JP2015182900A - Producing method of thin member and thin member - Google Patents

Producing method of thin member and thin member Download PDF

Info

Publication number
JP2015182900A
JP2015182900A JP2014058256A JP2014058256A JP2015182900A JP 2015182900 A JP2015182900 A JP 2015182900A JP 2014058256 A JP2014058256 A JP 2014058256A JP 2014058256 A JP2014058256 A JP 2014058256A JP 2015182900 A JP2015182900 A JP 2015182900A
Authority
JP
Japan
Prior art keywords
cement
thin
structural unit
water
thin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014058256A
Other languages
Japanese (ja)
Inventor
享久 岡本
Yukihisa Okamoto
享久 岡本
傳 南舘
Tsutau Minamidate
傳 南舘
園子 市丸
Sonoko Ichimaru
園子 市丸
有紀 谷貝
Yuki Tanigai
有紀 谷貝
木之下 光男
Mitsuo Kinoshita
光男 木之下
八田 明生
Akio Hatta
明生 八田
未希 山崎
Miki Yamazaki
未希 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Ritsumeikan Trust
Original Assignee
Takemoto Oil and Fat Co Ltd
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Ritsumeikan Trust filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2014058256A priority Critical patent/JP2015182900A/en
Publication of JP2015182900A publication Critical patent/JP2015182900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a thin member and such thin member, the method may provide the thin member having a properties that light, thin, having less curve due to contraction, and having sufficient toughness with cement slurry having a fluidity sufficient for being introduced into corner parts of a frame.SOLUTION: A thin member having a thickness of 1 to 7 mm is produced by hardening the following cement slurry under a state comprising successive two axis arranged fibers. The cement slurry contains: binding material of cement type; water; cement distribution agent; and contraction reducing agent. The cement distribution agent is a poly carboxylic (salt) water soluble vinyl copolymer. The ratio of water binding material is 12 to 25%.

Description

本発明は、建築・土木分野における埋設型枠、建物の外壁、内壁、床板、天井材等の比較的軽量の薄肉部材や、楽器の胴部、音響部材等の軽量の薄肉部材として用いる薄肉部材の製造方法及びかかる製造方法によって得られる薄肉部材に関する。   The present invention relates to a relatively light-weight thin member such as an embedded formwork, an outer wall, an inner wall, a floor board, or a ceiling material in a building / civil engineering field, or a thin member used as a light-weight thin member such as an instrument body or an acoustic member. And a thin member obtained by the manufacturing method.

従来、建築・土木分野においては、コンクリート施工の省力化や木材保護等の観点から、高強度、高靭性、軽量化を目的として、得られる硬化体の曲げ強度や引張強度を強化するため、有機繊維を含有したコンクリート薄肉板(例えば、特許文献1参照)や、有機繊維を含有した薄肉コンクリート二次製品(例えば、特許文献2参照)等が提案されている。しかし、これらの薄肉板や薄肉二次製品の厚みは、30〜50mm、又は15〜150mmのものを対象にしたものであり、厚さが数mmの薄肉部材が要求される使用場面には不向きである。一方、厚さが1〜6mmの薄肉成形物を得る目的で、セメントモルタルの曲げ強度を向上するために、セメント系スラリーに金属繊維(直径0.01〜0.05mm、長さ2〜30mmの短繊維)を混練することも提案されている(例えば、特許文献3及び4参照)。しかし、金属繊維を混練すると、得られる薄肉成形物が重くなり、また実際のところ、ミリ単位という幅の狭い型枠内に金属繊維を混練したセメント系スラリーを注入して硬化させる方法においては、かかるセメント系スラリーの流動性が不足し、幅の狭い型枠内の隅々にまでセメント系スラリーを充填するのが難しく、更にかかる薄肉成形物は、その厚さが薄くなるほど、収縮ひずみによる反りやひび割れ等の問題が顕著になる。   Conventionally, in the field of construction and civil engineering, in order to enhance the bending strength and tensile strength of the resulting cured body for the purpose of high strength, high toughness and light weight from the viewpoint of labor saving of concrete construction and wood protection, organic Concrete thin-walled plates containing fibers (for example, see Patent Document 1), thin-walled concrete secondary products containing organic fibers (for example, see Patent Document 2), and the like have been proposed. However, the thickness of these thin plates and thin secondary products is intended for 30 to 50 mm or 15 to 150 mm, and is not suitable for use scenes where a thin member with a thickness of several mm is required. It is. On the other hand, in order to improve the bending strength of cement mortar for the purpose of obtaining a thin molded product having a thickness of 1 to 6 mm, metal fibers (diameter of 0.01 to 0.05 mm, length of 2 to 30 mm) are added to the cementitious slurry. It has also been proposed to knead (short fibers) (see, for example, Patent Documents 3 and 4). However, when the metal fibers are kneaded, the thin molded product obtained becomes heavy, and in fact, in the method of injecting and curing the cement-based slurry in which the metal fibers are kneaded into a narrow formwork of millimeter units, The fluidity of such cement-based slurry is insufficient, and it is difficult to fill the cement-based slurry into every corner of a narrow mold. Further, as the thickness of such a thin molded product becomes thinner, warping due to shrinkage strain occurs. Problems such as cracks become noticeable.

特開2004−300001号公報JP 2004-300001 A 特開2004−330752号公報JP 2004-330752 A 特開2010−137414号公報JP 2010-137414 A 特開2010−139773号公報JP 2010-139773 A

本発明が解決しようとする課題は、用いるセメント系スラリーがそれを薄肉型枠の隅々にまで注入することができる充分な流動性を有し、同時に得られる薄肉部材が軽量で厚さが薄く、そして収縮による反りが少なく、しかも充分な靭性を有するものとなるそのような薄肉部材の製造方法及びかかる製造方法によって得られる薄肉部材を提供する処にある。   The problem to be solved by the present invention is that the cement-based slurry used has sufficient fluidity that it can be poured into every corner of the thin-walled formwork, and the thin-walled member obtained at the same time is lightweight and thin. Further, the present invention provides a method for manufacturing such a thin-walled member that is less warped due to shrinkage and has sufficient toughness, and a thin-walled member obtained by such a manufacturing method.

本発明者らは、前記の課題を解決するべく鋭意研究した結果、特定の有機繊維を含んだ状態で特定のセメント系スラリーを硬化させて薄肉部材を製造する方法が正しく好適であることを見出した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a method for producing a thin member by curing a specific cementitious slurry containing a specific organic fiber is correctly suitable. It was.

すなわち本発明は、連続二軸配向繊維を含んだ状態で下記のセメント系スラリーを硬化させて厚さ1〜7mmの薄肉部材を製造することを特徴とする薄肉部材の製造方法に係る。
セメント系スラリー:セメント系の結合材、水、セメント分散剤及び収縮低減剤を含有し、該セメント分散剤がポリカルボン酸(塩)系水溶性ビニル共重合体であり、且つ水結合材比を12〜25%としたセメント系スラリー
That is, this invention relates to the manufacturing method of a thin member characterized by manufacturing the thin member of thickness 1-7 mm by hardening the following cementitious slurry in the state containing the continuous biaxially oriented fiber.
Cement-based slurry: Contains cement-based binder, water, cement dispersant and shrinkage reducing agent, the cement dispersant is a polycarboxylic acid (salt) -based water-soluble vinyl copolymer, and has a water binder ratio of 12-25% cement slurry

本発明に係る薄肉部材の製造方法(以下、本発明の製造方法という)において、セメント系スラリーとしては、セメント系の結合材、水、セメント分散剤及び収縮低減剤を含有してなるものを用いるが、セメント分散剤としては、高濃度のセメントにおいてセメント系の粒子を強力に分散できるポリカルボン酸(塩)系水溶性ビニル共重合体を用いる。それ以外の化合物から選ばれる公知のリグニンスルホン酸塩、メラミンスルホン酸ホルマリン高縮合物塩、ナフタレンスルホン酸ホルマリン高縮合物塩等のセメント分散剤を使用しても、本発明の製造方法において必要とするような充分な流動性は得られない。言い換えると、粘性が低くて、フロー(拡がり)の大きな自己充填性を有するセメント系スラリーは得られない。本発明の製造方法で用いるポリカルボン酸(塩)系水溶性ビニル共重合体としては、その種類は特に制限されないが、二種類のグループのもののなかから選ばれるものを使用するのが好ましい。一つのグループは、メタクリル酸(塩)系の水溶性ビニル共重合体である。これには例えば、メタクリル酸(塩)とアルコキシポリエチレングリコールメタクリル酸エステルとから得られる水溶性ビニル共重合体、メタクリル酸(塩)とアルコキシポリエチレングリコールメタクリル酸エステルと(メタ)アリルスルホン酸塩とから得られる水溶性ビニル共重合体等が挙げられる。これらの水溶性ビニル共重合体は公知の方法で合成できる。例えば、特開昭58−74552号公報、特開平1−226757号公報等に記載されている方法で合成できる。またもう一つのグループは、マレイン酸(塩)系の水溶性ビニル共重合体である。これには例えば、マレイン酸(塩)とα−アリルエーテル−ω−メチル−ポリオキシエチレンとから得られる水溶性ビニル共重合体、マレイン酸(塩)とα−アリルエーテル−ω−ヒドロキシ−ポリオキシエチレンとから得られる水溶性ビニル共重合体等が挙げられる。これらの水溶性共重合体は公知の方法で合成できる。例えば、特開昭57−118058号公報、特開平2005−132955号公報、特開平2008−273766号公報等に記載されている方法で合成できる。本発明の製造方法では、いずれのグループのポリカルボン酸(塩)系水溶性ビニル共重合体を使用する場合でも、その使用量は、結合材100質量部当たり、0.2〜2.0質量部の割合となるようにするのが好ましく、0.3〜1.5質量部の割合となるようにするのがより好ましい。   In the method for manufacturing a thin-walled member according to the present invention (hereinafter referred to as the manufacturing method of the present invention), as the cement slurry, a cement slurry containing a cement binder, water, a cement dispersant and a shrinkage reducing agent is used. However, as the cement dispersant, a polycarboxylic acid (salt) -based water-soluble vinyl copolymer capable of strongly dispersing cement-based particles in a high concentration cement is used. Even if a cement dispersant such as a known lignin sulfonate, melamine sulfonate formalin high condensate salt, naphthalene sulfonate formalin high condensate salt selected from other compounds is used, it is necessary in the production method of the present invention. Such a sufficient fluidity cannot be obtained. In other words, a cement-based slurry having a low viscosity and a self-filling property with a large flow (spreading) cannot be obtained. The polycarboxylic acid (salt) -based water-soluble vinyl copolymer used in the production method of the present invention is not particularly limited, but it is preferable to use one selected from two groups. One group is methacrylic acid (salt) -based water-soluble vinyl copolymers. This includes, for example, a water-soluble vinyl copolymer obtained from methacrylic acid (salt) and alkoxy polyethylene glycol methacrylate, methacrylic acid (salt), alkoxy polyethylene glycol methacrylate and (meth) allyl sulfonate. Examples thereof include water-soluble vinyl copolymers obtained. These water-soluble vinyl copolymers can be synthesized by a known method. For example, it can be synthesized by the methods described in JP-A-58-74552, JP-A-1-226757 and the like. Another group is a maleic acid (salt) -based water-soluble vinyl copolymer. Examples thereof include a water-soluble vinyl copolymer obtained from maleic acid (salt) and α-allyl ether-ω-methyl-polyoxyethylene, maleic acid (salt) and α-allyl ether-ω-hydroxy-poly. And water-soluble vinyl copolymers obtained from oxyethylene. These water-soluble copolymers can be synthesized by a known method. For example, it can be synthesized by the methods described in JP-A-57-118058, JP-A-2005-132955, JP-A-2008-273766, and the like. In the production method of the present invention, even when any group of polycarboxylic acid (salt) -based water-soluble vinyl copolymers is used, the amount used is 0.2 to 2.0 mass per 100 parts by mass of the binder. It is preferable to make the ratio of parts, more preferably 0.3 to 1.5 parts by mass.

前記のようなポリカルボン酸(塩)系水溶性ビニル共重合体のなかでも、水結合材比の低い領域のセメント系スラリーに練り混ぜたときに該セメント系スラリーのフローが大きく、かつ粘性の小さいものが、充填性に最も優れると判断されるところから、マレイン酸(塩)系の水溶性ビニル共重合体のなかでも特に、分子中に下記の構成単位Aを45〜55モル%及び下記の構成単位Bを55〜45モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000のマレイン酸(塩)系水溶性ビニル共重合体が好ましい。尚、水溶性ビニル共重合体の質量平均分子量は、GPC法(ゲル浸透クロマトグラフ法、以下同じ)で測定したプルラン換算の質量平均分子量である。   Among the polycarboxylic acid (salt) water-soluble vinyl copolymers as described above, the flow of the cement-based slurry is large and viscous when kneaded into a cement-based slurry in a region where the water binder ratio is low. Since small ones are judged to have the best packing properties, among the maleic acid (salt) -based water-soluble vinyl copolymers, 45 to 55 mol% of the following structural unit A in the molecule and A maleic acid (salt) -based water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 80000 having a constitutional unit B of 55 to 45 mol% (total 100 mol%) is preferred. In addition, the mass average molecular weight of the water-soluble vinyl copolymer is a mass average molecular weight in terms of pullulan measured by a GPC method (gel permeation chromatography, the same applies hereinafter).

構成単位A:マレイン酸から形成された構成単位及びマレイン酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に10〜80個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−メチル−ポリオキシエチレンから形成された構成単位及び分子中に10〜80個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−ヒドロキシ−ポリオキシエチレンから形成された構成単位から選ばれる一つ又は二つ以上
Structural unit A: One or more selected from a structural unit formed from maleic acid and a structural unit formed from maleate Structural unit B: composed of 10 to 80 oxyethylene units in the molecule [Alpha] -allyl- [omega] -methyl-polyoxyethylene having a polyoxyethylene group and [alpha] -allyl- [omega] having a polyoxyethylene group composed of 10 to 80 oxyethylene units in the molecule One or more selected from structural units formed from hydroxy-polyoxyethylene

また同様の理由で、前記したメタクリル酸(塩)系の水溶性ビニル共重合体のなかでも特に、分子中に下記の構成単位Cを35〜85モル%、下記の構成単位Dを15〜65モル%及び下記の構成単位Eを0〜5モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000のメタクリル酸(塩)系水溶性ビニル共重合体が好ましい。   For the same reason, among the above-mentioned methacrylic acid (salt) -based water-soluble vinyl copolymers, 35 to 85 mol% of the following structural unit C and 15 to 65 of the following structural unit D are included in the molecule. A methacrylic acid (salt) -based water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 80000 having a mol% and the following structural unit E in a proportion of 0 to 5 mol% (100 mol% in total) is preferred.

構成単位C:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位D:分子中に7〜90個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールから形成された構成単位。
構成単位E:(メタ)アリルスルホン酸塩から構成された構成単位。
Structural unit C: One or more selected from a structural unit formed from methacrylic acid and a structural unit formed from methacrylic acid salt. Structural unit D: composed of 7 to 90 oxyethylene units in the molecule. A structural unit formed from methoxypolyethylene glycol having a polyoxyethylene group.
Structural unit E: a structural unit composed of (meth) allyl sulfonate.

本発明の製造方法において、収縮低減剤は得られる薄肉部材の自己収縮や乾燥収縮を抑えて収縮ひずみによる反りやひび割れを防止するために使用する。セメント系スラリーの必須成分として収縮低減剤を用いることは、本発明の製造方法の重要な要件の一つであり、特徴でもある。本発明の製造方法で用いる収縮低減剤としては、その種類は特に制限されないが、セメント分散剤による流動性を助長する性質を有するポリアルキレングリコールモノアルキルエーテル類のなかから選ばれるものが好ましく、なかでも収縮低減効果に優れ、且つセメント系スラリーの練り混ぜ時に気泡を巻き込まない性質をもつジエチレングリコールモノブチルエーテル及びジプロピレングリコールジエチレングリコールモノブチルエーテルから選ばれる化合物が特に好ましい。かかる収縮低減剤の使用量は、セメント系の結合材100質量部当たり、0.2〜5.0質量部の割合となるようにするのが好ましく、0.5〜3.5質量部の割合となるようにするのがより好ましい。得られる薄肉部材の強度低下を招くことなく、反りや収縮ひび割れをより良く抑えるためである。   In the production method of the present invention, the shrinkage reducing agent is used to suppress self-shrinkage and drying shrinkage of the resulting thin-walled member and prevent warpage and cracking due to shrinkage strain. The use of a shrinkage reducing agent as an essential component of the cement slurry is one of the important requirements and characteristics of the production method of the present invention. The type of shrinkage reducing agent used in the production method of the present invention is not particularly limited, but is preferably selected from polyalkylene glycol monoalkyl ethers having a property of promoting fluidity by a cement dispersant. However, a compound selected from diethylene glycol monobutyl ether and dipropylene glycol diethylene glycol monobutyl ether, which has an excellent shrinkage reduction effect and does not entrain air bubbles when the cement slurry is mixed, is particularly preferable. The amount of the shrinkage reducing agent used is preferably 0.2 to 5.0 parts by mass, and 0.5 to 3.5 parts by mass per 100 parts by mass of the cement-based binder. It is more preferable that This is for better suppressing warpage and shrinkage cracking without causing a decrease in strength of the thin member obtained.

本発明の製造方法において、セメント系スラリーに用いるセメント系の結合材としては、その種類は特に制限されないが、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高ビーライトセメント等のポルトランドセメント、高炉スラグセメント、シリカフュームプレミックスセメント、フライアッシュセメント等の混合セメントが挙げられる。なかでも、水セメント比の低い領域でセメント系スラリーを練り混ぜても該セメント系スラリーの粘性を低く保つ性質を有するところから、ポルトランドセメントに予めシリカフューム微粉末を5〜30%(質量比)の割合となるよう混合したシリカフュームプレミックスセメントを使用するのが特に好ましい。   In the production method of the present invention, the type of cement-based binder used for the cement-based slurry is not particularly limited. Such as Portland cement, blast furnace slag cement, silica fume premix cement, fly ash cement and the like. Especially, since it has the property of keeping the viscosity of the cementitious slurry low even when the cementitious slurry is kneaded in a region where the water cement ratio is low, 5 to 30% (mass ratio) of silica fume fine powder is previously added to Portland cement. It is particularly preferred to use a silica fume premix cement mixed to a proportion.

本発明の製造方法では、必要に応じ、セメント系スラリーの流動性に悪影響を及ぼさない範囲内で、得られる薄肉部材の収縮ひずみをより低減するため、ポゾラン物質であるシリカフューム微粉末、フライアッシュ微粉末、スラグ微粉末等の微粉末や、石英粉末、炭酸カルシウム粉末等の無機粉末、珪砂、砕砂、天然砂等で粒径が1.5mm以下の粒度の小さな細骨材をセメント系スラリーに含有させて使用することができる。   In the production method of the present invention, if necessary, in order to further reduce the shrinkage strain of the thin-walled member within a range that does not adversely affect the fluidity of the cementitious slurry, the silica fume fine powder, fly ash fine powder, which is a pozzolanic material, is used. Contains fine powders such as fine powder, slag fine powder, inorganic powders such as quartz powder and calcium carbonate powder, silica sand, crushed sand, natural sand, etc. Can be used.

