光強度分布、 11 0次回折光強度分布、 12 総光強度分布、
13 ブレーズド回折格子、 14 傾斜ブレーズド回折格子、 40 演算部。
1 light emitting section, 2 light emitting area, 3 detecting section, 4 detecting element, 5 scale,
6 signal pattern, 7 diffraction grating, 8 head, 9 + 1st order diffracted light intensity distribution,
10-1st order diffracted light intensity distribution, 11 0th order diffracted light intensity distribution, 12 Total light intensity distribution,
13 blazed diffraction grating, 14 tilted blazed diffraction grating, 40 computing unit.

Claims (9)

反射率が周期的に変化した信号パターンが直線状または円弧状に形成されたスケールと、
前記スケールに向けて光を照射する発光部と、
前記スケールで反射した光の1次元分布を検出する検出部と、
前記発光部と前記スケールとの間に設けられ、前記検出部で検出される光の1次元分布を補正するための回折格子と、を備えることを特徴とする光学式エンコーダ。
A scale in which a signal pattern in which the reflectance is periodically changed is formed in a linear or arc shape;
A light emitting unit that emits light toward the scale;
A detection unit for detecting a one-dimensional distribution of light reflected by the scale;
An optical encoder, comprising: a diffraction grating provided between the light emitting unit and the scale and for correcting a one-dimensional distribution of light detected by the detection unit.
前記回折格子は、位相格子であることを特徴とする請求項1記載の光学式エンコーダ。   The optical encoder according to claim 1, wherein the diffraction grating is a phase grating. 前記回折格子は、少なくとも0次回折光および±1次回折光が混合した状態で前記スケールおよび前記検出部に到達するような格子周期を有することを特徴とする請求項1または2記載の光学式エンコーダ。   3. The optical encoder according to claim 1, wherein the diffraction grating has a grating period that reaches the scale and the detection unit in a state where at least 0th-order diffracted light and ± 1st-order diffracted light are mixed. 前記回折格子の格子周期は、前記検出部における照射強度分布が、前記回折格子が存在しない場合の分布と比べてより平坦になるように設定されることを特徴とする請求項3記載の光学式エンコーダ。   4. The optical system according to claim 3, wherein the grating period of the diffraction grating is set such that an irradiation intensity distribution in the detection unit is flatter than a distribution when the diffraction grating is not present. Encoder. 光の波長をλとし、前記回折格子の格子周期をΛとしてλ/Λ=βを定義し、0次回折光に対する1次回折光の強度比率を1−ξ:ξとし、前記検出部における光強度分布の最大値をMax、最小値をMinとし、光強度分布の変動率αとしてα=1−Min/Maxを定義し、下記の関係式を満たすことを特徴とする請求項1〜3のいずれかに記載の光学式エンコーダ。
ξ<a+b(β−1)、a=0.424−0.08α、b=1.02−1.4α
ξ>a+b(β−1)、a=0.6(0.3−α)、b=4/3
0≦ξ≦1
1≦β≦1.5
Λ is the wavelength of light, λ is the grating period of the diffraction grating, and λ / Λ = β is defined. The intensity ratio of the first-order diffracted light to the 0th-order diffracted light is 1-ξ: ξ, and the light intensity distribution in the detection unit The maximum value is Max, the minimum value is Min, α = 1−Min / Max is defined as the fluctuation rate α of the light intensity distribution, and the following relational expression is satisfied: The optical encoder described in 1.
ξ <a 1 + b 1 (β−1), a 1 = 0.424−0.08α, b 1 = 1.02−1.4α
ξ> a 2 + b 2 (β−1), a 2 = 0.6 (0.3−α), b 2 = 4/3
0 ≦ ξ ≦ 1
1 ≦ β ≦ 1.5
前記回折格子には、前記発光部の中心を通過し、前記スケールの法線を含む面を基準として対称なブレーズド回折格子が形成されていることを特徴とする請求項1〜5のいずれかに記載の光学式エンコーダ。   The blazed diffraction grating that is symmetrical with respect to a plane that passes through the center of the light emitting portion and includes the normal line of the scale is formed in the diffraction grating. The optical encoder described. 前記ブレーズド回折格子は、回折光が基準面に対して平行なベクトル成分および垂直なベクトル成分を有するように基準面に対して傾斜していることを特徴とする請求項6記載の光学式エンコーダ。   7. The optical encoder according to claim 6, wherein the blazed diffraction grating is inclined with respect to the reference plane so that the diffracted light has a vector component parallel to the reference plane and a vector component perpendicular to the reference plane. 前記発光部と前記回折格子との間の光学距離をGo、ブレーズド回折格子の回折角をθ、前記発光部の発光領域の幅をDとして、下記の関係式を満たすことを特徴とする請求項6または7記載の光学式エンコーダ。
Go<D/2×cotθ
The following relational expression is satisfied, where Go is an optical distance between the light emitting part and the diffraction grating, θ is a diffraction angle of the blazed diffraction grating, and D is a width of the light emitting region of the light emitting part. The optical encoder according to 6 or 7.
Go <D / 2 × cotθ
前記発光部は、分離した2つの発光領域を有しており、前記発光部と前記回折格子との間の光学距離をGo、ブレーズド回折格子の回折角をθ、前記発光部の発光領域の幅をD、各発光領域の中心間距離をWとして、下記の関係式を満たすことを特徴とする請求項6または7記載の光学式エンコーダ。
(W−D)/2×cotθ<Go<(W+D)/2×cotθ
The light emitting unit has two separated light emitting regions, the optical distance between the light emitting unit and the diffraction grating is Go, the diffraction angle of the blazed diffraction grating is θ, and the width of the light emitting region of the light emitting unit. The optical encoder according to claim 6, wherein D is D, and a distance between centers of the light emitting regions is W, and the following relational expression is satisfied.
(W−D) / 2 × cot θ <Go <(W + D) / 2 × cot θ
JP2014059764A 2014-03-24 2014-03-24 Optical encoder Expired - Fee Related JP6157392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059764A JP6157392B2 (en) 2014-03-24 2014-03-24 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059764A JP6157392B2 (en) 2014-03-24 2014-03-24 Optical encoder

