JP2015182892A - Zinc oxide and method for producing the same, and use thereof - Google Patents

Zinc oxide and method for producing the same, and use thereof Download PDF

Info

Publication number
JP2015182892A
JP2015182892A JP2014057732A JP2014057732A JP2015182892A JP 2015182892 A JP2015182892 A JP 2015182892A JP 2014057732 A JP2014057732 A JP 2014057732A JP 2014057732 A JP2014057732 A JP 2014057732A JP 2015182892 A JP2015182892 A JP 2015182892A
Authority
JP
Japan
Prior art keywords
zinc oxide
zinc
compound
shape
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014057732A
Other languages
Japanese (ja)
Other versions
JP6282908B2 (en
Inventor
小川 誠
Makoto Ogawa
誠 小川
佐藤 淳也
Junya Sato
淳也 佐藤
飯田 正紀
Masanori Iida
正紀 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2014057732A priority Critical patent/JP6282908B2/en
Publication of JP2015182892A publication Critical patent/JP2015182892A/en
Application granted granted Critical
Publication of JP6282908B2 publication Critical patent/JP6282908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing zinc oxide that has a uniform shape and size, has a good crystallinity and dispersibility, has a low bulk density and good filling property.SOLUTION: The method includes heating a suspension of zinc oxide to 40°C or more, adding an alkali compound such as ammonium compound, and maintaining the pH at that temperature at 7 or more and aging the same; or, the method includes heating a suspension obtained by mixing zinc oxide, zinc compound, and carboxylic acid and/or salt thereof, to 40°C or more, and maintaining the pH at that temperature at 7 or more and aging the same; the obtained zinc oxide can be used for thermally conductive filler, packing material, white pigment, ceramic raw material, etc., and can be incorporated into cosmetics, external preparations, paint, resin composition, heat dissipation composition etc.

Description

本発明は、酸化亜鉛及びその製造方法並びにその用途に関する。   The present invention relates to zinc oxide, a method for producing the same, and uses thereof.

酸化亜鉛は、白色顔料、紫外線遮蔽材、熱伝導性フィラー、充填剤、吸着剤、光触媒、触媒、セラミックス原料、導電材、圧電材料、ガスセンサー、電子写真感光材料、バリスタ、蛍光体、エミッタ、電子デバイス等種々の用途に用いられており、また、化粧料、外用剤、塗料、樹脂組成物、放熱性組成物等に配合して用いられている。   Zinc oxide is a white pigment, UV shielding material, thermally conductive filler, filler, adsorbent, photocatalyst, catalyst, ceramic material, conductive material, piezoelectric material, gas sensor, electrophotographic photosensitive material, varistor, phosphor, emitter, It is used for various applications such as electronic devices, and is used in cosmetics, external preparations, paints, resin compositions, heat-dissipating compositions and the like.

酸化亜鉛を製造するには、例えば、特許文献1には、亜鉛塩を含む溶液をアルカリ中和剤で中和することにより、液中で直接酸化亜鉛を製造する方法が知られている。また、特許文献2には、前記の酸化亜鉛を直接製造するに際し、レイノルズ数30以上の撹拌を行いながら、1秒〜15分間で亜鉛の塩を含む水溶液と沈殿剤とを混合し、pH11以上の母液から沈殿を生成させて、平均粒子径0.1〜0.88μm、平均粒子厚さ0.01〜0.2μm、平均板状比3以上の薄片状酸化亜鉛粉末を製造する方法が提案されており、沈殿生成に際し、クエン酸、エタノールアミン等の水溶性有機物を共存させることも開示している。特許文献2の実施例14ではクエン酸1g(その亜鉛化合物の亜鉛原子に対するカルボキシル基(−COOH)のモル比で表して0.024に相当)、実施例13ではサリチル酸10g(その亜鉛化合物の亜鉛原子に対するカルボキシル基(−COOH)のモル比で表して0.12に相当)を添加して、薄片状酸化亜鉛粉末を製造している。   In order to produce zinc oxide, for example, Patent Document 1 discloses a method for producing zinc oxide directly in a liquid by neutralizing a solution containing a zinc salt with an alkali neutralizer. Further, in Patent Document 2, an aqueous solution containing a zinc salt and a precipitating agent are mixed in 1 second to 15 minutes while stirring with a Reynolds number of 30 or more when directly producing the zinc oxide, and the pH is 11 or more. To produce a flaky zinc oxide powder having an average particle size of 0.1 to 0.88 μm, an average particle thickness of 0.01 to 0.2 μm, and an average plate ratio of 3 or more It is also disclosed that water-soluble organic substances such as citric acid and ethanolamine are allowed to coexist in the precipitation. In Example 14 of Patent Document 2, 1 g of citric acid (corresponding to 0.024 in terms of the molar ratio of the carboxyl group (—COOH) to the zinc atom of the zinc compound), and in Example 13, 10 g of salicylic acid (zinc of the zinc compound) A flaky zinc oxide powder is produced by adding a carboxyl group (-COOH) molar ratio with respect to atoms and corresponding to 0.12.

また、特許文献3には、亜鉛化合物と、その亜鉛化合物の亜鉛原子に対するモル比で表して、0.001〜0.01の範囲の量のカルボン酸及び/又はその塩とを混合した水溶液にアミン化合物を添加し水溶液のpHを7以上として沈殿物を析出させ、次いで、該水溶液を40℃以上に加熱することにより、六角柱の形状を有し、その柱の平均短軸径が0.5〜5.0μmであり、平均長軸径が0.5〜10.0μmである酸化亜鉛、特に、鼓に類似した形状を有する酸化亜鉛を製造できることを開示している。また、特許文献4には、微粒子酸化亜鉛を、亜鉛塩を溶解した水中で熟成する工程を含むことを特徴とする、一次粒子径が0.1μm未満であり、アスペクト比が2.5未満であり、吸油量/BET比表面積が1.5ml/100m以下である酸化亜鉛粒子の製造方法を開示している。 Patent Document 3 discloses an aqueous solution obtained by mixing a zinc compound and a carboxylic acid and / or a salt thereof in an amount in the range of 0.001 to 0.01, expressed as a molar ratio of the zinc compound to zinc atoms. An amine compound is added to adjust the pH of the aqueous solution to 7 or more to precipitate a precipitate, and then the aqueous solution is heated to 40 ° C. or higher to have a hexagonal column shape, and the average minor axis diameter of the column is 0.00. It discloses that zinc oxide having an average major axis diameter of 5 to 5.0 μm and an average major axis diameter of 0.5 to 10.0 μm, particularly zinc oxide having a shape similar to a drum, can be produced. Patent Document 4 includes a step of aging fine zinc oxide in water in which a zinc salt is dissolved. The primary particle diameter is less than 0.1 μm, and the aspect ratio is less than 2.5. There is disclosed a method for producing zinc oxide particles having an oil absorption amount / BET specific surface area of 1.5 ml / 100 m 2 or less.

特開昭53−116296号公報JP-A-53-116296 特許第2683389号公報Japanese Patent No. 2683389 特開2008−254992号公報JP 2008-254992 A 特許第5182456号公報Japanese Patent No. 5182456

前記の従来技術は、亜鉛塩を含む溶液を水酸化ナトリウム、アンモニア等のアルカリ中和剤で中和して酸化亜鉛を直接析出させることにより、薄片状、針状の粒子形状を有する酸化亜鉛を製造することができたり、板状形状を有する酸化亜鉛粒子が集積した球状形状を有する集積体が得られたりする。しかしながら、特許文献1、2の酸化亜鉛は、粒子径、形状のばらつきが大きく結晶性が低いなどの問題がある。また、特許文献3の六角柱状の酸化亜鉛は、危険物第4類引火性液体であるモノエタノールアミン等を使用しているため、取扱い、保管する上で問題となる。更に、特許文献4は亜鉛塩を溶解した水中で酸化亜鉛を熟成するが、熟成の効果が十分得られず、大きな粒子が得られていない。   In the prior art, zinc oxide having a flake-like or needle-like particle shape is obtained by neutralizing a solution containing a zinc salt with an alkali neutralizing agent such as sodium hydroxide or ammonia and directly depositing zinc oxide. It can be produced, or an aggregated body having a spherical shape in which zinc oxide particles having a plate-like shape are accumulated is obtained. However, the zinc oxides of Patent Documents 1 and 2 have problems such as large variation in particle diameter and shape and low crystallinity. Further, the hexagonal columnar zinc oxide of Patent Document 3 is problematic in handling and storing because it uses monoethanolamine or the like, which is a hazardous material Class 4 flammable liquid. Furthermore, Patent Document 4 ripens zinc oxide in water in which a zinc salt is dissolved. However, the effect of aging cannot be sufficiently obtained, and large particles are not obtained.

酸化亜鉛はそれぞれの用途に応じて、形状、大きさ、結晶性等の制御が求められている。例えば、熱伝導性フィラー、充填剤、セラミックス原料等に用いる場合は、薄片状や針状の粒子では嵩密度が高いことから、嵩密度が低く、充填性の良い酸化亜鉛が求められている。また、熱伝導性フィラー、光触媒、触媒、セラミックス原料、導電材、圧電材料等に用いる場合は、充填性に加えて結晶性の良い酸化亜鉛が求められている。また、化粧料、外用剤、塗料、樹脂組成物、放熱性組成物等に配合して用いる場合は、分散性の良い酸化亜鉛が求められている。   Zinc oxide is required to be controlled in shape, size, crystallinity, etc., depending on its application. For example, when it is used as a thermally conductive filler, filler, ceramic raw material, etc., since the bulk density of flaky or needle-like particles is high, zinc oxide having a low bulk density and good fillability is required. In addition, when used as a heat conductive filler, a photocatalyst, a catalyst, a ceramic raw material, a conductive material, a piezoelectric material, etc., zinc oxide having good crystallinity in addition to filling properties is required. In addition, zinc oxide with good dispersibility is required when used in cosmetics, external preparations, paints, resin compositions, heat dissipating compositions and the like.

本発明者らは、酸化亜鉛の粒子形状、粒子径やそれらの集積体の形状、大きさ等を制御する方法を探索した結果、亜鉛酸化物の懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成すること、又は、亜鉛酸化物の懸濁液を40℃以上に加熱し、亜鉛化合物とカルボン酸及び/又はその塩と添加し、その温度でのpHを7以上に維持して熟成すると、酸化亜鉛の大きさ、形状を制御することができることなどを見出し、本発明を完成した。   As a result of searching for a method of controlling the particle shape, particle diameter, and the shape and size of the aggregate of zinc oxide, the inventors of the present invention heated the zinc oxide suspension to 40 ° C. or higher. Aging at a temperature maintained at a pH of 7 or higher, or heating a zinc oxide suspension to 40 ° C. or higher, adding a zinc compound and a carboxylic acid and / or salt thereof, and The inventors have found that when the pH is maintained at 7 or more and ripening, the size and shape of zinc oxide can be controlled, and the present invention has been completed.

すなわち、本発明は、
(1)亜鉛酸化物の懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成することを特徴とする酸化亜鉛の製造方法、
(2)亜鉛酸化物と、亜鉛化合物とカルボン酸及び/又はその塩とを混合した懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成することを特徴とする酸化亜鉛の製造方法、
(3)前記の(1)又は(2)の方法により製造される薄片状、六角板状、六角柱状又はそれらに類似した形状を有する酸化亜鉛、
(4)前記の(1)又は(2)の方法により製造される針状、棒状又はそれに類似した形状を有する酸化亜鉛、
(5)前記の酸化亜鉛を含む熱伝導性フィラー、その熱伝導性フィラーを含む放熱性組成物、
(6)前記の酸化亜鉛を含む紫外線遮蔽材、その紫外線遮蔽剤を含む化粧料等である。
That is, the present invention
(1) A method for producing zinc oxide, characterized in that the zinc oxide suspension is heated to 40 ° C. or higher and aged at a temperature of 7 or higher.
(2) A suspension obtained by mixing a zinc oxide, a zinc compound and a carboxylic acid and / or a salt thereof is heated to 40 ° C. or higher and aged at a temperature maintained at 7 or higher. A method for producing zinc oxide,
(3) Zinc oxide having a flaky shape, a hexagonal plate shape, a hexagonal columnar shape or a shape similar to those produced by the method of (1) or (2),
(4) Zinc oxide having a needle-like shape, a rod-like shape or a similar shape produced by the method of (1) or (2) above,
(5) The heat conductive filler containing the said zinc oxide, the heat dissipation composition containing the heat conductive filler,
(6) An ultraviolet shielding material containing the zinc oxide, a cosmetic containing the ultraviolet shielding agent, and the like.

本発明の酸化亜鉛の製造方法は、亜鉛酸化物を特定条件下で熟成する方法であって、酸化亜鉛の粒子径、粒子形状を所望に調整することができる。
また、本発明の酸化亜鉛は、形状や大きさが整い、結晶性や分散性が良く、嵩密度が低く充填性が良いことから、熱伝導性フィラー、充填剤、白色顔料、セラミックス原料等に用いることができ、化粧料、外用剤、塗料、樹脂組成物、放熱性組成物等に配合することができる。化粧料に配合すると、特定の大きさを有することから分散性が良く肌へのすべり感が良くなる。
The method for producing zinc oxide of the present invention is a method for aging zinc oxide under specific conditions, and the particle diameter and particle shape of zinc oxide can be adjusted as desired.
In addition, the zinc oxide of the present invention has a uniform shape and size, good crystallinity and dispersibility, low bulk density and good filling properties, so it can be used as a thermally conductive filler, filler, white pigment, ceramic raw material, etc. It can be used, and it can mix | blend with cosmetics, an external preparation, a coating material, a resin composition, a heat dissipation composition, etc. When it is blended in cosmetics, it has a specific size, so that the dispersibility is good and the slipperiness to the skin is improved.

実施例2で製造した酸化亜鉛(試料B)の電子顕微鏡写真である。4 is an electron micrograph of zinc oxide (Sample B) produced in Example 2. 実施例3で製造した酸化亜鉛(試料C)の電子顕微鏡写真である。4 is an electron micrograph of zinc oxide (sample C) produced in Example 3.

本発明の酸化亜鉛の製造方法は、亜鉛酸化物の懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成することを特徴とする。亜鉛酸化物は、酸化亜鉛、含水酸化亜鉛、水酸化亜鉛を含む亜鉛と酸素の化合物である。亜鉛酸化物の粒子形状は薄片状、板状、六角板状、六角柱状、針状、棒状、球状、略球状、粒状又はそれに類似した形状でも良く、それらが集積して、球体、多面体、まりも状、いがぐり状等の集合体でも良い。亜鉛酸化物の粒子径は適宜設定することができ、0.001〜50μmの大きさを有していても良く、0.01〜30μmがより好ましく、0.05〜20μmが更に好ましい。この亜鉛酸化物を水、アルコール等の溶媒に懸濁して懸濁液とし、40℃以上に加熱し、より好ましくは60〜250℃程度、更に好ましくは80〜110℃程度に加温し熟成するのが良い。その温度でのpHは7以上に維持し、より好ましくは8〜13、更に好ましくは9〜12に維持する。この熟成により結晶性を高めることができ、酸化亜鉛の粒子径、粒子形状を所望に調整することができる。熟成温度が40℃より低かったり、pHが7より低かったりすると、熟成の効果が認められにくい。熟成時間は10分〜10時間程度が好ましく、1〜10時間程度がより好ましい。pHを7以上に維持するには、アルカリ化合物を添加するが、アルカリ金属化合物、アンモニウム化合物、アミン化合物等を用いることができる。アルカリ金属化合物は、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩、酢酸ナトリウムなどが好ましく用いられる。アンモニウム化合物は、アンモニアガス、アンモニア水、水酸化アンモニウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、酢酸アンモニウム等が好ましく用いられる。アミン化合物は、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等を用いることができる。アルカリ化合物としては、アンモニウム化合物が好ましく、アンモニウム化合物の添加量は、亜鉛化合物の亜鉛原子に対するモル比で表して、0.1〜10の範囲の量であるのが好ましく、0.5〜5の範囲がより好ましい。また、アンモニウム化合物に加えて懸濁液にアルカリ金属化合物を混合してpHを調整するのが好ましく、酸化亜鉛の収率が大きくなる。   The method for producing zinc oxide according to the present invention is characterized in that a zinc oxide suspension is heated to 40 ° C. or higher and aged at a temperature maintained at 7 or higher. Zinc oxide is a compound of zinc and oxygen including zinc oxide, hydrous zinc oxide, and zinc hydroxide. The particle shape of zinc oxide may be flaky, plate-like, hexagonal plate-like, hexagonal columnar, needle-like, rod-like, spherical, substantially spherical, granular or similar, and they are accumulated to form a sphere, polyhedron, or marimo It may be an aggregate such as a shape or a shape of a bite. The particle diameter of the zinc oxide can be set as appropriate, and may have a size of 0.001 to 50 μm, more preferably 0.01 to 30 μm, still more preferably 0.05 to 20 μm. This zinc oxide is suspended in a solvent such as water or alcohol to form a suspension, which is heated to 40 ° C. or higher, more preferably about 60 to 250 ° C., more preferably about 80 to 110 ° C., and ripening. Is good. The pH at that temperature is maintained at 7 or more, more preferably 8-13, and even more preferably 9-12. Crystallization can be enhanced by this aging, and the particle diameter and particle shape of zinc oxide can be adjusted as desired. When the aging temperature is lower than 40 ° C. or the pH is lower than 7, the aging effect is hardly recognized. The aging time is preferably about 10 minutes to 10 hours, more preferably about 1 to 10 hours. In order to maintain the pH at 7 or more, an alkali compound is added, and an alkali metal compound, an ammonium compound, an amine compound, or the like can be used. As the alkali metal compound, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, sodium acetate and the like are preferably used. As the ammonium compound, ammonia gas, aqueous ammonia, ammonium hydroxide, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium hydrogen carbonate, ammonium acetate and the like are preferably used. As the amine compound, monoethanolamine, diethanolamine, triethanolamine or the like can be used. As the alkali compound, an ammonium compound is preferable, and the addition amount of the ammonium compound is preferably an amount in the range of 0.1 to 10, expressed as a molar ratio of the zinc compound to the zinc atom, A range is more preferred. Moreover, it is preferable to adjust pH by mixing an alkali metal compound with a suspension in addition to an ammonium compound, and the yield of zinc oxide becomes large.