本発明の製造方法では、得られる薄肉部材に靭性を付与するために、連続二軸配向繊維を用いる。一般にセメント系の硬化体は、硬化させるセメント系スラリーを水結合材比の低い領域で練り混ぜることにより圧縮強度の高いものが得られるが、曲げ強度、引張強度、弾性率等の靭性が圧縮強度の発現に比べて著しく低いという弱点がある。単に圧縮強度を高めただけのセメント系の薄肉部材では、強い衝撃を受けると脆性破壊してしまうため、靭性を向上させるために繊維を用いることが必要になるのである。しかし、セメントスラリーに短繊維を含有させて練り混ぜる方法では、薄肉部材が必要とする充分な靭性が付与されず、しかも充填性が著しく低下してしまう。これらを解決するため、本発明の製造方法では、繊維として連続二軸配向繊維を用いることを特徴とする。連続二軸配向繊維は格子状に編み上げられた有機繊維からなる網目状シートのことであるが、本発明の製造方法では、得られる薄肉部材を軽量化し、同時に平面のみならず曲面にも対応できるフレキシブル性を持たせるため、有機繊維からなる網目状シートを使用する。かかる有機繊維からなる網目状シートとしては、ビニロン繊維シート、ポリプロピレン繊維シート、ポリエチレン繊維シート、アラミド繊維シート、炭素繊維シート等が挙げられるが、市場性やコストも重視する観点から、ビニロン繊維シート及びポリプロピレン繊維シートが好ましい。また有機繊維からなる網目状シートとしては、厚さが0.1〜1.5mm、網目サイズが0.5〜10mmのものが好ましく、且つ該網目状シートを薄肉部材の体積%で3〜40%となるように用いるのが好ましく、なかでも5〜35%となるように用いるのがより好ましい。そしてこれらの網目状シートは通常、薄肉部材の表面に沿った方向で配置して用いる。   In the production method of the present invention, continuous biaxially oriented fibers are used to impart toughness to the resulting thin member. Generally, a cement-based hardened body can be obtained by kneading the cement-based slurry to be hardened in a region where the water binder ratio is low, but a toughness such as bending strength, tensile strength, and elastic modulus is compressive strength. There is a weak point that it is significantly lower than the expression of. In a cement-based thin-walled member that simply has increased compressive strength, brittle fracture occurs when subjected to a strong impact, and therefore it is necessary to use fibers to improve toughness. However, in the method of mixing short fibers in the cement slurry, sufficient toughness required for the thin-walled member is not imparted, and the filling property is remarkably lowered. In order to solve these problems, the production method of the present invention is characterized in that continuous biaxially oriented fibers are used as the fibers. The continuous biaxially oriented fiber is a mesh-like sheet made of organic fibers knitted in a lattice shape. However, in the production method of the present invention, the resulting thin member can be reduced in weight, and at the same time, not only flat but also curved surfaces can be handled. In order to give flexibility, a mesh sheet made of organic fibers is used. Examples of the network sheet made of organic fibers include vinylon fiber sheets, polypropylene fiber sheets, polyethylene fiber sheets, aramid fiber sheets, carbon fiber sheets, etc., from the viewpoint of placing importance on marketability and cost, A polypropylene fiber sheet is preferred. The mesh sheet made of organic fibers preferably has a thickness of 0.1 to 1.5 mm and a mesh size of 0.5 to 10 mm, and the mesh sheet is 3 to 40% by volume% of the thin member. It is preferable to use so that it may become%, and it is more preferable to use so that it may become 5 to 35% especially. These mesh sheets are usually used by being arranged in a direction along the surface of the thin member.

本発明の製造方法では、先ず、以上説明したセメント系の結合材、水、セメント分散剤及び収縮低減剤の各所定量をホバートミキサーで練り混ぜる。練り混ぜ手順は特に制限されないが、セメント分散剤及び収縮低減剤の所定量を練り混ぜ水で予め希釈溶解しておき、その希釈液をセメント系の結合材に徐々に添加しながら練り混ぜ、セメント系スラリーを得ることができる。この際に、水結合材比が12〜25%の範囲となるように調製する。水結合材比がかかる範囲より小さいと、セメント系スラリーの粘性が高くなり過ぎて型枠への注入が困難となり、逆にかかる範囲より大きいと、得られる硬化体の強度が低下し、充分な靭性を有する薄肉部材が得られない。同様の理由から、水結合材比は15〜23%の範囲で調製するのが好ましい。練り混ぜに際しては、本発明の効果を損なわない範囲内で、必要に応じて、消泡剤、凝結遅延剤、硬化促進剤、防水剤等の添加剤を添加して用いることができる。   In the production method of the present invention, first, predetermined amounts of the cement-based binder, water, cement dispersant and shrinkage reducing agent described above are kneaded with a Hobart mixer. The kneading procedure is not particularly limited, but a predetermined amount of cement dispersant and shrinkage reducing agent is preliminarily diluted and dissolved in water, and kneaded while gradually adding the diluted solution to the cement-based binder. A system slurry can be obtained. At this time, it is prepared so that the water binder ratio is in the range of 12 to 25%. If the water binder ratio is smaller than this range, the viscosity of the cementitious slurry will be too high, making it difficult to inject into the mold. Conversely, if it is larger than this range, the strength of the resulting cured product will be reduced and sufficient. A thin member having toughness cannot be obtained. For the same reason, it is preferable to prepare the water binder ratio in the range of 15 to 23%. In kneading, additives such as an antifoaming agent, a setting retarder, a curing accelerator, and a waterproofing agent can be added and used as necessary within the range not impairing the effects of the present invention.

次に、かくして調製したセメント系スラリーを、連続二軸配向繊維を配置した型枠内に徐々に注入して充填完了後、所定時間(例えば室温で48時間程度)硬化させた後、型枠を外し、必要に応じて前置き時間を確保した上で更に所定時間(例えば80〜90℃の温水中で48時間以上)養生することにより薄肉部材を得ることができる。連続二軸配向繊維は、型枠の下面の直上で下面に沿う位置や型枠の上面直下で上面に沿う位置等、任意の位置に配置することができるが、好ましくは型枠の上下両面の中央部で上下両面に沿う位置に配置する。またセメント系スラリーを型枠内に注入する際には、自己充填性ができるだけ優れたセメント系スラリーを使用することが重要である。自己充填性が劣るセメント系スラリーでは型枠内の隅々までそれを注入することができず、充填が完了できないからである。そのため、JIS−R5201(セメントの物理試験方法)によるフロー試験に準拠した0打のフロー値が好ましくは通常は300mm以上のもの、より好ましくは350mm以上のものであって、且つB型回転粘度計(回転数6rpm)で測定した粘度が20℃において好ましくは5.0Pa・s以下のもの、より好ましくは4.0Pa・s以下のものを使用する。   Next, the cement-based slurry thus prepared is gradually poured into a mold frame in which continuous biaxially oriented fibers are arranged to complete the filling, and is cured for a predetermined time (for example, about 48 hours at room temperature). A thin-walled member can be obtained by removing and securing the pre-treatment time if necessary, and further curing for a predetermined time (for example, 48 hours or more in warm water at 80 to 90 ° C.). The continuous biaxially oriented fibers can be disposed at any position such as a position along the lower surface immediately above the lower surface of the mold or a position along the upper surface directly below the upper surface of the mold, but preferably on both upper and lower surfaces of the mold It arrange | positions in the position in alignment with both upper and lower surfaces in a center part. In addition, when injecting the cement-based slurry into the mold, it is important to use a cement-based slurry having the best possible self-filling property. This is because cement slurry having poor self-fillability cannot be poured into every corner of the mold and filling cannot be completed. Therefore, the flow value of 0 stroke based on the flow test according to JIS-R5201 (cement physical test method) is preferably 300 mm or more, more preferably 350 mm or more, and a B-type rotational viscometer. A viscosity measured at (rotational speed 6 rpm) at 20 ° C. is preferably 5.0 Pa · s or less, more preferably 4.0 Pa · s or less.

本発明の製造方法では、厚さが1〜7mm、好ましくは2〜6mmの薄肉部材を製造する。かかる薄肉部材としては、その材料物性の特徴の一つとして、プラスチック材料の試験方法(JIS−K7171)で測定した曲げ強さが20MPa以上のもの、更には25MPa以上のものを得ることができる。得られる薄肉部材の形態は平面板だけでなく、曲面板(例えば楽器のS字型曲面部材、円筒部材等)とすることもできる。   In the production method of the present invention, a thin member having a thickness of 1 to 7 mm, preferably 2 to 6 mm is produced. As such a thin member, a material having a bending strength measured by a plastic material test method (JIS-K7171) of 20 MPa or more, further 25 MPa or more can be obtained as one of the characteristics of the material properties. The form of the thin member obtained can be not only a flat plate but also a curved plate (for example, an S-shaped curved member of a musical instrument, a cylindrical member, etc.).

本発明に係る薄肉部材は、以上説明した本発明の製造方法によって得られる薄肉部材である。本発明に係る薄肉部材の具体的な形態としては、建築・土木用埋設型枠や、建物の外壁、内壁、床板等の軽量の薄肉部材、楽器の胴部、音響部材等の軽量の薄肉部材等が挙げられる。   The thin member according to the present invention is a thin member obtained by the production method of the present invention described above. Specific forms of the thin-walled member according to the present invention include a light-weight thin-walled member such as an embedded formwork for construction and civil engineering, a building outer wall, an inner wall, and a floorboard, a musical instrument body, and an acoustic member. Etc.

本発明によると、型枠の隅々にまで注入することができる充分な流動性を有するセメント系スラリーを用いて、軽量で厚さが薄く、そして収縮による反りが少なく、しかも充分な靭性を備えた薄肉部材を得ることができるという効果がある。   According to the present invention, using a cement-based slurry having sufficient fluidity that can be poured into every corner of a mold, it is light and thin, has little warpage due to shrinkage, and has sufficient toughness. There is an effect that a thin member can be obtained.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(セメント分散剤としてのポリカルボン酸(塩)系の水溶性ビニル共重合体の合成)
・水溶性ビニル共重合体(a−1)の合成
無水マレイン酸98g(1.0モル)及びα−アリル−ω−メチル−ポリ(オキシエチレン単位が33個、以下n=33)オキシエチレン1512g(1.0モル)を反応容器に仕込み、徐々に加温して攪拌しながら均一に溶解した後、反応容器内の雰囲気を窒素置換した。反応系の温度を温水中にて83℃に保ち、過酸化ベンゾイル2gを投入してラジカル重合反応を開始した。更に過酸化ベンゾイル3gを分割投入し、ラジカル重合反応を4時間継続して反応させた。次に、得られた共重合体を48%水酸化ナトリウム水溶液83g(1.0モル)及び水を加えて中和し、水溶性ビニル共重合体(a−1)の40%水溶液を得た。この水溶性ビニル共重合体(a−1)を分析したところ、マレイン酸から形成された構成単位/マレイン酸ナトリウムから形成された構成単位/α−アリル−ω−メチル−ポリ(n=33)オキシエチレンから形成された構成単位=25/25/50(モル%)の割合で有する質量平均分子量43000(GPC法、プルラン換算)のポリカルボン酸(塩)系水溶性ビニル共重合体(a−1)であった。
Test category 1 (Synthesis of polycarboxylic acid (salt) -based water-soluble vinyl copolymer as cement dispersant)
Synthesis of water-soluble vinyl copolymer (a-1) 98 g (1.0 mol) of maleic anhydride and α-allyl-ω-methyl-poly (33 oxyethylene units, hereinafter n = 33) 1512 g of oxyethylene (1.0 mol) was charged into a reaction vessel, heated gradually and dissolved uniformly with stirring, and then the atmosphere in the reaction vessel was replaced with nitrogen. The temperature of the reaction system was maintained at 83 ° C. in warm water, and 2 g of benzoyl peroxide was added to initiate radical polymerization reaction. Further, 3 g of benzoyl peroxide was added in portions, and the radical polymerization reaction was continued for 4 hours. Next, the obtained copolymer was neutralized by adding 83 g (1.0 mol) of 48% aqueous sodium hydroxide and water to obtain a 40% aqueous solution of the water-soluble vinyl copolymer (a-1). . When this water-soluble vinyl copolymer (a-1) was analyzed, structural units formed from maleic acid / structural units formed from sodium maleate / α-allyl-ω-methyl-poly (n = 33) Polycarboxylic acid (salt) -based water-soluble vinyl copolymer (a- 1).

・水溶性ビニル共重合体(a−2)の合成
α−アリル−ω−ヒドロキシ−ポリ(n=30)オキシエチレン1370g(1.0モル)、マレイン酸116g(1.0モル)及び水1760gを反応容器に仕込み、撹拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液8gを加えてラジカル重合反応を開始した。更に過硫酸ナトリウムの20%水溶液5gを加え、ラジカル重合反応を5時間継続して反応を完結し、水溶性ビニル共重合体を得た後、48%水酸化ナトリウム水溶液167g(2.0モル)を加えて中和し、水を加えて水溶性ビニル共重合体(a−2)の40%水溶液を得た。この水溶性ビニル共重合体(a−2)を分析したところ、マレイン酸ナトリウムから形成された構成単位/α−アリル−ω−ヒドロキシ−ポリ(n=30)オキシエチレンから形成された構成単位=50/50(モル%)の割合で有する質量平均分子量51600(GPC法、プルラン換算)の水溶性ビニル共重合体(a−2)であった。
Synthesis of water-soluble vinyl copolymer (a-2) α-allyl-ω-hydroxy-poly (n = 30) oxyethylene 1370 g (1.0 mol), maleic acid 116 g (1.0 mol) and water 1760 g Was uniformly dissolved with stirring, and the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 60 ° C. in a warm water bath, and 8 g of a 20% aqueous solution of sodium persulfate was added to initiate radical polymerization reaction. Further, 5 g of a 20% aqueous solution of sodium persulfate was added and the radical polymerization reaction was continued for 5 hours to complete the reaction to obtain a water-soluble vinyl copolymer. Then, 167 g (2.0 mol) of a 48% aqueous sodium hydroxide solution was obtained. Was added to neutralize, and water was added to obtain a 40% aqueous solution of the water-soluble vinyl copolymer (a-2). When this water-soluble vinyl copolymer (a-2) was analyzed, structural unit formed from sodium maleate / structural unit formed from α-allyl-ω-hydroxy-poly (n = 30) oxyethylene = It was a water-soluble vinyl copolymer (a-2) having a mass average molecular weight of 51600 (GPC method, converted to pullulan) at a ratio of 50/50 (mol%).