Publications (2)

Publication Number Publication Date
JP2015184098A true JP2015184098A (en) 2015-10-22
JP6157392B2 JP6157392B2 (en) 2017-07-05

Family

ID=54350804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059764A Expired - Fee Related JP6157392B2 (en) 2014-03-24 2014-03-24 Optical encoder

Country Status (1)

Country Link
JP (1) JP6157392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988897A (en) * 2017-03-31 2017-07-28 合肥德通科贸有限公司 A kind of high precision electro electronic throttle of quick response
CN113124760A (en) * 2019-12-30 2021-07-16 广东万濠精密仪器股份有限公司 Reflective grating ruler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194123A (en) * 1992-12-24 1994-07-15 Canon Inc Displacement detecting device
JPH0783612A (en) * 1993-09-17 1995-03-28 Canon Inc Optical type displacement sensor
JP2002372407A (en) * 2001-06-13 2002-12-26 Mitsutoyo Corp Grating interference type displacement detector
JP2004239825A (en) * 2003-02-07 2004-08-26 Olympus Corp Optical encoder, and regulation method for output signal level thereof
JP2004340929A (en) * 2003-04-21 2004-12-02 Mitsubishi Electric Corp Optical rotary encoder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194123A (en) * 1992-12-24 1994-07-15 Canon Inc Displacement detecting device
JPH0783612A (en) * 1993-09-17 1995-03-28 Canon Inc Optical type displacement sensor
JP2002372407A (en) * 2001-06-13 2002-12-26 Mitsutoyo Corp Grating interference type displacement detector
JP2004239825A (en) * 2003-02-07 2004-08-26 Olympus Corp Optical encoder, and regulation method for output signal level thereof
JP2004340929A (en) * 2003-04-21 2004-12-02 Mitsubishi Electric Corp Optical rotary encoder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988897A (en) * 2017-03-31 2017-07-28 合肥德通科贸有限公司 A kind of high precision electro electronic throttle of quick response
CN113124760A (en) * 2019-12-30 2021-07-16 广东万濠精密仪器股份有限公司 Reflective grating ruler
CN113124760B (en) * 2019-12-30 2022-08-02 广东万濠精密仪器股份有限公司 Reflective grating ruler

Also Published As

Publication number Publication date
JP6157392B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US9618370B2 (en) Optical encoder and apparatus provided therewith
JP6387964B2 (en) Measuring device
JP6070274B2 (en) Diffusion element, illumination optical system and measuring device
US7193204B2 (en) Multi-track optical encoder employing beam divider
KR101240413B1 (en) Origin detection apparatus, displacement measurement apparatus and optical apparatus
JP4416544B2 (en) Optical displacement measuring device
US7470892B2 (en) Optical encoder
JP3544573B2 (en) Optical encoder
US10190892B2 (en) Encoder
JP6157392B2 (en) Optical encoder
JP2020193929A (en) Optical encoder
JP2018096807A (en) Photoelectric encoder
JP3560692B2 (en) Optical encoder
JP2001343256A (en) Optical encoder
JP2016136106A (en) Optical unit and displacement measurement device
JP3544576B2 (en) Optical encoder
JP3256628B2 (en) Encoder device
US10591321B2 (en) Optical encoder
JP7139177B2 (en) optical angle sensor
JP7330830B2 (en) photoelectric encoder
US10746573B2 (en) Optical encoder and measurement device including the same
US11221238B2 (en) Optical encoder and drive control device comprising a light receiving element to receive a first interference fringe formed by a first periodic pattern and a second diffracted light from a second periodic pattern toward the first periodic pattern
US20240110816A1 (en) Optical encoder
WO2024024745A1 (en) Measuring device, light receiver, and light emitter
JP2007183115A (en) Optical encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6157392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees