JP2015184050A - Wire coating deterioration detector and wire coating deterioration detection method - Google Patents

Wire coating deterioration detector and wire coating deterioration detection method Download PDF

Info

Publication number
JP2015184050A
JP2015184050A JP2014058580A JP2014058580A JP2015184050A JP 2015184050 A JP2015184050 A JP 2015184050A JP 2014058580 A JP2014058580 A JP 2014058580A JP 2014058580 A JP2014058580 A JP 2014058580A JP 2015184050 A JP2015184050 A JP 2015184050A
Authority
JP
Japan
Prior art keywords
electric wire
deterioration
reflectance
wavelength region
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014058580A
Other languages
Japanese (ja)
Inventor
岡田 直喜
Naoki Okada
直喜 岡田
大木 秀人
Hideto Oki
秀人 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2014058580A priority Critical patent/JP2015184050A/en
Publication of JP2015184050A publication Critical patent/JP2015184050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire coating deterioration detector (detection method) capable of detecting highly accurately deterioration of a wire coating.SOLUTION: The deterioration degree of a wire which is a detection object is determined by analysis of reflectance in a wavelength region of 400 nm to 550 nm which lowers greatly in proportion to aging of the wire which is the detection object in reflected light of light hit onto the wire which is the detection object.

Description

本発明は、検出対象からの反射光の波長分析に基づいて行う電線被覆劣化検出装置及び電線被覆劣化検出方法に関する。   The present invention relates to an electric wire covering deterioration detection device and an electric wire covering deterioration detection method that are performed based on wavelength analysis of reflected light from a detection target.

受変電設備の制御盤等に配策される制御配線(電線)は、その被覆部の経年劣化が進行すると自身の配線を通じての制御信号の伝達が適切に行われなくなる虞があり、場合によっては受変電設備の電力機器を誤動作させることに繋がる。そのため、それを未然に防止するために、制御配線の劣化度を検出することが行われている。   Control wiring (wires) routed to the control panel of the power receiving / transforming equipment may not be able to properly transmit control signals through its own wiring as its covering deteriorates over time. It leads to malfunction of the power equipment of the power receiving / transforming equipment. For this reason, in order to prevent this, the degree of deterioration of the control wiring is detected.

その一つとして例えば特許文献1に示されるように、検出対象の制御配線に白色光を照射し、その反射光を受光して分光器にて分光し、劣化度を反映する所定波長領域での光強度の減少度合いから、制御配線の劣化状況を検出する手法が知られている。尚、同文献では、反射光の内の560nm〜800nmの波長領域に着目して配線の劣化判定が行われている。   As one example, as shown in Patent Document 1, for example, white light is irradiated to a control wiring to be detected, the reflected light is received and dispersed with a spectroscope, and in a predetermined wavelength region reflecting the degree of deterioration. A technique for detecting the deterioration state of the control wiring from the degree of decrease in light intensity is known. In this document, the deterioration of the wiring is determined by paying attention to the wavelength region of 560 nm to 800 nm in the reflected light.

特開2011−252846号公報JP 2011-252846 A

ところで、本発明者らによって、制御配線の劣化検出をより精度良く行うことが検討されている。つまり、本発明の目的は、電線被覆の劣化検出をより精度良く行うことができる電線被覆劣化検出装置及び電線被覆劣化検出方法を提供することにある。   By the way, the present inventors are studying to detect the deterioration of the control wiring with higher accuracy. That is, an object of the present invention is to provide an electric wire covering deterioration detecting device and an electric wire covering deterioration detecting method that can detect deterioration of electric wire covering with higher accuracy.

上記課題を解決する電線被覆劣化検出装置は、検出対象の電線に光を当てその反射光を分光器にて分光し、細分化した各波長毎の反射率に基づいて前記検出対象の電線の劣化度の検出を行う電線被覆劣化検出装置であって、前記反射光の内で400nm〜550nmの波長域の反射率の分析に基づいて、前記検出対象の電線の劣化度を判定する判定部を備える。   The wire covering deterioration detection device that solves the above problem irradiates light to a detection target wire, divides the reflected light with a spectroscope, and degrades the detection target wire based on the subdivided reflectance for each wavelength. A wire covering deterioration detection device that detects the degree of the electric wire, and includes a determination unit that determines the degree of deterioration of the detection target electric wire based on an analysis of reflectance in a wavelength region of 400 nm to 550 nm in the reflected light. .

