JP2015181387A - D-lactic acid-producing microorganisms and production methods thereof - Google Patents

D-lactic acid-producing microorganisms and production methods thereof Download PDF

Info

Publication number
JP2015181387A
JP2015181387A JP2014060108A JP2014060108A JP2015181387A JP 2015181387 A JP2015181387 A JP 2015181387A JP 2014060108 A JP2014060108 A JP 2014060108A JP 2014060108 A JP2014060108 A JP 2014060108A JP 2015181387 A JP2015181387 A JP 2015181387A
Authority
JP
Japan
Prior art keywords
lactic acid
medium
concentration
fermentation
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014060108A
Other languages
Japanese (ja)
Inventor
信一郎 庄司
Shinichiro Shoji
信一郎 庄司
山本 智義
Tomoyoshi Yamamoto
智義 山本
孝清 多田
Takakiyo Tada
孝清 多田
直也 市村
Naoya Ichimura
直也 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2014060108A priority Critical patent/JP2015181387A/en
Publication of JP2015181387A publication Critical patent/JP2015181387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microorganism that produces D-lactic acid in a high concentration and at a high sugar-based yield, and to provide a method for efficiently producing D-lactic acid using the microorganism of the genus Erwinia.SOLUTION: Provided is a D-lactic acid-producing microorganism named Erwinia M3 and deposited as NITE P-01579 or a method for fermentation-producing D-lactic acid using the microorganism and a culture medium not containing molasses being a colored component or a culture medium having yeast extract at a concentration of less than 0.1%, where pH and/or redox potential is maintained within a certain range.

Description

本発明は、D−乳酸産生微生物およびこれを用いたD−乳酸の製造方法に関する。   The present invention relates to a D-lactic acid-producing microorganism and a method for producing D-lactic acid using the same.

バイオマスから生産される生分解性樹脂は、カーボンニュートラルであること、石油を原料とせずに生産できることから、環境問題およびエネルギー・資源問題の解決に大きな役割を果たすことが期待されている。
生分解性樹脂の中でも乳酸を原料とするポリ乳酸は、製造過程でのエネルギー消費が他の生分解性樹脂の製造に比べて少なく、プラスチックとしての性能も高いことから、市場が拡大することが期待される。
Biodegradable resins produced from biomass are carbon neutral and can be produced without using petroleum as a raw material, and are therefore expected to play a major role in solving environmental and energy / resource problems.
Among the biodegradable resins, polylactic acid, which uses lactic acid as a raw material, consumes less energy in the manufacturing process than other biodegradable resins, and has high performance as a plastic. Be expected.

しかしながら、ポリL−乳酸のみから構成されるポリ乳酸樹脂は、その機械的強度や耐熱性が不十分であるため、用途が限定されている。一方、ポリL−乳酸とポリD−乳酸とを溶融混練して得られるステレオコンプレックスポリ乳酸は、耐熱性やその他の物性が優れているため、幅広い用途への展開が期待される。
ステレオコンプレックスポリ乳酸を得るためには、原料にL−乳酸とD−乳酸が必要である。L−乳酸は多くの生産技術が確立され商業ベースで安価に製造されているが、高光学活性のD−乳酸を安価に製造する方法は十分に確立しているとは言えず、D−乳酸の低コスト発酵生産技術が、ポリ乳酸樹脂の実用化においてきわめて重要となっている。
However, the use of polylactic acid resin composed only of poly-L-lactic acid is limited because its mechanical strength and heat resistance are insufficient. On the other hand, stereocomplex polylactic acid obtained by melt-kneading poly-L-lactic acid and poly-D-lactic acid is excellent in heat resistance and other physical properties, and therefore is expected to be used in a wide range of applications.
In order to obtain stereocomplex polylactic acid, L-lactic acid and D-lactic acid are required as raw materials. Although many production techniques have been established and L-lactic acid has been produced at low cost on a commercial basis, it cannot be said that a method for producing highly optically active D-lactic acid at low cost has been sufficiently established. The low-cost fermentation production technology is extremely important in the practical application of polylactic acid resin.

工業的なD−乳酸発酵法として、組換え微生物を用いた方法や非組換え微生物を用いた方法が研究されている。組換え微生物を用いた研究例として、Ishida,Nらは、高光学純度D−乳酸の効率的生産を目的として、ピルビン酸デカルボキシラーゼ遺伝子を欠損したSaccharomyces cerevisiaeにLeuconostoc mesenteroides subsp.mesenteroides NBRC3426株由来のD−乳酸デヒドロゲナーゼ遺伝子を導入してグルコースからのD−乳酸生産を試みたところ、光学純度99.9%のD−乳酸を生産したことが開示されている(非特許文献1、特許文献1)。しかしながら、培地に高価な成分を必要とすることが課題であった。   As industrial D-lactic acid fermentation methods, methods using recombinant microorganisms and methods using non-recombinant microorganisms have been studied. As an example of research using recombinant microorganisms, Ishida, N. et al., Saccharomyces cerevisiae subsp. It was disclosed that when D-lactic acid dehydrogenase gene derived from mesenteroides NBRC3426 strain was introduced to produce D-lactic acid from glucose, D-lactic acid having an optical purity of 99.9% was produced (Non-patent Document 1). Patent Document 1). However, it was a problem to require expensive components in the culture medium.

一方、非組み換え微生物を用いた方法として、Erwinia属の微生物が、グルコースを炭素源として、酵母エキスやポリペプトンなどの着色培地成分を用いず、グルコースと無機塩のみでD−乳酸を発酵することが開示されている(特許文献2)。着色培地成分を用いないことから、排水処理コストが低減することが期待される。
しかしながら、Erwinia属は、廃糖蜜や酵母エキスなどの有色成分を培地に添加することなく、品質が一定の発酵培地を用いて、従来と同等の発酵所要時間で低コストにD−乳酸を発酵することが可能であるが、対糖収率が低く、D−乳酸産生濃度が低いことが課題であった。
On the other hand, as a method using a non-recombinant microorganism, a microorganism belonging to the genus Erwinia can ferment D-lactic acid only with glucose and an inorganic salt without using a coloring medium component such as yeast extract or polypeptone with glucose as a carbon source. It is disclosed (Patent Document 2). Since no coloring medium component is used, the wastewater treatment cost is expected to be reduced.
However, the genus Erwinia ferments D-lactic acid at a low cost with a fermentation time of a constant quality using a fermentation medium with a constant quality without adding colored components such as molasses and yeast extract to the medium. However, it was a problem that the yield to sugar was low and the concentration of D-lactic acid was low.

特開2005−102625号公報JP 2005-102625 A 特開2009−291132号公報JP 2009-291132 A

Ishida,N. et al、J.Biosci.Bioeng.,101(2),172−177(2006)Ishida, N .; et al, J. et al. Biosci. Bioeng. , 101 (2), 172-177 (2006)

本発明の目的は、上記従来の問題を解決し、対糖収率が高く、D−乳酸産生濃度が高い微生物を提供することにある。さらに、当該微生物を用いたD−乳酸製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a microorganism having a high yield to sugar and a high concentration of D-lactic acid. Furthermore, it is providing the D-lactic acid manufacturing method using the said microorganisms.

本発明者らは、対糖収率が高く、D−乳酸産生濃度が高い微生物について鋭意検討を重ねたところ、Erwinia属に属する微生物を変異させることで、廃糖蜜や酵母エキスなどの有色成分を培地に添加することなく、品質が一定の発酵培地を用いて、従来と同等の発酵所要時間で高効率にD−乳酸を発酵生産することが可能なことを見出した。
また、さらに検討を重ねた結果、当該微生物を用い、発酵によってD−乳酸を製造する際に、培養液中の酸化還元電位(ORP)を制御することにより、乳酸発酵の副生成物であるギ酸の生成量が低減することを見出した。また、培養液中のpHを制御することで、対糖収率およびD−乳酸の生成が増加することを見出した。
The inventors of the present invention have conducted extensive studies on microorganisms with high sugar yield and high D-lactic acid production concentration. By mutating microorganisms belonging to the genus Erwinia, colored components such as waste molasses and yeast extract can be obtained. It has been found that it is possible to fermentatively produce D-lactic acid with high efficiency using a fermentation medium having a constant quality without adding to the medium and with a fermentation time equivalent to the conventional one.
Further, as a result of further studies, formic acid, which is a by-product of lactic acid fermentation, is produced by controlling the oxidation-reduction potential (ORP) in the culture solution when producing D-lactic acid by fermentation using the microorganism. It was found that the production amount of was reduced. Moreover, it discovered that the yield to sugar and the production | generation of D-lactic acid increased by controlling pH in a culture solution.

即ち、本発明によれば、
1.Erwinia M3と命名され、NITE P−01579として寄託された微生物が提供される。
また、本願発明には、下記2〜4の発明も包含される。
2.上記1に記載の微生物と有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地とを用い、培養時のpHを7.0〜8.0の範囲内に制御しつつ、D−乳酸を製造する方法。
3.上記1に記載の微生物と、有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地とを用い、培養時の酸化還元電位(ORP)を−250mV〜−100mVの範囲内に制御しつつ、D−乳酸を製造する方法。
4.上記1に記載の微生物と有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地とを用い、培養時のpHを7.0〜8.0の範囲内に、酸化還元電位(ORP)を−250mV〜−100mVの範囲内に制御しつつ、D−乳酸を製造する方法。
That is, according to the present invention,
1. A microorganism named Erwinia M3 and deposited as NITE P-01579 is provided.
The present invention also includes the following inventions 2 to 4.
2. Using the microorganism described in 1 above and a medium that does not contain molasses, which is a colored component, or a medium that has a yeast extract concentration of less than 0.1%, the pH during culture is within the range of 7.0 to 8.0. A method for producing D-lactic acid while controlling.
3. Using the microorganism described in 1 above and a medium that does not contain molasses, which is a colored component, or a medium that has a yeast extract concentration of less than 0.1%, an oxidation-reduction potential (ORP) during culture is -250 mV to -100 mV. A method for producing D-lactic acid while controlling within the range.
4). Using the microorganism described in 1 above and a medium that does not contain molasses, which is a colored component, or a medium that has a yeast extract concentration of less than 0.1%, the pH during culture is within the range of 7.0 to 8.0. A method for producing D-lactic acid while controlling an oxidation-reduction potential (ORP) within a range of −250 mV to −100 mV.

本発明の微生物によれば、有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地を用いて、対糖収率とD−乳酸産生濃度が高い発酵生産を行うことができる。また、D−乳酸産生時時に培養液中のpH及び/または酸化還元電位を制御することで、対糖収率とD−乳酸産生濃度が高い発酵生産方法を提供することが可能である。   According to the microorganism of the present invention, fermentation production with a high sugar yield and high D-lactic acid production concentration can be achieved using a medium that does not contain molasses, which is a colored component, or a medium that has a yeast extract concentration of less than 0.1%. It can be carried out. Further, by controlling the pH and / or redox potential in the culture solution during the production of D-lactic acid, it is possible to provide a fermentation production method having a high yield to sugar and a high concentration of D-lactic acid.

本願の実施例で用いたErwinia属の変異株10種(TDLNo.1〜10)について、それぞれの変異株のD−乳酸産生濃度を表した棒グラフである。It is the bar graph showing the D-lactic acid production density | concentration of each mutant about 10 types of mutant strains (TDLNo.1-10) of the genus Erwinia used in the Example of this application.

以下、本発明について詳細に説明する。
<Erwinia M3と命名され、NITE P−01579として寄託された微生物>
本発明の微生物は、Erwinia属に属する微生物の変異株であって、新規な菌株として、2013年3月25日付けで、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託しており(受託番号は、NITE P−01579である。)、容易に入手可能である。
Hereinafter, the present invention will be described in detail.
<Microorganism named Erwinia M3 and deposited as NITE P-01579>
The microorganism of the present invention is a mutant strain of a microorganism belonging to the genus Erwinia, and has been deposited as a new strain on March 25, 2013 with the Patent Microorganism Depositary, National Institute of Technology and Evaluation of the National Institute of Technology and Evaluation ( The accession number is NITE P-01579), which is readily available.

本願発明のD−乳酸を特異的に産生するErwinia M3は、土壌中やその他の場所にも存在しているErwinia属に属する微生物を変異させて得たものであり、自然環境から分離されたErwinia属を用いて、一般に公知な方法で変異を行うことで得ることができる。
変異方法としては、例えば、アルキル化剤などの化学的変異原やX線・ガンマー線・中性子線などの物理的変異原を用いた突然変異誘発や、遺伝子操作による変異導入などが挙げられる。
Erwinia M3 that specifically produces D-lactic acid of the present invention is obtained by mutating a microorganism belonging to the genus Erwinia that is also present in the soil and other places, and Erwinia isolated from the natural environment. It can be obtained by performing mutation using a genus by a generally known method.
Examples of mutation methods include mutagenesis using chemical mutagens such as alkylating agents and physical mutagens such as X-rays, gamma rays, and neutrons, and mutation introduction by genetic manipulation.

本発明のErwinia M3は、対糖収率とD−乳酸産生濃度の向上の観点から、エチルメタンスルホン酸による変異誘発を使用することが好ましい。
ここで対糖収率とは下記式(i)から求められる値、D−乳酸産生濃度は発酵液をHPLCを用いて分析して面積より求められる値である。
[数1]
対糖収率(%)=[{(発酵後のD−乳酸濃度)−(発酵前のD−乳酸濃度)}/{(発酵後のグルコース濃度−発酵前のグルコース濃度)}] × 100 (i)
The Erwinia M3 of the present invention preferably uses mutagenesis with ethyl methanesulfonic acid from the viewpoint of improving the yield to sugar and the concentration of D-lactic acid production.
Here, the yield to sugar is a value obtained from the following formula (i), and the D-lactic acid production concentration is a value obtained from the area obtained by analyzing the fermentation broth using HPLC.
[Equation 1]
Yield to sugar (%) = [{(D-lactic acid concentration after fermentation) − (D-lactic acid concentration before fermentation)} / {(glucose concentration after fermentation−glucose concentration before fermentation)}] × 100 ( i)

<D−乳酸の製造方法>
本発明のD−乳酸の製造方法は、一般に公知な方法で行うことができる。製造方法としては、例えば、回分培養(Batch culture)、流加培養(Fed−batch culture)、連続培養法(Continuous culture)などが挙げられる。ここで、流加培養とは、培養中の容器に培地を連続的又は間欠的に流加し、培養終了時までその培地を容器から抜き取らない培養方法をいう。また、連続培養とは、培養中の容器に培地を連続的又は間欠的に流加するとともに、容器から培地(通常、流加する培地と当量)を抜き取る方法をいう。
<Method for producing D-lactic acid>
The method for producing D-lactic acid of the present invention can be generally performed by a known method. Examples of the production method include batch culture, fed-batch culture, continuous culture method, and the like. Here, fed-batch culture refers to a culture method in which a medium is fed continuously or intermittently to a container during the culture, and the medium is not removed from the container until the end of the culture. Continuous culture refers to a method in which a medium is fed continuously or intermittently to a container during culture and the medium (usually equivalent to the medium to be fed) is extracted from the container.

発酵生産に用いる培地中の炭素源としては、一般に公知なものを使用することができる。例えば、グルコース、フルクトース、ガラクトース、スクロース、イヌリン、マルトース、アラビノース、セルビオース、ラクトース、メリビオース、ラフィノース、トレハロース、サリシン、マンニトール、ソルビトール、マンノース、スターチなどの糖類、澱粉加水分解物、糖蜜が挙げられる。   Generally well-known things can be used as a carbon source in the culture medium used for fermentation production. Examples thereof include sugars such as glucose, fructose, galactose, sucrose, inulin, maltose, arabinose, cellobiose, lactose, melibiose, raffinose, trehalose, salicin, mannitol, sorbitol, mannose, starch, starch hydrolyzate, and molasses.

また、藻類や木材、廃棄物などに含まれるセルロース成分から、セルラーゼを用いて回収したグルコースを発酵生産の培地中の炭素源として使用することができる。
培地組成としては、一般に公知なものを使用することができる。例えば、硫酸アンモニウム、リン酸塩、無機塩からなるW培地に、炭素源成分を20〜100g/l添加して、滅菌処理を行った培地を使用することができる。
また、水道水にリン酸塩および尿素を添加し、炭素源を20〜100g/l添加した培地を使用してもよい。
滅菌処理は、オートクレーブ滅菌やろ過滅菌を使用することができる。
In addition, glucose recovered using cellulase from cellulose components contained in algae, wood, waste, and the like can be used as a carbon source in a fermentation production medium.
As a medium composition, generally known ones can be used. For example, a medium that has been sterilized by adding 20 to 100 g / l of a carbon source component to a W medium composed of ammonium sulfate, phosphate, and inorganic salt can be used.
Moreover, you may use the culture medium which added phosphate and urea to tap water, and added 20-100 g / l of carbon sources.
As the sterilization treatment, autoclave sterilization or filtration sterilization can be used.

D−乳酸の製造は、例えば、Erwinia属に属する微生物の変異株をグルコース20〜100g/lを含むW培地を用いて24時間、30℃で培養し、その培養菌体を種菌として、発酵培地の容積の5%程度を添加して、発酵培養することで行うことができる。また、24時間、30℃で培養し菌体は10〜20%グリセロール濃度になるように混合して−80℃または液体窒素で冷凍保管して、種菌として利用することができる。   The production of D-lactic acid is performed, for example, by culturing a mutant strain of a microorganism belonging to the genus Erwinia using a W medium containing glucose 20 to 100 g / l for 24 hours at 30 ° C. It can be carried out by adding about 5% of the volume and fermenting culture. Further, the cells are cultured for 24 hours at 30 ° C., and the bacterial cells are mixed so as to have a glycerol concentration of 10 to 20%, and stored frozen at −80 ° C. or in liquid nitrogen, and can be used as inoculum.

発酵時の温度は、20℃〜50℃の範囲で制御することが好ましく、D−乳酸産生速度や対糖収率、D−乳酸産生濃度の観点から、25℃〜40℃がより好ましく、27℃〜35℃がさらに好ましい。20℃より低いと微生物によるD−乳酸産生がほとんど起こらない場合がある。また、50℃よりも高いと微生物の生育上問題となる場合がある。
発酵時は撹拌しても無撹拌でもよいが、D−乳酸産生速度や対糖収率、D−乳酸産生濃度の観点から、撹拌することが好ましい。
The temperature during fermentation is preferably controlled in the range of 20 ° C. to 50 ° C., and more preferably 25 ° C. to 40 ° C. from the viewpoint of D-lactic acid production rate, yield to sugar, and D-lactic acid production concentration. More preferably, the temperature is from 35C to 35C. When it is lower than 20 ° C., D-lactic acid production by microorganisms may hardly occur. On the other hand, if it is higher than 50 ° C., it may cause a problem in the growth of microorganisms.
Although it may be stirred or unstirred during the fermentation, stirring is preferred from the viewpoints of D-lactic acid production rate, yield to sugar, and D-lactic acid production concentration.

本発明のErwinia属に属する微生物の変異株、とりわけ、寄託番号NITE P−01579として寄託されている微生物は、D−乳酸発酵時の培養液中のpH及び/または酸化還元電位を制御することで、対糖収率が高く、D−乳酸産生濃度の高い発酵生産を行うことができる。   The mutant strain of the microorganism belonging to the genus Erwinia of the present invention, in particular, the microorganism deposited under the deposit number NITE P-01579, controls the pH and / or redox potential in the culture solution during D-lactic acid fermentation. Fermentative production with a high sugar yield and a high concentration of D-lactic acid can be performed.

本発明の発酵時の培養液中のpHは、7.0〜8.0の範囲で制御することが好ましい。対糖収率、D−乳酸産生濃度の観点から、7.4〜7.7の範囲で制御することがより好ましい。培養液中のpHは、生成するD−乳酸を中和することで制御することができ、中和には一般に公知な方法を用いることができる。例えば、アンモニア、炭酸カルシウム、水酸化ナトリウムなどのアルカリ成分を培養液中に添加する方法が挙げられる。培養液中のpHは一般に公知の方法で測定したい値であり、pHメーターやpH試験紙で確認される値である。   It is preferable to control pH in the culture solution at the time of fermentation of this invention in the range of 7.0-8.0. From the viewpoint of sugar yield and D-lactic acid production concentration, it is more preferable to control in the range of 7.4 to 7.7. The pH in the culture solution can be controlled by neutralizing the produced D-lactic acid, and a generally known method can be used for neutralization. For example, the method of adding alkaline components, such as ammonia, calcium carbonate, sodium hydroxide, to a culture solution is mentioned. The pH in the culture solution is generally a value that is desired to be measured by a known method, and is a value that is confirmed with a pH meter or pH test paper.

本発明の発酵時の培養液中の酸化還元電位は、−250mV〜−100mVの範囲で制御することが好ましい。対糖収率、D−乳酸産生濃度の観点から、−200mV〜−100mVの範囲で制御することがより好ましい。−250mVよりも低いと発酵時の副生成物、とくにギ酸の生成が多くなり、対糖収率が低下する場合がある。また、−100mVよりも高いと菌体の特性上、増殖に糖成分を消費するため、D−乳酸産生濃度が低くなる場合がある。培養液中の酸化還元電位は、空気もしくは酸素、二酸化炭素および窒素を曝気し調節することができる。培養液中の酸化還元電位は、白金等貴金属類や炭素などを指示電極とし、対極として銀・塩化銀電極などを用いる、一般に公知な方法で測定することができる。   The oxidation-reduction potential in the culture solution during fermentation of the present invention is preferably controlled in the range of −250 mV to −100 mV. From the viewpoint of sugar yield and D-lactic acid production concentration, it is more preferable to control in the range of -200 mV to -100 mV. If it is lower than −250 mV, the production of by-products during fermentation, particularly formic acid, increases, and the yield to sugar may decrease. On the other hand, if it is higher than −100 mV, the sugar component is consumed for growth due to the characteristics of the cells, and the D-lactic acid production concentration may be lowered. The oxidation-reduction potential in the culture solution can be adjusted by aeration of air or oxygen, carbon dioxide and nitrogen. The oxidation-reduction potential in the culture can be measured by a generally known method using a noble metal such as platinum or carbon as an indicator electrode and a silver / silver chloride electrode as a counter electrode.

以下、本発明を実施例によりさらに具体的に説明するが本発明はこれにより何等限定を受けるものでは無い。各物性は以下の方法により測定した。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. Each physical property was measured by the following methods.

(1)D−乳酸、グルコース、ギ酸の濃度、D−乳酸産生濃度:
乳酸、グルコース、ギ酸の濃度、D−乳酸産生濃度はHPLCを用いて、下記の条件で測定し、面積から各々の濃度を求めた。
HPLC :ジーエルサイエンス株式会社製 GL−7410
分析カラム :発酵モニタリングカラム(Bio Rad社製)
流速 :0.8ml/min
温度 :70℃
展開溶媒 :1mM 硫酸
検出 :A210及び示差屈折
サンプル量 :10μリットル
(1) D-lactic acid, glucose, formic acid concentration, D-lactic acid production concentration:
The concentration of lactic acid, glucose and formic acid, and the D-lactic acid production concentration were measured under the following conditions using HPLC, and each concentration was determined from the area.
HPLC: GL-7410 manufactured by GL Sciences Inc.
Analysis column: Fermentation monitoring column (manufactured by Bio Rad)
Flow rate: 0.8 ml / min
Temperature: 70 ° C
Developing solvent: 1 mM sulfuric acid Detection: A210 and differential refraction Sample amount: 10 μl

(2)対糖収率:
対糖収率は下記式(ii)から求めた。
[数2]
対糖収率(%)=[{(発酵後のD−乳酸濃度)−(発酵前のD−乳酸濃度)}/{(発酵後のグルコース濃度−発酵前のグルコース濃度)}] × 100 (ii)
(2) Sugar yield:
The sugar yield was determined from the following formula (ii).
[Equation 2]
Yield to sugar (%) = [{(D-lactic acid concentration after fermentation) − (D-lactic acid concentration before fermentation)} / {(glucose concentration after fermentation−glucose concentration before fermentation)}] × 100 ( ii)

(3)乳酸の光学純度:
乳酸の光学純度はHPLCを用いて、下記の条件で測定し、面積を用いて下記式(iii)から求めた。
HPLC :ジーエルサイエンス株式会社製 GL−7410
分析カラム :SUMICHIRAL OA−5000(住友化学社製)
流速 :1ml/min
温度 :40℃
展開溶媒 :1mM CuSO4(0.22μ濾過)
検出 :A254
サンプル量 :10μl
[数3]
光学純度(%)={(D−L)/(D+L)} × 100 (iii)
(3) Optical purity of lactic acid:
The optical purity of lactic acid was measured under the following conditions using HPLC, and determined from the following formula (iii) using the area.
HPLC: GL-7410 manufactured by GL Sciences Inc.
Analytical column: Sumichiral OA-5000 (Sumitomo Chemical Co., Ltd.)
Flow rate: 1 ml / min
Temperature: 40 ° C
Developing solvent: 1 mM CuSO4 (0.22 μ filtration)
Detection: A254
Sample volume: 10 μl
[Equation 3]
Optical purity (%) = {(D−L) / (D + L)} × 100 (iii)

(4)培養液中の菌体量:
培養液中の菌体量は、分光光度計(株式会社日立ハイテクノロジーズ製 U2000)を用いて、吸光度600nmの濁度(OD)を測定して求めた。
pH、酸化還元電位は以下の方法により制御した。
(4) The amount of cells in the culture solution:
The amount of bacterial cells in the culture solution was determined by measuring the turbidity (OD) at an absorbance of 600 nm using a spectrophotometer (U2000, manufactured by Hitachi High-Technologies Corporation).
The pH and redox potential were controlled by the following method.

(5)pHの制御:
培養液中のpHの制御は、中和剤として28%アンモニア水(ナカライテスク品)、pH制御装置として「DJ−1023P」(バイオット社製)を用いて行った。
(5) pH control:
Control of pH in the culture solution was performed using 28% aqueous ammonia (Nacalai Tesque) as a neutralizing agent and “DJ-1023P” (manufactured by Biot) as a pH controller.

(6)酸化還元電位(ORP)の制御:
培養液中の酸化還元電位の制御は、ORP制御装置「DJ−1083」(バイオット社製)を用い、所望のORPになるように圧縮空気(5L/min)を添加して行った。
(6) Control of redox potential (ORP):
Control of the oxidation-reduction potential in the culture solution was performed by using an ORP control device “DJ-1083” (manufactured by Biot) and adding compressed air (5 L / min) so as to obtain a desired ORP.

以下、本実施例で使用するErwinia属に属する微生物の変異株を説明する。
Erwinia属に属する微生物の変異株として、以下の方法で変異処理して得た。
Hereinafter, mutant strains of microorganisms belonging to the genus Erwinia used in this example will be described.
A mutant strain of a microorganism belonging to the genus Erwinia was obtained by mutation treatment according to the following method.

[変異株の作製]
野生型のErwinia sp.を2%グリセロール含有W培地(硫酸アンモニウム2g/l、硫酸マグネシウム0.25g/l、塩化カルシウム2水和物0.015g/l、塩化ナトリウム0.5g/l、リン酸水素ナトリウム12水和物14.3g/l、リン酸水素カリウム5.4g/l、硫酸亜鉛7水和物2mg/l、モリブデン酸アンモニウム4水和物0.15mg/l、硫酸銅5水和物0.2mg/l、塩化コバルト0.4mg/l、硫酸マンガン5水和物1.5mg/lを含む)で、30℃、150回転/分の条件で24時間振とう培養を実施した。
培養後、菌体を含む培養液を1.5mlチューブに1ml加え、遠心分離機を用いて集菌し、蒸留水で2回洗浄した。洗浄後、エチルメタンスルホン酸(ナカライテスク社)を終濃度0.3%、3%になるように添加し、室温で30分及び60分変異処理を実施した。
[Preparation of mutant strain]
Wild type Erwinia sp. 2% glycerol-containing W medium (ammonium sulfate 2 g / l, magnesium sulfate 0.25 g / l, calcium chloride dihydrate 0.015 g / l, sodium chloride 0.5 g / l, sodium hydrogenphosphate dodecahydrate 14 0.3 g / l, potassium hydrogen phosphate 5.4 g / l, zinc sulfate heptahydrate 2 mg / l, ammonium molybdate tetrahydrate 0.15 mg / l, copper sulfate pentahydrate 0.2 mg / l, (Including cobalt chloride 0.4 mg / l, manganese sulfate pentahydrate 1.5 mg / l), and shaking culture was performed at 30 ° C. and 150 rpm for 24 hours.
After culturing, 1 ml of a culture solution containing microbial cells was added to a 1.5 ml tube, collected using a centrifuge, and washed twice with distilled water. After washing, ethyl methanesulfonic acid (Nacalai Tesque) was added to a final concentration of 0.3% and 3%, and mutation treatment was performed at room temperature for 30 minutes and 60 minutes.

変異処理後、滅菌水で菌体を2回洗浄し、1mlの滅菌水に懸濁した。懸濁した菌体液のうち100μLを2%グルコース含有W培地に塗布し、30℃で24時間培養した。プレート上に生育したコロニーを用いて3ml試験管スケールでD−乳酸発酵試験を72時間行い、D−乳酸産生量の高い菌株について、さらに20mlフラスコスケールを用いた発酵試験を72時間実施した。
なお、発酵試験は、培地は2%グルコース含有W培地、中和剤は培地に対して2%濃度となる炭酸カルシウムを用い、初期菌体量は2%グルコース含有W培地中で30℃、24時間培養した種菌(以後の発酵においても、種菌は同様の方法で準備したものを使用した)を用いて、OD=5となるように調整し、発酵液を30℃、50回転/分で振盪しながら72時間発酵した。
20mL変異株のD−乳酸産生濃度を図1に示した。その結果、最もD−乳酸産生量が大きいTDL No.3株が得られた。以後の実施例はこのTDL No.3株を用いて実施した(TDL No.3株はErwinia M3と命名し、NITE P−01579の受託番号で寄託した微生物である。)。
After the mutation treatment, the cells were washed twice with sterilized water and suspended in 1 ml of sterilized water. 100 μL of the suspended bacterial cell solution was applied to 2% glucose-containing W medium and cultured at 30 ° C. for 24 hours. A D-lactic acid fermentation test was performed for 72 hours on a 3 ml test tube scale using colonies grown on the plate, and a fermentation test using a 20 ml flask scale was further performed for 72 hours for strains with high D-lactic acid production.
In the fermentation test, the medium was 2% glucose-containing W medium, the neutralizing agent was calcium carbonate having a concentration of 2% with respect to the medium, and the initial cell amount was 30 ° C., 24% in 2% glucose-containing W medium. Using an inoculum that has been cultured for a long time (in the subsequent fermentation, an inoculum prepared by the same method was used), adjusted to OD = 5, and the fermentation broth was shaken at 30 ° C. and 50 rpm. And fermented for 72 hours.
The D-lactic acid production concentration of the 20 mL mutant strain is shown in FIG. As a result, TDL no. Three strains were obtained. In the following examples, this TDL No. 3 strains were used (TDL No. 3 strain was named Erwinia M3 and deposited with the deposit number of NITE P-01579).

[実施例1]Erwinia M3を用いたD−乳酸発酵:
500mLスケールのフラスコを用い、2%グルコース含有W培地(グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、アルギニン、リシンを各0.01g/L追加したもの)100mLと、培地中で10%濃度となる炭酸カルシウムを加え、そこに、Erwina M3株の種菌を培地中でOD=5となるように追加し、発酵液を30℃、50回転で振盪しながら72時間発酵した。72時間後のD−乳酸産生濃度は8.7g/L、対糖収率は94.6%であった。
[Example 1] D-lactic acid fermentation using Erwinia M3:
Using a 500 mL scale flask, 100 mL of W medium containing 2% glucose (0.01 g / L each of glutamic acid, glutamine, aspartic acid, asparagine, arginine, and lysine) and 10% concentration of calcium carbonate in the medium Was added thereto so that Erwina M3 strain inoculum was OD = 5 in the medium, and the fermentation solution was fermented for 72 hours while shaking at 30 ° C. and 50 rotations. After 72 hours, the D-lactic acid production concentration was 8.7 g / L, and the yield to sugar was 94.6%.

[比較例1]Erwinia sp.を用いたD−乳酸発酵
Erwinia M3株を野生株であるErwinia sp.に変更した以外は、実施例1と同様にして72時間発酵を行った。72時間後のD−乳酸産生濃度は0.25g/l、対応収率は61.4%であった。
[Comparative Example 1] Erwinia sp. D-lactic acid fermentation using Erwinia M3 strain as a wild strain Erwinia sp. Fermentation was carried out for 72 hours in the same manner as in Example 1 except that the change was made. The D-lactic acid production concentration after 72 hours was 0.25 g / l, and the corresponding yield was 61.4%.

[実施例2]酸化還元電位の影響−1:
5Lスケールのジャーファーメンターを用い、2%グルコース含有W培地(グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、アルギニン、リシンを各0.01g/L追加したもの)に、Erwinia M3の種菌を培地中でOD=12.5となるように加え、トータル量3lとした発酵液を30℃、50rpmで撹拌しながら発酵した。発酵中はグルコース濃度が5g/Lとなった時点で20g/Lとなるように追糖し、最終的にトータルのグルコース仕込み量が4%となるようにした。
さらに、中和剤として28%アンモニア水を用いてpHが6.8になるようにコントロールした。到達ORPは−380mVであった。72時間後のD−乳酸産生濃度は17.7g/L、その時点の対糖収率は41.4%であった。また、ギ酸の産生濃度は8.2g/Lであった。
[Example 2] Effect of redox potential-1:
Using a 5 L scale jar fermenter, inoculate Erwinia M3 seed medium in 2% glucose-containing W medium (adding 0.01 g / L each of glutamic acid, glutamine, aspartic acid, asparagine, arginine, and lysine) in the medium. = 12.5 and the total amount of the fermented liquid made up to 3 l was fermented while stirring at 30 ° C. and 50 rpm. During fermentation, sugar was added so that the glucose concentration would be 20 g / L when the glucose concentration reached 5 g / L, so that the total glucose charge was finally 4%.
Furthermore, the pH was controlled to 6.8 using 28% aqueous ammonia as a neutralizing agent. The reached ORP was -380 mV. The concentration of D-lactic acid produced after 72 hours was 17.7 g / L, and the yield relative to sugar at that time was 41.4%. The production concentration of formic acid was 8.2 g / L.

[実施例3]酸化還元電位の影響−2:
圧縮空気によってORPを−150mVにコントロールした以外は、実施例2と同様にして発酵を行った。発酵中はグルコース濃度が5g/Lとなった時点で20g/Lとなるように追糖し、最終的にトータルのグルコース仕込み量が4%となるようにした。さらに、中和剤として28%アンモニア水を用いてpHが6.8になるようにコントロールした。72時間後のD−乳酸産生濃度は19.6g/L、対糖収率は62.4%であった。また、ギ酸の産生濃度は確認されなかった。
[Example 3] Effect of redox potential-2:
Fermentation was carried out in the same manner as in Example 2 except that ORP was controlled to -150 mV with compressed air. During fermentation, sugar was added so that the glucose concentration would be 20 g / L when the glucose concentration reached 5 g / L, so that the total glucose charge was finally 4%. Furthermore, the pH was controlled to 6.8 using 28% aqueous ammonia as a neutralizing agent. The D-lactic acid production concentration after 72 hours was 19.6 g / L, and the yield to sugar was 62.4%. Moreover, the production concentration of formic acid was not confirmed.

[実施例4]pHの影響:
制御するpHを7.6にした以外は、実施例3と同様にして、発酵を行った。発酵中はグルコース濃度が5g/Lとなった時点で20g/Lとなるように追糖し、最終的にトータルのグルコース仕込み量が4%となるようにした。さらに、中和剤として28%アンモニア水を用いてpHが7.6になるようにコントロールした。72時間後のD−乳酸産生濃度は36.8g/L、対糖収率は92.0%であった。また、ギ酸の産生濃度は確認されなかった。
Example 4 Effect of pH:
Fermentation was carried out in the same manner as in Example 3 except that the pH to be controlled was 7.6. During fermentation, sugar was added so that the glucose concentration would be 20 g / L when the glucose concentration reached 5 g / L, so that the total glucose charge was finally 4%. Furthermore, the pH was controlled to 7.6 using 28% ammonia water as a neutralizing agent. The D-lactic acid production concentration after 72 hours was 36.8 g / L, and the yield to sugar was 92.0%. Moreover, the production concentration of formic acid was not confirmed.

本発明によれば、ポリ乳酸原料となるD−乳酸を、安価に効率よく生産できるため、D−乳酸を低コストで工業生産が可能となる。   According to the present invention, since D-lactic acid as a polylactic acid raw material can be produced efficiently at low cost, D-lactic acid can be industrially produced at low cost.

Claims (4)

Erwinia M3と命名され、NITE P−01579として寄託されたD−乳酸産生微生物。   A D-lactic acid producing microorganism named Erwinia M3 and deposited as NITE P-01579. 請求項1に記載の微生物と有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地とを用い、培養時のpHを7.0〜8.0の範囲内に制御しつつ、D−乳酸を製造する方法。   Using the microorganism according to claim 1 and a medium not containing waste molasses which is a colored component or a medium having a yeast extract concentration of less than 0.1%, the pH during cultivation is within the range of 7.0 to 8.0. A method for producing D-lactic acid while being controlled. 請求項1に記載の微生物と、有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地とを用い、培養時の酸化還元電位(ORP)を−250mV〜−100mVの範囲内に制御しつつ、D−乳酸を製造する方法。   Using the microorganism according to claim 1 and a medium not containing waste molasses which is a colored component or a medium having a yeast extract concentration of less than 0.1%, an oxidation-reduction potential (ORP) during culture is -250 mV to- A method for producing D-lactic acid while controlling it within a range of 100 mV. 請求項1に記載の微生物と有色成分である廃糖蜜を含まない培地又は酵母エキス濃度が0.1%未満である培地とを用い、培養時のpHを7.0〜8.0の範囲内に、酸化還元電位(ORP)を−250mV〜−100mVの範囲内に制御しつつ、D−乳酸を製造する方法。   Using the microorganism according to claim 1 and a medium not containing waste molasses which is a colored component or a medium having a yeast extract concentration of less than 0.1%, the pH during cultivation is within the range of 7.0 to 8.0. And a method for producing D-lactic acid while controlling the oxidation-reduction potential (ORP) within a range of −250 mV to −100 mV.
JP2014060108A 2014-03-24 2014-03-24 D-lactic acid-producing microorganisms and production methods thereof Pending JP2015181387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014060108A JP2015181387A (en) 2014-03-24 2014-03-24 D-lactic acid-producing microorganisms and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060108A JP2015181387A (en) 2014-03-24 2014-03-24 D-lactic acid-producing microorganisms and production methods thereof

Publications (1)

Publication Number Publication Date
JP2015181387A true JP2015181387A (en) 2015-10-22

Family

ID=54348716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060108A Pending JP2015181387A (en) 2014-03-24 2014-03-24 D-lactic acid-producing microorganisms and production methods thereof

Country Status (1)

Country Link
JP (1) JP2015181387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642094A (en) * 2018-08-17 2018-10-12 广东省生物工程研究所(广州甘蔗糖业研究所) A kind of method of the antibacterial molasses alcohol fermentation of biology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642094A (en) * 2018-08-17 2018-10-12 广东省生物工程研究所(广州甘蔗糖业研究所) A kind of method of the antibacterial molasses alcohol fermentation of biology
CN108642094B (en) * 2018-08-17 2024-03-12 广东省生物工程研究所(广州甘蔗糖业研究所) Biological antibacterial molasses alcohol fermentation method

Similar Documents

Publication Publication Date Title
Sun et al. Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15
JP5605597B2 (en) Genetic manipulation of thermostable Bacillus coagulans for D (-)-lactic acid production
Subramanian et al. Production of lactic acid using a new homofermentative E nterococcus faecalis isolate
Wang et al. Isolation, characterization and evolution of a new thermophilic Bacillus licheniformis for lactic acid production in mineral salts medium
JP6444419B2 (en) Sporolactobacillus terae and its use
CN109628339B (en) L-lactic acid producing strain and method for producing L-lactic acid by using same
Jiang et al. High tolerance to glycerol and high production of 1, 3‐propanediol in batch fermentations by microbial consortium from marine sludge
Yáñez et al. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures
Pattanamanee et al. Repeated-batch production of hydrogen using Rhodobacter sphaeroides S10
CN106190936A (en) A kind of bacterium and construction method thereof and application
CN102154339A (en) Construction method of gene engineering strain producing succinic acid escherichia coli
CN103361289A (en) Strain for producing L-lysine and method thereof for producing L-lysine
CN101307354A (en) Method for screening strains with high lactic acid yield
CN106609249B (en) Klebsiella pneumoniae mutant bacteria and its application for producing 1,3- propylene glycol
CN102517303B (en) Recombination blue-green alga for producing lactic acid as well as preparation method and applications thereof
CN102146415A (en) Gene knockout bacterium of gluconobacter oxydans and preparation method thereof
WO2019159011A2 (en) Microorganisms and processes for lactic acid production
Cunha et al. Indirect method for quantification of cellular biomass in a solidscontaining medium used as pre-culture for cellulase production
CN106190901B (en) Bacterium and obtaining method and application thereof
CN104263680B (en) Thermoanaerobacter ethanolicus and method for producing ethanol by using same
TWI577800B (en) Enterococcus faecalis and uses of lactic acid production at high temperatures
CN101993850B (en) Genetic engineering bacteria for producing D-lactic acid and constructon method and application thereof
JP2015181387A (en) D-lactic acid-producing microorganisms and production methods thereof
JP5403612B2 (en) New hydrogen-producing bacteria
JP6558767B2 (en) Method for producing pyruvic acid using halomonas bacteria