JP2015182153A - surface-coated cutting tool - Google Patents

surface-coated cutting tool Download PDF

Info

Publication number
JP2015182153A
JP2015182153A JP2014059035A JP2014059035A JP2015182153A JP 2015182153 A JP2015182153 A JP 2015182153A JP 2014059035 A JP2014059035 A JP 2014059035A JP 2014059035 A JP2014059035 A JP 2014059035A JP 2015182153 A JP2015182153 A JP 2015182153A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
plane
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014059035A
Other languages
Japanese (ja)
Other versions
JP6233708B2 (en
Inventor
和明 仙北屋
Kazuaki Senbokuya
和明 仙北屋
正訓 高橋
Masakuni Takahashi
正訓 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014059035A priority Critical patent/JP6233708B2/en
Publication of JP2015182153A publication Critical patent/JP2015182153A/en
Application granted granted Critical
Publication of JP6233708B2 publication Critical patent/JP6233708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool excellent in wear resistance.SOLUTION: The surface-coated cutting tool is provided in which a hard coating layer having an average layer thickness of 2 to 10 μm is formed by vapor deposition on the surface of a tool base composed of tungsten carbide-based cemented carbide. In the surface-coated cutting tool, (a) the hard coating layer is composed of a composite nitride layer of Al and Ti, and a proportion x of Al content to the total amount of Al and Ti is 0.40≤x≤0.75 (atomic ratio), (b) a lattice constant of the composite nitride layer of Al and Ti constituting the hard coating layer assumes a value within the range of -0.057x+4.18 (Å) to -0.057x+4.24 (Å) and (c) a value I(200)/I(111) of the ratio of diffraction peak strength I(200) of (200) plane to diffraction peak strength I(111) of (111) plane of the composite nitride layer of Al and Ti according to X-ray diffraction is 3 or more.

Description

この発明は、炭素鋼、ステンレス鋼などの切削加工において、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance in a hard coating layer in cutting of carbon steel, stainless steel, and the like.

一般に、被覆工具には、各種のステンレス鋼や合金工具鋼などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, a throw-away tip that is used by attaching to the tip of a cutting tool for turning or planing of a work material such as various stainless steels and alloy tool steels, and drilling of the work material. There are drills used for cutting, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

そして、従来から、被覆工具の被膜特性を改善すべく、種々の提案がなされている。
例えば、特許文献1は、被覆工具基体の表面に、0.997(0.412x+0.424173(1−x))〜1.005(0.412x+0.424173(1−x))nmの格子定数を有し、膜厚が0.01〜50μmである(Al,Ti)N膜をアークイオンプレーティング等の気相合成法で形成することによって、高硬度で耐摩耗性にすぐれた耐久性の硬質被膜を提供することが提案されている。
Conventionally, various proposals have been made to improve the coating characteristics of the coated tool.
For example, Patent Document 1 discloses a lattice constant of 0.997 (0.412x + 0.424173 (1-x)) to 1.005 (0.412x + 0.424173 (1-x)) nm on the surface of a coated tool base. It has a high hardness and excellent wear resistance by forming a (Al, Ti) N film having a thickness of 0.01 to 50 μm by a gas phase synthesis method such as arc ion plating. It has been proposed to provide a coating.

また、例えば、特許文献2には、基体の表面に物理蒸着法で被覆形成した(Al,Ti)N層について、AlTiNの結晶構造が面心立方晶構造であり、X線回折による(Al,Ti)N(200)面のピーク強度を(Al,Ti)N(111)面のピーク強度より大きくすることによって、耐酸化性、耐摩耗性、耐食性にすぐれた(Al,Ti)N被覆層が提案されている。   Further, for example, in Patent Document 2, the (Al, Ti) N layer coated on the surface of the substrate by physical vapor deposition has a face-centered cubic crystal structure of AlTiN, and (Al, Ti) by X-ray diffraction (Al, (Al, Ti) N coating layer having superior oxidation resistance, wear resistance, and corrosion resistance by making the peak intensity of the Ti) N (200) plane greater than the peak intensity of the (Al, Ti) N (111) plane Has been proposed.

さらに、例えば、特許文献3には、切削工具、金型または、機械部品で耐摩耗性が要求される基板の表面に、格子定数または配向性を変化させた2層以上の積層コーティング膜で形成された膜厚が0.1ミクロン以上20ミクロン以下の被膜を形成し、基板表面に形成されたTiN膜の配向性が前記基板表面と平行な(200)面と(111)面からのX線回折線強度比I(200)/I(111)が5以上であって、且つ、前記TiN膜の格子定数が0.4231nmから0.4252nmまでとすることによって、被膜の耐摩耗性、耐久性を改善することが提案されている。   Further, for example, in Patent Document 3, a cutting tool, a die, or a machine part that is required to have wear resistance is formed on the surface of a substrate with a multilayer coating film having two or more layers with different lattice constants or orientations. A film having a thickness of 0.1 to 20 microns is formed, and the orientation of the TiN film formed on the substrate surface is X-rays from the (200) plane and the (111) plane parallel to the substrate surface. When the diffraction line intensity ratio I (200) / I (111) is 5 or more and the lattice constant of the TiN film is from 0.4231 nm to 0.4252 nm, the wear resistance and durability of the coating are achieved. It has been proposed to improve.

特開平11−335813号公報Japanese Patent Laid-Open No. 11-335813 特開2013−221215号公報JP 2013-212215 A 特許第4174841号公報Japanese Patent No. 4174842

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と厳しい切削条件下で行われるようになってきている。
上記従来の被覆工具においては、ある程度の耐摩耗性の改善は図り得るものの、これをステンレス鋼、合金工具鋼などの高速ミーリング加工に用いた場合には、摩耗損傷が大きくなり、これを原因として、比較的短時間で使用寿命に至るのが現状である。
In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there has been a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting has been performed under more severe cutting conditions. It is coming.
Although the above-mentioned conventional coated tools can improve wear resistance to some extent, when this is used for high-speed milling processing of stainless steel, alloy tool steel, etc., wear damage increases, and this is the cause. At present, the service life is reached in a relatively short time.

そこで、本発明者等は、ステンレス鋼、合金工具鋼等の高速ミーリング加工に用いた場合であっても、耐摩耗性にすぐれ、長期の使用に亘ってすぐれた切削性能を発揮する被覆工具を提供すべく、鋭意研究を行った結果、以下の知見を得た。   Therefore, the present inventors have provided a coated tool that exhibits excellent wear resistance and excellent cutting performance over a long period of use, even when used for high-speed milling of stainless steel, alloy tool steel, etc. As a result of earnest research to provide, the following knowledge was obtained.

従来の被覆工具では、(Al,Ti)Nからなる硬質被覆層について、その格子定数(特許文献1参照)、あるいは、(200)面と(111)面のX線回折強度比(特許文献2参照)を夫々単独で規定していたが、格子定数と(200)面と(111)面のX線回折強度比を、両者関連付けて規定した場合には、従来の(Al,Ti)N硬質被覆層に比して、格段に高硬度となり、その結果として、すぐれた耐摩耗性を長期にわたり発揮することを見出したのである。   In a conventional coated tool, for a hard coating layer made of (Al, Ti) N, the lattice constant (see Patent Document 1) or the X-ray diffraction intensity ratio between the (200) plane and the (111) plane (Patent Document 2). Each) is defined independently, but when the lattice constant and the X-ray diffraction intensity ratio of the (200) plane and the (111) plane are defined in association with each other, the conventional (Al, Ti) N hard It has been found that the hardness is much higher than that of the coating layer, and as a result, excellent wear resistance is exhibited over a long period of time.

この発明は、上記の知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金で構成された工具基体の表面に、平均層厚が2〜10μmの硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は、AlとTiの複合窒化物層からなり、かつ、該層においてAlとTiの合量に占めるAlの含有割合xは、0.40≦x≦0.75(但し、原子比)であり、
(b)前記硬質被覆層を構成するAlとTiの複合窒化物層の格子定数は、−0.057x+4.18(Å)〜−0.057x+4.24(Å)の範囲内の値をとり、
(c)X線回折による前記AlとTiの複合窒化物層の(111)面の回折ピーク強度I(111)に対する(200)面の回折ピーク強度I(200)の比の値I(200)/I(111)が3以上であることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a surface-coated cutting tool in which a hard coating layer having an average layer thickness of 2 to 10 μm is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide,
(A) The hard coating layer is composed of a composite nitride layer of Al and Ti, and the Al content ratio x in the total amount of Al and Ti in the layer is 0.40 ≦ x ≦ 0.75 ( However, atomic ratio)
(B) The lattice constant of the composite nitride layer of Al and Ti constituting the hard coating layer takes a value in the range of −0.057x + 4.18 (Å) to −0.057x + 4.24 (Å),
(C) A value I (200) of the ratio of the diffraction peak intensity I (200) of the (200) plane to the diffraction peak intensity I (111) of the (111) plane of the composite nitride layer of Al and Ti by X-ray diffraction A surface-coated cutting tool having a / I (111) of 3 or more. "
It has the characteristics.

つぎに、この発明の被覆工具について詳細に説明する。
(a)硬質被覆層の種別、平均層厚:
この発明の硬質被覆層は、AlとTiの複合窒化物(以下、「(Al,Ti)N」で示す)層からなる。
上記(Al,Ti)N層は、Al成分が高温硬さと耐熱性を向上させ、Ti成分が高温靭性、高温強度を向上させる作用があることから、高温硬さ、耐熱性、高温強度にすぐれた硬質被覆層として既によく知られている。
本発明では、Tiとの合量に占めるAlの含有割合x(原子比、以下同じ)が0.75を超えると、六方晶結晶構造の割合が増加するため硬さが低下し、一方、Tiとの合量に占めるAlの含有割合(原子比)が0.40未満となると、相対的にAlの含有割合が少なくなり、耐熱性の低下を招き、その結果、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性が劣化するようになることから、Tiとの合量に占めるAlの含有割合x(原子比)は、0.40〜0.75であることが必要である。
また、(Al,Ti)N層からなる硬質被覆層の平均層厚は、2μm未満では、すぐれた耐摩耗性を長期に亘って発揮することができず、工具寿命短命の原因となり、一方、その平均層厚が10μmを越えると、硬質被覆層が自己破壊し易くなることから、その平均層厚は2〜10μmとすることが必要である。
Next, the coated tool of the present invention will be described in detail.
(A) Type of hard coating layer, average layer thickness:
The hard coating layer according to the present invention is composed of a composite nitride (hereinafter referred to as “(Al, Ti) N”) layer of Al and Ti.
In the (Al, Ti) N layer, the Al component improves high temperature hardness and heat resistance, and the Ti component has the action of improving high temperature toughness and high temperature strength. It is already well known as a hard coating layer.
In the present invention, if the Al content ratio x (atomic ratio, hereinafter the same) in the total amount with Ti exceeds 0.75, the ratio of the hexagonal crystal structure increases, so that the hardness decreases. When the Al content ratio (atomic ratio) in the total amount with respect to is less than 0.40, the Al content ratio is relatively reduced, resulting in a decrease in heat resistance, resulting in the occurrence of uneven wear, thermoplastic deformation. Since the wear resistance is deteriorated due to the occurrence of the above, the Al content ratio x (atomic ratio) in the total amount with Ti needs to be 0.40 to 0.75.
In addition, if the average thickness of the hard coating layer made of the (Al, Ti) N layer is less than 2 μm, excellent wear resistance cannot be exhibited over a long period of time, resulting in a short tool life. If the average layer thickness exceeds 10 μm, the hard coating layer tends to self-destruct, so the average layer thickness needs to be 2 to 10 μm.

(b)(Al,Ti)N層の格子定数:
本発明では、硬質被覆層を構成する(Al,Ti)N層について、その格子定数が、
−0.057x+4.18(Å)〜−0.057x+4.24(Å)
の範囲内の値となるように成膜する。
本発明で、硬質被覆層を構成する(Al,Ti)N層の格子定数を上記の如く定めたのは、以下の理由による。
即ち、立方晶TiNの格子定数理論値は4.24(Å)であり、また、準安定相である立方晶AlNの格子定数理論値は4.12(Å)であるところ、本発明の硬質被覆層を構成する(Al,Ti)N層の格子定数が−0.057x+4.24(Å)を超えると、固溶体硬化による影響が少なくなり、硬質被覆層の硬さが小さくなり、その結果、すぐれた耐摩耗性を長期にわたって確保することができなくなり、一方、格子定数が−0.057x+4.18(Å)未満になると、固溶体硬化による影響で硬質被覆層の硬さが大きくなるが、その反面、刃先稜線部の鋭角な領域で切削加工時、硬質被覆層中にクラックが発生し、チッピングが発生し易くなることから、硬質被覆層を構成する(Al,Ti)N層の格子定数は、
−0.057x+4.18(Å)〜−0.057x+4.24(Å)
の範囲内の値となるように定めた。
より好ましくは、−0.057x+4.20(Å)〜−0.057x+4.23(Å)の範囲内の値である。
なお、上記の格子定数を定める数式における「x」は、Tiとの合量に占めるAlの含有割合x(原子比、以下同じ)である。
(B) The lattice constant of the (Al, Ti) N layer:
In the present invention, the lattice constant of the (Al, Ti) N layer constituting the hard coating layer is as follows:
-0.057x + 4.18 (Å) to -0.057x + 4.24 (Å)
The film is formed so as to have a value within the range.
In the present invention, the lattice constant of the (Al, Ti) N layer constituting the hard coating layer is determined as described above for the following reason.
That is, the theoretical value of lattice constant of cubic TiN is 4.24 (Å), and the theoretical value of lattice constant of cubic AlN that is a metastable phase is 4.12 (Å). When the lattice constant of the (Al, Ti) N layer constituting the coating layer exceeds −0.057x + 4.24 (Å), the influence of solid solution curing is reduced, and the hardness of the hard coating layer is reduced. On the other hand, when the lattice constant becomes less than −0.057x + 4.18 (Å), the hardness of the hard coating layer increases due to the effect of solid solution hardening. On the other hand, since the cracks are generated in the hard coating layer and chipping is likely to occur at the time of cutting in an acute area of the edge of the blade edge, the lattice constant of the (Al, Ti) N layer constituting the hard coating layer is ,
-0.057x + 4.18 (Å) to -0.057x + 4.24 (Å)
It was determined to be a value within the range of.
More preferably, it is a value within the range of -0.057x + 4.20 (Å) to -0.057x + 4.23 (Å).
Note that “x” in the mathematical expression that defines the lattice constant is the Al content ratio x (atomic ratio, the same applies hereinafter) in the total amount with Ti.

上記で定めた所定数値範囲内の格子定数の(Al,Ti)N層は、例えば、図1に示すアークイオンプレーティング(以下、「AIP」という)装置を用いて成膜するに際し、AIP装置におけるターゲットとして、70原子%Al−30原子%Ti〜50原子%Al−50原子%Tiの成分組成のAl−Ti合金を用い、成膜時のターゲット表面の最大磁束密度、バイアス電圧を制御することによって、(Al,Ti)N層の格子定数を規定数値範囲内にすることができる。
より具体的に言えば、ターゲット表面の最大磁束密度を大にすることによって格子定数が小さくなり、また、バイアス電圧の絶対値を大きくすることによって格子定数が小さくなる。
When the (Al, Ti) N layer having a lattice constant within the predetermined numerical range defined above is formed using, for example, an arc ion plating (hereinafter referred to as “AIP”) apparatus shown in FIG. As the target, an Al—Ti alloy having a component composition of 70 atomic% Al-30 atomic% Ti to 50 atomic% Al-50 atomic% Ti is used, and the maximum magnetic flux density and bias voltage on the target surface during film formation are controlled. As a result, the lattice constant of the (Al, Ti) N layer can be set within the specified numerical range.
More specifically, the lattice constant is decreased by increasing the maximum magnetic flux density on the target surface, and the lattice constant is decreased by increasing the absolute value of the bias voltage.

(c)(Al,Ti)N層のX線回折ピーク強度比I(200)/I(111):
本発明では、硬質被覆層を構成する(Al,Ti)N層について、(111)面の回折ピーク強度I(111)に対する(200)面の回折ピーク強度I(200)の比の値I(200)/I(111)を3以上としているが、その理由は以下のとおりである。
本発明の硬質被覆層を構成する(Al,Ti)N層は立方晶構造を有するが、立方晶結晶格子の(111)面はすべり面であるため、強い配向を示す場合には、例えば、切削加工時せん断方向の外力が加わることで硬質被覆層の強度を保てないため、耐摩耗性を確保することができない。
一方、立方晶結晶格子の(200)面は、最密面であるために硬質被覆層の硬さ向上における効果が大きい。
つまり、回折ピーク強度比I(200)/I(111)が3未満である場合には、すべり面である(111)面の配向度が、硬さの大きい(200)面に比して相対的に高いため、すべりが発生し易く、しかも、硬さが十分とはいえないことから、切削加工時における耐摩耗性が十分であるとはいえない。
したがって、上記結晶格子面が備える特徴の観点から、本発明の硬質被覆層を構成する(Al,Ti)N層について、耐摩耗性の向上を図るため、(111)面の回折ピーク強度I(111)に対する(200)面の回折ピーク強度I(200)の比の値I(200)/I(111)を3以上と定めた。
なお、(111)面の回折ピーク強度I(111)に対する(200)面の回折ピーク強度I(200)の比の値I(200)/I(111)は20以上であることが好ましい。
(C) X-ray diffraction peak intensity ratio I (200) / I (111) of (Al, Ti) N layer:
In the present invention, for the (Al, Ti) N layer constituting the hard coating layer, the value I (() of the diffraction peak intensity I (200) of the (200) plane to the diffraction peak intensity I (111) of the (111) plane 200) / I (111) is set to 3 or more for the following reason.
The (Al, Ti) N layer constituting the hard coating layer of the present invention has a cubic structure, but the (111) plane of the cubic crystal lattice is a slip plane. Abrasion resistance cannot be ensured because the strength of the hard coating layer cannot be maintained by applying an external force in the shearing direction during cutting.
On the other hand, since the (200) plane of the cubic crystal lattice is a close-packed surface, the effect of improving the hardness of the hard coating layer is great.
That is, when the diffraction peak intensity ratio I (200) / I (111) is less than 3, the degree of orientation of the (111) plane, which is a slip plane, is relative to that of the (200) plane having a high hardness. Therefore, slip is likely to occur, and the hardness is not sufficient, so that it cannot be said that the wear resistance at the time of cutting is sufficient.
Therefore, from the viewpoint of the characteristics of the crystal lattice plane, in order to improve the wear resistance of the (Al, Ti) N layer constituting the hard coating layer of the present invention, the diffraction peak intensity I ( The value I (200) / I (111) of the diffraction peak intensity I (200) of the (200) plane with respect to (111) was determined to be 3 or more.
Note that the value I (200) / I (111) of the ratio of the diffraction peak intensity I (200) of the (200) plane to the diffraction peak intensity I (111) of the (111) plane is preferably 20 or more.

上記で定めた所定の数値範囲内の回折ピーク強度比I(200)/I(111)は、例えば、図1に示すAIP装置を用いて、以下のとおり作製することができる。
例えば、AIP装置における成膜時のバイアス電圧、雰囲気ガス中のN分圧を制御することによって、回折ピーク強度比I(200)/I(111)を3以上とした(Al,Ti)N層を形成することができる。
より具体的に言えば、バイアス電圧の絶対値を小さくすることによって、また、雰囲気ガス中のN分圧を高めることによって、回折ピーク強度比I(200)/I(111)の値が小さくなる。
The diffraction peak intensity ratio I (200) / I (111) within the predetermined numerical range defined above can be produced, for example, as follows using the AIP apparatus shown in FIG.
For example, the diffraction peak intensity ratio I (200) / I (111) is set to 3 or more by controlling the bias voltage during film formation in the AIP apparatus and the N 2 partial pressure in the atmospheric gas (Al, Ti) N. A layer can be formed.
More specifically, the value of the diffraction peak intensity ratio I (200) / I (111) is decreased by decreasing the absolute value of the bias voltage and increasing the N 2 partial pressure in the atmospheric gas. Become.

(d)硬質被覆層の蒸着形成:
図1(a)、(b)に、本発明の硬質被覆層を構成する(Al,Ti)N層を成膜するに好適なAIP装置を示す。
本発明の硬質被覆層は、例えば、図1(a)、(b)に示すAIP装置において、工具基体の温度を370〜450℃に維持しつつ、工具基体をAIP装置内で自公転させ、ターゲット表面に所定の最大磁束密度に制御しながら蒸着することによって形成することができる。
例えば、AIP装置の一方には基体洗浄用のTi電極からなるカソード電極、他方には所定組成のAl−Ti合金からなるターゲット(カソード電極)を設け、
まず、炭化タングステン(WC)基超硬合金からなる工具基体を洗浄・乾燥し、AIP装置内の回転テーブル上に装着し、真空中で基体洗浄用のTi電極とアノード電極との間に100Aのアーク放電を発生させて、工具基体に−1000Vのバイアス電圧を印加しつつ工具基体表面をボンバード洗浄し、
ついで、Al−Ti合金ターゲットの表面に最大磁束密度2.5〜15mT(ミリテスラ)に制御し、
ついで、装置内に反応ガスとして窒素ガスを導入し4〜8Paの雰囲気圧力とし、工具基体の温度を370〜450℃に維持し、工具基体に―25〜−100Vのバイアス電圧を印加しつつ、Al−Ti合金ターゲット(カソード電極)とアノード電極との間に100Aのアーク放電を発生させ、工具基体を自公転させつつ蒸着することによって、本発明で定めた格子定数及び回折ピーク強度比を有する(Al,Ti)N層からなる硬質被覆層を蒸着形成することができる。
なお、上記のAl−Ti合金ターゲット表面の最大磁束密度の制御方法は、例えば、カソード周辺に磁場発生源である電磁コイル又は永久磁石を設置する等、任意の手段で制御することができる。
(D) Vapor deposition of hard coating layer:
FIGS. 1A and 1B show an AIP apparatus suitable for forming an (Al, Ti) N layer constituting the hard coating layer of the present invention.
The hard coating layer of the present invention, for example, in the AIP apparatus shown in FIGS. 1A and 1B, revolves the tool base in the AIP apparatus while maintaining the temperature of the tool base at 370 to 450 ° C. It can form by vapor-depositing on the target surface, controlling to a predetermined maximum magnetic flux density.
For example, one of the AIP devices is provided with a cathode electrode made of a Ti electrode for substrate cleaning, and the other is provided with a target (cathode electrode) made of an Al—Ti alloy having a predetermined composition,
First, a tool substrate made of tungsten carbide (WC) -based cemented carbide is cleaned and dried, mounted on a rotary table in an AIP apparatus, and 100 A between the Ti electrode and the anode electrode for cleaning the substrate in vacuum. An arc discharge is generated, and the tool base surface is bombarded while applying a bias voltage of −1000 V to the tool base,
Next, the maximum magnetic flux density on the surface of the Al—Ti alloy target is controlled to 2.5 to 15 mT (millitesla),
Next, nitrogen gas is introduced as a reaction gas into the apparatus to make the atmospheric pressure 4 to 8 Pa, the temperature of the tool base is maintained at 370 to 450 ° C., and a bias voltage of −25 to −100 V is applied to the tool base, By generating an arc discharge of 100 A between the Al—Ti alloy target (cathode electrode) and the anode electrode and performing evaporation while rotating the tool base, the lattice constant and diffraction peak intensity ratio defined in the present invention are obtained. A hard coating layer composed of an (Al, Ti) N layer can be formed by vapor deposition.
The method for controlling the maximum magnetic flux density on the surface of the Al—Ti alloy target can be controlled by any means, for example, by installing an electromagnetic coil or a permanent magnet as a magnetic field generation source around the cathode.

この発明の被覆工具は、硬質被覆層を構成する所定組成の(Al,Ti)N層が、−0.057x+4.18(Å)〜−0.057x+4.24(Å)という格子定数を備え、さらに、X線回折ピーク強度比I(200)/I(111)の値が3以上であることから、ステンレス鋼、合金工具鋼などの高速ミーリング加工において、すぐれた耐摩耗性を示し、長期の使用に亘ってすぐれた切削性能を発揮するものである。   In the coated tool of the present invention, the (Al, Ti) N layer having a predetermined composition constituting the hard coating layer has a lattice constant of −0.057x + 4.18 (Å) to −0.057x + 4.24 (Å), Further, since the value of the X-ray diffraction peak intensity ratio I (200) / I (111) is 3 or more, it exhibits excellent wear resistance in high-speed milling processing of stainless steel, alloy tool steel, etc. It exhibits excellent cutting performance over use.

本発明の被覆工具を作製するための、AIP装置の概略説明図を示し、(a)は平面図、(b)は側面図を示す。The schematic explanatory drawing of the AIP apparatus for producing the covering tool of this invention is shown, (a) is a top view, (b) shows a side view.

つぎに、この発明を実施例により具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表5に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体に押出しプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が10mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さが6mm×13mmの寸法で、ねじれ角30度の2枚刃ボール形状をもったWC基超硬合金製の工具基体(エンドミル)1〜5をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 5, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. Extruded and pressed into various types of green compacts, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min in a 6 Pa vacuum atmosphere. Conditions for furnace cooling after holding at this temperature for 1 hour Sintered to form a round tool sintered body for forming a tool base having a diameter of 10 mm, and further, from the round bar sintered body, the diameter x length of the cutting edge portion is 6 mm x 13 mm by grinding. Thus, tool bases (end mills) 1 to 5 made of a WC-base cemented carbide having a two-blade ball shape with a twist angle of 30 degrees were manufactured.

(a)上記の工具基体1〜5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示すAIP装置の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置の一方にボンバード洗浄用のTiカソード電極を、他方側に所定組成のAl−Ti合金からなるターゲット(カソード電極)を配置し、
(b)まず、装置内を排気して真空に保持しながら、ヒータで工具基体を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Tiカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)ついで、上記Al−Ti合金ターゲットの表面に表2に示す種々の最大磁束密度に制御し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して表2に示す窒素分圧とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を370〜450℃の範囲内に維持するとともに表2に示す直流バイアス電圧を印加し、かつ前記Al−Ti合金ターゲットとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される組成および目標平均層厚の(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、
表2に示す本発明被覆工具としての表面被覆エンドミル1〜10(以下、本発明1〜10という)をそれぞれ製造した。
なお、図1に示すAIP装置では、工具基体がAl−Ti合金ターゲットに最接近する際に、逃げ面の一部又は全部とAl−Ti合金ターゲットの上記工具基体側の面が水平となるように装着支持されている。
(A) Each of the tool bases 1 to 5 described above is ultrasonically cleaned in acetone and dried, at a position spaced apart from the central axis on the rotary table of the AIP device shown in FIG. 1 by a predetermined distance in the radial direction. Attached along the outer periphery, a Ti cathode electrode for bombard cleaning is disposed on one side of the AIP apparatus, and a target (cathode electrode) made of an Al—Ti alloy having a predetermined composition is disposed on the other side.
(B) First, the tool base is heated to 400 ° C. with a heater while the inside of the apparatus is evacuated and kept in vacuum, and then a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. And an arc discharge is caused by flowing a current of 100 A between the Ti cathode electrode and the anode electrode, thereby bombarding the surface of the tool substrate,
(C) Next, the various maximum magnetic flux densities shown in Table 2 are controlled on the surface of the Al-Ti alloy target,
(D) Next, nitrogen gas is introduced into the apparatus as a reactive gas to obtain the nitrogen partial pressure shown in Table 2, and the temperature of the tool base rotating while rotating on the rotary table is within a range of 370 to 450 ° C. And a DC bias voltage shown in Table 2 is applied, and an electric current of 100 A is passed between the Al—Ti alloy target and the anode electrode to generate an arc discharge. 2 by vapor deposition of a hard coating layer composed of an (Al, Ti) N layer having a composition and a target average layer thickness shown in FIG.
Surface coated end mills 1 to 10 (hereinafter referred to as present inventions 1 to 10) as the present invention coated tools shown in Table 2 were produced.
In the AIP apparatus shown in FIG. 1, when the tool base comes closest to the Al—Ti alloy target, part or all of the flank and the surface of the Al—Ti alloy target on the tool base side are horizontal. It is supported by mounting.

比較例:
比較の目的で、上記実施例における(c)の工程を表3に示す条件(即ち、Al−Ti合金ターゲットの表面の最大磁束密度を変更)で行い、また、(d)の工程を同じく表3に示す条件(即ち、窒素分圧、直流バイアス電圧の変更)で行い、その他は実施例と同一の条件で、表3に示す比較例被覆工具としての表面被覆エンドミル1〜10(以下、比較例1〜10という)をそれぞれ製造した。
さらに、上記で作製した本発明1〜10および比較例1〜10の硬質被覆層について、その組成を走査型電子顕微鏡(SEM)を用いてのエネルギー分散型X線分析法(EDS)により測定した。また、その平均層厚を走査型電子顕微鏡を用いて断面測定し、5ヶ所の平均値より算出した。
表2、表3に、測定・算出したしたそれぞれの値を示す。
Comparative example:
For the purpose of comparison, the step (c) in the above example is performed under the conditions shown in Table 3 (that is, the maximum magnetic flux density on the surface of the Al—Ti alloy target is changed), and the step (d) is also represented in the same manner. Surface coating end mills 1 to 10 (hereinafter referred to as comparisons) as comparative example coating tools shown in Table 3 are performed under the conditions shown in FIG. 3 (ie, changes in nitrogen partial pressure and DC bias voltage), and the other conditions are the same as in the examples. Examples 1 to 10) were produced respectively.
Furthermore, about the hard coating layer of this invention 1-10 produced above and Comparative Examples 1-10, the composition was measured by the energy dispersive X ray analysis method (EDS) using a scanning electron microscope (SEM). . The average layer thickness was measured by a cross-section using a scanning electron microscope, and calculated from the average value at five locations.
Tables 2 and 3 show the measured and calculated values.

上記で作製した本発明1〜10および比較例1〜10について、硬質被覆層の縦断面の(Al,Ti)N層について、X線回折により、(111)面、(200)面及び(220)面のX線回折ピーク強度I(111),I(200)及びI(220)を求めた。
なお、X線回折は、測定条件:Cu管球、測定範囲(2θ):30〜80度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
About this invention 1-10 produced above and Comparative Examples 1-10, about the (Al, Ti) N layer of the longitudinal cross-section of a hard coating layer, (111) plane, (200) plane, and (220) by X-ray diffraction. ) Plane X-ray diffraction peak intensities I (111), I (200) and I (220).
X-ray diffraction was measured under the conditions of measurement conditions: Cu tube, measurement range (2θ): 30 to 80 degrees, scan step: 0.013 degrees, measurement time per step: 0.48 sec / step.

また、格子定数については、当業者によく知られている
ブラッグの式:2d=λ/sinθ,
=d×(h+k+l
を用い、上記で測定した(111)面,(200)面及び(220)面についてそれぞれ算出し、その平均値を求め、これを格子定数とした。
なお、上記ブラッグの式におけるd:面間隔、λ:測定波長、θ:測定角度、a:格子定数、h,k,l:面指数を表す。
表2、表3に、上記で測定・算出したそれぞれの値を示す。
As for the lattice constant, Bragg's formula well known to those skilled in the art: 2d = λ / sin θ,
a 2 = d 2 × (h 2 + k 2 + l 2 )
The (111) plane, the (200) plane, and the (220) plane measured above were respectively calculated, the average value was obtained, and this was used as the lattice constant.
In the above Bragg equation, d: surface spacing, λ: measurement wavelength, θ: measurement angle, a: lattice constant, h, k, l: surface index.
Tables 2 and 3 show the values measured and calculated above.




つぎに、上記本発明1〜10および比較例1〜10のエンドミルについて、下記の条件(切削条件Aという)での合金工具鋼の側面切削加工試験を実施した。
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61(52HRC)の板材、
回転速度: 17000 min.−1
縦方向切り込み: 2 mm、
横方向切り込み: 0.3 mm
送り速度(1刃当り): 0.05 mm/tooth、
切削長:340m、
さらに、下記の条件(切削条件Bという)でのステンレス鋼の側面切削加工試験を実施した。
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304 (35HRC)の板材、
回転速度: 5600 min.−1
縦方向切り込み: 2 mm、
横方向切り込み: 0.3 mm
送り速度(1刃当り): 0.06 mm/tooth、
切削長:140 m、
いずれの側面切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表4に示した。
Next, for the end mills of the present inventions 1 to 10 and Comparative Examples 1 to 10, a side cutting test of the alloy tool steel was performed under the following conditions (referred to as cutting conditions A).
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SKD61 (52HRC) plate material,
Rotational speed: 17000 min. -1 ,
Longitudinal cut: 2 mm,
Horizontal infeed: 0.3 mm
Feed rate (per blade): 0.05 mm / tooth,
Cutting length: 340m,
Further, a side cutting test of stainless steel was performed under the following conditions (referred to as cutting conditions B).
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS304 (35HRC) plate material,
Rotational speed: 5600 min. -1 ,
Longitudinal cut: 2 mm,
Horizontal infeed: 0.3 mm
Feed rate (per blade): 0.06 mm / tooth,
Cutting length: 140 m,
In any side cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 4.


表4に示される結果から、本発明被覆工具は、硬質被覆層を構成する所定組成の(Al,Ti)N層が、−0.057x+4.18(Å)〜−0.057x+4.24(Å)という格子定数を備え、さらに、X線回折ピーク強度比I(200)/I(111)の値が3以上であることから、ステンレス鋼、合金工具鋼などの高速ミーリング加工において、すぐれた耐摩耗性を示し、長期の使用に亘ってすぐれた切削性能を発揮するものである。
これに対して、硬質被覆層を構成する(Al,Ti)N層の組成、格子定数、X線回折ピーク強度比、平均層厚が本発明で規定する範囲を外れる比較例被覆工具では、耐摩耗性の低下によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 4, according to the coated tool of the present invention, the (Al, Ti) N layer of the predetermined composition constituting the hard coating layer is −0.057x + 4.18 (Å) to −0.057x + 4.24 (Å ), And the X-ray diffraction peak intensity ratio I (200) / I (111) is 3 or more, so that it has excellent resistance to high-speed milling such as stainless steel and alloy tool steel. It exhibits wear and exhibits excellent cutting performance over a long period of use.
On the other hand, in the comparative coated tool in which the composition, lattice constant, X-ray diffraction peak intensity ratio, and average layer thickness of the (Al, Ti) N layer constituting the hard coating layer are outside the range defined in the present invention, It is clear that the wear life is reduced and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、ステンレス鋼、合金工具鋼などの高速ミーリング加工に供した場合に長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。








As described above, the coated tool of the present invention exhibits excellent cutting performance over a long period when subjected to high-speed milling processing such as stainless steel and alloy tool steel. In addition, it is possible to sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.








Claims (1)

炭化タングステン基超硬合金で構成された工具基体の表面に、平均層厚が2〜10μmの硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は、AlとTiの複合窒化物層からなり、かつ、該層においてAlとTiの合量に占めるAlの含有割合xは、0.40≦x≦0.75(但し、原子比)であり、
(b)前記硬質被覆層を構成するAlとTiの複合窒化物層の格子定数は、−0.057x+4.18(Å)〜−0.057x+4.24(Å)の範囲内の値をとり、
(c)X線回折による前記AlとTiの複合窒化物層の(111)面の回折ピーク強度I(111)に対する(200)面の回折ピーク強度I(200)の比の値I(200)/I(111)が3以上であることを特徴とする表面被覆切削工具。








In a surface-coated cutting tool in which a hard coating layer having an average layer thickness of 2 to 10 μm is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide,
(A) The hard coating layer is composed of a composite nitride layer of Al and Ti, and the Al content ratio x in the total amount of Al and Ti in the layer is 0.40 ≦ x ≦ 0.75 ( However, atomic ratio)
(B) The lattice constant of the composite nitride layer of Al and Ti constituting the hard coating layer takes a value in the range of −0.057x + 4.18 (Å) to −0.057x + 4.24 (Å),
(C) A value I (200) of the ratio of the diffraction peak intensity I (200) of the (200) plane to the diffraction peak intensity I (111) of the (111) plane of the composite nitride layer of Al and Ti by X-ray diffraction A surface-coated cutting tool having a / I (111) of 3 or more.








JP2014059035A 2014-03-20 2014-03-20 Surface coated cutting tool Active JP6233708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059035A JP6233708B2 (en) 2014-03-20 2014-03-20 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059035A JP6233708B2 (en) 2014-03-20 2014-03-20 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2015182153A true JP2015182153A (en) 2015-10-22
JP6233708B2 JP6233708B2 (en) 2017-11-22

Family

ID=54349307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059035A Active JP6233708B2 (en) 2014-03-20 2014-03-20 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP6233708B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018202533A (en) * 2017-06-01 2018-12-27 住友電気工業株式会社 Surface-coated cutting tool
US10737331B2 (en) 2016-03-31 2020-08-11 Tungaloy Corporation Coated cutting tool
WO2024115196A1 (en) * 2022-11-28 2024-06-06 Ab Sandvik Coromant A coated cutting tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317123A (en) * 1997-05-16 1998-12-02 Toshiba Tungaloy Co Ltd Crystalline oriented hard coated member
JPH11335813A (en) * 1998-05-21 1999-12-07 Sumitomo Electric Ind Ltd Hard coating film and laminated hard coating film
JP2001516654A (en) * 1997-09-12 2001-10-02 ユナキス・バルツェルス・アクチェンゲゼルシャフト Tool with protective layer system
US20080273933A1 (en) * 2004-09-10 2008-11-06 Mats Ahlgren Pvd-Coated Cutting Tool Insert
JP2010012564A (en) * 2008-07-04 2010-01-21 Hitachi Tool Engineering Ltd Hard film-coated cutting tool
JP2011189419A (en) * 2010-03-12 2011-09-29 Hitachi Metals Ltd Coated tool excellent in wear resistance
JP2012161909A (en) * 2011-02-07 2012-08-30 Kennametal Inc Cubic aluminum titanium nitride coating and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317123A (en) * 1997-05-16 1998-12-02 Toshiba Tungaloy Co Ltd Crystalline oriented hard coated member
JP2001516654A (en) * 1997-09-12 2001-10-02 ユナキス・バルツェルス・アクチェンゲゼルシャフト Tool with protective layer system
JPH11335813A (en) * 1998-05-21 1999-12-07 Sumitomo Electric Ind Ltd Hard coating film and laminated hard coating film
US20080273933A1 (en) * 2004-09-10 2008-11-06 Mats Ahlgren Pvd-Coated Cutting Tool Insert
JP2010012564A (en) * 2008-07-04 2010-01-21 Hitachi Tool Engineering Ltd Hard film-coated cutting tool
JP2011189419A (en) * 2010-03-12 2011-09-29 Hitachi Metals Ltd Coated tool excellent in wear resistance
JP2012161909A (en) * 2011-02-07 2012-08-30 Kennametal Inc Cubic aluminum titanium nitride coating and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737331B2 (en) 2016-03-31 2020-08-11 Tungaloy Corporation Coated cutting tool
JP2018202533A (en) * 2017-06-01 2018-12-27 住友電気工業株式会社 Surface-coated cutting tool
WO2024115196A1 (en) * 2022-11-28 2024-06-06 Ab Sandvik Coromant A coated cutting tool

Also Published As

Publication number Publication date
JP6233708B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5344204B2 (en) Surface coated cutting tool
JP5838769B2 (en) Surface coated cutting tool
KR102523236B1 (en) surface coating cutting tools
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2017073653A1 (en) Surface coated cutting tool
JP2017064845A (en) Surface coating cutting tool excellent in chipping resistance and abrasion resistance
JP6233708B2 (en) Surface coated cutting tool
JP5850400B2 (en) Surface coated cutting tool
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
KR102498224B1 (en) surface coating cutting tools
WO2014148488A1 (en) Surface-coated cutting tool
JP6493800B2 (en) Surface coated cutting tool with excellent wear resistance in high speed cutting
JP6604138B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
JP5240666B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP6102571B2 (en) Surface coated cutting tool
JP6288603B2 (en) Surface coated cutting tool
WO2017073655A1 (en) Surface coated cutting tool
JP6217216B2 (en) Surface coated cutting tool and manufacturing method thereof
JP5850393B2 (en) Surface coated cutting tool
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP6399353B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance
JP5831708B2 (en) Surface coated cutting tool
JP2019171483A (en) Surface-coated cutting tool
JP6090033B2 (en) Surface coated cutting tool
JP2012030346A (en) Surface coated drill excellent in wear resistance and chip discharging characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171012

R150 Certificate of patent or registration of utility model

Ref document number: 6233708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150