JP2015183249A - High tensile thick steel sheet having high young's modulus in rolling direction on steel sheet surface and manufacturing method therefor - Google Patents

High tensile thick steel sheet having high young's modulus in rolling direction on steel sheet surface and manufacturing method therefor Download PDF

Info

Publication number
JP2015183249A
JP2015183249A JP2014061630A JP2014061630A JP2015183249A JP 2015183249 A JP2015183249 A JP 2015183249A JP 2014061630 A JP2014061630 A JP 2014061630A JP 2014061630 A JP2014061630 A JP 2014061630A JP 2015183249 A JP2015183249 A JP 2015183249A
Authority
JP
Japan
Prior art keywords
less
modulus
steel sheet
rolling
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014061630A
Other languages
Japanese (ja)
Other versions
JP6028759B2 (en
Inventor
浩文 大坪
Hirofumi Otsubo
浩文 大坪
茂樹 木津谷
Shigeki Kizutani
茂樹 木津谷
長谷 和邦
Kazukuni Hase
和邦 長谷
遠藤 茂
Shigeru Endo
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014061630A priority Critical patent/JP6028759B2/en
Publication of JP2015183249A publication Critical patent/JP2015183249A/en
Application granted granted Critical
Publication of JP6028759B2 publication Critical patent/JP6028759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet having tensile strength of 780 MPa or more and high Young's modulus in a rolling direction on a steel sheet surface, and a manufacturing method therefor.SOLUTION: There is provided a steel sheet having a component composition containing, by mass%, C:0.06 to 0.25%, Si:0.01 to 0.8%, Mn:0.5 to 2%, P, S, Al:0.005 to 0.1%, N:0.0005 to 0.008% and one or more kind selected from Mo:0.01 to 1%, Nb:0.001 to 0.1%, V:0.001 to 0.5%, Ti:0.001 to 0.1%, and if needed, one or more kind of Cu, Ni, Cr, W, B, Ca and REM and the balance Fe with inevitable impurities and Young modulus in a rolling direction of a steel sheet surface of 220 GPa or more. It is made with a prescribed sheet thickness by hot rolling with determined rolling condition in unrecrystallization region without cooling to the Artransformation temperature or less or after re-heating to the Artransformation temperature or more and re-fired at the Ac1 point or less after cooling from the Artransformation temperature or more at a specific cooling speed.

Description

本発明は、板厚6mm以上で、鋼板表面における圧延方向のヤング率が高い鋼板およびその製造方法に関し、引張強度が780MPa以上の高張力鋼材として好適なものに関する。   The present invention relates to a steel sheet having a thickness of 6 mm or more and a high Young's modulus in the rolling direction on the steel sheet surface and a method for producing the same, and to a material suitable as a high-tensile steel material having a tensile strength of 780 MPa or more.

近年、建設産業機械、タンク、ペンストック、ラインパイプ等の鋼材使用分野では、構造物の大型化、軽量化を背景として、使用する鋼材の高強度化が指向されると共に、鋼材使用量が急激に増加している。   In recent years, in the field of steel materials such as construction industrial machinery, tanks, penstock, and line pipes, the strength of steel materials to be used has been directed against the background of increasing the size and weight of structures, and the amount of steel materials used has increased rapidly. Has increased.

特に、建設産業機械用の鋼板では、高強度化による薄肉化を図る事で、構造物の重量を低減し、エネルギー消費量を低減するための検討が進んでいるが、薄肉化に伴う剛性の低下が課題で、その解決のため、ヤング率を高めることが検討されている。   In particular, steel sheets for construction industry machines are being studied to reduce the weight of the structure and reduce energy consumption by reducing the wall thickness by increasing the strength. Decreasing is an issue, and to solve this problem, increasing the Young's modulus is being studied.

特許文献1は、高強度鋼の剛性向上やヤング率向上に関する特許文献の一つで、フェライト+オーステナイト2相温度域で熱間圧延することで集合組織を発達させることが記載されている。特許文献2、3、4は、薄鋼板を対象として、γ単相域での熱間圧延時にせん断変形による集合組織を発達させてヤング率を高めることを提案している。   Patent document 1 is one of patent documents relating to improvement of rigidity and Young's modulus of high-strength steel, and describes that a texture is developed by hot rolling in a ferrite + austenite two-phase temperature range. Patent Documents 2, 3, and 4 propose to increase the Young's modulus by developing a texture due to shear deformation during hot rolling in a γ single-phase region for thin steel plates.

特開2008−13831号公報JP 2008-13831 A 特開2005−273001号公報JP 2005-273001 A 特開2008−274395号公報JP 2008-274395 A 特開2007−291483号公報JP 2007-291383 A

特許文献1に記載のヤング率に優れた厚鋼板は、フェライト+オーステナイト2相温度域で累積圧下率50%以上の熱間圧延を施すことで、板厚中央部における(200)面および(211)面、表面下1mmにおける(110)面のX線回折集積密度を高め、かつ{100}面、{211}面、{110}面、{111}面のうちのいずれかの面が、圧延面に対し5°以内に揃ったフェライト粒コロニーの平均長軸長さを、板厚中央部で60μm以下、表面下1mmで30μm以下とすることにより、ヤング率を向上させる技術である。   The thick steel plate having excellent Young's modulus described in Patent Document 1 is subjected to hot rolling with a cumulative reduction of 50% or more in the ferrite + austenite two-phase temperature range, thereby allowing the (200) plane and (211) in the center of the plate thickness. ) Surface, the X-ray diffraction integration density of (110) plane at 1 mm below the surface is increased, and any one of {100} plane, {211} plane, {110} plane, {111} plane is rolled This is a technique for improving the Young's modulus by setting the average major axis length of ferrite grain colonies aligned within 5 ° to the surface to 60 μm or less at the center of the plate thickness and 30 μm or less at 1 mm below the surface.

しかしながら、特許文献1記載の方法は、対象とする引張強度レベルが600MPa級と低く、ヤング率を高めるために、フェライト相分率を確保するとともに、フェライト相に加工集合組織を発達させるようにフェライト+オーステナイト2相温度域での強加工を必要とするため、製造安定性などに課題があった。   However, in the method described in Patent Document 1, the target tensile strength level is as low as 600 MPa class, and in order to increase the Young's modulus, the ferrite phase fraction is ensured and the ferrite phase is developed to develop a working texture. + Because of the need for strong processing in the austenite two-phase temperature range, there were problems in production stability and the like.