亜鉛酸化物の懸濁液を40℃以上に加熱し、その後、アルカリ化合物を添加してその温度でのpHを7以上に維持して熟成しても良く、あるいは、亜鉛酸化物の懸濁液にアルカリ化合物を予め添加し、その後に加熱して40℃以上にしても良く、その温度でのpHを7以上とするためにアルカリ化合物を後から添加しても良い。熟成は、通常の反応槽、耐圧反応槽等を用いることができる。熟成中の撹拌は通常の混合撹拌の手段を用いることができ、例えば撹拌羽根を付けた撹拌機等で行うことができる。その撹拌機の運転条件は適宜設定することができる。例えば、回転数は20〜2000rpm程度で行うことができ、また、下記のレイノルズ係数で表して10以上程度が好ましく、10〜50000程度がより好ましい。
レイノルズ係数=(翼径)×撹拌速度×溶液密度/溶液粘度
混合時間は適宜設定できるが、例えば1秒〜1時間程度が好ましく、1秒〜30分程度がより好ましい。
The zinc oxide suspension may be heated to 40 ° C. or higher, and then an alkali compound may be added to maintain the pH at that temperature to be 7 or higher, or the zinc oxide suspension may be aged. An alkali compound may be added in advance, and then heated to 40 ° C. or higher, and an alkali compound may be added later to make the pH at that temperature 7 or higher. A normal reaction tank, a pressure-resistant reaction tank, or the like can be used for aging. Stirring during ripening can be carried out by using an ordinary mixing and stirring means, for example, with a stirrer equipped with stirring blades. The operating conditions of the stirrer can be set as appropriate. For example, the rotational speed can be about 20 to 2000 rpm, and is preferably about 10 or more, more preferably about 10 to 50000, expressed by the following Reynolds coefficient.
Reynolds coefficient = (blade diameter) 2 × stirring speed × solution density / solution viscosity The mixing time can be appropriately set, but is preferably about 1 second to 1 hour, and more preferably about 1 second to 30 minutes.

本発明の好ましい態様は、亜鉛酸化物と、亜鉛化合物とカルボン酸及び/又はその塩とを混合した懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成する。亜鉛化合物は、亜鉛酸化物に対してモル比で表して0.001〜1程度で良く、0.01〜0.5程度がより好ましく、0.01〜0.2程度が更に好ましい。亜鉛化合物は、水溶性のものであればどのようなものでも用いることができ、例えば硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等を用いることができる。種々の形状の酸化亜鉛粒子、その酸化亜鉛粒子が集積した種々の形状の集積体が得られ易いことから硫酸亜鉛が好ましい。また、金属亜鉛、酸化亜鉛、水酸化亜鉛等、中性の水に溶解しないものでも、酸、アルカリ金属化合物に溶解する化合物であれば、上記の亜鉛化合物と同様に用いることができる。   In a preferred embodiment of the present invention, a suspension obtained by mixing zinc oxide, a zinc compound and a carboxylic acid and / or a salt thereof is heated to 40 ° C. or higher, and the pH is maintained at 7 or higher for aging. To do. The zinc compound may be expressed in a molar ratio with respect to the zinc oxide and may be about 0.001-1, more preferably about 0.01-0.5, and still more preferably about 0.01-0.2. Any zinc compound can be used as long as it is water-soluble. For example, zinc sulfate, zinc nitrate, zinc chloride, zinc acetate, and the like can be used. Zinc sulfate is preferable because zinc oxide particles having various shapes and aggregates having various shapes in which the zinc oxide particles are easily collected can be obtained. Moreover, even if it does not melt | dissolve in neutral water, such as metallic zinc, a zinc oxide, and zinc hydroxide, if it is a compound which melt | dissolves in an acid and an alkali metal compound, it can use similarly to said zinc compound.

前記のカルボン酸はカルボキシル基を有する化合物であり、制限なく用いることができるが、例えば、次のようなものを用いることができ、特にクエン酸及び/又はその塩を用いると種々の形状制御ができやすいため好ましい。
(1)ポリカルボン酸、特にジカルボン酸、トリカルボン酸、例えば、シュウ酸、フマル酸。
(2)ヒドロキシポリカルボン酸、特にヒドロキシジ−又はヒドロキシトリ−カルボン酸、例えばリンゴ酸、クエン酸又はタルトロン酸。
(3)(ポリヒドロキシ)モノカルボン酸、例えばグルコヘプトン酸又はグルコン酸。
(4)ポリ(ヒドロキシカルボン酸)、例えば酒石酸。
(5)ジカルボキシルアミノ酸及びその対応するアミド、例えばアスパラギン酸、アスパラギン又はグルタミン酸。
(6)ヒドロキシル化され又はヒドロキシル化されていないモノカルボキシルアミノ酸、例えばリジン、セリン又はトレオニン。
カルボン酸塩としては、どのような塩でも制限なく用いることができるが、例えばナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩等を用いることができる。カルボン酸及び/又はその塩の量は、その亜鉛化合物の亜鉛原子に対するカルボキシル基(−COOH)及びその塩(−COOM、ここで、Mはアルカリ金属、アンモニウム等を示す。)の合量のモル比で表すが、これはカルボキシル基(−COOH)とその塩(−COOM)の合量が酸化亜鉛の粒子形状等に影響を及ぼすためである。例えばクエン酸は1分子中に3個のカルボシキル基を有するため、3個分の影響力がある。カルボン酸及び/又はその塩の添加量は、亜鉛化合物の亜鉛原子に対するモル比で表して0.001〜0.1が好ましく、0.005〜0.05の範囲の量がより好ましく、0.007〜0.03の範囲が更に好ましい。カルボキシル基のモル比を0.001より少なくするとその添加効果が得られにくいため好ましくない。
The carboxylic acid is a compound having a carboxyl group and can be used without limitation. For example, the following can be used, and in particular, citric acid and / or a salt thereof can be used for various shape control. It is preferable because it is easy to do.
(1) Polycarboxylic acids, particularly dicarboxylic acids and tricarboxylic acids such as oxalic acid and fumaric acid.
(2) Hydroxypolycarboxylic acids, especially hydroxydi- or hydroxytri-carboxylic acids such as malic acid, citric acid or tartronic acid.
(3) (Polyhydroxy) monocarboxylic acid, such as glucoheptonic acid or gluconic acid.
(4) Poly (hydroxycarboxylic acid) such as tartaric acid.
(5) Dicarboxyl amino acids and their corresponding amides, such as aspartic acid, asparagine or glutamic acid.
(6) A hydroxylated or non-hydroxylated monocarboxyl amino acid such as lysine, serine or threonine.
As the carboxylate, any salt can be used without limitation. For example, alkali metal salts such as sodium and potassium, ammonium salts and the like can be used. The amount of the carboxylic acid and / or salt thereof is the total molar amount of the carboxyl group (—COOH) and the salt thereof (—COOM, where M represents an alkali metal, ammonium, etc.) relative to the zinc atom of the zinc compound. This is because the total amount of the carboxyl group (—COOH) and its salt (—COOM) affects the particle shape of zinc oxide and the like. For example, citric acid has three carboxylic groups in one molecule, and therefore has an influence of three. The addition amount of the carboxylic acid and / or salt thereof is preferably 0.001 to 0.1, more preferably 0.005 to 0.05 in terms of the molar ratio of the zinc compound to the zinc atom. A range of 007 to 0.03 is more preferable. If the molar ratio of the carboxyl groups is less than 0.001, the effect of addition is difficult to obtain, which is not preferable.