・水溶性ビニル共重合体(a−3)の合成
メタクリル酸60g、メトキシポリ(n=23)エチレングリコールメタクリレート300g及びメタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸3g及び水490gを反応容器に仕込んだ後、48%水酸化ナトリウム水溶液58gを加え、攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を完結した。その後、48%水酸化ナトリウム水溶液23gを加えて反応物を完全中和し、水溶性ビニル共重合体(a−3)の40%水溶液を得た。この水溶性ビニル共重合体(a−3)を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量34200(GPC法、プルラン換算)の水溶性ビニル共重合体(a−3)であった。
Synthesis of water-soluble vinyl copolymer (a-3) 60 g of methacrylic acid, 300 g of methoxypoly (n = 23) ethylene glycol methacrylate, 5 g of sodium methallyl sulfonate, 3 g of 3-mercaptopropionic acid and 490 g of water are charged in a reaction vessel. Thereafter, 58 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was partially neutralized with stirring and dissolved uniformly. After the atmosphere in the reaction vessel was replaced with nitrogen, the temperature of the reaction system was maintained at 60 ° C. in a warm water bath, 25 g of a 20% aqueous solution of sodium persulfate was added to start radical polymerization reaction, and the reaction was continued for 5 hours. The reaction was complete. Thereafter, 23 g of a 48% sodium hydroxide aqueous solution was added to completely neutralize the reaction product, thereby obtaining a 40% aqueous solution of the water-soluble vinyl copolymer (a-3). When this water-soluble vinyl copolymer (a-3) was analyzed, a structural unit formed from sodium methacrylate / a structural unit formed from methoxypoly (n = 23) ethylene glycol methacrylate / formed from sodium methallylsulfonate. It was the water-soluble vinyl copolymer (a-3) of the mass mean molecular weight 34200 (GPC method and pullulan conversion) which has the ratio of the comprised structural unit = 70/27/3 (mol%).

・水溶性ビニル共重合体(a−4)の合成
水溶性ビニル共重合体(a−3)の合成と同様の方法によって、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位=68/32(モル%)の割合で有する質量平均分子量49500(GPC法、プルラン換算)の水溶性ビニル共重合体(a−4)を合成した。
Synthesis of water-soluble vinyl copolymer (a-4) Structural unit / methoxypoly (n = 23) ethylene formed from sodium methacrylate by the same method as the synthesis of water-soluble vinyl copolymer (a-3) A water-soluble vinyl copolymer (a-4) having a mass average molecular weight of 49,500 (GPC method, converted to pullulan) having a constitutional unit of 68/32 (mol%) formed from glycol methacrylate was synthesized.

試験区分2(セメント系スラリーの調製)
・セメント系スラリー(S−1)の調製
表1に記載の材料を用い、表2に記載の配合でセメント系スラリーを調製した。すなわち、ホバートミキサーにセメント系の結合材としてシリカフュームプレミックスセメント1000部を投入し、次に、予め水186部に試験区分1で合成したセメント分散剤(a−1)の40%水溶液23部及び収縮低減剤(b−1)20部を溶解しておいたものを投入しつつ、最初は低速で攪拌羽根を回転させながら徐々に回転速度を速めて合計8分間練り混ぜ、水結合材比が20%のセメント系スラリー(S−1)を得た。セメント系スラリー(S−1)をセメントの物理試験方法(JIS−R5201)に準拠してフロー試験をした結果、落差運動を行わずに測定した0打のフロー値が390mmであり、B型回転粘度計で測定した粘度(測定条件:ロータNo.2,回転数6rpm)が20℃において1.75Pa・sであった。
Test category 2 (Preparation of cementitious slurry)
-Preparation of cement-based slurry (S-1) Cement-based slurry was prepared using the materials shown in Table 1 and the formulation shown in Table 2. That is, 1000 parts of a silica fume premix cement as a cement-based binder is put into a Hobart mixer, and then 23 parts of a 40% aqueous solution of a cement dispersant (a-1) synthesized in advance in test section 1 in 186 parts of water and While adding 20 parts of the shrinkage reducing agent (b-1), the mixing speed was gradually increased while rotating the stirring blade at a low speed, and the mixture was kneaded for a total of 8 minutes. A 20% cementitious slurry (S-1) was obtained. As a result of performing a flow test on the cement-based slurry (S-1) in accordance with a physical test method for cement (JIS-R5201), the flow value of 0 stroke measured without performing a drop motion is 390 mm, and B-type rotation The viscosity (measuring condition: rotor No. 2, rotational speed 6 rpm) measured with a viscometer was 1.75 Pa · s at 20 ° C.

Figure 2015182900
Figure 2015182900

















Figure 2015182900
Figure 2015182900

表2において、
a−1〜a−4:表1に記載の水溶性ビニル共重合体(質量は固形換算)
b−1,b−2:表1に記載の収縮低減剤
細骨材:表1に記載の珪砂
*1:リグニンスルホン酸ナトリウム
*2:メラミンスルホン酸ホルマリン高縮合物塩
*3:ナフタレンスルホン酸ホルマリン高縮合物塩
In Table 2,
a-1 to a-4: Water-soluble vinyl copolymers listed in Table 1 (mass is in terms of solid)
b-1, b-2: Shrinkage reducing agents described in Table 1 Fine aggregate: Silica sand described in Table 1 * 1: Sodium lignin sulfonate * 2: Melamine sulfonate formalin high condensate salt * 3: Naphthalene sulfonic acid Formalin high condensate salt

・セメント系スラリー(S−2)〜(S−8)及び(SR−1)〜(SR−6)の調製
セメント系スラリー(S−1)の調製と同様にして、セメント系スラリー(S−2)〜(S−8)及び(SR−1)〜(SR−6)を調製した。以上で調製した各セメント系スラリーの内容を表3に示した。

















Preparation of cement-based slurry (S-2) to (S-8) and (SR-1) to (SR-6) In the same manner as the preparation of cement-based slurry (S-1), cement-based slurry (S- 2) to (S-8) and (SR-1) to (SR-6) were prepared. The contents of each cementitious slurry prepared above are shown in Table 3.

















Figure 2015182900
Figure 2015182900

表3において、
M−1〜M−14:表2に記載の配合番号
フロー値:練り混ぜ直後と60分経過後の流動性をセメントの物理試験方法(JIS−R5201)に準拠して0打のフロー試験を行ったときのフロー値。
粘度:練り混ぜ直後にB型回転粘度計を用いて測定した20℃での粘度
*4:セメント分散剤の添加量を増しても目標の流動性が得られなかった。
*5:同様に流動性が得られなかった。
In Table 3,
M-1 to M-14: Formulation number described in Table 2 Flow value: Flow test of 0 stroke according to the physical test method of cement (JIS-R5201) immediately after kneading and after 60 minutes. Flow value when done.
Viscosity: Viscosity at 20 ° C. measured using a B-type rotational viscometer immediately after kneading * 4: The target fluidity was not obtained even when the amount of cement dispersant added was increased.
* 5: Similarly, fluidity was not obtained.

試験区分3(薄肉部材の製造)
実施例1
表1に記載の連続二軸配向繊維を型枠の上下両面の中央部で上下両面に沿う位置に配置した厚さ3mmで縦100mm×横1000mmの薄肉直方体の型枠内に、試験区分2で調製したセメント系スラリー(S−1)を上方から徐々に注入した。充填が完了した後、室内に48時間放置して型枠を外し、更に20℃で24時間静置して前置き養生した。次に前置き養生したものを85℃の温水中に7日間浸漬して温水養生し、厚さ3mmの平板状の薄肉部材(H−1)を得た。同様にして、断面S字型の曲面板状の薄肉部材についても支障なく充填を完了することができ、薄肉部材を得ることができた。
Test Category 3 (Manufacture of thin parts)
Example 1
In the test section 2 in a thin rectangular parallelepiped mold having a thickness of 3 mm and a length of 100 mm and a width of 1000 mm in which the continuous biaxially oriented fibers described in Table 1 are arranged at positions along the upper and lower surfaces at the center of the upper and lower surfaces of the mold. The prepared cementitious slurry (S-1) was gradually poured from above. After the filling was completed, the mold was removed by leaving it in the room for 48 hours, and then left standing at 20 ° C. for 24 hours, followed by pre-curing. Next, the pre-cured material was immersed in warm water at 85 ° C. for 7 days and cured with warm water to obtain a thin plate member (H-1) having a thickness of 3 mm. Similarly, filling of the thin plate member having a curved plate shape with an S-shaped cross section could be completed without any trouble, and a thin member could be obtained.

実施例2〜10及び比較例1〜7
実施例1と同様にして、実施例2〜10及び比較例1〜7の薄肉部材H−2〜H−10及びRH−1〜RH−7を得た。以上の各例で製造した薄肉部材の内容を表4にまとめて示した。
Examples 2 to 10 and Comparative Examples 1 to 7
In the same manner as Example 1, thin-walled members H-2 to H-10 and RH-1 to RH-7 of Examples 2 to 10 and Comparative Examples 1 to 7 were obtained. Table 4 summarizes the contents of the thin-walled members manufactured in each of the above examples.

試験区分4(薄肉部材の評価)
製造した各例の薄肉部材について、曲げ強さ及び収縮ひずみによる反りを下記のように求め、結果を表4にまとめて示した。
・曲げ強さ(MPa):プラスチック材料の試験方法のJIS−K7171に準拠し、各例の平板状の薄肉部材について、85℃温水中養生後の材齢7日で測定した。
・収縮ひずみによる硬化体の反り(mm):各例の平板状の薄肉部材について、型枠を外した後、20℃でRH60%の条件下に調湿された室内に28日間静置した。次に横方向の片方の端部を水平に固定して、もう片方の端部の水平面からの反り幅を測定した。反り幅の数値が小さいほど、収縮ひずみによる反りが少なく、寸法安定性に優れることを示す。
Test category 4 (Evaluation of thin parts)
About the thin member of each manufactured example, the curvature by bending strength and shrinkage distortion was calculated | required as follows, and the result was put together in Table 4 and shown.
-Bending strength (MPa): Based on JIS-K7171 of the testing method of a plastic material, it measured at the age of 7 days after 85 degreeC warm water curing about the flat thin member of each example.
-Curing of hardened body due to shrinkage strain (mm): The flat thin member of each example was removed from the formwork, and then allowed to stand in a room conditioned at 20 ° C and RH 60% for 28 days. Next, one end in the horizontal direction was fixed horizontally, and the warp width from the horizontal plane of the other end was measured. It shows that the smaller the numerical value of the warp width, the less warp due to shrinkage strain and the better the dimensional stability.

Figure 2015182900
Figure 2015182900

表4において、
薄肉部材中の連続二軸配向繊維の含有割合(%):容積(%)
曲げ強さ:JIS−K7171に準拠して測定した値
曲げ強さの増進率:比較例7(連続二軸配向繊維を使用しない場合)の薄肉部材に対する比率
*6:薄肉部材が得られなかったので測定しなかった
In Table 4,
Content ratio (%) of continuous biaxially oriented fiber in thin-walled material: Volume (%)
Bending strength: Value measured in accordance with JIS-K7171 Bending strength enhancement rate: Ratio of comparative example 7 (when continuous biaxially oriented fibers are not used) to thin member * 6: Thin member was not obtained So did not measure

表3及び表4の結果からも明らかなように、本発明の製造方法によると、型枠の隅々にまで注入することができる充分な流動性を有するセメント系スラリーを用いて、軽量で厚さが薄く、そして収縮による反りが少なく、しかも充分な靭性を備えた薄肉部材を得ることができるという効果がある。   As is apparent from the results of Tables 3 and 4, according to the production method of the present invention, the cement-type slurry having sufficient fluidity that can be poured into every corner of the mold is used to reduce the weight and thickness. There is an effect that it is possible to obtain a thin-walled member that is thin, has little warpage due to shrinkage, and has sufficient toughness.

Claims (12)

連続二軸配向繊維を含んだ状態で下記のセメント系スラリーを硬化させて厚さ1〜7mmの薄肉部材を製造することを特徴とする薄肉部材の製造方法。
セメント系スラリー:セメント系の結合材、水、セメント分散剤及び収縮低減剤を含有し、該セメント分散剤がポリカルボン酸(塩)系水溶性ビニル共重合体であり、且つ水結合材比を12〜25%としたセメント系スラリー
A method for producing a thin-walled member, comprising producing a thin-walled member having a thickness of 1 to 7 mm by curing the following cementitious slurry in a state including continuous biaxially oriented fibers.
Cement-based slurry: Contains cement-based binder, water, cement dispersant and shrinkage reducing agent, the cement dispersant is a polycarboxylic acid (salt) -based water-soluble vinyl copolymer, and has a water binder ratio of 12-25% cement slurry
セメント系スラリーが、セメント系の結合材100質量部当たりポリカルボン酸(塩)系水溶性ビニル共重合体を0.2〜2.0質量部の割合で含有するものである請求項1記載の薄肉部材の製造方法。   The cement-based slurry contains 0.2 to 2.0 parts by mass of a polycarboxylic acid (salt) -based water-soluble vinyl copolymer per 100 parts by mass of the cement-based binder. Manufacturing method of thin member. ポリカルボン酸(塩)系水溶性ビニル共重合体が、分子中に下記の構成単位Aを45〜55モル%及び下記の構成単位Bを55〜45モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000の水溶性ビニル共重合体である請求項1又は2記載の薄肉部材の製造方法。
構成単位A:マレイン酸から形成された構成単位及びマレイン酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に10〜80個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−メチル−ポリオキシエチレンから形成された構成単位及び分子中に10〜80個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−ヒドロキシ−ポリオキシエチレンから形成された構成単位から選ばれる一つ又は二つ以上
The polycarboxylic acid (salt) -based water-soluble vinyl copolymer contains 45 to 55 mol% of the following structural unit A and 55 to 45 mol% (100 mol% in total) of the following structural unit B in the molecule. The method for producing a thin member according to claim 1 or 2, which is a water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 80000.
Structural unit A: One or more selected from a structural unit formed from maleic acid and a structural unit formed from maleate Structural unit B: composed of 10 to 80 oxyethylene units in the molecule [Alpha] -allyl- [omega] -methyl-polyoxyethylene having a polyoxyethylene group and [alpha] -allyl- [omega] having a polyoxyethylene group composed of 10 to 80 oxyethylene units in the molecule One or more selected from structural units formed from hydroxy-polyoxyethylene
ポリカルボン酸(塩)系水溶性ビニル共重合体が、分子中に下記の構成単位Cを35〜85モル%、下記の構成単位Dを15〜65モル%及び下記の構成単位Eを0〜5モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000の水溶性ビニル共重合体である請求項1又は2記載の薄肉部材の製造方法。
構成単位C:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位D:分子中に7〜90個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールから形成された構成単位。
構成単位E:(メタ)アリルスルホン酸塩から構成された構成単位。
The polycarboxylic acid (salt) -based water-soluble vinyl copolymer contains 35 to 85 mol% of the following structural unit C, 15 to 65 mol% of the following structural unit D, and 0 to 0 of the following structural unit E in the molecule. The method for producing a thin-walled member according to claim 1 or 2, which is a water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 80000 having a ratio of 5 mol% (total of 100 mol%).
Structural unit C: One or more selected from a structural unit formed from methacrylic acid and a structural unit formed from methacrylic acid salt. Structural unit D: composed of 7 to 90 oxyethylene units in the molecule. A structural unit formed from methoxypolyethylene glycol having a polyoxyethylene group.
Structural unit E: a structural unit composed of (meth) allyl sulfonate.
収縮低減剤がジエチレングリコールモノブチルエーテル及びジプロピレングリコールジエチレングリコールモノブチルエーテルから選ばれるものであり、且つセメント系スラリーがセメント系の結合材100質量部当たり該収縮低減剤を0.5〜3.5質量部の割合で含有するものである請求項1〜4のいずれか一つの項記載の薄肉部材の製造方法。   The shrinkage reducing agent is selected from diethylene glycol monobutyl ether and dipropylene glycol diethylene glycol monobutyl ether, and the cement slurry is 0.5 to 3.5 parts by weight of the shrinkage reducing agent per 100 parts by weight of the cement-based binder. The method for producing a thin-walled member according to any one of claims 1 to 4, wherein the thin-walled member is contained in a proportion. セメント系の結合材が、シリカフュームプレミックスセメントである請求項1〜5のいずれか一つの項記載の薄肉部材の製造方法。   The method for producing a thin member according to any one of claims 1 to 5, wherein the cement-based binder is silica fume premix cement. 連続二軸配向繊維が格子状に編み上げられた有機繊維からなる網目状シートであって、該網目状シートが厚さ0.1〜1.5mm、網目サイズ0.5〜10mmのものであり、且つ該網目状シートを薄肉部材の体積%で3〜40%となるよう用いる請求項1〜6のいずれか一つの項記載の薄肉部材の製造方法。   A network sheet composed of organic fibers in which continuous biaxially oriented fibers are knitted in a lattice shape, the mesh sheet having a thickness of 0.1 to 1.5 mm and a mesh size of 0.5 to 10 mm, The method for producing a thin member according to any one of claims 1 to 6, wherein the mesh sheet is used so that the volume percent of the thin member is 3 to 40%. 網目状シートが、網目状ビニロン繊維シートである請求項7記載の薄肉部材の製造方法。   The method for producing a thin member according to claim 7, wherein the mesh sheet is a mesh vinylon fiber sheet. 薄肉部材が厚さ2〜6mmの平面板又は曲面板である請求項1〜8のいずれか一つの項記載の薄肉部材の製造方法。   The method for producing a thin member according to any one of claims 1 to 8, wherein the thin member is a flat plate or a curved plate having a thickness of 2 to 6 mm. セメント系スラリーが、セメントの物理試験方法(JIS−R5201)に準拠して測定した0打のフロー値が300mm以上であり、且つ粘度が5.0Pa・s以下である場合のものである請求項1〜9のいずれか一つの項記載の薄肉部材の製造方法。   The cement-based slurry has a zero flow value measured in accordance with a cement physical test method (JIS-R5201) of 300 mm or more and a viscosity of 5.0 Pa · s or less. The method for producing a thin member according to any one of 1 to 9. 請求項1〜10のいずれか一つの項記載の薄肉部材の製造方法によって得られる薄肉部材。   The thin member obtained by the manufacturing method of the thin member as described in any one of Claims 1-10. 薄肉部材がプラスチック材料の試験方法(JIS−K7171)に準拠して測定した曲げ強さが20MPa以上である場合のものである請求項11記載の薄肉部材。   The thin-walled member according to claim 11, wherein the thin-walled member has a bending strength of 20 MPa or more measured in accordance with a plastic material test method (JIS-K7171).
JP2014058256A 2014-03-20 2014-03-20 Producing method of thin member and thin member Pending JP2015182900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058256A JP2015182900A (en) 2014-03-20 2014-03-20 Producing method of thin member and thin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058256A JP2015182900A (en) 2014-03-20 2014-03-20 Producing method of thin member and thin member

Publications (1)

Publication Number Publication Date
JP2015182900A true JP2015182900A (en) 2015-10-22

Family

ID=54349858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058256A Pending JP2015182900A (en) 2014-03-20 2014-03-20 Producing method of thin member and thin member

Country Status (1)

Country Link
JP (1) JP2015182900A (en)

Similar Documents

Publication Publication Date Title
JP5479478B2 (en) Dynamic copolymers for maintaining workability of cementitious compositions
JP2008230865A (en) Additive for hydraulic material and hydraulic material composition using the same
JP6359772B2 (en) Cement additive, cement composition, and raw material for cement additive
JP2015120630A (en) Cement composition
JP2018095537A (en) Method for producing hardened body of hydraulic composition
JP4459912B2 (en) Drying shrinkage reducing agent and hardened cement using the same
JP6830826B2 (en) Self-smooth mortar
US10640424B2 (en) Castable material based on cementitious binder with shrinkage resistance
KR101723000B1 (en) Cement Composition Additive Including Polycarboxylic Acid-based Copolymer, Zinc Oxide, and Gluconate Salt
JP6054736B2 (en) Hydraulic composition
JP2009298624A (en) Ultra-high-strength concrete composition and its manufacturing method
JP5965256B2 (en) Hydraulic composition
TWI794309B (en) Additive for hydraulic composition and hydraulic composition
JP5632108B2 (en) Hydraulic composition
JP2015182900A (en) Producing method of thin member and thin member
JP6200319B2 (en) Method for producing cured body of hydraulic composition
JP2018095516A (en) Hydraulic composition for centrifugal molding
JP2004189512A (en) Composition of mortar
WO2022173003A1 (en) Shrinkage reducing agent and cement composition
JP6362531B2 (en) Hydraulic composition
JP7403342B2 (en) Cement composition and its manufacturing method, and mortar
KR102482686B1 (en) Powder-type admixture composition for concrete comprising mixed powder and soluble packaging material
JP7020668B2 (en) Additives for hydraulic composition and method for preparing hydraulic composition
JP6470116B2 (en) Method for producing cured body of hydraulic composition
KR102628442B1 (en) Additives for hydraulic compositions