この構成によれば、検出対象の電線に光を当てたその反射光の内で400nm〜550nmの波長域の反射率の分析により、検出対象の電線の劣化度の判定が行われる。つまり、この波長域の反射率は、検出対象の電線の経年が進むに連れて大きく低下するため(図2〜図6及び図7参照)、検出対象の電線の劣化度が精度良く検出可能である。   According to this configuration, the degree of deterioration of the detection target electric wire is determined by analyzing the reflectance in the wavelength region of 400 nm to 550 nm in the reflected light applied to the detection target electric wire. In other words, the reflectance in this wavelength band greatly decreases as the detection target electric wire progresses (see FIGS. 2 to 6 and 7), so that the degree of deterioration of the detection target electric wire can be accurately detected. is there.

また上記の電線被覆劣化検出装置において、前記判定部は、前記反射光の内で400nm〜500nmの波長域の反射率の分析に基づいて劣化度判定を行うことが好ましい。
この構成によれば、400nm〜500nmの波長域の反射率は、検出対象の電線の経年が進むに連れて大きく低下するため(図2〜図6及び図7参照)、この波長域の反射率を分析することで電線の劣化度が精度良く検出可能である。
Moreover, in the above-described wire covering deterioration detection device, it is preferable that the determination unit performs the deterioration degree determination based on an analysis of reflectance in a wavelength region of 400 nm to 500 nm in the reflected light.
According to this configuration, the reflectance in the wavelength region of 400 nm to 500 nm is greatly reduced as the detection target electric wire progresses (see FIGS. 2 to 6 and 7). By analyzing the above, it is possible to accurately detect the degree of deterioration of the electric wire.

また上記の電線被覆劣化検出装置において、前記判定部は、前記反射光の内で400nm〜460nmの波長域の反射率の分析に基づいて劣化度判定を行うことが好ましい。
この構成によれば、400nm〜460nmの波長域の反射率は、検出対象の電線の経年に比例して一律的に低下するため(図2〜図6及び図7参照)、この波長域の反射率を分析することで電線劣化検出の精度向上に寄与できる。
Moreover, in the above-described wire covering deterioration detection device, it is preferable that the determination unit performs the deterioration degree determination based on an analysis of reflectance in a wavelength region of 400 nm to 460 nm in the reflected light.
According to this configuration, the reflectance in the wavelength range of 400 nm to 460 nm is uniformly reduced in proportion to the age of the electric wire to be detected (see FIGS. 2 to 6 and 7), and thus the reflection in this wavelength range. By analyzing the rate, it is possible to contribute to improving the accuracy of wire deterioration detection.

また上記の電線被覆劣化検出装置において、前記判定部は、前記反射光の内で550nm〜700nmの波長域の反射率を更に加味して劣化度判定を行うことが好ましい。
この構成によれば、550nm〜700nmの波長域の反射率は、検出対象の電線の経年に比例して低下するため(図2〜図6及び図7参照)、この波長域の反射率を更に加味して分析することで電線劣化検出の精度向上に寄与できる。
Moreover, in the above-described wire covering deterioration detection device, it is preferable that the determination unit determines the deterioration degree by further adding a reflectance in a wavelength region of 550 nm to 700 nm in the reflected light.
According to this configuration, the reflectance in the wavelength region of 550 nm to 700 nm decreases in proportion to the aging of the electric wire to be detected (see FIGS. 2 to 6 and 7), and therefore the reflectance in this wavelength region is further increased. By taking the analysis into account, it is possible to contribute to improving the accuracy of the wire deterioration detection.

また上記課題を解決する電線被覆劣化検出方法は、検出対象の電線に光を当てその反射光を分光器にて分光し、細分化した各波長毎の反射率に基づいて前記検出対象の電線の劣化度の検出を行う電線被覆劣化検出方法であって、前記反射光の内で400nm〜550nmの波長域の反射率の分析に基づいて、前記検出対象の電線の劣化度を判定する。   Moreover, the wire covering deterioration detection method that solves the above-described problem is directed to irradiating the detection target wire with light and dispersing the reflected light with a spectroscope, and based on the subdivided reflectance for each wavelength, An electric wire covering deterioration detection method for detecting a deterioration degree, wherein the deterioration degree of the detection target electric wire is determined based on an analysis of reflectance in a wavelength region of 400 nm to 550 nm in the reflected light.

この構成によれば、上記と同様にこの波長域の反射率が検出対象の電線の経年と共に大きく低下するため(図2〜図6及び図7参照)、検出対象の電線の劣化度が精度良く検出可能である。   According to this configuration, the reflectance in this wavelength region greatly decreases with the lapse of time of the electric wire to be detected as described above (see FIGS. 2 to 6 and FIG. 7), so the degree of deterioration of the electric wire to be detected is accurate. It can be detected.

本発明の電線被覆劣化検出装置及び電線被覆劣化検出方法によれば、電線被覆の劣化検出をより精度良く行うことができる。   According to the electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method of the present invention, the electric wire covering deterioration can be detected with higher accuracy.

一実施形態における電線被覆劣化検出装置の構成図である。It is a lineblock diagram of an electric wire covering deterioration detection device in one embodiment. 新品(正常品)の電線の反射率分布を示す特性図である。It is a characteristic view which shows the reflectance distribution of the electric wire of a new article (normal article). 4年経年品の電線の反射率分布を示す特性図である。It is a characteristic view which shows the reflectance distribution of the electric wire of 4 years old goods. 7年経年品の電線の反射率分布を示す特性図である。It is a characteristic view which shows the reflectance distribution of the electric wire of 7-year-old goods. 10年経年品の電線の反射率分布を示す特性図である。It is a characteristic view which shows the reflectance distribution of the electric wire of an aged product for 10 years. 25年経年品の電線の反射率分布を示す特性図である。It is a characteristic view which shows the reflectance distribution of the electric wire of a 25-year-old product. 別例の劣化判定の説明に用いる反射率分布の特性図である。It is a characteristic view of the reflectance distribution used for description of another example of deterioration determination.

以下、電線被覆劣化検出装置(方法)の一実施形態について説明する。
図1に示すように、電線被覆劣化検出装置10は、光源11、分光器12、処理部(CPU)13、及びメモリ14を備えている。
Hereinafter, an embodiment of a wire coating deterioration detection device (method) will be described.
As shown in FIG. 1, the wire covering deterioration detection device 10 includes a light source 11, a spectroscope 12, a processing unit (CPU) 13, and a memory 14.

光源11は、400nm〜700nmの波長領域を少なくとも含む白色光を発光可能に構成され、該光源11にて生じる白色光は、検出対象である電線20の被覆部20aの劣化度の検出時に該電線20に対して照射される。電線20に照射したその白色光は電線20の被覆部20a表面にて反射し、分光器12にその反射光(反射光を主とした光)を入射させる。分光器12は、入射した反射光を例えば400nm〜700nmの波長領域の間で10nm幅毎に分光し、この10nm幅毎に細分化した波長毎の光の強度を測定する。尚、10nm幅に限定されるものではない。処理部13は、光源11から出射される白色光を基準とし、分光器12にて細分化された入射光の波長毎の反射率を算出する。   The light source 11 is configured to be capable of emitting white light including at least a wavelength region of 400 nm to 700 nm, and the white light generated by the light source 11 is detected when the deterioration degree of the covering portion 20a of the electric wire 20 to be detected is detected. 20 is irradiated. The white light irradiated on the electric wire 20 is reflected on the surface of the covering portion 20a of the electric wire 20, and the reflected light (light mainly composed of reflected light) is incident on the spectroscope 12. The spectroscope 12 divides the incident reflected light into a wavelength region of, for example, 400 nm to 700 nm for each 10 nm width, and measures the intensity of light for each wavelength subdivided for each 10 nm width. The width is not limited to 10 nm. The processing unit 13 calculates the reflectance for each wavelength of the incident light subdivided by the spectroscope 12 with the white light emitted from the light source 11 as a reference.

ここで、図2〜図6は、新品(正常品)から各経年時の電線20(被覆部20a)の反射率の400nm〜700nmの波長領域の反射率分布を示している。因みに、本実施形態の電線20は、例えば受変電設備の制御盤に配策される制御配線等に用いられる電気機器用ビニル絶縁電線(JIS_C3316)、即ち被覆部20aはビニル系絶縁材料であり、黄色の着色がなされているものである。   Here, FIGS. 2 to 6 show the reflectance distribution in the wavelength region of 400 nm to 700 nm of the reflectance of the electric wire 20 (covering portion 20a) from the new article (normal article) to each aging. Incidentally, the electric wire 20 of the present embodiment is, for example, a vinyl insulated wire for electric equipment (JIS_C3316) used for control wiring arranged in a control panel of a power receiving / transforming facility, that is, the covering portion 20a is a vinyl insulating material, It is colored yellow.

図2は、新品(正常品)の電線20の反射率分布であり、10nm幅毎に細分化した反射率は全て100%である。換言すれば、図3〜図6の経年品との比較の基準とするため、細分化した各波長の反射率を全て100%としている。   FIG. 2 shows the reflectance distribution of a new (normal) electric wire 20, and the reflectances subdivided every 10 nm width are all 100%. In other words, in order to make a reference for comparison with the aged products of FIGS.

図3は、4年経年品の電線20の反射率分布である。400nm〜480nm及び540nm〜700nmの各波長域で反射率100%を維持している。480nm〜540nmの波長域では反射率が100%未満となり、波長510nmで最低値の約77%を示す一部凹状をなす分布となる。   FIG. 3 shows the reflectance distribution of the four-year-old electric wire 20. The reflectance of 100% is maintained in each wavelength region of 400 nm to 480 nm and 540 nm to 700 nm. In the wavelength region of 480 nm to 540 nm, the reflectance is less than 100%, and the distribution is a partially concave shape showing about 77% of the minimum value at the wavelength of 510 nm.

図4は、7年経年品の電線20の反射率分布である。4年経年品と比べて400nm〜700nmの波長領域全体で低下し、全体が100%未満となる。400nm〜460nm及び530nm〜700nmの各波長域では約89〜94%程度で略一定である。460nm〜530nmの波長域では4年経年品と同様に凹状分布をなし、波長500nmで最低値の約75%となる。   FIG. 4 is a reflectance distribution of the electric wire 20 which is aged for 7 years. Compared with a four-year-old product, it decreases in the entire wavelength region of 400 nm to 700 nm, and the total is less than 100%. In each wavelength region of 400 nm to 460 nm and 530 nm to 700 nm, it is substantially constant at about 89 to 94%. In the wavelength range of 460 nm to 530 nm, a concave distribution is formed in the same manner as a four-year-old product, and it is about 75% of the minimum value at a wavelength of 500 nm.

図5は、10年経年品の電線20の反射率分布である。7年経年品と比べて400nm〜700nmの波長領域全体で更に低下し、400nm〜450nmの波長域では約78〜80%程度で略一定、530nm〜700nmの波長域では約82〜86%程度で略一定である。450nm〜530nmの波長域では7年経年品と同様に凹状分布をなす部分であり、波長500nmで最低値の約64%となる。   FIG. 5 shows the reflectance distribution of the 10-year-old electric wire 20. Compared to 7-year-old products, it further decreases in the entire wavelength region of 400 nm to 700 nm, approximately constant at about 78 to 80% in the wavelength region of 400 nm to 450 nm, and about 82 to 86% in the wavelength region of 530 nm to 700 nm. It is almost constant. In the wavelength region of 450 nm to 530 nm, it is a portion having a concave distribution as in the case of 7-year-old products, which is about 64% of the minimum value at a wavelength of 500 nm.

図6は、25年経年品の電線20の反射率分布である。550nm〜700nmの波長域では約80〜81%程度で略一定で10年経年品と比べて若干停止するが、550nm未満から反射率の低下度が大きくなっている。波長480nmで最低値の約40%となり、これより波長が短くなる側では反射率が約40〜46%程度で略一定となる分布となる。   FIG. 6 shows the reflectance distribution of the electric wire 20 that is aged for 25 years. In the wavelength region of 550 nm to 700 nm, it is approximately constant at about 80 to 81% and slightly stops as compared with a 10-year-old product, but the degree of decrease in reflectance increases from less than 550 nm. At the wavelength of 480 nm, the minimum value is about 40%, and on the side where the wavelength becomes shorter than this, the reflectance is about 40 to 46% and becomes a substantially constant distribution.

上記を纏めると、電線20の経年が進むに連れて、400nm〜500nmの波長域の反射率が100%から40%程度まで大きく低下していることが分かる。その中でも400nm〜460nmの波長域の反射率は、電線20の経年に比例して反射率が大きく低下している。因みに、550nmよりも長い波長域では、電線20の経年に比例して反射率が低下するものの、その低下度は500nm以下よりは小さい。つまり、400nm〜500nmの波長域の反射率を電線20(被覆部20a)の劣化度判定に用いれば、劣化判定をより精度良く行うことが可能である。尚、本実施形態の測定結果は、背景技術で挙げた特許文献1と異なる結果となった。   Summarizing the above, it can be seen that the reflectance in the wavelength region of 400 nm to 500 nm is greatly reduced from about 100% to about 40% as the aging of the electric wire 20 progresses. Among them, the reflectance in the wavelength region of 400 nm to 460 nm is greatly reduced in proportion to the aging of the electric wire 20. Incidentally, in the wavelength range longer than 550 nm, the reflectance decreases in proportion to the aging of the electric wire 20, but the degree of decrease is smaller than 500 nm or less. That is, if the reflectance in the wavelength region of 400 nm to 500 nm is used for the determination of the degree of deterioration of the electric wire 20 (covering portion 20a), the deterioration determination can be performed with higher accuracy. In addition, the measurement result of this embodiment became a result different from the patent document 1 mentioned by background art.

上記を踏まえ、メモリ14には、図2〜図6に示す実測定に基づく新品及び経年品の反射率分布のデータが比較データとして格納されており、処理部13は、分光器12を介して取得する検出対象の電線20の反射率の実データと、メモリ14に格納された反射率の比較データとの比較を行う。処理部13は、その比較に基づいて検出対象の電線20が新品か経年品かの判定を行い、また経年品についてはメモリ14内の各経年の比較データに近似しているか、若しくは各経年の比較データ間を補完演算して経年数を推定することで検出対象の電線20の経年数を判定する。そして、処理部13は、検出対象の電線20の経年数を図示略の表示装置等にて計測者に報知するようになっている。処理部13、メモリ14に加え表示装置を含める装置としてはパソコン15が好適であるが、電線劣化検出専用の装置を構成してもよい。   Based on the above, the memory 14 stores reflectance distribution data of new and aged products based on actual measurements shown in FIGS. 2 to 6 as comparison data, and the processing unit 13 is connected via the spectroscope 12. The actual reflectance data of the detection target electric wire 20 to be acquired is compared with the reflectance comparison data stored in the memory 14. The processing unit 13 determines whether the electric wire 20 to be detected is new or aged based on the comparison, and the aged product is approximate to the comparison data of each aged in the memory 14 or each aged. The age of the electric wire 20 to be detected is determined by complementing the comparison data and estimating the age. And the process part 13 alert | reports the age of the electric wire 20 of a detection target to a measurement person with a display apparatus etc. which are not shown in figure. A personal computer 15 is suitable as a device that includes a display device in addition to the processing unit 13 and the memory 14, but a device dedicated to wire deterioration detection may be configured.

因みに、処理部13での比較手法は、400nm〜550nmや400nm〜500nm、400nm〜460nmの波長域で細分化した波長全部の反射率を比較する手法の他に、同波長域で細分化した波長全部の反射率の平均値の比較、同波長域で細分化した波長の反射率の内で異常突出値を除いたものの平均値の比較、同波長域で細分化した波長の反射率の内の最小値の比較等がある。また、特定波長を限定的にその単一波長の反射率にて、又は2点以上の複数波長の反射率にて劣化判定を行ってもよい。   Incidentally, the comparison method in the processing unit 13 is not only a method of comparing the reflectance of all wavelengths subdivided in the wavelength range of 400 nm to 550 nm, 400 nm to 500 nm, and 400 nm to 460 nm, but also the wavelength subdivided in the same wavelength region. Comparison of the average values of all the reflectances, comparison of the average values of the reflectances of the wavelengths subdivided in the same wavelength range, excluding the abnormally prominent values, of the reflectances of the wavelengths subdivided in the same wavelength region There is a comparison of the minimum values. Further, the deterioration determination may be performed by limiting the specific wavelength with the reflectance of the single wavelength, or with the reflectance of two or more wavelengths.

次に、本実施形態の特徴的な効果を記載する。
(1)検出対象の電線20に光を当てたその反射光の内で400nm〜550nm又は400nm〜500nmの波長域の反射率の分析により、検出対象の電線20の劣化度の判定が行われる。つまり、この波長域の反射率は、検出対象の電線20の経年が進むに連れて大きく低下するため、検出対象の電線20の劣化度を精度良く検出することができる。
Next, characteristic effects of the present embodiment will be described.
(1) The degree of deterioration of the detection target electric wire 20 is determined by analyzing the reflectance in the wavelength region of 400 nm to 550 nm or 400 nm to 500 nm in the reflected light that is applied to the detection target electric wire 20. In other words, the reflectance in this wavelength region greatly decreases as the detection target electric wire 20 progresses, so that the degree of deterioration of the detection target electric wire 20 can be detected with high accuracy.

(2)反射光の内で検出対象の電線20の経年に比例して一律的に低下する400nm〜460nmの波長域の反射率の分析に基づいて劣化度判定を行えば、電線20の劣化検出をより高精度に行うことができる。   (2) If the deterioration degree is determined based on the analysis of the reflectance in the wavelength range of 400 nm to 460 nm that decreases uniformly in proportion to the aging of the electric wire 20 to be detected in the reflected light, the deterioration detection of the electric wire 20 is detected. Can be performed with higher accuracy.

(3)550nm〜700nmの波長域の反射率を更に加味して分析すれば、電線20の劣化検出をより高精度に行うことができる。
尚、上記実施形態は、以下のように変更してもよい。
(3) If the reflectance in the wavelength region of 550 nm to 700 nm is further considered and analyzed, the deterioration of the electric wire 20 can be detected with higher accuracy.
In addition, you may change the said embodiment as follows.

・400nm〜700nmの波長領域を少なくとも含む白色光を出射する光源11を用いたが、出射する光はこれに限らない。例えば、400nm〜550nmの波長域の反射率を分析する場合、光源側では400nm〜550nmの波長域を含む光を出射すればよい(白色光でなくてもよい)。つまり、反射率を分析する波長域に合わせて光源側が発する光の波長域を適宜変更してもよい。   Although the light source 11 that emits white light including at least the wavelength region of 400 nm to 700 nm is used, the emitted light is not limited to this. For example, when analyzing the reflectance in the wavelength range of 400 nm to 550 nm, the light source may emit light including the wavelength range of 400 nm to 550 nm (not necessarily white light). That is, the wavelength range of light emitted from the light source side may be changed as appropriate in accordance with the wavelength range for analyzing the reflectance.

・電線20の被覆部20aはビニル系絶縁材料以外の絶縁材料でもよい。
・電線20の被覆部20aの着色は黄色以外でもよい。
・電線20の用途は、受変電設備の制御盤に配策される制御配線以外でもよい。
-The coating | coated part 20a of the electric wire 20 may be insulating materials other than a vinyl-type insulating material.
-Coloring of the coating | coated part 20a of the electric wire 20 may be other than yellow.
-The use of the electric wire 20 may be other than the control wiring arranged in the control panel of the receiving / transforming equipment.

・反射率を比較する手法として、上記した所定波長域の全データの比較、平均値の比較、異常突出値を除いた平均値の比較、最小値の比較は一例であり、これ以外の手法を用いてもよい。   ・ As a method for comparing reflectance, comparison of all data in the above-mentioned predetermined wavelength range, comparison of average values, comparison of average values excluding abnormal protruding values, comparison of minimum values are examples, and other methods are used. It may be used.

・検出対象の電線20の劣化度(経年数)の検出として、メモリ14に格納される各経年数のデータと最も近似するものから経年数を決定してもよく、またその格納された経年数間を補完して経年数をより細かく決定するようにしてもよい。   -As the detection of the degree of deterioration (age) of the electric wire 20 to be detected, the age may be determined from the data closest to the data of each age stored in the memory 14, and the stored age You may make it determine aged more finely by complementing a space | interval.

・図7を用い、上記とは別の劣化判定の一例を示す。今回の検出対象の電線20において、400nm〜700nmの波長領域の新品での反射率を100%とし、同波長域の完全劣化品(例えば被覆部20aの破断伸度が100%未満となったもの)での反射率を測定した。因みに、規格JIS_C3316「電気機器用ビニル絶縁電線」において、電線仕様として「破断伸度100%以上」が要求されている。換言すれば、「破断伸度100%未満」の場合、その電線は仕様外であり、劣化品ということになる。このような完全劣化品においては、400nm〜450nmの波長域では反射率が約85%程度で略一定、450nm〜540nmの波長域では反射率が約85%から次第に低下し540nmで最低値の約75%となった。540nm〜700nmの波長域では反射率が約75%から次第に上昇し700nmで約100%となった。   FIG. 7 shows an example of deterioration determination different from the above. In the electric wire 20 to be detected this time, the reflectance of a new product in the wavelength region of 400 nm to 700 nm is 100%, and the completely deteriorated product in the same wavelength region (for example, the elongation at break of the covering portion 20a is less than 100%) ) Was measured. Incidentally, in the standard JIS_C3316 “Vinyl insulated electric wire for electrical equipment”, “100% or higher breaking elongation” is required as the electric wire specification. In other words, when the breaking elongation is less than 100%, the electric wire is out of specification and is a deteriorated product. In such a completely deteriorated product, the reflectance is approximately constant at about 85% in the wavelength region of 400 nm to 450 nm, and the reflectance gradually decreases from about 85% in the wavelength region of 450 nm to 540 nm, and the lowest value is about 540 nm. It became 75%. In the wavelength range of 540 nm to 700 nm, the reflectance gradually increased from about 75% to about 100% at 700 nm.

そして、このような電線20の劣化度検出としては、例えば400nm〜500nmの波長域で反射率全てが90%以下(反射率の最大値が90%以下)となった場合、若しくは反射率の平均値が90%以下となった場合に、電線20が劣化したとみなす判定とするものである。従って、図7中の劣化途中電線は、400nm〜500nmの波長域で90%を超えているので非劣化品と判定され、以降の使用も可能であると判定される。   For example, when the degree of deterioration of the electric wire 20 is detected, the reflectance is 90% or less (the maximum value of the reflectance is 90% or less) in the wavelength region of 400 nm to 500 nm, or the average of the reflectances. When the value is 90% or less, it is determined that the electric wire 20 has been deteriorated. Therefore, the degradation-in-progress electric wire in FIG. 7 exceeds 90% in the wavelength range of 400 nm to 500 nm, so it is determined as a non-degraded product, and it is determined that subsequent use is possible.

尚、劣化度検出の波長域は、400nm〜550nmとしてもよい。またこの態様においても、550nm〜700nmの波長域の反射率を劣化判定に更に加味してもよい。また、反射率90%を電線20の劣化判定値として設定したが、例えば電線20(被覆部20a)の材質や色等を考慮してこれ以外の値に設定してもよい。また、最小単位の波長毎で個別に判定値を設定し、個々の波長毎の比較で劣化判定を行ってもよい。   It should be noted that the wavelength range for detecting the degree of deterioration may be 400 nm to 550 nm. Also in this aspect, the reflectance in the wavelength region of 550 nm to 700 nm may be further added to the deterioration determination. Further, the reflectance 90% is set as the deterioration determination value of the electric wire 20, but may be set to other values in consideration of, for example, the material and color of the electric wire 20 (covering portion 20a). Alternatively, the determination value may be set individually for each wavelength of the minimum unit, and the deterioration determination may be performed by comparison for each wavelength.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)請求項5に記載の電線被覆劣化検出方法において、
前記反射光の内で400nm〜500nmの波長域の反射率の分析に基づいて劣化度判定を行うことを特徴とする電線被覆劣化検出方法。
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.
(A) In the wire coating deterioration detection method according to claim 5,
A method for detecting deterioration of electric wire covering, comprising: performing deterioration degree determination based on analysis of reflectance in a wavelength region of 400 nm to 500 nm in the reflected light.

(ロ)上記(イ)に記載の電線被覆劣化検出方法において、
前記反射光の内で400nm〜460nmの波長域の反射率の分析に基づいて劣化度判定を行うことを特徴とする電線被覆劣化検出方法。
(B) In the electric wire covering deterioration detection method as described in (a) above,
A method for detecting deterioration of electric wire covering, comprising: performing deterioration degree determination based on analysis of reflectance in a wavelength region of 400 nm to 460 nm in the reflected light.

(ハ)請求項5及び上記(イ)(ロ)のいずれか1項に記載の電線被覆劣化検出方法において、
前記反射光の内で550nm〜700nmの波長域の反射率を更に加味して劣化度判定を行うことを特徴とする電線被覆劣化検出方法。
(C) In the wire covering deterioration detection method according to any one of claims 5 and (a) and (b) above,
A method of detecting deterioration of electric wire covering, wherein the deterioration degree is determined by further taking into account the reflectance in a wavelength region of 550 nm to 700 nm in the reflected light.

12…分光器、13…処理部(判定部)、20…電線。   12 ... Spectroscope, 13 ... Processing unit (determination unit), 20 ... Electric wire.

Claims (5)

検出対象の電線に光を当てその反射光を分光器にて分光し、細分化した各波長毎の反射率に基づいて前記検出対象の電線の劣化度の検出を行う電線被覆劣化検出装置であって、
前記反射光の内で400nm〜550nmの波長域の反射率の分析に基づいて、前記検出対象の電線の劣化度を判定する判定部を備えたことを特徴とする電線被覆劣化検出装置。
This is a wire covering deterioration detection device that applies light to a detection target wire and divides the reflected light with a spectroscope and detects the deterioration degree of the detection target wire based on the subdivided reflectance for each wavelength. And
An electric wire covering deterioration detection apparatus comprising a determination unit for determining a deterioration degree of the electric wire to be detected based on an analysis of reflectance in a wavelength region of 400 nm to 550 nm in the reflected light.
請求項1に記載の電線被覆劣化検出装置において、
前記判定部は、前記反射光の内で400nm〜500nmの波長域の反射率の分析に基づいて劣化度判定を行うことを特徴とする電線被覆劣化検出装置。
In the electric wire covering deterioration detecting device according to claim 1,
The determination unit is configured to perform a deterioration degree determination based on an analysis of reflectance in a wavelength region of 400 nm to 500 nm in the reflected light.
請求項2に記載の電線被覆劣化検出装置において、
前記判定部は、前記反射光の内で400nm〜460nmの波長域の反射率の分析に基づいて劣化度判定を行うことを特徴とする電線被覆劣化検出装置。
In the electric wire covering deterioration detecting device according to claim 2,
The determination unit performs a deterioration degree determination based on an analysis of reflectance in a wavelength region of 400 nm to 460 nm in the reflected light.
請求項1〜3のいずれか1項に記載の電線被覆劣化検出装置において、
前記判定部は、前記反射光の内で550nm〜700nmの波長域の反射率を更に加味して劣化度判定を行うことを特徴とする電線被覆劣化検出装置。
In the electric wire covering deterioration detection device according to any one of claims 1 to 3,
The electric wire covering deterioration detection apparatus, wherein the determination unit performs a deterioration degree determination in consideration of a reflectance in a wavelength region of 550 nm to 700 nm in the reflected light.
検出対象の電線に光を当てその反射光を分光器にて分光し、細分化した各波長毎の反射率に基づいて前記検出対象の電線の劣化度の検出を行う電線被覆劣化検出方法であって、
前記反射光の内で400nm〜550nmの波長域の反射率の分析に基づいて、前記検出対象の電線の劣化度を判定するようにしたことを特徴とする電線被覆劣化検出方法。
This is a wire covering deterioration detection method in which light is applied to a detection target wire and the reflected light is dispersed by a spectroscope and the deterioration degree of the detection target wire is detected based on the subdivided reflectance for each wavelength. And
An electric wire covering deterioration detection method, wherein the deterioration degree of the electric wire to be detected is determined based on an analysis of reflectance in a wavelength region of 400 nm to 550 nm in the reflected light.
JP2014058580A 2014-03-20 2014-03-20 Wire coating deterioration detector and wire coating deterioration detection method Pending JP2015184050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058580A JP2015184050A (en) 2014-03-20 2014-03-20 Wire coating deterioration detector and wire coating deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058580A JP2015184050A (en) 2014-03-20 2014-03-20 Wire coating deterioration detector and wire coating deterioration detection method

Publications (1)

Publication Number Publication Date
JP2015184050A true JP2015184050A (en) 2015-10-22

Family

ID=54350771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058580A Pending JP2015184050A (en) 2014-03-20 2014-03-20 Wire coating deterioration detector and wire coating deterioration detection method

Country Status (1)

Country Link
JP (1) JP2015184050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771100A (en) * 2018-02-28 2020-10-13 贝卡尔特先进帘线阿尔特公司 Apparatus for detecting a coating on a wire and method of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771100A (en) * 2018-02-28 2020-10-13 贝卡尔特先进帘线阿尔特公司 Apparatus for detecting a coating on a wire and method of using the same
CN111771100B (en) * 2018-02-28 2023-08-11 贝卡尔特先进帘线阿尔特公司 Device for detecting a coating on a wire and method for using the device

Similar Documents

Publication Publication Date Title
US10366590B2 (en) Smoke detector for event classification and methods of making and using same
US8102530B2 (en) Colour measuring unit
US10962932B2 (en) Time measurement device, time measurement method, light-emission-lifetime measurement device, and light-emission-lifetime measurement method
EP2365307A1 (en) Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer
JP6191643B2 (en) Electric wire covering deterioration detection apparatus and electric wire covering deterioration detection method
EP3576063A3 (en) Smoke detector unit with led and photoreceiver, led chip in the led and photosensor for determining ageing and/or a light beam compensation level, and led
WO2019128808A1 (en) Image gray scale recognition-based raman spectrum detection apparatus and method
US20110046768A1 (en) Determining Characteristics of Electric Cables Using Terahertz Radiation
RU2016113381A (en) METHOD AND APPARATUS FOR IDENTIFICATION OF FOOD PRODUCT CHARACTERISTICS
RU2012104570A (en) SYSTEMS AND METHODS OF SPECTRAL ANALYSIS OF THE WAVE LENGTH FOR DETERMINING VARIOUS GASES USING A PROCESSED TAPE
JP2019074506A (en) Power belt transmission device and belt state measurement method
JP2015184050A (en) Wire coating deterioration detector and wire coating deterioration detection method
JP7237516B2 (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
RU2633261C1 (en) Protection means for lighting device security
JP5374445B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
JP6080410B2 (en) Spectral colorimeter
JP2014020809A5 (en)
US9885668B2 (en) Surface inspection device, surface inspection method, and program
JP2019011992A (en) Inspection device for inside of egg
CN115482643A (en) Fire smoke detector and detection method thereof
KR101206485B1 (en) Whiteness measuring device and whiteness measuring method using the same
JP2016038358A5 (en)
JP2019215230A (en) Electric wire coating deterioration detector and electric wire coating deterioration detection method
EP3608657A3 (en) Method and system for enhancing the detection dynamics of a particulate detector and particulate detector
JP7263129B2 (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program