亜鉛酸化物と亜鉛化合物とカルボン酸及び/又はその塩とを混合した懸濁液を40℃以上に加熱し、その後、アルカリ化合物を添加してその温度でのpHを7以上に維持して熟成しても良く、あるいは、前記の懸濁液にアルカリ化合物を予め添加し、その後に加熱して40℃以上に調整しても良く、その温度でのpHを7以上とするためにアルカリ化合物を後から添加しても良い。亜鉛酸化物と亜鉛化合物とカルボン酸及び/又はその塩とアルカリ化合物とを混合するには、亜鉛酸化物、亜鉛化合物とカルボン酸及び/又はその塩との混合懸濁液に撹拌下アルカリ化合物又はその水溶液を添加し混合しても良く、また、アルカリ化合物又はその水溶液に撹拌下亜鉛酸化物、亜鉛化合物とカルボン酸及び/又はその塩とのそれぞれの溶液あるいは混合懸濁液を添加し混合しても良いが、亜鉛酸化物と亜鉛化合物とカルボン酸及び/又はその塩との懸濁液とアルカリ化合物又はその水溶液とをいずれも40℃以下に保持して混合するのが好ましい。前記の温度が40℃よりも高いと、アルカリ化合物との混合により部分的に酸化亜鉛が析出し不均一な状態となり易いため好ましくなく、好ましい温度は10〜40℃、より好ましい温度は10〜30℃である。pHを7以上に維持するために添加するアルカリ化合物は、前記のものを用いることができ、アンモニアガス、アンモニア水、水酸化アンモニウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、酢酸アンモニウム等のアンモニウム化合物が好ましく用いられる。アンモニウム化合物の添加量は、亜鉛化合物の亜鉛原子に対するモル比で表して、0.1〜10の範囲の量であるのが好ましく、0.5〜5の範囲がより好ましい。また、アンモニウム化合物に加えて懸濁液にアルカリ金属化合物を混合してpHを調整するのが好ましく、酸化亜鉛の収率が大きくなる。   A suspension in which zinc oxide, zinc compound and carboxylic acid and / or salt thereof are mixed is heated to 40 ° C. or higher, and then an alkali compound is added to maintain the pH at that temperature to 7 or higher and mature. Alternatively, an alkali compound may be added in advance to the suspension and then heated to be adjusted to 40 ° C. or higher, and an alkali compound may be added to adjust the pH to 7 or higher at that temperature. It may be added later. In order to mix the zinc oxide, the zinc compound, the carboxylic acid and / or a salt thereof and the alkali compound, the mixed suspension of the zinc oxide, the zinc compound and the carboxylic acid and / or the salt thereof is stirred with the alkali compound or The aqueous solution may be added and mixed. In addition, a solution or mixed suspension of zinc oxide, zinc compound and carboxylic acid and / or salt thereof is added to and mixed with the alkali compound or the aqueous solution with stirring. However, it is preferable that the suspension of zinc oxide, zinc compound, carboxylic acid and / or salt thereof, and the alkali compound or aqueous solution thereof are all kept at 40 ° C. or lower and mixed. When the temperature is higher than 40 ° C., it is not preferable because zinc oxide is likely to partially precipitate due to mixing with the alkali compound to be in a non-uniform state, and is preferably 10 to 40 ° C., more preferably 10 to 30 ° C. ° C. The alkali compounds added to maintain the pH at 7 or higher can be the same as those described above. Ammonia gas, aqueous ammonia, ammonium hydroxide, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium hydrogen carbonate, ammonium acetate And the like are preferably used. The addition amount of the ammonium compound is preferably an amount in the range of 0.1 to 10, more preferably in the range of 0.5 to 5, expressed as a molar ratio of the zinc compound to the zinc atom. Moreover, it is preferable to adjust pH by mixing an alkali metal compound with a suspension in addition to an ammonium compound, and the yield of zinc oxide becomes large.

亜鉛酸化物の懸濁液には更に、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、塩化カリウム、硫酸カリウム、硝酸カリウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等の塩類を混合しても良く、アルカリ化合物と混合する前の亜鉛酸化物懸濁液に塩類を添加するのが好ましい。塩類の添加量は、亜鉛酸化物の亜鉛原子に対するモル比で表して、0.0001以上の範囲が好ましく、0.001〜10程度がより好ましい。   The zinc oxide suspension may be further mixed with salts such as sodium chloride, sodium sulfate, sodium nitrate, potassium chloride, potassium sulfate, potassium nitrate, ammonium chloride, ammonium sulfate, ammonium nitrate, and before mixing with an alkali compound. It is preferable to add salts to the zinc oxide suspension. The amount of the salt added is expressed as a molar ratio of zinc oxide to zinc atoms, and is preferably in the range of 0.0001 or more, and more preferably about 0.001 to 10.

このようにして得られた酸化亜鉛は、必要に応じて濾過・洗浄して固液分離し、乾燥、乾式粉砕を行うと、酸化亜鉛粉末が得られる。固液分離には、フィルタープレス、ロールプレス等の通常工業的に用いられる濾過器を用いることができる。乾燥にはバンド式ヒーター、バッチ式ヒーター、噴霧乾燥機等が、乾式粉砕にはハンマーミル、ピンミル等の衝撃粉砕機、ローラーミル、パルペライザー、解砕機等の摩砕粉砕機、ロールクラッシャー、ジョークラッシャー等の圧縮粉砕機、ジェットミル等の気流粉砕機等を用いることができる。乾燥温度は適宜設定することができるが、80〜200℃程度が適当である。また、必要に応じて前記の酸化亜鉛粉末を200〜800℃程度の温度で焼成しても良く、結晶性を更に高めることができるため好ましい。焼成は通常、空気、酸素、窒素等の雰囲気下で行うことができ、焼成時間は10分〜10時間程度が適当である。   The zinc oxide obtained in this manner is filtered and washed as necessary to separate into solid and liquid, and dried and dry pulverized to obtain zinc oxide powder. For solid-liquid separation, a filter that is usually used industrially, such as a filter press or a roll press, can be used. Band-type heaters, batch-type heaters, spray dryers, etc. are used for drying, impact-type crushers such as hammer mills and pin mills are used for dry-type crushing, grinding crushers such as roller mills, pulverizers, crushers, roll crushers, and jaw crushers. For example, a compression pulverizer such as a jet mill or an airflow pulverizer such as a jet mill can be used. Although a drying temperature can be set suitably, about 80-200 degreeC is suitable. Moreover, the said zinc oxide powder may be baked at the temperature of about 200-800 degreeC as needed, and since crystallinity can be improved further, it is preferable. Firing can usually be performed in an atmosphere of air, oxygen, nitrogen, etc., and the firing time is suitably about 10 minutes to 10 hours.

前記の方法で製造すると、その条件によって種々の粒子形状、大きさを有する酸化亜鉛が製造できる。本発明の酸化亜鉛は、六方晶、立方晶、立方晶面心構造いずれかのX線回折パターンを示すZnOを少なくとも50重量%含むものであり、水酸化亜鉛や製造の際に使用する硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等の亜鉛化合物が含まれていても良い。また、製造の際に使用する亜鉛化合物を構成していた硫酸根、硝酸根、塩素、酢酸等が含まれていても良く、また、カルボン酸、その塩、アンモニウム化合物、アルカリ金属化合物等の材料が含まれていても良い。更に、酸化亜鉛の粒子表面にはシリカ、アルミナ等の無機化合物やシロキサン等の有機化合物の表面処理剤を被覆していても良い。   When manufactured by the above method, zinc oxide having various particle shapes and sizes can be manufactured depending on the conditions. The zinc oxide of the present invention contains at least 50% by weight of ZnO exhibiting an X-ray diffraction pattern of any one of hexagonal, cubic and cubic face-centered structures. Zinc hydroxide and zinc sulfate used in production Zinc compounds such as zinc nitrate, zinc chloride, and zinc acetate may be contained. It may also contain sulfate radicals, nitrate radicals, chlorine, acetic acid, etc. that constitute the zinc compounds used in the production, and materials such as carboxylic acids, their salts, ammonium compounds, alkali metal compounds, etc. May be included. Furthermore, the surface of the zinc oxide particles may be coated with a surface treatment agent of an inorganic compound such as silica or alumina or an organic compound such as siloxane.

酸化亜鉛の粒子形状は薄片状、板状、六角板状、六角柱状、針状、棒状、球状、略球状、粒状又はそれに類似した形状でも良く、それらが集積して、球体、多面体、まりも状体、いがぐり状体等又はそれに類似した形状の集合体でも良い。亜鉛酸化物の粒子径は適宜設定することができ、0.001〜50μmの大きさを有していても良く、0.01〜30μmがより好ましく、0.05〜20μmが更に好ましい。酸化亜鉛の粒子形状は電子顕微鏡で観察することができる。酸化亜鉛の平均わたり径、厚み、平均短軸径、平均長軸径は、少なくとも20個の粒子のわたり径(面の最も長い幅をいう)、厚み(面に垂直な高さをいう)、長軸径(最も長い軸の長さをいう)、短軸径(最も長い軸の中点に垂直な軸の最も短い長さをいう)を電子顕微鏡写真から計測して、平均わたり径、平均厚みは個数平均径を基準とし、また、それらの粒子を角柱相当体と仮定し、下記式によって算出した重量平均長軸径、重量平均短軸径を基準とする。
重量平均長軸径=Σ(Ln・Ln・Dn)/Σ(Ln・Dn
重量平均短軸径=Σ(Dn・Ln・Dn)/Σ(Ln・Dn
上記式中、nは計測した個々の粒子の番号を表し、Lnは第n番目の粒子の長軸径、Dnは第n番目の粒子の短軸径をそれぞれ表す。)
The particle shape of zinc oxide may be flaky, plate-like, hexagonal plate-like, hexagonal columnar, needle-like, rod-like, spherical, substantially spherical, granular or similar, and they are accumulated to form a sphere, polyhedron, or candy It may be a body, a corrugated body, or an assembly having a similar shape. The particle diameter of the zinc oxide can be set as appropriate, and may have a size of 0.001 to 50 μm, more preferably 0.01 to 30 μm, still more preferably 0.05 to 20 μm. The particle shape of zinc oxide can be observed with an electron microscope. The average cross diameter, thickness, average short axis diameter, and average long axis diameter of zinc oxide are the cross diameter of at least 20 particles (referring to the longest width of the surface), thickness (referring to the height perpendicular to the surface), The major axis diameter (referred to the length of the longest axis) and the minor axis diameter (referred to as the shortest length of the axis perpendicular to the midpoint of the longest axis) are measured from the electron micrograph, and the average span diameter and average The thickness is based on the number average diameter, the particles are assumed to be prismatic equivalents, and the weight average major axis diameter and weight average minor axis diameter calculated by the following formulas are used as references.
Weight average major axis diameter = Σ (Ln · Ln · Dn 2 ) / Σ (Ln · Dn 2 )
Weight average minor axis diameter = Σ (Dn · Ln · Dn 2 ) / Σ (Ln · Dn 2 )
In the above formula, n represents the number of each measured particle, Ln represents the major axis diameter of the nth particle, and Dn represents the minor axis diameter of the nth particle. )

特定の形状を有する酸化亜鉛の特徴を下記する。
(1)薄片状又はそれらに類似した形状を有する酸化亜鉛
この酸化亜鉛は、薄片状あるいは板状の面を有し、その面に垂直方向に伸びた厚みを有する。平均わたり径は、0.1〜20.0μmの範囲がより好ましく、0.5〜10.0μmの範囲がより好ましく、1〜8.0μmの範囲が更に好ましい。平均厚みは0.01〜2.0μmが好ましく、より好ましくは0.05〜1.0μmである。
The characteristics of zinc oxide having a specific shape are described below.
(1) Zinc oxide having a flaky shape or a shape similar to the flaky shape This zinc oxide has a flaky or plate-like surface and has a thickness extending in a direction perpendicular to the surface. The average cross diameter is more preferably in the range of 0.1 to 20.0 μm, more preferably in the range of 0.5 to 10.0 μm, and still more preferably in the range of 1 to 8.0 μm. The average thickness is preferably 0.01 to 2.0 μm, more preferably 0.05 to 1.0 μm.

(2)六角板状又はそれらに類似した形状を有する酸化亜鉛
この酸化亜鉛は、六角形の面を有し、その面に垂直方向に伸びた厚みを有する。平均わたり径は、0.1〜20.0μmの範囲がより好ましく、0.5〜10.0μmの範囲がより好ましく、1.0〜8.0μmの範囲が更に好ましい。平均厚みは0.01〜2.0μmが好ましく、より好ましくは0.05〜1.0μmである。
(2) Zinc oxide having a hexagonal plate shape or a similar shape to the hexagonal plate This zinc oxide has a hexagonal surface and a thickness extending in a direction perpendicular to the surface. The average cross diameter is more preferably in the range of 0.1 to 20.0 μm, more preferably in the range of 0.5 to 10.0 μm, and still more preferably in the range of 1.0 to 8.0 μm. The average thickness is preferably 0.01 to 2.0 μm, more preferably 0.05 to 1.0 μm.

(3)六角柱状又はそれらに類似した形状を有する酸化亜鉛
この酸化亜鉛は、六角形の面を有し、その面に垂直方向に伸びた六角柱の形状を有する。その柱の平均短軸径は0.1〜10.0μmが好ましく、より好ましくは0.5〜5.0μmである。また、柱の平均長軸径は0.2〜20.0μmが好ましく、より好ましくは0.5〜10.0μmである。また、電子顕微鏡写真を詳細に観察すると、六角柱状の中央部にくびれがあり、その部分の短軸径は両端部に比べ小さい酸化亜鉛粒子がある。このような六角柱の柱の両端部と中央部の短軸径が、両端部に比し中央部の短軸径が小さい形状を本発明では鼓に類似した形状(鼓形状)という。(中央部の短軸径)/(両端部の短軸径)は、0.5〜0.99程度が好ましく、0.7〜0.99程度がより好ましい。このような鼓形状は、中央部のくびれ部分に存在する六角板状核晶を対称面とした成長双晶が起こったような形状を有する。
(3) Zinc oxide having a hexagonal column shape or a similar shape to the hexagonal column This zinc oxide has a hexagonal surface and a hexagonal column shape extending in a direction perpendicular to the surface. The average minor axis diameter of the column is preferably 0.1 to 10.0 μm, more preferably 0.5 to 5.0 μm. In addition, the average major axis diameter of the column is preferably 0.2 to 20.0 μm, more preferably 0.5 to 10.0 μm. Moreover, when an electron micrograph is observed in detail, there is a constriction at the center of the hexagonal column, and there are zinc oxide particles whose minor axis diameter is smaller than at both ends. A shape in which the minor axis diameters of the both end portions and the central portion of the hexagonal column are smaller than the both end portions is referred to as a shape similar to a drum (drum shape) in the present invention. The (short axis diameter at the center) / (short axis diameter at both ends) is preferably about 0.5 to 0.99, and more preferably about 0.7 to 0.99. Such a drum shape has a shape in which a growth twin crystal having a hexagonal plate nuclei existing in the constricted portion at the center as a symmetry plane occurs.

(4)針状、棒状又はそれに類似した形状を有する酸化亜鉛
この酸化亜鉛は、針状、棒状の形状を有する。その柱の平均短軸径は0.1〜10.0μmが好ましく、より好ましくは0.5〜5.0μmである。また、柱の平均長軸径は0.2〜20.0μmが好ましく、より好ましくは0.5〜10.0μmである。
(4) Zinc oxide having a needle shape, a rod shape, or a similar shape thereof. This zinc oxide has a needle shape or a rod shape. The average minor axis diameter of the column is preferably 0.1 to 10.0 μm, more preferably 0.5 to 5.0 μm. In addition, the average major axis diameter of the column is preferably 0.2 to 20.0 μm, more preferably 0.5 to 10.0 μm.

(5)針状、棒状又はそれに類似した形状を有し、端面に開口を有する酸化亜鉛
この酸化亜鉛は、針状、棒状の形状を有し、端面に開口を有する。端面に開口を有することからマカロニ状、あるいはそれに類似した形状というが、開口が貫通したチューブ状になっていても良く、開口が貫通していない状態でも良い。その柱の平均短軸径は0.1〜10.0μmが好ましく、より好ましくは0.5〜5.0μmである。また、柱の平均長軸径は0.2〜20.0μmが好ましく、より好ましくは0.5〜10.0μmである。
(5) Zinc oxide having a needle shape, a rod shape, or a similar shape, and having an opening at the end face This zinc oxide has a needle shape, a rod shape, and has an opening at the end face. Since it has an opening at the end face, it is a macaroni shape or a similar shape, but it may be in a tube shape with the opening penetrating, or it may be in a state in which the opening is not penetrating. The average minor axis diameter of the column is preferably 0.1 to 10.0 μm, more preferably 0.5 to 5.0 μm. In addition, the average major axis diameter of the column is preferably 0.2 to 20.0 μm, more preferably 0.5 to 10.0 μm.

(6)酸化亜鉛粒子が集積して、球体、多面体、まりも状体、いがぐり状体等又はそれに類似した形状の集合体
酸化亜鉛粒子が集積した集合体であり、集合体の粒子径は適宜設定することができ、0.01〜50μmの大きさを有していても良く、0.02〜30μmがより好ましく、0.05〜20μmが更に好ましい。
(6) Aggregates of zinc oxide particles accumulated into a sphere, polyhedron, marimo, garlic, etc., or similar shapes Aggregates of zinc oxide particles, and the particle diameter of the aggregate is set appropriately And may have a size of 0.01 to 50 μm, more preferably 0.02 to 30 μm, still more preferably 0.05 to 20 μm.

本発明の酸化亜鉛は、その粒子表面に必要に応じてケイ素、チタン、アルミニウム、ジルコニウム、スズ等の酸化物あるいはそれらのリン酸塩等の無機化合物の被覆層を設けることもできる。また、溶媒、塗料やプラスチックス等への分散性を付与するなどの目的で、有機化合物を被覆しても良く、前記の無機化合物と有機化合物の両者を被覆しても良い。有機化合物としては、例えば、(1)有機ケイ素化合物((a)オルガノポリシロキサン類(ジメチルポリシロキサン、メチル水素ポリシロキサン、メチルメトキシポリシロキサン、メチルフェニルポリシロキサン、ジメチルポリシロキサンジオール、ジメチルポリシロキサンジハイドロジェン等又はそれらの共重合体)、(b)オルガノシラン類(アミノシラン、エポキシシラン、メタクリルシラン、ビニルシラン、メルカプトシラン、クロロアルキルシラン、アルキルシラン、フルオロアルキルシラン等又はそれらの加水分解生成物)、(c)オルガノシラザン類(ヘキサメチルシラザン、ヘキサメチルシクロトリシラザン等)、(2)有機金属化合物((a)有機チタニウム化合物(アミノアルコキシチタニウム、リン酸エステルチタニウム、カルボン酸エステルチタニウム、スルホン酸エステルチタニウム、チタニウムキレート、亜リン酸エステルチタニウム錯体等)、(b)有機アルミニウム化合物(アルミニウムキレート等)、(c)有機ジルコニウム化合物(カルボン酸エステルジルコニウム、ジルコニウムキレート等)等)、(3)ポリオール類(トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール等)、(4)アルカノールアミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミン等)又はその誘導体(酢酸塩、シュウ酸塩、酒石酸塩、ギ酸塩、安息香酸塩等の有機酸塩等)、(5)高級脂肪酸類(ステアリン酸、ラウリン酸、オレイン酸等)又はその金属塩(アルミニウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、バリウム塩等)、(6)高級炭化水素類(パラフィンワックス、ポリエチレンワックス等)又はその誘導体(パーフルオロ化物等)が挙げられる。これらの有機化合物は1種を用いても、2種以上を積層又は混合して用いても良い。化粧料に用いる場合は、オルガノポリシロキサン類、高級脂肪酸類を用いるのが好ましい。無機化合物、有機化合物の被覆量は、酸化亜鉛に対し、0.1〜50重量%の範囲が好ましく、0.1〜30重量%の範囲が更に好ましい。酸化亜鉛の粒子表面に前記の無機化合物や有機化合物を被覆させるには、酸化亜鉛の水性スラリー中で、無機化合物あるいは有機化合物を添加し中和するなどして被覆することができる。また、有機化合物を被覆するには別の方法として、前述の乾式粉砕の際に有機化合物を添加し混合することもできる。   The zinc oxide of the present invention can be provided with a coating layer of an oxide such as silicon, titanium, aluminum, zirconium and tin or an inorganic compound such as a phosphate thereof on the particle surface as necessary. Further, for the purpose of imparting dispersibility to solvents, paints, plastics, and the like, an organic compound may be coated, or both the inorganic compound and the organic compound may be coated. Examples of organic compounds include (1) organosilicon compounds ((a) organopolysiloxanes (dimethylpolysiloxane, methylhydrogen polysiloxane, methylmethoxypolysiloxane, methylphenylpolysiloxane, dimethylpolysiloxanediol, dimethylpolysiloxanedi). Hydrogen or the like or copolymers thereof), (b) organosilanes (aminosilane, epoxysilane, methacrylsilane, vinylsilane, mercaptosilane, chloroalkylsilane, alkylsilane, fluoroalkylsilane, etc. or their hydrolysis products) (C) organosilazanes (hexamethylsilazane, hexamethylcyclotrisilazane, etc.), (2) organometallic compounds ((a) organotitanium compounds (aminoalkoxytitanium, phosphoric acid ester titanium) , Carboxylic acid ester titanium, sulfonic acid ester titanium, titanium chelate, phosphite titanium complex, etc.), (b) organoaluminum compound (aluminum chelate, etc.), (c) organozirconium compound (carboxylate ester zirconium, zirconium chelate) Etc.), (3) polyols (trimethylolpropane, trimethylolethane, pentaerythritol, etc.), (4) alkanolamines (monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, triol) Propanolamine etc.) or derivatives thereof (acetate, oxalate, tartrate, formate, benzoate, etc. organic acid salts), (5) higher fatty acids (stearic acid, lauric acid, oleic acid) ) Or a metal salt thereof (aluminum salt, zinc salt, magnesium salt, calcium salt, barium salt, etc.), (6) higher hydrocarbons (paraffin wax, polyethylene wax, etc.) or derivatives thereof (perfluorinated products, etc.). These organic compounds may be used singly or in combination of two or more, and when used in cosmetics, it is preferable to use organopolysiloxanes and higher fatty acids. The coating amount of the organic compound is preferably in the range of 0.1 to 50% by weight, more preferably in the range of 0.1 to 30% by weight with respect to zinc oxide. In order to coat the compound, it can be coated in an aqueous slurry of zinc oxide by adding an inorganic compound or an organic compound and neutralizing the organic compound. As another method for coating the compound, an organic compound can be added and mixed in the dry pulverization described above.

本発明の酸化亜鉛は、紫外線遮蔽能があるため紫外線遮蔽材に用いられる。また、酸化亜鉛は、紫外線遮蔽材、白色顔料、充填材等として、日焼け止め化粧料、基礎化粧料等の化粧料に適量配合して用いられる。例えば、前記の酸化亜鉛以外に、通常化粧料の用いられる公知の成分、例えば、(1)溶媒(水、低級アルコール類等)、(2)油剤(高級脂肪酸類、高級アルコール類、オルガノポリシロキサン類(シリコーンオイル)、炭化水素類、油脂類等)、(3)界面活性剤(アニオン性、カチオン性、両性、非イオン性等)、(4)保湿剤(グリセリン類、グリコール等のポリオール系、ピロリドンカルボン酸類等の非ポリオール系等)(5)有機紫外線吸収剤(ベンゾフェノン誘導体、パラアミノ安息香酸誘導体、サリチル酸誘導体等)、(6)酸化防止剤(フェノール系、有機酸又はその塩、酸アミド系、リン酸系等)、(7)増粘剤、(8)香料、(9)着色剤(顔料、色素、染料等)、(10)生理活性成分(ビタミン類、ホルモン類、アミノ酸類等)、(11)抗菌剤等が配合されていても良い。化粧料の様態は、固形状、液状、ジェル状等特に制限なく、液状やジェル状の場合、その分散形態も油中水型エマルジョン、水中油型エマルジョン、油型等のいずれでも良い。化粧料中の酸化亜鉛の配合量は、0.1〜50重量%の範囲が好ましい。   Since the zinc oxide of the present invention has an ultraviolet shielding ability, it is used as an ultraviolet shielding material. In addition, zinc oxide is used as an ultraviolet shielding material, a white pigment, a filler, and the like in an appropriate amount in cosmetics such as sunscreen cosmetics and basic cosmetics. For example, in addition to the above-mentioned zinc oxide, known components commonly used in cosmetics, for example, (1) solvents (water, lower alcohols, etc.), (2) oil agents (higher fatty acids, higher alcohols, organopolysiloxanes) (Silicone oil), hydrocarbons, fats and oils), (3) surfactants (anionic, cationic, amphoteric, nonionic, etc.), (4) moisturizers (glycerins, polyols such as glycols) (5) Organic UV absorbers (benzophenone derivatives, paraaminobenzoic acid derivatives, salicylic acid derivatives, etc.), (6) antioxidants (phenolic, organic acids or salts thereof, acid amides) System, phosphate system, etc.), (7) thickener, (8) fragrance, (9) colorant (pigment, pigment, dye, etc.), (10) physiologically active ingredients (vitamins, hormones, Mino acids), (11) an antibacterial agent or the like may be blended. The form of the cosmetic is not particularly limited, such as solid, liquid, or gel. In the case of liquid or gel, the dispersion may be any of a water-in-oil emulsion, an oil-in-water emulsion, and an oil type. The blending amount of zinc oxide in the cosmetic is preferably in the range of 0.1 to 50% by weight.

本発明の放熱性組成物は、上記の酸化亜鉛を熱伝導性フィラーとして含有したものであり、樹脂組成物、グリース組成物、塗料組成物などが挙げられる。また、それらを用いて形成するシート、ゲル、エラストマー、プラスチックなどであっても良い。本発明の放熱性組成物中の上記酸化亜鉛の配合量は、目的とする熱伝導性や樹脂組成物の硬度等、樹脂組成物の性能に合わせて任意に決定することができる。上記酸化亜鉛の熱伝導性を十分に発現させるためには、樹脂組成物中の固形分全量に対して1体積%以上が好ましく、5体積%以上がより好ましく、10体積%以上が更に好ましく、30体積%以上が最も好ましい。このようにして、熱伝導率が好ましくは0.5W/m・K以上とすることができ、より好ましくは1.0W/m・K以上、更に好ましくは2.0W/m・K以上とすることができる。本発明の放熱性組成物は、電子機器などに取り付けて効率よく放熱する材料として用いることができる。なお、本発明の放熱性組成物には、酸化亜鉛以外に、その他の成分を併用して使用することもでき、例えば、酸化マグネシウム、酸化チタン、酸化アルミニウム等の金属酸化物、窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素、窒化チタン、金属ケイ素、ダイヤモンド等の酸化亜鉛以外の放熱性フィラー、樹脂、界面活性剤等を挙げることができる。   The heat dissipating composition of the present invention contains the above zinc oxide as a heat conductive filler, and examples thereof include a resin composition, a grease composition, and a coating composition. Moreover, the sheet | seat, gel, elastomer, plastics, etc. which are formed using them may be sufficient. The compounding quantity of the said zinc oxide in the heat dissipation composition of this invention can be arbitrarily determined according to the performance of resin composition, such as the target heat conductivity and the hardness of a resin composition. In order to sufficiently exhibit the thermal conductivity of the zinc oxide, it is preferably 1% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more based on the total solid content in the resin composition. 30% by volume or more is most preferable. In this way, the thermal conductivity can be preferably 0.5 W / m · K or more, more preferably 1.0 W / m · K or more, and still more preferably 2.0 W / m · K or more. be able to. The heat dissipating composition of the present invention can be used as a material that efficiently attaches heat to an electronic device. The heat-radiating composition of the present invention can be used in combination with other components in addition to zinc oxide. For example, metal oxides such as magnesium oxide, titanium oxide, and aluminum oxide, aluminum nitride, and nitride Examples thereof include heat dissipating fillers other than zinc oxide such as boron, silicon carbide, silicon nitride, titanium nitride, metal silicon, and diamond, resins, and surfactants.

放熱性樹脂組成物は、上記の酸化亜鉛を樹脂と混合して使用することができる。使用する樹脂は、熱可塑性樹脂であっても熱硬化性樹脂であっても良く、エポキシ樹脂、フェノール樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエステル系樹脂、ポリアミド、ポリイミド、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、ポリメタクリル酸メチル、エチレン・アクリル酸エチル共重合体(EEA)樹脂、ポリカーボネート、ポリウレタン、ポリアセタール、ポリフェニレンエーテル、ポリエーテルイミド、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)樹脂、エポキシ、フェノール、液晶樹脂(LCP)、シリコン樹脂、アクリル樹脂等の樹脂を挙げることができる。放熱性グリース組成物とする場合、鉱油又は合成油を含有する基油と混合する。合成油としてα−オレフィン、ジエステル、ポリオールエステル、トリメリット酸エステル、ポリフェニルエーテル、アルキルフェニルエーテル、シリコーンオイル等が使用できる。また、放熱性塗料組成物とする場合、樹脂は硬化性を有するものであっても、硬化性を有さないものであっても良い。塗料は、有機溶媒を含有する溶剤系のものであっても、水中に樹脂が溶解又は分散した水系のものであっても良い。   The heat-dissipating resin composition can be used by mixing the above zinc oxide with a resin. The resin to be used may be a thermoplastic resin or a thermosetting resin, and an epoxy resin, a phenol resin, a polyphenylene sulfide (PPS) resin, a polyester resin, polyamide, polyimide, polystyrene, polyethylene, polypropylene, poly Vinyl chloride, polyvinylidene chloride, fluororesin, polymethyl methacrylate, ethylene / ethyl acrylate copolymer (EEA) resin, polycarbonate, polyurethane, polyacetal, polyphenylene ether, polyether imide, acrylonitrile-butadiene-styrene copolymer ( (ABS) resin, epoxy, phenol, liquid crystal resin (LCP), silicon resin, acrylic resin, and the like. In the case of a heat dissipating grease composition, it is mixed with a base oil containing mineral oil or synthetic oil. As the synthetic oil, α-olefin, diester, polyol ester, trimellitic acid ester, polyphenyl ether, alkylphenyl ether, silicone oil and the like can be used. Moreover, when setting it as a heat-radiating coating composition, resin may have sclerosis | hardenability or may not have curability. The paint may be a solvent-based one containing an organic solvent or a water-based one in which a resin is dissolved or dispersed in water.

本発明の放熱性組成物は、(1)熱可塑性樹脂と上記酸化亜鉛とを溶融状態で混練して熱成型用の樹脂組成物とする、(2)熱硬化性樹脂と上記酸化亜鉛とを混練後、加熱硬化させて樹脂組成物とする、(3)樹脂溶液又は分散液中に上記酸化亜鉛を分散させて塗料組成物、グリース組成物とすることができる。   The heat dissipating composition of the present invention comprises (1) a thermoplastic resin and the zinc oxide kneaded in a molten state to obtain a resin composition for thermoforming. (2) a thermosetting resin and the zinc oxide. After kneading, it is heated and cured to obtain a resin composition. (3) The zinc oxide can be dispersed in a resin solution or dispersion to obtain a coating composition or a grease composition.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
亜鉛酸化物(六角板状)の10%水性スラリーにモノエタノールアミン0.70モルを添加し、100℃に昇温し、pH10で1時間熟成を行い、本発明の酸化亜鉛(試料A)を得た。
Example 1
To a 10% aqueous slurry of zinc oxide (hexagonal plate), 0.70 mol of monoethanolamine was added, the temperature was raised to 100 ° C., and the mixture was aged at pH 10 for 1 hour, and the zinc oxide of the present invention (sample A) was Obtained.

実施例2
亜鉛酸化物(六角板状)の10%水性スラリーに、硫酸亜鉛0.30モル、クエン酸三ナトリウム0.003モル、モノエタノールアミン0.70モルをそれぞれ添加し、100℃に昇温し、pH10で1時間熟成を行い、本発明の酸化亜鉛(試料B)を得た。
Example 2
To a 10% aqueous slurry of zinc oxide (hexagonal plate), 0.30 mol of zinc sulfate, 0.003 mol of trisodium citrate and 0.70 mol of monoethanolamine were added, and the temperature was raised to 100 ° C. Aging was carried out for 1 hour at pH 10 to obtain the zinc oxide (sample B) of the present invention.

実施例3
亜鉛酸化物(六角板状)の10%水性スラリーに、硫酸亜鉛0.30モル、クエン酸三ナトリウム0.010モル、モノエタノールアミン0.70モルをそれぞれ添加し、100℃に昇温し、pH10で2時間熟成を行い、本発明の酸化亜鉛(試料C)を得た。
Example 3
To a 10% aqueous slurry of zinc oxide (hexagonal plate shape), 0.30 mol of zinc sulfate, 0.010 mol of trisodium citrate, and 0.70 mol of monoethanolamine were added, and the temperature was raised to 100 ° C. Aging was carried out at pH 10 for 2 hours to obtain the zinc oxide of the present invention (sample C).

実施例4
亜鉛酸化物(六角板状)の10%水性スラリーに、硫酸亜鉛0.30モル、クエン酸三ナトリウム0.010モル、水酸化アンモニウム0.70モルをそれぞれ添加し、100℃に昇温し、水酸化アンモニウムを添加しながらpH10で2時間熟成を行い、本発明の酸化亜鉛(試料D)を得た。
Example 4
To a 10% aqueous slurry of zinc oxide (hexagonal plate), 0.30 mol of zinc sulfate, 0.010 mol of trisodium citrate and 0.70 mol of ammonium hydroxide were added, and the temperature was raised to 100 ° C. The mixture was aged at pH 10 for 2 hours while adding ammonium hydroxide to obtain the zinc oxide of the present invention (sample D).

実施例で得た試料はいずれも原料の亜鉛酸化物に比べて結晶性が良好になり、粒子径も大きくなった。試料B、Cの電子顕微鏡写真を図1、2に示す。また、実施例の試料を直接肌にのせてこすった際の感触を評価したところ、のびは良好であり、化粧料に配合すると分散性が良く肌へのすべり感が良くなることがわかった。   The samples obtained in the examples all had better crystallinity and larger particle diameter than the raw material zinc oxide. The electron micrographs of Samples B and C are shown in FIGS. Moreover, when the feel when the sample of Example was directly rubbed on the skin was evaluated, it was found that the spread was good, and when blended in cosmetics, the dispersibility was good and the feeling of slipping on the skin was improved.