また、特許文献2、3、4は、オーステナイト単相域での熱間圧延時に鋼板表面をせん断変形させることにより、{110}<223>方位と{110}<111>方位の集合組織を発達させ、圧延方向のヤング率を高める技術である。しかし、いずれも薄鋼板を対象とし、圧延スタンドにおける圧延ロールと鋼板の摩擦係数、有効歪み量および圧下率を規定して製造するもので、厚鋼板に適用することはできない。   Patent Documents 2, 3, and 4 develop a texture of {110} <223> and {110} <111> orientations by shearing the steel sheet surface during hot rolling in the austenite single phase region. This is a technique for increasing the Young's modulus in the rolling direction. However, all of them are intended for thin steel plates and are manufactured by specifying the friction coefficient, effective strain amount and rolling reduction ratio of the rolling rolls and steel plates in the rolling stand, and cannot be applied to thick steel plates.

本発明はかかる事情に鑑みてなされたものであり、板厚が6mm以上の厚鋼板で、引張強度が780MPa以上で、鋼板表面での圧延方向のヤング率が220GPa以上となる高張力厚鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a high-tensile steel plate having a plate thickness of 6 mm or more, a tensile strength of 780 MPa or more, and a Young's modulus in the rolling direction on the steel plate surface of 220 GPa or more. It aims at providing the manufacturing method.

本発明者らは、厚鋼板を対象として、強度を780MPa以上とし、鋼板表面における圧延方向のヤング率を高めることについて鋭意研究を重ねた結果、以下の知見を得た。
(1)鋼板表面における圧延方向のヤング率を高めるためには、鋼板表面で{110}<111>および{112}<111>集合組織を発達させることが有効である。
(2)そのためには、鋼板表面から板厚の1/2位置までの未再結晶温度域でのパス圧下率、パス間時間、累積圧下率を適正に規定することが必要である。
(3)引張強度を780MPa以上とする場合、特定成分組成の鋼を熱間圧延後、Ar3変態点以上から冷却速度10℃/s以上で400℃以下まで冷却し、焼もどし温度を適正に規定した焼戻し処理することが必要である。
(4) また、圧延機および冷却装置と同一の製造ライン上に設置された加熱装置を用いると、焼戻し処理時間が短縮されて短納期対応が可能となる。
As a result of intensive studies on increasing the Young's modulus in the rolling direction on the steel sheet surface, the present inventors have obtained the following knowledge.
(1) In order to increase the Young's modulus in the rolling direction on the steel sheet surface, it is effective to develop {110} <111> and {112} <111> textures on the steel sheet surface.
(2) For that purpose, it is necessary to properly define the pass reduction rate, the inter-pass time, and the cumulative reduction rate in the non-recrystallization temperature range from the steel plate surface to 1/2 position of the plate thickness.
(3) When the tensile strength is set to 780 MPa or more, the steel having a specific component composition is hot-rolled and then cooled from the Ar3 transformation point or higher to 400 ° C or lower at a cooling rate of 10 ° C / s or higher to properly define the tempering temperature. Tempering is required.
(4) Moreover, when the heating apparatus installed on the same production line as a rolling mill and a cooling device is used, the tempering process time is shortened, and a short delivery time is possible.

本発明は得られた知見に基づき、更に検討を加えてなされたものであって、すなわち、本発明は、
1. 成分組成が、質量%で、C:0.06〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.015%以下、S:0.005%以下、Al:0.005〜0.1%、N:0.0005〜0.008%、及びMo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.001〜0.1%の1種または2種以上を含有し、残部はFeおよび不可避的不純物からなり、鋼板表面圧延方向のヤング率が220GPa以上であることを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。
2.成分組成が、質量%で、C:0.06〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.015%以下、S:0.005%以下、Al:0.005〜0.1%、N:0.0005〜0.008%、及びMo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.001〜0.1%の1種または2種以上を含有し、残部はFeおよび不可避的不純物からなり、旧γ粒径が15〜40μmで、かつ鋼板表面における{110}<111>および{112}<111>集合組織の集積度が3以上で鋼板表面圧延方向のヤング率が220GPa以上であることを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。
3.更に、成分組成が、質量%で、Cu:2%以下、Ni:4%以下、Cr:2%以下、W:2%以下の1種または2種以上を含有することを特徴とする1または2に記載の鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。
4.更に、成分組成が、質量%で、B:0.0003〜0.003%、Ca:0.01%以下、REM:0.02%以下の1種または2種以上を含有することを特徴とする1乃至3のいずれか一つに記載の鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。
5.1乃至4のいずれか一つに記載の成分組成を有する鋼を鋳造後、Ar変態点以下に冷却することなく、あるいはAr変態点以下に冷却後、Ac変態点以上に再加熱して、未再結晶域での1パス圧下率10〜20%、パス間時間20s以下、累積圧下率40%以上の圧延を含んだ熱間圧延を行い、その後、Ar変態点以上から冷却速度10℃/s以上で400℃以下の温度まで冷却した後、Ac1点以下に焼もどすことを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板の製造方法。
6.1乃至4のいずれか一つに記載の成分組成を有する鋼を鋳造後、Ar変態点以下に冷却することなく、あるいはAr変態点以下に冷却後、Ac変態点以上に再加熱して、未再結晶域でのパス圧下率10〜20%、パス間時間が20s以下、累積圧下率が40%以上の圧延を含んだ熱間圧延を行い、その後、Ar変態点以上から冷却速度10℃/s以上で250℃以下の温度まで冷却した後、圧延機および冷却装置と同一の製造ライン上に設置された加熱装置を用いて、平均昇温速度1℃/s以上で、Ac1点以下に焼もどすことを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板の製造方法。
The present invention has been made based on further findings based on the obtained knowledge.
1. Component composition is mass%, C: 0.06-0.25%, Si: 0.01-0.8%, Mn: 0.5-2%, P: 0.015% or less, S: 0 0.005% or less, Al: 0.005-0.1%, N: 0.0005-0.008%, Mo: 0.01-1%, Nb: 0.001-0.1%, V: One or more of 0.001 to 0.5%, Ti: 0.001 to 0.1% is contained, the balance is made of Fe and inevitable impurities, and the Young's modulus in the steel sheet surface rolling direction is 220 GPa or more. A high-tensile thick steel plate having a high Young's modulus in the rolling direction on the surface of the steel plate.
2. Component composition is mass%, C: 0.06-0.25%, Si: 0.01-0.8%, Mn: 0.5-2%, P: 0.015% or less, S: 0 0.005% or less, Al: 0.005-0.1%, N: 0.0005-0.008%, Mo: 0.01-1%, Nb: 0.001-0.1%, V: 0.001 to 0.5%, Ti: 0.001 to 0.1% of one type or two or more types, the balance is made of Fe and inevitable impurities, the old γ particle size is 15 to 40 μm, Further, the degree of accumulation of {110} <111> and {112} <111> texture on the steel sheet surface is 3 or more, and the Young's modulus in the steel sheet surface rolling direction is 220 GPa or more. High tensile steel plate with high rate.
3. Furthermore, the component composition contains 1% or 2 or more of Cu: 2% or less, Ni: 4% or less, Cr: 2% or less, W: 2% or less in mass% 1 or A high-tensile thick steel plate having a high Young's modulus in the rolling direction on the surface of the steel plate according to 2.
4). Furthermore, the component composition contains one or more of B: 0.0003 to 0.003%, Ca: 0.01% or less, REM: 0.02% or less in mass%. A high-tensile thick steel plate having a high Young's modulus in the rolling direction on the steel plate surface according to any one of 1 to 3.
After casting the steel having the component composition according to any one of 5.1 to 4, after cooling to the Ar 3 transformation point or less, or after cooling to the Ar 3 transformation point or less, re-recover above the Ac 3 transformation point. Heating is performed, and hot rolling including rolling at a pass reduction rate of 10 to 20% in an unrecrystallized region, an interpass time of 20 seconds or less, and a cumulative reduction rate of 40% or more is performed, and then from the Ar 3 transformation point or higher. A method for producing a high-tensile thick steel plate having a high Young's modulus in the rolling direction on the surface of the steel sheet, wherein the steel sheet is cooled to a temperature of 400 ° C. or less at a cooling rate of 10 ° C./s or higher and then tempered to the Ac1 point or lower.
After casting the steel having the component composition according to any one of 6.1 to 4 without cooling below the Ar 3 transformation point or after cooling to the Ar 3 transformation point or less, re-recover above the Ac 3 transformation point. Heating to perform hot rolling including rolling with a pass reduction ratio of 10 to 20% in the non-recrystallized region, an interpass time of 20 s or less, and a cumulative reduction ratio of 40% or more, and then the Ar 3 transformation point or more After cooling to a temperature of 250 ° C. or less at a cooling rate of 10 ° C./s or higher, and using a heating device installed on the same production line as the rolling mill and the cooling device, at an average temperature rising rate of 1 ° C./s or higher. A method for producing a high-tensile thick steel plate having a high Young's modulus in the rolling direction on the surface of the steel plate, characterized by tempering to an Ac1 point or less.

本発明によれば、引張強度が780MPa以上の高強度を有するとともに、鋼板表面における圧延方向のヤング率が220GPa以上で、剛性が高い高張力厚鋼板を安価に安定して製造することができ、産業上極めて有用である。   According to the present invention, the tensile strength has a high strength of 780 MPa or more, the Young's modulus in the rolling direction on the steel plate surface is 220 GPa or more, and a high-tensile thick steel plate having high rigidity can be stably produced at low cost. It is extremely useful in industry.

本発明の、成分の限定理由を説明する。説明において%は質量%とする。   The reason for limiting the components of the present invention will be described. In the description,% is mass%.

C:0.06〜0.25%
Cは、構造用鋼に求められる強度を得るために必要不可欠な元素であるが、多量に含有すると、溶接熱影響部のマルテンサイトの生成量が多くなり靭性を低下させるので、上限を0.25%とした。また、0.06%より含有量が少ないと、十分な強度が得られず、合金元素の大量含有が必要になり溶接性が低下するので、下限を0.06%とする。好ましくは0.12〜0.22%、より好ましくは、0.12〜0.18%である。
C: 0.06 to 0.25%
C is an indispensable element for obtaining the strength required for structural steel. However, if contained in a large amount, the amount of martensite produced in the weld heat affected zone increases and the toughness is lowered. 25%. On the other hand, if the content is less than 0.06%, sufficient strength cannot be obtained, and a large amount of alloy elements are required, so that the weldability is lowered. Therefore, the lower limit is made 0.06%. Preferably it is 0.12-0.22%, More preferably, it is 0.12-0.18%.

Si:0.01〜0.8%
Siは脱酸剤として作用し、本発明では適度な脱酸を行うために0.01%以上含有する必要があるが、0.8%を超えて含有すると、母材および溶接熱影響部の靭性が顕著に低下するとともに溶接性が著しく低下する。このため、Siの範囲を0.01〜0.8%とした。好ましくは、0.05〜0.8%である。
Si: 0.01 to 0.8%
Si acts as a deoxidizer, and in the present invention, it is necessary to contain 0.01% or more in order to carry out moderate deoxidation, but if it contains more than 0.8%, the base material and the weld heat affected zone While the toughness is significantly reduced, the weldability is significantly reduced. For this reason, the range of Si was 0.01 to 0.8%. Preferably, it is 0.05 to 0.8%.

Mn:0.5〜2%
Mnは母材強度を確保する観点から0.5%以上含有する必要がある。一方、2%より多く含有すると、過剰に焼入性を高め、溶接熱影響部の靭性を著しく低下させることから、2%以下とする必要がある。好ましくは、0.6〜1.6%である。
Mn: 0.5-2%
Mn must be contained in an amount of 0.5% or more from the viewpoint of securing the strength of the base material. On the other hand, if it contains more than 2%, the hardenability is excessively increased and the toughness of the weld heat affected zone is remarkably lowered, so it is necessary to make it 2% or less. Preferably, it is 0.6 to 1.6%.

P:0.015%以下
Pは、0.015%を超えて含有すると、母材および溶接熱影響部の靭性を著しく低下させるため、0.015%以下に制限する。
P: 0.015% or less When P is contained in excess of 0.015%, the toughness of the base metal and the weld heat-affected zone is remarkably reduced, so the content is limited to 0.015% or less.

S:0.005%以下
Sは、0.005%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に低下させるため、0.005%以下とする。
S: 0.005% or less If S is contained in excess of 0.005%, the toughness of the base metal and the weld heat-affected zone is significantly reduced.

Al:0.005〜0.1%
Alは溶鋼を十分に脱酸するために、0.005%以上含有する必要がある。一方、0.1%より多く含有すると、母材中に固溶するAl量が多くなり、母材靭性を低下させるので、0.1%以下に制限する必要がある。好ましくは、0.01〜0.06%である。
Al: 0.005 to 0.1%
Al needs to contain 0.005% or more in order to fully deoxidize molten steel. On the other hand, if the content is more than 0.1%, the amount of Al dissolved in the base material increases and the base material toughness is reduced, so it is necessary to limit it to 0.1% or less. Preferably, it is 0.01 to 0.06%.

N:0.0005〜0.008%
Nは、Tiなどと窒化物を形成することによって組織を微細化し、母材および溶接熱影響部の靭性を向上させる効果を有するために含有する。しかし、0.0005%未満の含有では組織微細化の効果が十分ではなく、一方、0.008%を超える含有では、母材中に固溶するN量が増大し、母材靭性を著しく低下させ、さらに溶接熱影響部においても粗大な炭窒化物を形成し靭性を低下させるので、0.0005〜0.008%の範囲に制限する必要がある。好ましくは、0.001〜0.006%である。
N: 0.0005 to 0.008%
N is contained in order to refine the structure by forming a nitride with Ti or the like and to improve the toughness of the base material and the weld heat affected zone. However, if the content is less than 0.0005%, the effect of refining the structure is not sufficient. On the other hand, if the content exceeds 0.008%, the amount of N dissolved in the base material increases, and the base material toughness is significantly reduced. In addition, coarse carbonitrides are formed also in the weld heat affected zone, and the toughness is lowered. Therefore, it is necessary to limit the range to 0.0005 to 0.008%. Preferably, it is 0.001 to 0.006%.

Mo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.03%以下の1種または2種以上
Mo:0.01〜1%
Moは、母材の高強度化に有効な元素であるが、0.01%未満ではその効果が不十分である一方、多量に含有すると合金炭化物の析出による強度の上昇を引き起こし、靭性を低下させるので0.01〜1%とする。好ましくは、0.2〜0.8%である。
Mo: 0.01 to 1%, Nb: 0.001 to 0.1%, V: 0.001 to 0.5%, Ti: 0.03% or less, or one or more Mo: 0.01 ~ 1%
Mo is an element effective for increasing the strength of the base material, but if it is less than 0.01%, its effect is insufficient. On the other hand, if it is contained in a large amount, it causes an increase in strength due to precipitation of alloy carbides and decreases toughness. Therefore, the content is made 0.01 to 1%. Preferably, it is 0.2 to 0.8%.

Nb:0.001〜0.1%
Nbは鋼の強化に有効な元素であり、特に集合組織の発達に大きく寄与する元素であるが、0.001%未満ではその効果が不十分であり、0.1%を超える含有は母材の靭性を著しく低下させるので、0.001〜0.1%とする。好ましくは0.001〜0.05%である。
Nb: 0.001 to 0.1%
Nb is an element effective for strengthening steel, and particularly an element that greatly contributes to the development of texture. However, if it is less than 0.001%, the effect is insufficient, and the content exceeding 0.1% is a base material. The toughness of the steel is remarkably reduced, so 0.001 to 0.1%. Preferably it is 0.001 to 0.05%.

V:0.001〜0.5%
Vは母材の強度・靭性の向上に効果があり、また、VNとして析出することで固溶Nの低下に有効であるが、0.001%未満の含有ではその効果が不十分であり、0.5%より多く含有すると硬質なVCの析出により靭性が低下するので、0.001〜0.5%にする。好ましくは、0.01〜0.1%である。
V: 0.001 to 0.5%
V is effective in improving the strength and toughness of the base material, and is effective for lowering the solid solution N by being precipitated as VN, but if the content is less than 0.001%, the effect is insufficient, If it contains more than 0.5%, the toughness decreases due to precipitation of hard VC, so 0.001 to 0.5%. Preferably, it is 0.01 to 0.1%.

Ti:0.03%以下
Tiは圧延加熱時あるいは溶接時にTiNを生成し、オーステナイトの粗大化を効果的に抑制し、母材および溶接熱影響部の靭性を向上させる。しかし、0.03%より多く含有すると、Ti窒化物が粗大化し母材および溶接熱影響部の靭性を低下させるので0.03%以下に制限する必要がある。
Ti: 0.03% or less Ti produces TiN at the time of rolling heating or welding, effectively suppressing the coarsening of austenite and improving the toughness of the base material and the weld heat affected zone. However, if the content is more than 0.03%, the Ti nitride becomes coarse and the toughness of the base metal and the weld heat affected zone is lowered, so it is necessary to limit it to 0.03% or less.

以上が本発明の基本成分組成で残部はFeおよび不可避的不純物である。本発明の高張力鋼は、上記基本成分組成に加えて、さらに強度を高める目的でCu、Ni、Cr、Wの1種または2種以上を含有することができる。   The above is the basic component composition of the present invention, and the balance is Fe and inevitable impurities. In addition to the above basic component composition, the high-tensile steel of the present invention can contain one or more of Cu, Ni, Cr, and W for the purpose of further increasing the strength.

Cu:2%以下
Cuは低温靭性を損なうことなく鋼の強度の向上が図れるが、2%より多く含有すると熱間圧延時に鋼板表面に割れを生じるので2%以下とする。
Cu: 2% or less Cu can improve the strength of the steel without impairing the low-temperature toughness, but if it is contained in an amount of more than 2%, it causes cracks on the surface of the steel sheet during hot rolling, so the content is made 2% or less.

Ni:4%以下
Niは、鋼の強度および溶接熱影響部の靭性を向上させる有益な元素である。しかし、Ni含有量が4%を超えると経済性が劣る。従って、Niを含有する場合にはその含有量を4%以下とする。好ましくは2%以下である。
Ni: 4% or less Ni is a beneficial element that improves the strength of the steel and the toughness of the weld heat affected zone. However, if the Ni content exceeds 4%, the economy is inferior. Therefore, when it contains Ni, the content shall be 4% or less. Preferably it is 2% or less.

Cr:2%以下
Crは、強度および靭性の向上に有効な元素であるが、Cr含有量が2%を超えると、溶接性が低下する。従ってCrを含有する場合にはその含有量を2%以下とする。好ましくは、0.1%〜1%である。
Cr: 2% or less Cr is an element effective for improving strength and toughness. However, if the Cr content exceeds 2%, weldability decreases. Therefore, when it contains Cr, the content is made 2% or less. Preferably, it is 0.1% to 1%.

W:2%以下
Wは強度を向上する作用を有している。その効果を得るために0.05%以上含有することが好ましい。しかしながら、2%を超えると溶接性が低下する。従って、Wを含有する場合は、その含有量を2%以下とする。好ましくは、0.05〜2%である。
W: 2% or less W has an effect of improving strength. In order to acquire the effect, it is preferable to contain 0.05% or more. However, if it exceeds 2%, the weldability decreases. Therefore, when it contains W, the content is made 2% or less. Preferably, it is 0.05 to 2%.

本発明は、上記組成に加えて、さらに材質を改善する目的でB、Ca、REMの1種または2種以上を含有することができる。   In addition to the above composition, the present invention may contain one or more of B, Ca, and REM for the purpose of further improving the material.

B:0.0003〜0.003%
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑制し、焼入性を高める効果を有するが、この効果を十分に発揮させるためには0.0003%以上含有する必要がある。しかし、0.003%を超えて含有すると、析出物となり焼入性を低下させ、靭性が低下するので、上限を0.003%とする。好ましくは0.0005〜0.0020%である。
B: 0.0003 to 0.003%
B has the effect of suppressing the ferrite transformation from the grain boundary by segregating at the austenite grain boundary and improving the hardenability, but it is necessary to contain 0.0003% or more in order to fully exhibit this effect. is there. However, if it exceeds 0.003%, it becomes a precipitate and the hardenability is lowered and the toughness is lowered, so the upper limit is made 0.003%. Preferably it is 0.0005 to 0.0020%.

Ca:0.01%以下
Caは硫化物系介在物の形態制御に必要不可欠な元素である。しかし0.01%を超える含有は、清浄度の低下を招く。従って硫化物系介在物の形態制御のために、Caを含有する場合には、その含有量を0.01%以下に限定する。
Ca: 0.01% or less Ca is an element indispensable for controlling the form of sulfide inclusions. However, the content exceeding 0.01% causes a decrease in cleanliness. Therefore, in order to control the form of sulfide inclusions, when Ca is contained, the content is limited to 0.01% or less.

REM:0.02%以下
REMもCaと同様に鋼中で酸化物および硫化物を形成して材質を改善する効果があるが、0.02%より多く含有してもその効果が飽和するため、0.02%以下とする。
REM: 0.02% or less REM also has the effect of improving the quality of the material by forming oxides and sulfides in the steel as in Ca, but the effect is saturated even if it is contained in an amount of more than 0.02%. 0.02% or less.

次に、本発明のミクロ組織の限定理由を説明する。
[集合組織]
鋼板表面における圧延方向のヤング率を220GPa以上とするため、鋼板の表面での集合組織として、ヤング率が高い<111>方向が圧延方向に配向した{110}<111>および{112}<111>の集積度を3以上とする。当該集積度が3未満では、圧延方向のヤング率は220GPa未満となり、鋼板の剛性を高めることができない。なお、本発明で、鋼板の表面とは、板表面から板厚方向に少なくとも1/10板厚位置(板厚の1/10位置)までの領域を指す。
Next, the reason for limiting the microstructure of the present invention will be described.
[Organization]
In order to set the Young's modulus in the rolling direction on the steel plate surface to 220 GPa or more, the {111} <111> and {112} <111 in which the <111> direction having a high Young's modulus is oriented in the rolling direction as a texture on the surface of the steel plate. > Is set to 3 or more. If the degree of integration is less than 3, the Young's modulus in the rolling direction is less than 220 GPa, and the rigidity of the steel sheet cannot be increased. In the present invention, the surface of a steel plate refers to a region from the plate surface to at least 1/10 plate thickness position (1/10 position of plate thickness) in the plate thickness direction.

[旧γ粒径]
旧γ粒径を15〜40μmとするのは、旧γ粒径が15μm未満では、焼入性が低下し十分な強度が確保できず、旧γ粒径が40μmを超える場合は靭性が著しく低下するためである。
[Old γ particle size]
The old γ particle size is set to 15 to 40 μm because if the old γ particle size is less than 15 μm, the hardenability is lowered and sufficient strength cannot be secured, and if the old γ particle size exceeds 40 μm, the toughness is remarkably reduced. It is to do.

本発明では、所望の強度、靭性を確保するために、マルテンサイト+下部ベイナイト+残留オーステナイト組織分率を95%以上とする。   In the present invention, in order to secure desired strength and toughness, the martensite + lower bainite + retained austenite structure fraction is set to 95% or more.

次に、本発明の製造条件の限定理由について述べる。なお、この発明における鋼板の温度規定は、板厚中心部の温度であり、鋼板の表面実測温度から計算により求める。平均冷却速度や平均昇温速度は、板厚中心部にて規定するが、板厚中心近傍はほぼ同様の温度履歴となるため、板厚中心部のみに限定されるものではない。   Next, the reasons for limiting the manufacturing conditions of the present invention will be described. The temperature regulation of the steel sheet in the present invention is the temperature at the center of the sheet thickness, and is obtained by calculation from the surface measured temperature of the steel sheet. Although the average cooling rate and the average temperature rising rate are defined at the center of the plate thickness, the vicinity of the center of the plate thickness has a substantially similar temperature history, and is not limited to the center of the plate thickness.

[圧延条件]
鋳片を、Ar3変態点以下に冷却することなくそのまま熱間圧延を開始しても、一度冷却した鋳片をAc3変態点以上に再加熱した後に熱間圧延を開始してもよい。鋼がオーステナイト化される温度域で圧延を開始すれば、本発明の有効性は失われない。なお、本発明は、転炉法・電気炉法等で溶製されたいかなる鋼や、連続鋳造・造塊法等で製造されたいかなるスラブについても有効であるので、特に鋼の溶製方法や製造方法は特定しない。
[Rolling conditions]
Even if the slab is started to be hot-rolled as it is without cooling below the Ar3 transformation point, the hot-rolling may be started after the slab once cooled is reheated above the Ac3 transformation point. If rolling is started in a temperature range where the steel is austenitized, the effectiveness of the present invention is not lost. The present invention is effective for any steel melted by a converter method, an electric furnace method, etc., and any slab produced by a continuous casting, ingot casting method, etc. The manufacturing method is not specified.

熱間圧延は、未再結晶温度域で1パスをパス圧下率10〜20%、パス間時間20s以下で行い、且つ未再結晶温度域での累積圧下率を40%以上、圧延終了温度Ar3変態点以上とする。パス圧下率が20%を超えると、圧延時に鋼板表面近傍に導入されるせん断歪が小さくなり、集合組織の発達が小さくなる。   In the hot rolling, one pass is performed in the non-recrystallization temperature range at a pass reduction rate of 10 to 20% and the time between passes is 20 s or less, and the cumulative reduction rate in the non-recrystallization temperature range is 40% or more, and the rolling end temperature Ar3 Above the transformation point. When the pass reduction ratio exceeds 20%, the shear strain introduced in the vicinity of the steel sheet surface during rolling becomes small, and the development of the texture becomes small.

一方、パス圧下率が10%未満では、パス数の増加に伴い圧延時の温度低下が大きくなり、Ar3変態点以上のオーステナイト域での圧延が難しくなるとともに、圧延能率の低下が大きくなるため、パス圧下率は10〜20%とする。   On the other hand, if the pass reduction ratio is less than 10%, the temperature drop during rolling increases as the number of passes increases, and rolling in the austenite region above the Ar3 transformation point becomes difficult, and the reduction in rolling efficiency increases. The pass reduction rate is 10 to 20%.

更に、パス間時間を20s以下、かつ、未再結晶域での累積圧下率を40%にすることで、圧延時のせん断歪の累積効果が大きくなり、所望の集合組織が発達する。なお、本発明で熱間圧延は、上述した未再結晶域での圧延を含んでいれば良く、他の圧延条件が含まれることを妨げない。   Furthermore, by setting the time between passes to 20 s or less and the cumulative reduction ratio in the non-recrystallized region to 40%, the cumulative effect of shear strain during rolling increases, and a desired texture develops. In the present invention, the hot rolling only needs to include the above-described rolling in the non-recrystallized region, and does not prevent other rolling conditions from being included.

[冷却条件]
熱間圧延終了後、引張強度780MPa以上の母材強度を確保し、ヤング率を高めるため、Ar3変態点以上の温度から冷却速度10℃/s以上で所定の冷却停止温度まで強制冷却を施す。冷却停止温度は、400℃以下とし、冷却停止後、焼戻し処理を圧延機および冷却装置と同一の製造ライン上に設置された加熱装置を用いて行う場合は、250℃以下とする。
[Cooling conditions]
After hot rolling is completed, forced cooling is performed from a temperature equal to or higher than the Ar3 transformation point to a predetermined cooling stop temperature at a cooling rate of 10 ° C./s or higher in order to secure a base material strength of 780 MPa or higher and increase Young's modulus. The cooling stop temperature is set to 400 ° C. or lower. After the cooling is stopped, the tempering process is performed to 250 ° C. or lower when the heating device installed on the same production line as the rolling mill and the cooling device is used.

冷却は、オーステナイトの未再結晶域で導入したせん断歪により発達した加工集合組織を、マルテンサイト変態させて所望の集合組織の母材組織とするため、少なくとも、オーステナイト域の冷却速度を、10℃/s以上とし、オーステナイトからマルテンサイトへの変態を完了させ、母材を強化して引張強度780MPa以上とするため、停止温度を400℃以下とする。   In order to cool, the working texture developed by the shear strain introduced in the non-recrystallized region of austenite is transformed into a base material structure of the desired texture by martensite transformation. Therefore, at least the cooling rate in the austenite region is 10 ° C. In order to complete the transformation from austenite to martensite and strengthen the base material so that the tensile strength is 780 MPa or more, the stop temperature is 400 ° C. or less.

[焼戻し]
冷却後、Ac1点以下の温度に焼もどしを行う。焼もどしは、平均昇温速度を1℃/s以上とし、鋼板温度をAc1点以下に加熱することで、加熱時のCの拡散を抑制して、マルテンサイトラス界面の粗大な炭化物の生成を効果的に抑制し、マルテンサイトラス間に生成する炭化物サイズを100nm以下とするので、靭性が向上する。
[Tempering]
After cooling, tempering is performed to a temperature of Ac1 point or lower. Tempering has an average heating rate of 1 ° C./s or higher, and the steel plate temperature is heated to Ac1 or lower, thereby suppressing the diffusion of C during heating and producing coarse carbides at the martensitic interface. The carbide size generated between the martensite lath is 100 nm or less, and the toughness is improved.

焼もどし後の100℃以下までの冷却速度は、冷却中の析出物の粗大化に起因する靭性の劣化を防止するように、平均冷却速度を0.05℃/s以上、20℃/s以下とすることが望ましい。   The cooling rate to 100 ° C. or less after tempering is 0.05 ° C./s or more and 20 ° C./s or less so as to prevent toughness deterioration due to coarsening of precipitates during cooling. Is desirable.

焼戻しは、圧延機及び直接焼入れ装置もしくは加速冷却装置と同一の製造ライン上に直結して設置された加熱装置を用いて行ってもよい。直結化により圧延・焼入れ処理から焼もどし処理までに要する時間を短くすることが可能となり、生産性の向上、熱エネルギーの低減効果がもたらされる。加熱装置としてソレノイド型誘導加熱装置が利用できる。   The tempering may be performed using a heating device installed directly on the same production line as the rolling mill and the direct quenching device or the accelerated cooling device. The direct connection can shorten the time required from the rolling / quenching process to the tempering process, thereby improving productivity and reducing heat energy. A solenoid type induction heating device can be used as the heating device.

次に本発明の有用性を実施例によってさらに説明する。   Next, the usefulness of the present invention will be further explained by examples.

表1に示す化学成分の鋼A〜Oを溶製してスラブに鋳造し、加熱炉で加熱後、圧延を行い鋼板とした。圧延後、引き続き直接焼入れし、次いで、雰囲気炉およびソレノイド型誘導加熱装置を用いて焼もどし処理を行った。   Steels A to O having chemical components shown in Table 1 were melted and cast into slabs, heated in a heating furnace, and then rolled into a steel plate. After rolling, it was directly quenched and then tempered using an atmosphere furnace and a solenoid induction heating device.

ソレノイド型誘導加熱装置を用いた場合、板厚中心部の平均昇温速度は鋼板の通板速度によって管理した。なお、焼もどし温度にて保持する場合には、鋼板を往復させて加熱することによって、±5℃の範囲で保持した。   When a solenoid type induction heating apparatus was used, the average heating rate at the center of the plate thickness was controlled by the plate passing rate of the steel plate. In addition, when hold | maintaining at tempering temperature, it hold | maintained in the range of +/- 5 degreeC by reciprocating and heating a steel plate.

また、加熱後の冷却は空冷とした。焼もどし温度や焼入れ温度などの板厚中心部における温度は、放射温度計による表面の逐次における温度測定結果から、伝熱計算によって求めた。   The cooling after heating was air cooling. The temperature at the center of the plate thickness, such as the tempering temperature and the quenching temperature, was obtained by heat transfer calculation from the temperature measurement results at the surface in succession by a radiation thermometer.

引張試験はJIS Z 2241に準拠して行い、板厚20mm以下ではJIS5号試験片により、板厚20mm超では板厚の1/4から採取したJIS4号試験片により降伏強度および引張強度を測定した。試験片採取方向は、圧延方向とした。   The tensile test was performed according to JIS Z 2241. Yield strength and tensile strength were measured with a JIS No. 5 test piece when the plate thickness was 20 mm or less, and with a JIS No. 4 test piece taken from 1/4 of the plate thickness when the plate thickness exceeded 20 mm. . The specimen collection direction was the rolling direction.

靭性はJIS Z 2242に規定の衝撃試験片を採取し、板厚の1/4部より採取した試験片を用いたシャルピー衝撃試験によって得られる破面遷移温度(vTrs)で評価した。試験片採取方向は、圧延方向とした。   The toughness was evaluated by a fracture surface transition temperature (vTrs) obtained by a Charpy impact test using a test piece taken from 1/4 part of the plate thickness after collecting an impact test piece specified in JIS Z 2242. The specimen collection direction was the rolling direction.

旧γ粒径は、鋼板の圧延方向の断面を光学顕微鏡で10視野観察し、各結晶粒の円相当径の平均値により評価した。   The old γ grain size was evaluated by observing the cross section in the rolling direction of the steel sheet with 10 fields of view with an optical microscope, and evaluating the average value of the equivalent circle diameter of each crystal grain.

集合組織は、鋼板表面から板厚の1/4まで、板面に平行な面について板厚方向1mm毎に試験片を採取し、(110)、(200)、(211)正極点図を測定し、これらを用いて3次元集合組織を計算し、Φ2=45°断面における各結晶方位のX線ランダム強度の最大値により評価した。   For the texture, from the surface of the steel plate to 1/4 of the plate thickness, specimens were collected every 1 mm in the plate thickness direction on the plane parallel to the plate surface, and (110), (200), (211) positive electrode dot diagrams were measured. Then, using these, a three-dimensional texture was calculated and evaluated by the maximum value of the X-ray random intensity of each crystal orientation in the Φ2 = 45 ° cross section.

また、ヤング率は、板厚2mm×幅10mm×長さ60mmの板状試験片を採取し、共振法によって測定した。   The Young's modulus was measured by a resonance method by collecting a plate-like test piece having a thickness of 2 mm, a width of 10 mm, and a length of 60 mm.

各特性の目標値は、降伏応力が685MPa以上、引張強度が780MPa以上、vTrsが−40℃以下、表面1mmでの圧延方向のヤング率220GPa以上とした。   The target values for each characteristic were a yield stress of 685 MPa or more, a tensile strength of 780 MPa or more, a vTrs of −40 ° C. or less, and a Young's modulus of 220 GPa or more in the rolling direction at a surface of 1 mm.

表2に鋼板製造条件、および得られた鋼板の降伏強度、引張強度、破面遷移温度(vTrs)、旧γ粒径、表面1mmから板厚中心までの集合組織強度、ヤング率をそれぞれ示す。成分組成または製造条件が本発明範囲外の比較例は、上記目標値および前述したミクロ組織の集積度({110}<111>および{112}<111>の集積度を3以上)のいずれかまたは全てを満足することができなかった。   Table 2 shows the steel sheet production conditions, the yield strength, tensile strength, fracture surface transition temperature (vTrs), old γ grain size, texture strength from the surface 1 mm to the center of the plate thickness, and Young's modulus. The comparative example whose component composition or manufacturing condition is outside the scope of the present invention is any one of the above target value and the degree of accumulation of the microstructure described above (the degree of accumulation of {110} <111> and {112} <111> is 3 or more). Or I could not satisfy everything.

Figure 2015183249
Figure 2015183249

Figure 2015183249
Figure 2015183249

Claims (6)

成分組成が、質量%で、C:0.06〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.015%以下、S:0.005%以下、Al:0.005〜0.1%、N:0.0005〜0.008%、及びMo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.001〜0.1%の1種または2種以上を含有し、残部はFeおよび不可避的不純物からなり、鋼板表面における圧延方向のヤング率が220GPa以上であることを特徴とする鋼板表面圧延方向のヤング率が高い高張力厚鋼板。   Component composition is mass%, C: 0.06-0.25%, Si: 0.01-0.8%, Mn: 0.5-2%, P: 0.015% or less, S: 0 0.005% or less, Al: 0.005-0.1%, N: 0.0005-0.008%, Mo: 0.01-1%, Nb: 0.001-0.1%, V: One or more of 0.001 to 0.5% and Ti: 0.001 to 0.1% are contained, the balance is made of Fe and inevitable impurities, and the Young's modulus in the rolling direction on the steel sheet surface is 220 GPa. A high-tensile thick steel plate having a high Young's modulus in the steel sheet surface rolling direction. 成分組成が、質量%で、C:0.06〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.015%以下、S:0.005%以下、Al:0.005〜0.1%、N:0.0005〜0.008%、及びMo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.001〜0.1%の1種または2種以上を含有し、残部はFeおよび不可避的不純物からなり、旧γ粒径が15〜40μmで、かつ鋼板表面における{110}<111>および{112}<111>集合組織の集積度が3以上で、鋼板表面圧延方向のヤング率が220GPa以上であることを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。   Component composition is mass%, C: 0.06-0.25%, Si: 0.01-0.8%, Mn: 0.5-2%, P: 0.015% or less, S: 0 0.005% or less, Al: 0.005-0.1%, N: 0.0005-0.008%, Mo: 0.01-1%, Nb: 0.001-0.1%, V: 0.001 to 0.5%, Ti: 0.001 to 0.1% of one type or two or more types, the balance is made of Fe and inevitable impurities, the old γ particle size is 15 to 40 μm, And the accumulation degree of {110} <111> and {112} <111> texture on the steel sheet surface is 3 or more, and the Young's modulus in the steel sheet surface rolling direction is 220 GPa or more. High tensile steel plate with high Young's modulus. 更に、成分組成が、質量%で、Cu:2%以下、Ni:4%以下、Cr:2%以下、W:2%以下の1種または2種以上を含有することを特徴とする請求項1または2に記載の鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。   Furthermore, the component composition contains one or two or more of Cu: 2% or less, Ni: 4% or less, Cr: 2% or less, W: 2% or less in mass%. A high-tensile thick steel plate having a high Young's modulus in the rolling direction on the steel plate surface according to 1 or 2. 更に、成分組成が、質量%で、B:0.0003〜0.003%、Ca:0.01%以下、REM:0.02%以下の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の鋼板表面における圧延方向のヤング率が高い高張力厚鋼板。   Furthermore, the component composition contains one or more of B: 0.0003 to 0.003%, Ca: 0.01% or less, REM: 0.02% or less in mass%. The high-tensile thick steel plate having a high Young's modulus in the rolling direction on the steel plate surface according to any one of claims 1 to 3. 請求項1乃至4のいずれか一つに記載の成分組成を有する鋼を鋳造後、Ar変態点以下に冷却することなく、あるいはAr変態点以下に冷却後、Ac変態点以上に再加熱して、未再結晶域での1パス圧下率10〜20%、パス間時間20s以下、累積圧下率40%以上の圧延を含んだ熱間圧延を行い、その後、Ar変態点以上から冷却速度10℃/s以上で400℃以下の温度まで冷却した後、Ac1点以下に焼もどすことを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板の製造方法。 The steel having the composition according to any one of claims 1 to 4 is cast and then cooled to below the Ar 3 transformation point, or after cooling to the Ar 3 transformation point or less, and then returned to the Ac 3 transformation point or more. Heating is performed, and hot rolling including rolling at a pass reduction rate of 10 to 20% in an unrecrystallized region, an interpass time of 20 seconds or less, and a cumulative reduction rate of 40% or more is performed, and then from the Ar 3 transformation point or higher. A method for producing a high-tensile thick steel plate having a high Young's modulus in the rolling direction on the surface of the steel sheet, wherein the steel sheet is cooled to a temperature of 400 ° C. or less at a cooling rate of 10 ° C./s or higher and then tempered to the Ac1 point or lower. 請求項1乃至4のいずれか一つに記載の成分組成を有する鋼を鋳造後、Ar変態点以下に冷却することなく、あるいはAr変態点以下に冷却後、Ac変態点以上に再加熱して、未再結晶域でのパス圧下率10〜20%、パス間時間が20s以下、累積圧下率が40%以上の圧延を含んだ熱間圧延を行い、その後、Ar変態点以上から冷却速度10℃/s以上で250℃以下の温度まで冷却した後、圧延機および冷却装置と同一の製造ライン上に設置された加熱装置を用いて、平均昇温速度1℃/s以上で、Ac1点以下に焼もどすことを特徴とする鋼板表面における圧延方向のヤング率が高い高張力厚鋼板の製造方法。 The steel having the composition according to any one of claims 1 to 4 is cast and then cooled to below the Ar 3 transformation point, or after cooling to the Ar 3 transformation point or less, and then returned to the Ac 3 transformation point or more. Heating to perform hot rolling including rolling with a pass reduction ratio of 10 to 20% in the non-recrystallized region, an interpass time of 20 s or less, and a cumulative reduction ratio of 40% or more, and then the Ar 3 transformation point or more After cooling to a temperature of 250 ° C. or less at a cooling rate of 10 ° C./s or higher, and using a heating device installed on the same production line as the rolling mill and the cooling device, at an average temperature rising rate of 1 ° C./s or higher. A method for producing a high-tensile thick steel plate having a high Young's modulus in the rolling direction on the surface of the steel plate, characterized by tempering to an Ac1 point or less.
JP2014061630A 2014-03-25 2014-03-25 High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same Active JP6028759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061630A JP6028759B2 (en) 2014-03-25 2014-03-25 High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061630A JP6028759B2 (en) 2014-03-25 2014-03-25 High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015183249A true JP2015183249A (en) 2015-10-22
JP6028759B2 JP6028759B2 (en) 2016-11-16

Family

ID=54350142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061630A Active JP6028759B2 (en) 2014-03-25 2014-03-25 High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP6028759B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147800A (en) * 2019-03-14 2020-09-17 日本製鉄株式会社 Method for producing steel material and tempering facility
CN114657346A (en) * 2022-03-23 2022-06-24 安阳钢铁股份有限公司 VN microalloyed steel for coal mine hydraulic support and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136120A (en) * 1990-09-26 1992-05-11 Nippon Steel Corp Production of steel plate for structure purpose having high young's modulus
JPH04147917A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of thick steel plate having high young's modulus
JP2006183130A (en) * 2004-03-31 2006-07-13 Jfe Steel Kk High-rigidity/high-strength thin steel sheet and manufacturing method therefor
JP2009132988A (en) * 2007-04-19 2009-06-18 Nippon Steel Corp Steel sheet, hot dip galvanized steel sheet, hot dip galvannealed steel sheet and steel pipe having low yield ratio and high young's modulus, and method for producing them
JP2009242840A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136120A (en) * 1990-09-26 1992-05-11 Nippon Steel Corp Production of steel plate for structure purpose having high young's modulus
JPH04147917A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of thick steel plate having high young's modulus
JP2006183130A (en) * 2004-03-31 2006-07-13 Jfe Steel Kk High-rigidity/high-strength thin steel sheet and manufacturing method therefor
JP2009132988A (en) * 2007-04-19 2009-06-18 Nippon Steel Corp Steel sheet, hot dip galvanized steel sheet, hot dip galvannealed steel sheet and steel pipe having low yield ratio and high young's modulus, and method for producing them
JP2009242840A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147800A (en) * 2019-03-14 2020-09-17 日本製鉄株式会社 Method for producing steel material and tempering facility
JP7256371B2 (en) 2019-03-14 2023-04-12 日本製鉄株式会社 Steel manufacturing method and tempering equipment
CN114657346A (en) * 2022-03-23 2022-06-24 安阳钢铁股份有限公司 VN microalloyed steel for coal mine hydraulic support and preparation method thereof

Also Published As

Publication number Publication date
JP6028759B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
EP3000905B1 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5845674B2 (en) High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP5277672B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2015180771A (en) Wear-resistant steel sheet excellent in low-temperature toughness and low-temperature temper embrittlement cracking resistance characteristic and production method thereof
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP3375554B2 (en) Steel pipe with excellent strength-ductility balance
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2010229441A (en) Method for manufacturing high toughness high tensile thick steel plate
JP5151693B2 (en) Manufacturing method of high-strength steel
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP2013108168A (en) Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
JP6028759B2 (en) High tensile steel plate with high Young&#39;s modulus in the rolling direction on the surface of the steel plate and method for producing the same
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6028759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250