本発明は、亜鉛酸化物を特定条件下で熟成する方法であって、酸化亜鉛の粒子径、粒子形状を所望に調整することができる。また、このようにして製造した酸化亜鉛は、形状や大きさが整い、結晶性や分散性が良く、嵩密度が低く充填性が良いことから、熱伝導性フィラー、充填剤、白色顔料、セラミックス原料等に用いることができ、化粧料、外用剤、塗料、樹脂組成物、放熱性組成物等に配合することができる。   The present invention is a method for aging zinc oxide under specific conditions, and the particle diameter and particle shape of zinc oxide can be adjusted as desired. In addition, the zinc oxide produced in this way has a uniform shape and size, good crystallinity and dispersibility, low bulk density, and good filling properties. Therefore, the heat conductive filler, filler, white pigment, ceramics It can be used as a raw material or the like, and can be blended in cosmetics, external preparations, paints, resin compositions, heat dissipation compositions, and the like.

Claims (11)

亜鉛酸化物の懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成する酸化亜鉛の製造方法。   A method for producing zinc oxide, comprising heating a zinc oxide suspension to 40 ° C. or higher and maintaining the pH at that temperature to be 7 or higher. 亜鉛酸化物と、亜鉛化合物とカルボン酸及び/又はその塩とを混合した懸濁液を40℃以上に加熱し、その温度でのpHを7以上に維持して熟成する酸化亜鉛の製造方法。   A method for producing zinc oxide, comprising heating a suspension obtained by mixing a zinc oxide, a zinc compound, a carboxylic acid and / or a salt thereof to 40 ° C. or more, and maintaining the pH at that temperature to 7 or more and aging. アンモニウム化合物を添加してpHを7以上に維持する請求項1又は2に記載の酸化亜鉛の製造方法。   The method for producing zinc oxide according to claim 1 or 2, wherein the pH is maintained at 7 or more by adding an ammonium compound. 亜鉛化合物と、その亜鉛化合物の亜鉛原子に対するモル比で表して、0.001〜0.1の範囲の量のカルボン酸及び/又はその塩とを添加する請求項2に記載の酸化亜鉛の製造方法。   The production of zinc oxide according to claim 2, wherein a zinc compound and a carboxylic acid and / or a salt thereof in an amount ranging from 0.001 to 0.1, expressed as a molar ratio of the zinc compound to zinc atoms, are added. Method. 請求項1〜4のいずれか一項に記載の方法で製造することを特徴とする酸化亜鉛。   The zinc oxide manufactured by the method as described in any one of Claims 1-4. 薄片状、六角板状、六角柱状又はそれらに類似した形状を有する請求項5に記載の酸化亜鉛。   The zinc oxide according to claim 5, which has a flaky shape, a hexagonal plate shape, a hexagonal column shape, or a shape similar thereto. 針状、棒状又はそれに類似した形状を有する請求項5に記載の酸化亜鉛。   The zinc oxide according to claim 5, which has a needle shape, a rod shape, or a shape similar thereto. 請求項5〜7のいずれか一項に記載の酸化亜鉛を含む熱伝導性フィラー。   The heat conductive filler containing the zinc oxide as described in any one of Claims 5-7. 請求項8に記載の熱伝導性フィラーを含む放熱性組成物。   A heat dissipating composition comprising the thermally conductive filler according to claim 8. 請求項5〜7のいずれか一項に記載に酸化亜鉛を含む、紫外線遮蔽材。 The ultraviolet shielding material containing the zinc oxide as described in any one of Claims 5-7. 請求項5〜7のいずれか一項に記載の酸化亜鉛を含む、化粧料。   Cosmetics containing the zinc oxide as described in any one of Claims 5-7.
JP2014057732A 2014-03-20 2014-03-20 Method for producing zinc oxide Expired - Fee Related JP6282908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057732A JP6282908B2 (en) 2014-03-20 2014-03-20 Method for producing zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057732A JP6282908B2 (en) 2014-03-20 2014-03-20 Method for producing zinc oxide

Publications (2)

Publication Number Publication Date
JP2015182892A true JP2015182892A (en) 2015-10-22
JP6282908B2 JP6282908B2 (en) 2018-02-21

Family

ID=54349850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057732A Expired - Fee Related JP6282908B2 (en) 2014-03-20 2014-03-20 Method for producing zinc oxide

Country Status (1)

Country Link
JP (1) JP6282908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230472A1 (en) 2017-06-12 2018-12-20 堺化学工業株式会社 Method for producing hexagonal plate-shaped zinc oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087817A (en) * 2000-09-12 2002-03-27 Sumitomo Osaka Cement Co Ltd Composite zinc oxide dispersion
JP2007023127A (en) * 2005-07-14 2007-02-01 Nippon Chem Ind Co Ltd Method for producing silica-coated zinc oxide, silica-coated zinc oxide, and cosmetic containing the same
WO2008129901A1 (en) * 2007-04-13 2008-10-30 Asahi Glass Company, Limited Process for producing metal oxide particle coated with hydrophobized silicon oxide
JP2010168254A (en) * 2009-01-23 2010-08-05 Sakai Chem Ind Co Ltd Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
WO2012147886A1 (en) * 2011-04-28 2012-11-01 堺化学工業株式会社 Hexagonal-plate-shaped zinc oxide particles, production method therefor, and cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition having same blended therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087817A (en) * 2000-09-12 2002-03-27 Sumitomo Osaka Cement Co Ltd Composite zinc oxide dispersion
JP2007023127A (en) * 2005-07-14 2007-02-01 Nippon Chem Ind Co Ltd Method for producing silica-coated zinc oxide, silica-coated zinc oxide, and cosmetic containing the same
WO2008129901A1 (en) * 2007-04-13 2008-10-30 Asahi Glass Company, Limited Process for producing metal oxide particle coated with hydrophobized silicon oxide
JP2010168254A (en) * 2009-01-23 2010-08-05 Sakai Chem Ind Co Ltd Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
WO2012147886A1 (en) * 2011-04-28 2012-11-01 堺化学工業株式会社 Hexagonal-plate-shaped zinc oxide particles, production method therefor, and cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition having same blended therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230472A1 (en) 2017-06-12 2018-12-20 堺化学工業株式会社 Method for producing hexagonal plate-shaped zinc oxide
KR20200016848A (en) 2017-06-12 2020-02-17 사카이 가가쿠 고교 가부시키가이샤 Method for producing hexagonal plate-shaped zinc oxide
US11203530B2 (en) 2017-06-12 2021-12-21 Sakai Chemical Industry Co., Ltd. Method for producing hexagonal plate-shaped zinc oxide

Also Published As

Publication number Publication date
JP6282908B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP2008254990A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254991A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP6231915B2 (en) Surface-treated inorganic compound, production method thereof and use thereof
JP5907166B2 (en) Hexagonal plate-like zinc oxide particles, production method thereof, cosmetics containing the same, heat dissipating filler, heat dissipating resin composition, heat dissipating grease, and heat dissipating coating composition
TWI481563B (en) Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
JP5182456B2 (en) Zinc oxide particles, production method thereof, cosmetics, heat dissipating filler, heat dissipating resin composition, heat dissipating grease and heat dissipating coating composition
JP5907167B2 (en) Hexagonal columnar zinc oxide particles, method for producing the same, and cosmetics, heat dissipating filler, heat dissipating resin composition, heat dissipating grease and heat dissipating coating composition containing the same
KR101907940B1 (en) Rounded zinc peroxide particles, rounded zinc oxide particles, manufacturing method therefor, cosmetic material, and heat-dissipating filler
JP5005414B2 (en) Zinc oxide, method for producing the same, and cosmetics using the same
JP2008254989A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP6282908B2 (en) Method for producing zinc oxide
JP2017145155A (en) Zinc oxide particle and method for producing the same, and application of the same
JP6282909B2 (en) Method for producing zinc oxide
JP5032879B2 (en) Zinc oxide, method for producing the same, and cosmetics using the same
JP6393956B2 (en) Zinc oxide, its production method and its use
JP2014148426A (en) Heat radiation property composition
JP2008254993A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP6196779B2 (en) Insulating heat dissipation filler and method for producing the same
JP6665397B2 (en) Method for producing zinc oxide particles and method for producing heat radiation composition
JP6118568B2 (en) Heat dissipation composition
TW202306563A (en) Composition and method for producing same
JP2008273759A (en) Zinc oxide and method for producing the same and ultraviolet shielding composition using the same
JP6665399B2 (en) Zinc oxide particles, method for producing the same and use thereof
JP6477173B2 (en) Method for producing surface-coated zinc oxide particles
JP6129025B2 (en) Silica-alumina shaped particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180125

R151 Written notification of patent or utility model registration

Ref document number: 6282908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees