JP2015179835A - Organic thin-film transistor and organic electronic device - Google Patents

Organic thin-film transistor and organic electronic device Download PDF

Info

Publication number
JP2015179835A
JP2015179835A JP2015036221A JP2015036221A JP2015179835A JP 2015179835 A JP2015179835 A JP 2015179835A JP 2015036221 A JP2015036221 A JP 2015036221A JP 2015036221 A JP2015036221 A JP 2015036221A JP 2015179835 A JP2015179835 A JP 2015179835A
Authority
JP
Japan
Prior art keywords
group
film transistor
carbon atoms
organic
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015036221A
Other languages
Japanese (ja)
Other versions
JP6478705B2 (en
Inventor
時任 静士
Shizuo Tokito
静士 時任
憲二郎 福田
Kenjiro Fukuda
憲二郎 福田
敏 羽村
Satoshi Hamura
敏 羽村
貴 福田
Takashi Fukuda
貴 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Tosoh Corp
Original Assignee
Yamagata University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Tosoh Corp filed Critical Yamagata University NUC
Priority to JP2015036221A priority Critical patent/JP6478705B2/en
Publication of JP2015179835A publication Critical patent/JP2015179835A/en
Application granted granted Critical
Publication of JP6478705B2 publication Critical patent/JP6478705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic thin-film transistor which has small variation in characteristics, and high carrier mobility.SOLUTION: The organic thin-film transistor includes a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor film. The organic semiconductor film contains an organic semiconductor represented by general formula (1). The interfacial energy between a material used for the gate insulating film and the organic semiconductor is 2.0 mJ/mor less. The organic semiconductor film is obtained by deposition using a printing process.

Description

本発明は、有機薄膜トランジスタ及び有機電子デバイスに関し、さらに詳しくは、キャリア移動度が高く、しきい値電圧など性能のばらつきが小さい有機薄膜トランジスタ及び有機電子デバイスに関する。   The present invention relates to an organic thin film transistor and an organic electronic device, and more particularly to an organic thin film transistor and an organic electronic device that have high carrier mobility and small performance variations such as threshold voltage.

有機薄膜トランジスタに代表される有機半導体デバイスは、省エネルギー、低コスト及びフレキシブルといった無機半導体デバイスにはない特長を有することから近年注目されている。   Organic semiconductor devices typified by organic thin film transistors have attracted attention in recent years because they have features not found in inorganic semiconductor devices such as energy saving, low cost, and flexibility.

この有機半導体デバイスは、有機半導体層、基板、絶縁層、電極等の数種類の材料から構成され、中でも電荷のキャリア移動を担う有機半導体層は該デバイスの中心的な役割を有している。   This organic semiconductor device is composed of several kinds of materials such as an organic semiconductor layer, a substrate, an insulating layer, and an electrode. Among them, the organic semiconductor layer responsible for charge carrier movement has a central role of the device.

そして、有機半導体デバイスの性能は、この有機半導体層を構成する有機材料のキャリア移動度により左右されることから、高キャリア移動度を与える有機材料の出現が所望されている。   And since the performance of an organic semiconductor device is influenced by the carrier mobility of the organic material which comprises this organic-semiconductor layer, the appearance of the organic material which gives a high carrier mobility is desired.

有機半導体層を作製する方法としては、高温真空下、有機材料を気化させて実施する真空蒸着法、有機材料を適当な溶媒に溶解させその溶液を塗布する塗布法等の方法が一般的に知られている。塗布は高温高真空条件を用いることなく印刷技術を用いても実施することができるため、経済的に好ましいプロセスと考えられており、塗工性が高く、キャリア移動度に優れた有機半導体層が望まれている。   As a method for producing an organic semiconductor layer, generally known are a vacuum deposition method in which an organic material is vaporized under a high temperature vacuum, and a coating method in which an organic material is dissolved in an appropriate solvent and applied. It has been. Since the coating can be carried out using printing technology without using high-temperature and high-vacuum conditions, it is considered to be an economically preferable process, and an organic semiconductor layer having high coating properties and excellent carrier mobility. It is desired.

また、従来知られている印刷型有機薄膜トランジスタは、性能のばらつきが大きいという重要な課題を抱えており(例えば、特許文献1、特許文献2参照)、性能のばらつきの小さい印刷型有機薄膜トランジスタが望まれている。一般に、キャリア移動度と性能のばらつきはトレードオフの関係にあり、結晶性の高い低分子系半導体では高い移動度が得られやすい一方で性能のばらつきが大きい傾向があり、高分子半導体では逆の傾向となる。   In addition, conventionally known printing type organic thin film transistors have an important problem of large variations in performance (see, for example, Patent Documents 1 and 2), and printing type organic thin film transistors with small performance variations are desired. It is rare. In general, carrier mobility and performance variations are in a trade-off relationship, and low-molecular semiconductors with high crystallinity tend to achieve high mobility, while performance variations tend to be large. It becomes a trend.

特定の低分子系半導体を用いることで、有機薄膜トランジスタの諸性能のうち、キャリア移動度のばらつきを小さくした印刷型有機薄膜トランジスタが知られている(例えば、特許文献3参照)。しかし、特許文献3に記載の印刷型有機薄膜トランジスタは、印刷による有機半導体膜の形成をした後に、熱などの外部刺激により分子構造を変換する必要があるため、プロセス的な制約があるものである。また、特許文献3には、有機薄膜トランジスタの性能として重要なしきい値電圧について何らの記載がない。   A print-type organic thin film transistor is known in which, by using a specific low molecular weight semiconductor, variation in carrier mobility is reduced among various performances of the organic thin film transistor (see, for example, Patent Document 3). However, the printing type organic thin film transistor described in Patent Document 3 has a process limitation because it is necessary to convert the molecular structure by an external stimulus such as heat after forming the organic semiconductor film by printing. . Patent Document 3 does not describe any threshold voltage important as the performance of the organic thin film transistor.

高いキャリア移動度としきい値電圧を含む諸性能のばらつきの小さい印刷型有機TFTの実現がデバイス応用上必要不可欠となっている。   Realization of printed organic TFTs with small variations in performance including high carrier mobility and threshold voltage is indispensable for device applications.

特開2011−233724号公報JP 2011-233724 A 特開2008−066439号公報JP 2008-066439 A 特開2013−201363号公報JP 2013-201363 A

本発明は上記課題に鑑みてなされたものであり、その目的は、キャリア移動度が高く、しきい値電圧など性能のばらつきが小さい有機薄膜トランジスタ、及びかかる有機薄膜トランジスタを使用した有機薄膜トランジスタアレイ、電子機器を提供することにある。   The present invention has been made in view of the above problems, and has as its object the organic thin film transistor having a high carrier mobility and a small performance variation such as a threshold voltage, an organic thin film transistor array using the organic thin film transistor, and an electronic device Is to provide.

本発明者らは上記課題を解決するため鋭意検討の結果、キャリア移動度が高くしきい値電圧など性能のばらつきが小さい有機薄膜トランジスタが形成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an organic thin film transistor having high carrier mobility and small performance variations such as a threshold voltage can be formed, and the present invention has been completed.

即ち、本発明は、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体膜を有する有機薄膜トランジスタであって、該有機半導体膜が一般式(1)   That is, the present invention is an organic thin film transistor having a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor film, wherein the organic semiconductor film has the general formula (1)

Figure 2015179835
Figure 2015179835

[式中、R〜Rは、各々独立して、水素原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルチオ基、炭素数1〜20のハロアルキル基、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、5〜14員環のヘテロアリール基、又は一般式(2) [Wherein, R 1 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 1 to 1 carbon atoms. 20 alkoxy groups, C1-C20 alkylthio groups, C1-C20 haloalkyl groups, C3-C10 cycloalkyl groups, C6-C14 aryl groups, and 3- to 12-membered cyclohetero heterocycles An alkyl group, a 5- to 14-membered heteroaryl group, or general formula (2)

Figure 2015179835
Figure 2015179835

(式中、Rは、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、又は5〜14員環のヘテロアリール基を示し、Yは炭素数1〜6の2価アルキル基、又は炭素数1〜6の2価ハロアルキル基を示す。)
で表される基を示す。]
で表される有機半導体を含み、該ゲート絶縁膜に用いられる材料と該有機半導体との間の界面エネルギーが2.0mJ/m以下であり、かつ該有機半導体膜が印刷プロセスで製膜して得られることを特徴とする有機薄膜トランジスタに関するものである。
(In the formula, R 7 represents a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, a cycloheteroalkyl group having 3 to 12 members, or a heteroaryl group having 5 to 14 members. Y represents a divalent alkyl group having 1 to 6 carbon atoms or a divalent haloalkyl group having 1 to 6 carbon atoms.)
The group represented by these is shown. ]
The interface energy between the material used for the gate insulating film and the organic semiconductor is 2.0 mJ / m 2 or less, and the organic semiconductor film is formed by a printing process. It is related with the organic thin-film transistor characterized by the above-mentioned.

また、本発明は、上記印刷プロセスが、ディスペンサー印刷、インクジェット印刷、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、スリットコート印刷又はスクリーン印刷から選ばれる印刷プロセスであることを特徴とする有機薄膜トランジスタに関するものである。   The present invention also relates to an organic thin film transistor, wherein the printing process is a printing process selected from dispenser printing, inkjet printing, offset printing, relief printing, intaglio printing, gravure printing, slit coat printing, or screen printing. Is.

また、本発明は、上記有機薄膜トランジスタを用いて得られる有機薄膜トランジスタアレイ、差動増幅回路、該差動増幅回路を用いた有機電子デバイスに関するものである。   The present invention also relates to an organic thin film transistor array obtained using the organic thin film transistor, a differential amplifier circuit, and an organic electronic device using the differential amplifier circuit.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明の有機薄膜トランジスタで用いられるゲート電極には特に制限がなく、例えば、アルミニウム、金、銀、銅、ハイドープシリコン、スズ酸化物、酸化インジウム、インジウムスズ酸化物、酸化モリブデン、クロム、チタン、タンタル、クロム、グラフェン、カーボンナノチューブ等の無機材料;ドープされた導電性高分子(例えばPEDOT−PSS)等の有機材料を挙げることができる。   There is no particular limitation on the gate electrode used in the organic thin film transistor of the present invention, for example, aluminum, gold, silver, copper, highly doped silicon, tin oxide, indium oxide, indium tin oxide, molybdenum oxide, chromium, titanium, Examples thereof include inorganic materials such as tantalum, chromium, graphene, and carbon nanotube; and organic materials such as a doped conductive polymer (eg, PEDOT-PSS).

本発明の有機薄膜トランジスタで用いられるゲート絶縁膜は、該ゲート絶縁膜に用いられる材料と有機半導体との間の界面エネルギーが2.0mJ/m以下であり、好ましくは1.8mJ/m以下であり、さらに好ましくは0.001〜1.5mJ/mである。かかる界面エネルギーを上記の範囲にすることにより、ゲート絶縁膜の表面に形成される有機半導体膜が均一な結晶(層状結晶)として得られ、有機薄膜トランジスタにおけるしきい値電圧など性能のばらつきが小さくなる。 The gate insulating film used in the organic thin film transistor of the present invention has an interface energy between the material used for the gate insulating film and the organic semiconductor of 2.0 mJ / m 2 or less, preferably 1.8 mJ / m 2 or less. And more preferably 0.001 to 1.5 mJ / m 2 . By setting the interface energy within the above range, the organic semiconductor film formed on the surface of the gate insulating film can be obtained as a uniform crystal (layered crystal), and performance variations such as threshold voltage in the organic thin film transistor are reduced. .

本発明において、ゲート絶縁膜に用いられる材料と有機半導体との間の界面エネルギーは、次の式(a)で算出される。   In the present invention, the interfacial energy between the material used for the gate insulating film and the organic semiconductor is calculated by the following equation (a).

γ12=γ+γ−(γ γ 1/2−2(γ γ 1/2 (a)
(式中、γ12は界面エネルギー、γはゲート絶縁膜に用いられる材料の表面エネルギー、γ はゲート絶縁膜に用いられる材料の分散力、γ はゲート絶縁膜に用いられる材料の極性成分、γは有機半導体の表面エネルギー、γ は有機半導体の分散力、γ は有機半導体の極性成分を示す。なお、これらの値はゲート絶縁膜、有機半導体材料それぞれの薄膜を用いて、水の接触角及びヨードメタンの接触角をθ/2法で測定し、Owens−Wendtの方法により算出できる。
γ 12 = γ 1 + γ 2 − (γ 1 d γ 2 d ) 1/2 -2 (γ 1 p γ 2 p ) 1/2 (a)
(Where γ 12 is the interfacial energy, γ 1 is the surface energy of the material used for the gate insulating film, γ 1 d is the dispersion force of the material used for the gate insulating film, and γ 1 p is the material used for the gate insulating film. Γ 2 is the surface energy of the organic semiconductor, γ 2 d is the dispersion force of the organic semiconductor, and γ 2 p is the polar component of the organic semiconductor, and these values are the values of the gate insulating film and the organic semiconductor material, respectively. Using a thin film, the contact angle of water and the contact angle of iodomethane are measured by the θ / 2 method, and can be calculated by the Owens-Wendt method.

本発明において、ゲート絶縁膜に用いられる材料は、蒸着型材料や塗工型材料であることができる。ここで、「蒸着型材料」とは蒸着されることでゲート絶縁膜として得られる材料をいい、「塗工型材料」とは塗工されることでゲート絶縁膜として得られる材料をいう。一般に、蒸着型材料は、蒸着前の物質の溶剤への溶解性が低いため、塗工プロセスから得られることは極めて困難であり、塗工型材料は、蒸着前の物質の蒸気圧が低いため、蒸着プロセスから得られることは極めて困難である。   In the present invention, the material used for the gate insulating film can be a vapor deposition type material or a coating type material. Here, “evaporation type material” refers to a material obtained as a gate insulating film by vapor deposition, and “coating type material” refers to a material obtained as a gate insulating film by coating. In general, vapor deposition materials are very difficult to obtain from the coating process because of the low solubility of the material before vapor deposition in the solvent, and because the vapor pressure of the material before vapor deposition is low. It is very difficult to obtain from the deposition process.

本発明において、ゲート絶縁膜の製造の際に塗工プロセスが採用でき、生産性高く有機薄膜トランジスタを製造するのに好適であることから、ゲート絶縁膜に用いられる材料が塗工型材料であることが好ましい。また、塗工型材料の中でも、塗工後の塗工液の硬化を架橋操作とすることができ、生産性高く有機薄膜トランジスタを製造するのにより好適であることから、架橋点を有する有機低分子又は架橋点を有する有機高分子を用いて得られる塗工型材料(有機塗工型材料)であることがさらに好ましい。ここで、架橋操作は、該架橋点を有する有機低分子又は該架橋点を有する有機高分子を塗工後、熱又は光処理により行うことができる。   In the present invention, a coating process can be adopted in the production of the gate insulating film, and the material used for the gate insulating film is a coating type material because it is suitable for producing an organic thin film transistor with high productivity. Is preferred. Among coating-type materials, the curing of the coating liquid after coating can be used as a crosslinking operation, and it is more suitable for producing an organic thin film transistor with high productivity. Or it is more preferable that it is a coating type material (organic coating type material) obtained using the organic polymer which has a crosslinking point. Here, the crosslinking operation can be performed by heat or light treatment after coating the organic low molecule having the crosslinking point or the organic polymer having the crosslinking point.

また、本発明において、蒸着型材料を用いる場合、膜厚制御の容易さから、有機低分子を蒸着して得られる蒸着型材料(有機蒸着型材料)であることが好ましい。   In the present invention, when using a vapor deposition type material, it is preferable that it is a vapor deposition type material (organic vapor deposition type material) obtained by vapor-depositing an organic low molecule from the viewpoint of easy film thickness control.

ゲート絶縁膜に用いられる材料としては、有機半導体との間の界面エネルギーが2.0mJ/m以下であれば特に制限がない。具体的には、例えば、塗工型の無機系酸化物を用いた無機塗工型材料;架橋ポリメチルメタクリレート系樹脂、架橋ポリメチルアクリレート系樹脂、架橋ポリイミド系樹脂(環化点を有するポリアミド酸を前駆体として、該ポリアミド酸におけるアミド酸基が脱水環化反応することで、耐溶剤性が付与された架橋ポリイミド系樹脂)、架橋ポリカーボネート系樹脂、架橋ポリ(ジイソプロピルフマレート)系樹脂、架橋ポリ(ジエチルフマレート)系樹脂、架橋ポリエチレンテレフタレート系樹脂、架橋ポリエチレンナフタレート系樹脂、架橋ポリエーテルスルホン系樹脂、架橋環状ポリオレフィン系樹脂、架橋ポリスチレン系樹脂、架橋ポリ−α−メチルスチレン系樹脂、架橋ポリエチレン系樹脂、架橋ポリプロピレン系樹脂、架橋ポリ(エチレン−プロピレン)共重合体系樹脂、架橋ポリ(エチレン−ノルボルネン)共重合体系樹脂、BCB樹脂(塗工前の物質:ビスビニルシロキサンベンゾシクロブテン(BCB))等の有機塗工型材料;蒸着型の無機系酸化物を用いた無機蒸着型材料;ポリ(パラキシリレン)(蒸着前の物質:ジパラキシリレン)、ポリ(クロロパラキシリレン)(蒸着前の物質:ジクロロジパラキシリレン)、ポリ(ジクロロパラキシリレン)(蒸着前の物質:テトラクロロジパラキシリレン)等の有機蒸着型材料等を挙げることができる。 The material used for the gate insulating film is not particularly limited as long as the interface energy with the organic semiconductor is 2.0 mJ / m 2 or less. Specifically, for example, an inorganic coating material using a coating type inorganic oxide; a crosslinked polymethyl methacrylate resin, a crosslinked polymethyl acrylate resin, a crosslinked polyimide resin (polyamic acid having a cyclization point) As a precursor, the amic acid group in the polyamic acid undergoes a dehydration cyclization reaction, thereby providing a solvent-resistant crosslinked polyimide resin), a crosslinked polycarbonate resin, a crosslinked poly (diisopropyl fumarate) resin, a crosslinked resin. Poly (diethyl fumarate) resin, crosslinked polyethylene terephthalate resin, crosslinked polyethylene naphthalate resin, crosslinked polyethersulfone resin, crosslinked cyclic polyolefin resin, crosslinked polystyrene resin, crosslinked poly-α-methylstyrene resin, Crosslinked polyethylene resin, crosslinked polypropylene resin, crosslinked poly ( Organic coating type materials such as (ethylene-propylene) copolymer resin, crosslinked poly (ethylene-norbornene) copolymer resin, BCB resin (substance before coating: bisvinylsiloxane benzocyclobutene (BCB)); vapor deposition type Inorganic vapor-deposited materials using inorganic oxides: poly (paraxylylene) (substance before vapor deposition: diparaxylylene), poly (chloroparaxylylene) (substance before vapor deposition: dichlorodiparaxylylene), poly (dichloroparaxylylene) Organic vapor deposition type materials such as (len) (substance before vapor deposition: tetrachlorodiparaxylylene).

本発明において、塗工型材料としては、有機塗工型材料であり、かつ、より界面エネルギーが小さく性能のばらつきが小さい有機薄膜トランジスタを得るのに好適であるため、BCB樹脂が特に好ましい。また、蒸着型材料としては、有機蒸着型材料であり、かつ、より界面エネルギーが小さくより性能のばらつきが小さい有機薄膜トランジスタを得るのに好適であるため、ポリ(クロロパラキシリレン)が特に好ましい。   In the present invention, the BCB resin is particularly preferable as the coating material because it is an organic coating material and is suitable for obtaining an organic thin film transistor having a smaller interface energy and a small variation in performance. Further, as the vapor deposition type material, poly (chloroparaxylylene) is particularly preferable because it is an organic vapor deposition type material and is suitable for obtaining an organic thin film transistor with smaller interface energy and smaller performance variation.

ゲート絶縁膜に有機塗工型材料を用いる場合、例えば、クロロホルム、トルエン、キシレン、テトラヒドロフラン、プロピレングリコール、プロピレングリコール1−モノメチルエーテル2−アセテート、メチルエチルケトン、シクロヘキサノンなどの溶媒に溶解させて塗工した膜をゲート絶縁膜として使用することができる。   When using an organic coating material for the gate insulating film, for example, a film coated by dissolving in a solvent such as chloroform, toluene, xylene, tetrahydrofuran, propylene glycol, propylene glycol 1-monomethyl ether 2-acetate, methyl ethyl ketone, cyclohexanone Can be used as a gate insulating film.

また、ゲート絶縁膜の表面は、例えば、オクタデシルトリクロロシラン、デシルトリクロロシラン、デシルトリメトキシシラン、オクチルトリクロロシラン、オクタデシルトリメトキシシラン、β−フェネチルトリクロロシラン、β−フェネチルトリメトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のシラン類;ヘキサメチルジシラザン等のシリルアミン類で修飾処理したものであっても使用することができる。   The surface of the gate insulating film is, for example, octadecyltrichlorosilane, decyltrichlorosilane, decyltrimethoxysilane, octyltrichlorosilane, octadecyltrimethoxysilane, β-phenethyltrichlorosilane, β-phenethyltrimethoxysilane, phenyltrichlorosilane, Silanes such as phenyltrimethoxysilane and phenyltriethoxysilane; even those modified with silylamines such as hexamethyldisilazane can be used.

一般的にゲート絶縁膜の表面処理を行うことにより、有機半導体膜を構成する材料の結晶粒径の増大及び分子配向の向上が起こるため、キャリア移動度及び電流オン・オフ比の向上、及びしきい値電圧の低下という好ましい結果が得られる。   In general, the surface treatment of the gate insulating film increases the crystal grain size and molecular orientation of the material constituting the organic semiconductor film, thereby improving the carrier mobility and current on / off ratio. A favorable result is obtained that the threshold voltage is reduced.

本発明の有機薄膜トランジスタで用いられるソース電極及びドレイン電極の材料には特に制限がなく、ゲート電極と同様の材料を用いることができ、ゲート電極の材料と同じであっても異なっていてもよく、異種材料を積層してもよい。また、キャリアの注入効率を上げるために、これらの電極材料に表面処理を実施することもできる。電極材料の表面処理剤として例えば、ベンゼンチオール、ペンタフルオロベンゼンチオールを挙げることができる。   The material of the source electrode and the drain electrode used in the organic thin film transistor of the present invention is not particularly limited, and the same material as the gate electrode can be used, which may be the same as or different from the material of the gate electrode, Different materials may be stacked. In order to increase the carrier injection efficiency, surface treatment can be performed on these electrode materials. Examples of the surface treatment agent for the electrode material include benzenethiol and pentafluorobenzenethiol.

電極の表面処理を行う際、表面処理剤を溶媒で希釈して使用してもよい。希釈する溶媒に特に制限はないが、例えば、メタノール、エタノール、2−プロパノール等のアルコール系溶剤;o−ジクロロベンゼン、クロロベンゼン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロホルム等のハロゲン系溶剤;THF(テトラヒドロフラン)、ジオキサン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族化合物の炭化水素系溶剤;酢酸エチル、γ−ブチロラクトン等のエステル系溶剤;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶剤等が挙げられる。   When performing the surface treatment of the electrode, the surface treatment agent may be diluted with a solvent. There is no particular limitation on the solvent to be diluted. For example, alcohol solvents such as methanol, ethanol, 2-propanol; o-dichlorobenzene, chlorobenzene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chloroform Halogen solvents such as THF; tetrahydrofuran solvents such as THF (tetrahydrofuran) and dioxane; hydrocarbon solvents such as toluene, xylene and mesitylene; ester solvents such as ethyl acetate and γ-butyrolactone; N, N- Examples thereof include amide solvents such as dimethylformamide and N-methylpyrrolidone.

本発明の有機薄膜トランジスタで用いられる有機半導体膜は、特定の有機半導体を含むものである。   The organic semiconductor film used in the organic thin film transistor of the present invention includes a specific organic semiconductor.

該有機半導体は、下記一般式(1)   The organic semiconductor has the following general formula (1)

Figure 2015179835
Figure 2015179835

で表される構造を有している。
式(1)中、R〜Rは、各々独立して、水素原子;メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基などの炭素数が1〜20、好ましくは4〜8のアルキル基;エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基などの炭素数が2〜20、好ましくは4〜8の内部又は末端アルケニル基;エチニル基、プロペニル基、ブチニル基、ペンチニル基などの炭素数が2〜20、好ましくは4〜8の内部又は末端アルキニル基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、tert−ブトキシ基などの炭素数が1〜20、好ましくは4〜8のアルコキシ基;メチルチオ基、エチルチオ基、n−プロピルチオ基、イソプロピルチオ基、tert−ブチルチオ基などの炭素数が1〜20、好ましくは4〜8のアルキルチオ基;トリフルオロメチル基、ペンタフルオロエチル基、ジフルオロメチル基、フルオロメチル基、トリクロロメチル基、ジクロロメチル基、クロロメチル基、ペンタクロロエチル基などの1個以上のハロゲン置換基を有する炭素数が1〜20、好ましくは4〜8のハロアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基、シクロヘキセニル基、シクロヘキサジエニル基、シクロヘプタトリエニル基、ノルボルニル基、ノルビニル基、ノルカリル基、アダマンチル基、スピロ[4,5]デカニル基などの炭素数3〜10のシクロアルキル基;フェニル基、1−ナフチル基、2−ナフチル基、アントラセニル基、フェナンスレニル基などの炭素数が6〜14、好ましくは6〜10のアリール基;3〜12員環、好ましくは4〜8員環のシクロヘテロアルキル基、5〜14員環、好ましくは5〜8員環のヘテロアリール基、又は一般式(2)
It has the structure represented by these.
In formula (1), R 1 to R 6 are each independently a hydrogen atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, An alkyl group having 1 to 20, preferably 4 to 8 carbon atoms such as an isobutyl group, an n-pentyl group, an isopentyl group, a neopentyl group, an n-hexyl group, an n-heptyl group and an n-octyl group; an ethenyl group and a propenyl group Group, butenyl group, pentenyl group, hexenyl group, butadienyl group, pentadienyl group, hexadienyl group and the like, an internal or terminal alkenyl group having 2 to 20, preferably 4 to 8 carbon atoms; ethynyl group, propenyl group, butynyl group, pentynyl An internal or terminal alkynyl group having 2-20 carbon atoms, preferably 4-8, such as a group; methoxy group, ethoxy group, n-propoxy group, iso An alkoxy group having 1 to 20 carbon atoms, such as a lopoxy group or a tert-butoxy group, preferably 4 to 8 carbon atoms; a carbon number such as a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, or a tert-butylthio group. -20, preferably 4-8 alkylthio groups; one such as trifluoromethyl group, pentafluoroethyl group, difluoromethyl group, fluoromethyl group, trichloromethyl group, dichloromethyl group, chloromethyl group, pentachloroethyl group A haloalkyl group having 1 to 20 carbon atoms, preferably 4 to 8 carbon atoms having the above halogen substituents; cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentenyl group, cyclohexenyl group, cyclohexadienyl group, Cycloheptatrienyl group, norbornyl group, C3-C10 cycloalkyl group such as vinyl group, norcalyl group, adamantyl group, spiro [4,5] decanyl group; carbon such as phenyl group, 1-naphthyl group, 2-naphthyl group, anthracenyl group, phenanthrenyl group Aryl group having 6 to 14, preferably 6 to 10; 3 to 12 membered, preferably 4 to 8 membered cycloheteroalkyl group, 5 to 14 membered, preferably 5 to 8 membered heteroaryl Group or general formula (2)

Figure 2015179835
Figure 2015179835

(式中、Rは、炭素数が3〜10、好ましくは4〜8のシクロアルキル基、炭素数が6〜14、好ましくは6〜10のアリール基、3〜12員環、好ましくは4〜8員環のシクロヘテロアルキル基、又は5〜14員環、好ましくは5〜8員環のヘテロアリール基を示し、Yは炭素数が1〜6、好ましくは2〜4の2価アルキル基、又は炭素数が1〜6、好ましくは2〜4の2価ハロアルキル基を示す。)で表されるアルキル−シクロアルキル基、ベンジル基などのアルキルアリール基;アルキルシクロヘテロアルキル基;アルキルヘテロアリール基などを示す。 (In the formula, R 7 is a cycloalkyl group having 3 to 10 carbon atoms, preferably 4 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, preferably 6 to 10 carbon atoms, and a 3 to 12 membered ring, preferably 4 -8-membered cycloheteroalkyl group, or 5- to 14-membered ring, preferably 5- to 8-membered heteroaryl group, Y is a divalent alkyl group having 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms Or an alkylaryl group such as a benzyl group; an alkylcycloheteroalkyl group; an alkylheteroaryl represented by the following formula: or a divalent haloalkyl group having 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms. Indicates a group or the like.

なお、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、又は5〜14員環のヘテロアリール基は、1〜4個のハロゲン原子、シアノ基、ニトロ基、オキソ基、水酸基、NH、炭素数1〜20のアミノ基、炭素数6〜14のアリールアミノ基、スルホニル基、ホルミル基、炭素数1〜20のアルキルカルボニル基、炭素数6〜14のアリールカルボニル基、カルボニル基、炭素数1〜20のアルキルオキソカルボニル基、炭素数6〜14のアリールオキソカルボニル基、イミド基、炭素数1〜20のアルキルイミド基、炭素数6〜14のアリールイミド基、チオイミド基、炭素数1〜20のアルキルチオイミド基、炭素数6〜14のアリールチオイミド基、スルホニルイミド基、炭素数1〜20のアルキルスルホニルイミド基、炭素数6〜14のアリールスルホニルイミド基、シリル基、炭素数1〜20のアルキルシリル基、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルチオ基、炭素数1〜20のハロアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜14のアリール基、ハロアリール基、3〜12員環のシクロヘテロアルキル基、及び/又は5〜14員環のヘテロアリール基で置換されていてもよい。 In addition, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C3-C10 cycloalkyl group, a C6-C14 aryl group, The 12-membered cycloheteroalkyl group or the 5- to 14-membered heteroaryl group includes 1 to 4 halogen atoms, a cyano group, a nitro group, an oxo group, a hydroxyl group, NH 2 , and an amino acid having 1 to 20 carbon atoms. Group, arylamino group having 6 to 14 carbon atoms, sulfonyl group, formyl group, alkylcarbonyl group having 1 to 20 carbon atoms, arylcarbonyl group having 6 to 14 carbon atoms, carbonyl group, alkyloxocarbonyl having 1 to 20 carbon atoms Group, C6-C14 aryloxocarbonyl group, imide group, C1-C20 alkylimide group, C6-C14 arylimide group, thioimide group, C1 20 alkylthioimide groups, C6-C14 arylthioimide groups, sulfonylimide groups, C1-C20 alkylsulfonylimide groups, C6-C14 arylsulfonylimide groups, silyl groups, C1-C1 20 alkylsilyl groups, C1-20 alkyl groups, C2-20 alkenyl groups, C2-20 alkynyl groups, C1-20 alkoxy groups, C1-20 alkylthio groups , A haloalkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 14 carbon atoms, a haloaryl group, a cycloheteroalkyl group having 3 to 12 members and / or 5 to 14 members It may be substituted with a ring heteroaryl group.

式(1)で表される有機半導体は、高い溶解度を得られ、かつ、よりしきい値などの性能のばらつきが小さい有機薄膜トランジスタを得られるため、一般式(3)   The organic semiconductor represented by the formula (1) can obtain an organic thin film transistor having a high solubility and a smaller performance variation such as a threshold value.

Figure 2015179835
Figure 2015179835

で表される構造であることが好ましい。 It is preferable that it is a structure represented by these.

式(3)中、R、Rは、各々独立して、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基などの炭素数が1〜20好ましくは4〜8のアルキル基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、tert−ブトキシ基などの炭素数が1〜20好ましくは4〜8のアルコキシ基等を示すものであり、本発明においてさらに好ましい構造としては、一般式(3)中、R、Rが各々独立して、炭素数が1〜20好ましくは4〜8のアルキル基を示すものである。 In formula (3), R 1 and R 2 are each independently a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an isobutyl group, an alkyl group having 1 to 20 carbon atoms, preferably 4 to 8 carbon atoms such as an n-pentyl group, an isopentyl group, a neopentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group; a methoxy group, an ethoxy group, and an n- An alkoxy group having 1 to 20 carbon atoms, preferably 4 to 8 carbon atoms, such as a propoxy group, an isopropoxy group, a tert-butoxy group and the like, and a more preferable structure in the present invention include a compound represented by the general formula (3): R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, preferably 4 to 8 carbon atoms.

本発明で用いる有機半導体の具体的な例として、2,7−ジ(n−メチル)ジチエノベンゾジチオフェン、2,7−ジ(n−エチル)ジチエノベンゾジチオフェン、2,7−ジ(n−プロピル)ジチエノベンゾジチオフェン、2,7−ジ(イソプロピル)ジチエノベンゾジチオフェン、2,7−ジ(n−ブチル)ジチエノベンゾジチオフェン、2,7−ジ(sec−ブチル)ジチエノベンゾジチオフェン、2,7−ジ(tert−ブチル)ジチエノベンゾジチオフェン、2,7−ジ(イソブチル)ジチエノベンゾジチオフェン、2,7−ジ(n−ペンチル)ジチエノベンゾジチオフェン、2,7−ジ(イソペンチル)ジチエノベンゾジチオフェン、2,7−ジ(ネオペンチル)ジチエノベンゾジチオフェン、2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェン、2,7−ジ(n−ヘプチル)ジチエノベンゾジチオフェン、2,7−ジ(n−オクチル)ジチエノベンゾジチオフェン、2,7−ジ(n−デシル)ジチエノベンゾジチオフェン、2,7−ジ(n−ドデシル)ジチエノベンゾジチオフェン、2,7−ジ(n−テトラデシル)ジチエノベンゾジチオフェン、2,7−ジ(エテニル)ジチエノベンゾジチオフェン、2,7−ジ(プロペニル)ジチエノベンゾジチオフェン、2,7−ジ(ブテニル)ジチエノベンゾジチオフェン、2,7−ジ(ペンテニル)ジチエノベンゾジチオフェン、2,7−ジ(ヘキセニル)ジチエノベンゾジチオフェン、2,7−ジ(ブタジエニル)ジチエノベンゾジチオフェン、2,7−ジ(ペンタジエニル)ジチエノベンゾジチオフェン、2,7−ジ(ヘキサジエニル)ジチエノベンゾジチオフェン、2,7−ジ(エチニル)ジチエノベンゾジチオフェン、2,7−ジ(プロペニル)ジチエノベンゾジチオフェン、2,7−ジ(ブチニル)ジチエノベンゾジチオフェン、2,7−ジ(ペンチニル)ジチエノベンゾジチオフェン、2,7−ジ(メトキシ)ジチエノベンゾジチオフェン、ジ(エトキシ)ジチエノベンゾジチオフェン、2,7−ジ(n−プロポキシ)ジチエノベンゾジチオフェン、2,7−ジ(イソプロポキシ)ジチエノベンゾジチオフェン、2,7−ジ(tert−ブトキシ)ジチエノベンゾジチオフェンなどを例示することができる。   Specific examples of the organic semiconductor used in the present invention include 2,7-di (n-methyl) dithienobenzodithiophene, 2,7-di (n-ethyl) dithienobenzodithiophene, 2,7-di (N-propyl) dithienobenzodithiophene, 2,7-di (isopropyl) dithienobenzodithiophene, 2,7-di (n-butyl) dithienobenzodithiophene, 2,7-di (sec-butyl) ) Dithienobenzodithiophene, 2,7-di (tert-butyl) dithienobenzodithiophene, 2,7-di (isobutyl) dithienobenzodithiophene, 2,7-di (n-pentyl) dithienobenzo Dithiophene, 2,7-di (isopentyl) dithienobenzodithiophene, 2,7-di (neopentyl) dithienobenzodithiophene, 2,7-di (n-hexyl) dithi Nobenzodithiophene, 2,7-di (n-heptyl) dithienobenzodithiophene, 2,7-di (n-octyl) dithienobenzodithiophene, 2,7-di (n-decyl) dithienobenzo Dithiophene, 2,7-di (n-dodecyl) dithienobenzodithiophene, 2,7-di (n-tetradecyl) dithienobenzodithiophene, 2,7-di (ethenyl) dithienobenzodithiophene, 2, , 7-di (propenyl) dithienobenzodithiophene, 2,7-di (butenyl) dithienobenzodithiophene, 2,7-di (pentenyl) dithienobenzodithiophene, 2,7-di (hexenyl) di Thienobenzodithiophene, 2,7-di (butadienyl) dithienobenzodithiophene, 2,7-di (pentadienyl) dithienobenzodithiophene, 2, -Di (hexadienyl) dithienobenzodithiophene, 2,7-di (ethynyl) dithienobenzodithiophene, 2,7-di (propenyl) dithienobenzodithiophene, 2,7-di (butynyl) dithienobenzo Dithiophene, 2,7-di (pentynyl) dithienobenzodithiophene, 2,7-di (methoxy) dithienobenzodithiophene, di (ethoxy) dithienobenzodithiophene, 2,7-di (n-propoxy) ) Dithienobenzodithiophene, 2,7-di (isopropoxy) dithienobenzodithiophene, 2,7-di (tert-butoxy) dithienobenzodithiophene, and the like.

本発明の有機薄膜トランジスタ中の有機半導体膜は、印刷プロセスで製膜することを特徴とする。印刷プロセスで有機半導体膜を製膜することで、高い生産性を発揮するのみならず、キャリア移動度が高くしきい値電圧のばらつきが小さい有機薄膜トランジスタの形成が可能となる。   The organic semiconductor film in the organic thin film transistor of the present invention is formed by a printing process. By forming an organic semiconductor film by a printing process, it is possible to form an organic thin film transistor that not only exhibits high productivity but also has high carrier mobility and small variation in threshold voltage.

かかる有機半導体膜は、例えば、上記の一般式(1)で表される有機半導体の基板への印刷により製造することができる。このとき、基板上に有機半導体の溶液を印刷した後、加熱、気流及び/又は自然乾燥等の方法により溶剤を気化させることで有機半導体膜が形成される。   Such an organic semiconductor film can be manufactured, for example, by printing on a substrate of an organic semiconductor represented by the general formula (1). At this time, after the organic semiconductor solution is printed on the substrate, the organic semiconductor film is formed by vaporizing the solvent by a method such as heating, airflow and / or natural drying.

本発明で用いられる有機半導体を溶解する溶媒に特に制限はない。例えば、o−ジクロロベンゼン、クロロベンゼン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロホルム等のハロゲン系溶剤;THF、ジオキサン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族化合物の炭化水素系溶剤;酢酸エチル、γ−ブチロラクトン等のエステル系溶剤;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶剤等が挙げられる。また、これら溶剤は1種又は2種以上の混合物を用いても良い。中でも、本発明で用いられる有機半導体の溶解度が高く、かつ一般的な印刷プロセスに利用されているため、好ましくはクロロベンゼン、トルエン、メシチレン、テトラリンである。   There is no restriction | limiting in particular in the solvent which melt | dissolves the organic semiconductor used by this invention. For example, halogen solvents such as o-dichlorobenzene, chlorobenzene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane and chloroform; ether solvents such as THF and dioxane; aroma such as toluene, xylene and mesitylene Hydrocarbon solvents of group compounds; ester solvents such as ethyl acetate and γ-butyrolactone; amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone. These solvents may be used alone or as a mixture of two or more. Among these, chlorobenzene, toluene, mesitylene, and tetralin are preferable because the organic semiconductor used in the present invention has high solubility and is used in a general printing process.

上記溶液中の有機半導体の濃度は特に限定はないが、有機半導体の溶解度と印刷プロセスの効率から、0.01〜10.0重量%が好ましく、0.05〜7重量%がさらに好ましい。印刷時の温度は特に限定はないが、印刷時に特殊な装置を使用する必要がないため、20〜200℃の間で好適に実施することができる。   The concentration of the organic semiconductor in the solution is not particularly limited, but is preferably 0.01 to 10.0% by weight and more preferably 0.05 to 7% by weight from the solubility of the organic semiconductor and the efficiency of the printing process. Although the temperature at the time of printing is not particularly limited, it is not necessary to use a special device at the time of printing.

本発明で有機半導体膜を作製する際、印刷プロセスは、有版印刷、無版印刷のどちらも可能である。そして、該印刷プロセスは、有機半導体膜を作製する際、有機半導体の溶液を基板に塗布後、結晶化することが可能なプロセスであれば特に制限はないが、生産性の高さやパターニングのしやすさから、ディスペンサー印刷、インクジェット印刷、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、スリットコート印刷、スクリーン印刷が好ましい。   When the organic semiconductor film is produced according to the present invention, the printing process can be either plate printing or plateless printing. The printing process is not particularly limited as long as the organic semiconductor film can be crystallized after applying the organic semiconductor solution to the substrate. However, high productivity and patterning can be performed. From the viewpoint of ease, dispenser printing, ink jet printing, offset printing, relief printing, intaglio printing, gravure printing, slit coat printing, and screen printing are preferred.

なかでも、量産性や精度の点から、ディスペンサー印刷、インクジェット印刷、オフセット印刷、凸版印刷、スリットコート印刷がさらに好ましい。   Among these, dispenser printing, inkjet printing, offset printing, letterpress printing, and slit coat printing are more preferable from the viewpoint of mass productivity and accuracy.

ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体膜を有する有機薄膜トランジスタの構造として、例えば、図1に示す断面構造を挙げることができる。   As a structure of an organic thin film transistor having a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor film, for example, a cross-sectional structure shown in FIG.

図1中、(A)ボトムゲート−トップコンタクト型、(B)ボトムゲート−ボトムコンタクト型、(C)トップゲート−トップコンタクト型、(D)トップゲート−ボトムコンタクト型の有機薄膜トランジスタとして分類することができ、図1中の1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示している。   In FIG. 1, (A) bottom gate-top contact type, (B) bottom gate-bottom contact type, (C) top gate-top contact type, and (D) top gate-bottom contact type organic thin film transistor. In FIG. 1, 1 is an organic semiconductor layer, 2 is a substrate, 3 is a gate electrode, 4 is a gate insulating layer, 5 is a source electrode, and 6 is a drain electrode.

有機薄膜トランジスタに用いることが可能な基板の具体例としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、セルローストリアセテート等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン、アルミニウム等の金属基板等を挙げることができる。なお、ハイドープシリコンを基板に用いた場合、その基板は本発明にかかるゲート電極を兼ねることができる。   Specific examples of substrates that can be used for organic thin film transistors include, for example, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polymethyl acrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, fluorinated cyclic polyolefin, polyimide, polycarbonate, Plastic substrates such as polyvinylphenol, polyvinyl alcohol, poly (diisopropyl fumarate), poly (diethyl fumarate), poly (diisopropyl maleate), polyethersulfone, polyphenylene sulfide, cellulose triacetate; glass, quartz, aluminum oxide, silicon, Inorganic materials such as highly doped silicon, silicon oxide, tantalum dioxide, tantalum pentoxide, and indium tin oxide Substrate; gold, copper, chromium, titanium, aluminum or the like metal substrate. When highly doped silicon is used for the substrate, the substrate can also serve as the gate electrode according to the present invention.

使用する基板の材料は特に限定はなく、結晶性、非結晶性の種々の材料を用いることができる。基板の具体例としては、例えば、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマル酸)、ポリ(ジエチルフマル酸)、ポリ(ジイソプロピルマレイン酸)等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン等の金属基板等が挙げられる。またこれらの基板の表面は、例えば、オクタデシルトリクロロシラン、オクタデシルトリメトキシシラン等のシラン類;ヘキサメチルジシラザン等のシリルアミン類で修飾処理したものであっても使用できる。さらに、基板は絶縁性又は誘電性を有する材料であっても良い。印刷した後の溶剤は、常圧又は減圧で乾燥除去することができ、加熱又は窒素気流により乾燥除去することもできる。   The material of the substrate to be used is not particularly limited, and various crystalline and non-crystalline materials can be used. Specific examples of the substrate include, for example, polyethylene terephthalate, polymethyl methacrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, polyimide, polycarbonate, polyvinylphenol, polyvinyl alcohol, poly (diisopropyl fumaric acid), poly (diethyl fumaric acid), poly Plastic substrates such as (diisopropylmaleic acid); Inorganic material substrates such as glass, quartz, aluminum oxide, silicon, silicon oxide, tantalum dioxide, tantalum pentoxide, and indium tin oxide; Metal substrates such as gold, copper, chromium, and titanium Etc. The surfaces of these substrates can be used even if they are modified with silanes such as octadecyltrichlorosilane and octadecyltrimethoxysilane; and silylamines such as hexamethyldisilazane. Further, the substrate may be made of an insulating or dielectric material. The solvent after printing can be removed by drying at normal pressure or reduced pressure, and can also be removed by heating or nitrogen flow.

一般に、回路に用いられるトランジスタのしきい値電圧にばらつきが確認される場合、回路の動作が不安定となり望みどおりの回路特性を得ることが難しい。また、一般に安定した望みどおりの回路特性を得るためには、トランジスタのしきい値電圧のばらつきの指標である標準偏差σを用い、3σでも安定した回路特性を得ることができるように回路設計を行なうため、しきい値電圧の標準偏差σが小さいトランジスタが望まれる。本発明の有機薄膜トランジスタは、しきい値電圧のばらつきが小さい特徴を有しているため、回路に本発明の有機薄膜トランジスタを用いることで、安定した動作を示す回路を形成可能となる。   Generally, when a variation in the threshold voltage of a transistor used in a circuit is confirmed, the operation of the circuit becomes unstable and it is difficult to obtain desired circuit characteristics. In general, in order to obtain stable and desired circuit characteristics, the standard deviation σ, which is an index of variation in threshold voltage of transistors, is used, and circuit design is performed so that stable circuit characteristics can be obtained even at 3σ. Therefore, a transistor having a small standard deviation σ of the threshold voltage is desired. Since the organic thin film transistor of the present invention has a feature that variation in threshold voltage is small, a circuit exhibiting stable operation can be formed by using the organic thin film transistor of the present invention for the circuit.

本発明の有機薄膜トランジスタのしきい値は、有機トランジスタのしきい値を求める方法として一般に知られている方法であれば、如何なる方法を用いて求めても良いが、例えば、有機トランジスタの伝達特性図から、飽和電流の平方根をゲート電圧に対してプロットして得られる直線のX軸切片から求めることが可能である。   The threshold value of the organic thin film transistor of the present invention may be determined by any method as long as it is a generally known method for determining the threshold value of the organic transistor. From the X-axis intercept of a straight line obtained by plotting the square root of the saturation current with respect to the gate voltage.

本発明の有機薄膜トランジスタはキャリア移動度が高いことを特徴とするものであり、その中でも、良好な性能を有する有機電子デバイスを得るためには、移動度が0.001〜100cm/Vsの範囲であることが好ましい。 The organic thin film transistor of the present invention is characterized by high carrier mobility. Among them, in order to obtain an organic electronic device having good performance, the mobility is in the range of 0.001 to 100 cm 2 / Vs. It is preferable that

有機薄膜トランジスタは、良好な有機電子デバイスを得るため、電流オン・オフ比が10以上であること、すなわち、電流オン・オフ比の常用対数値(以下、電流オン・オフ比の常用対数値を「log10AR」という)が5以上であることが好ましい。 In order to obtain a good organic electronic device, an organic thin film transistor has a current on / off ratio of 10 5 or more, that is, a common logarithmic value of a current on / off ratio (hereinafter, a common logarithm of a current on / off ratio). “Log10AR”) is preferably 5 or more.

本発明の有機薄膜トランジスタはしきい値電圧のばらつきが小さいことを特徴とするものであり、また、複数個の素子を配置して有機薄膜トランジスタアレイを作製するとき、該有機薄膜トランジスタアレイに係るしきい値電圧の標準偏差σが小さくなることを特徴とする。そして、この中でも、電圧の微小変化を有機電子デバイスに用いるため、例えば100個以上の素子を配置して有機薄膜トランジスタアレイを作製した際、有機薄膜トランジスタアレイに係るしきい値電圧の標準偏差σが0.25以下であることが好ましく、さらに好ましくは0.2以下であり、特に好ましくは0.1以下である。   The organic thin film transistor of the present invention is characterized in that variations in threshold voltage are small, and when an organic thin film transistor array is fabricated by arranging a plurality of elements, the threshold value related to the organic thin film transistor array The voltage standard deviation σ is small. Among these, in order to use a minute change in voltage in an organic electronic device, for example, when an organic thin film transistor array is manufactured by arranging 100 or more elements, the standard deviation σ of the threshold voltage related to the organic thin film transistor array is 0. It is preferably .25 or less, more preferably 0.2 or less, and particularly preferably 0.1 or less.

本発明の有機薄膜トランジスタはキャリア移動度のばらつきが小さいことが好ましく、また、複数個の素子を配置して有機薄膜トランジスタアレイを作製するとき、該有機薄膜トランジスタアレイに係るキャリア移動度の変動係数CV=|標準偏差σ/平均値|(以下、「変動係数CV(キャリア移動度)」という)が小さいことが好ましい。そして、この中でも、安定して有機薄膜トランジスタアレイを作製するため、例えば100個以上の素子を配置して有機薄膜トランジスタアレイを作製した際、変動係数CV(キャリア移動度)が25%以下であることがさらに好ましく、20%以下であること特に好ましい。   The organic thin film transistor of the present invention preferably has a small variation in carrier mobility. Further, when an organic thin film transistor array is formed by arranging a plurality of elements, the coefficient of variation CV of carrier mobility related to the organic thin film transistor array = | The standard deviation σ / average value | (hereinafter referred to as “variation coefficient CV (carrier mobility)”) is preferably small. Among these, in order to stably produce an organic thin film transistor array, for example, when an organic thin film transistor array is produced by arranging 100 or more elements, the coefficient of variation CV (carrier mobility) may be 25% or less. More preferably, it is particularly preferably 20% or less.

本発明の有機薄膜トランジスタは電流オン・オフ比のばらつきが小さいことが好ましく、また、複数個の素子を配置して有機薄膜トランジスタアレイを作製するとき、該有機薄膜トランジスタアレイに係るlog10ARの変動係数CV=|log10ARの標準偏差σ/log10ARの平均値|(以下、「変動係数CV(log10AR)」という)が小さいことが好ましい。そして、この中でも、安定した有機薄膜トランジスタアレイを作製するため、例えば100個以上の素子を配置して有機薄膜トランジスタアレイを作製した際、変動係数CV(log10AR)が20%以下であることがさらに好ましく、15%以下であることが特に好ましく、10%以下が最も好ましい。   The organic thin film transistor of the present invention preferably has a small variation in current on / off ratio. Further, when an organic thin film transistor array is formed by arranging a plurality of elements, the variation coefficient CV of log 10AR related to the organic thin film transistor array = | The standard value σ of log10AR / the average value of log10AR | (hereinafter referred to as “variation coefficient CV (log10AR)”) is preferably small. Among these, in order to produce a stable organic thin film transistor array, for example, when an organic thin film transistor array is produced by arranging 100 or more elements, the coefficient of variation CV (log 10 AR) is more preferably 20% or less, It is particularly preferably 15% or less, and most preferably 10% or less.

有機薄膜トランジスタを用いて差動増幅回路を形成するとき、より高い検出感度を得るため、増幅度が1〜1000であることが好ましい。   When a differential amplifier circuit is formed using an organic thin film transistor, the amplification degree is preferably 1-1000 in order to obtain higher detection sensitivity.

本発明により、キャリア移動度が高くしきい値電圧など性能のばらつきが小さい有機薄膜トランジスタを提供することが可能となる。また、本有機薄膜トランジスタを用いることで、出入力差の小さい理想的な印刷型の有機薄膜トランジスタアレイ、特に理想的な入出力特性を示す差動増幅回路の形成が可能となり、各種センサへの応用が可能となる。   According to the present invention, it is possible to provide an organic thin film transistor having high carrier mobility and small performance variations such as a threshold voltage. In addition, by using this organic thin film transistor, it is possible to form an ideal printing type organic thin film transistor array with a small difference in input and output, especially a differential amplifier circuit exhibiting ideal input / output characteristics, which can be applied to various sensors. It becomes possible.

;有機薄膜トランジスタの断面形状による構造を示す図である。; It is a figure which shows the structure by the cross-sectional shape of an organic thin-film transistor. ;伝達特性図を示す図である。; Is a diagram showing a transfer characteristic diagram. ;移動度のヒストグラムを示す図である。; Is a diagram showing a histogram of mobility. ;しきい値電圧のヒストグラムを示す図である。; Is a diagram showing a histogram of threshold voltage. ;差動増幅回路を示す図である。; Is a diagram showing a differential amplifier circuit. ;伝達特性図を示す図である。; Is a diagram showing a transfer characteristic diagram. ;移動度のヒストグラムを示す図である。; Is a diagram showing a histogram of mobility. ;しきい値電圧のヒストグラムを示す図である。; Is a diagram showing a histogram of threshold voltage. ;伝達特性図を示す図である。; Is a diagram showing a transfer characteristic diagram. ;移動度のヒストグラムを示す図である。; Is a diagram showing a histogram of mobility. ;しきい値電圧のヒストグラムを示す図である。; Is a diagram showing a histogram of threshold voltage. ;伝達特性図を示す図である。; Is a diagram showing a transfer characteristic diagram. ;移動度のヒストグラムを示す図である。; Is a diagram showing a histogram of mobility. ;しきい値電圧のヒストグラムを示す図である。; Is a diagram showing a histogram of threshold voltage.

以下実施例により本発明を更に具体的に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

合成例
(1,4−ジ(3−ブロモチエニル)−2,5−ジフルオロベンゼンの合成)
窒素雰囲気下、100mlシュレンク反応容器にイソプロピルマグネシウムブロマイド(東京化成工業社製、0.80mol/l)のTHF溶液4.5ml(3.6mmol)及びTHF10mlを添加した。この混合物を−75℃に冷却し、2,3−ジブロモチオフェン(和光純薬工業社製)873mg(3.61mmol)を滴下した。−75℃で30分間熟成後、塩化亜鉛(シグマ−アルドリッチ社製、1.0mol/l)のジエチルエーテル溶液3.6ml(3.6mmol)を滴下した。徐々に室温まで昇温した後、生成した白色スラリー液を減圧濃縮し、10mlの軽沸分を留去した。
Synthesis Example (Synthesis of 1,4-di (3-bromothienyl) -2,5-difluorobenzene)
Under a nitrogen atmosphere, 4.5 ml (3.6 mmol) of a THF solution of isopropylmagnesium bromide (manufactured by Tokyo Chemical Industry Co., Ltd., 0.80 mol / l) and 10 ml of THF were added to a 100 ml Schlenk reaction vessel. The mixture was cooled to −75 ° C., and 873 mg (3.61 mmol) of 2,3-dibromothiophene (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After aging at −75 ° C. for 30 minutes, 3.6 ml (3.6 mmol) of a diethyl ether solution of zinc chloride (manufactured by Sigma-Aldrich, 1.0 mol / l) was added dropwise. After the temperature was gradually raised to room temperature, the produced white slurry was concentrated under reduced pressure, and 10 ml of light boiling was distilled off.

得られた白色スラリー液(3−ブロモチエニル−2−ジンククロライド)に、1,4−ジブロモ−2,5−ジフルオロベンゼン(和光純薬工業社製)272mg(1.00mmol)、触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業社製)39.1mg(0.0338mmol、1,4−ジブロモ−2,5−ジフルオロベンゼンに対し3.38モル%)及びTHF10mlを添加した。60℃で8時間反応を実施した後、容器を水冷し3N塩酸3mlを添加することで反応を停止させた。トルエンで抽出し、有機相を食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサンからヘキサン/ジクロロメタン=10/1)、さらにヘキサン/トルエン=6/4から再結晶精製し、1,4−ジ(3−ブロモチエニル)−2,5−ジフルオロベンゼンの薄黄色固体227mgを得た(収率52%)。
H−NMR(CDCl,21℃):δ=7.44(d,J=5.4Hz,2H),7.39(t,J=7.8Hz,2H),7.11(d,J=5.4Hz,2H)。
MS m/z: 436(M,100%),276(M−2Br,13)。
(ジチエノベンゾジチオフェンの合成)
窒素雰囲気下、100mlシュレンク反応容器に1,4−ジ(3−ブロモチエニル)−2,5−ジフルオロベンゼン200mg(0.458mmol)、NMP10ml、及び硫化ナトリウム・9水和物(和光純薬工業社製)240mg(1.00mmol)を添加した。得られた混合物を170℃で6時間加熱し、得られた反応混合物を室温に冷却した。トルエンと水を添加後、分相し、有機相を2回水洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮後、得られた残渣をヘキサンで洗浄を2回実施し、ジチエノベンゾジチオフェンの淡黄色固体95mgを得た(収率69%)。
H−NMR(CDCl,60℃):δ=8.28(s,2H),7.51(d,J=5.2Hz,2H),7.30(d,J=5.2Hz,2H)。
MS m/z: 302(M,100%),270(M−S,5),151(M/2,10)。
(2,7−ジ(n−ヘキサノイル)ジチエノベンゾジチオフェン)
100mlシュレンク反応容器にジチエノベンゾジチオフェン86.8mg(0.286mmol)及びジクロロメタン14mlを添加した。この混合物を氷冷し、塩化アルミニウム(和光純薬工業社製)134mg(1.00mmol)及び塩化ヘキサノイル(和光純薬工業社製)115mg(0.858mmol)を添加した。得られた混合物を室温で30時間攪拌後、氷冷し水を添加することで反応を停止させた。得られたスラリー混合物にトルエンを添加し分相した。黄色スラリー液の有機相を水洗浄後、減圧濃縮した。得られた残渣をヘキサン及びメタノールで洗浄し、減圧乾燥した後、ジn−ヘキサノイルジチエノベンゾジチオフェンの黄色固体99.8mgを得た(収率70%)。
H−NMR(重ベンゼン,80℃):δ=7.73(s,2H),7.26(s,2H),2.58(t,J=7.2Hz,4H),1.71(m,4H),1.28(m,8H),0.86(t,J=7.0Hz,6H)。
MS m/z: 498(M,100%),442(M−C+1,46),427(M−C11,13)。
(2,7−(ジn−ヘキシル)ジチエノベンゾジチオフェンの合成)
50mlシュレンク反応容器にジn−ヘキサノイルジチエノベンゾジチオフェン50mg(0.1mmol)、THF5mL、塩化アルミニウム(和光純薬工業社製)69mg(0.52mmol)を加え、氷冷下で水素化ホウ素ナトリウム38mg(1.00mmol)をゆっくり加えた後、加熱還流を4時間行った。室温に冷却後、水を添加することで反応を停止し、得られたスラリー混合物にトルエンを添加し、トルエン及び水を分相後、有機相の水洗浄を3回繰り返した。有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン/トルエン=10/1)、さらにヘキサン(和光純薬工業社製ピュアーグレード)から3回再結晶精製し、2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェンの白色固体28mg(0.059mmol)を得た(収率59%)。
H−NMR(CDCl):δ=8.17(s,2H),7.00(s,2H),2.97(t,J=7.2Hz,4H),1.78(m,4H),1.28(m,12H),0.88(t,J=7.0Hz,6H)。
MS m/z: 470(M,100%),399(M−C11,57),328(M−2C11,47)。
融点:190.2〜190.4℃。
To the obtained white slurry (3-bromothienyl-2-zinc chloride), 272 mg (1.00 mmol) of 1,4-dibromo-2,5-difluorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.), tetrakis ( Triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 39.1 mg (0.0338 mmol, 3.38 mol% with respect to 1,4-dibromo-2,5-difluorobenzene) and 10 ml of THF were added. After carrying out the reaction at 60 ° C. for 8 hours, the vessel was cooled with water and the reaction was stopped by adding 3 ml of 3N hydrochloric acid. Extraction was performed with toluene, and the organic phase was washed with brine and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane to hexane / dichloromethane = 10/1), recrystallized from hexane / toluene = 6/4, and 1,4-di (3- 227 mg of a light yellow solid of bromothienyl) -2,5-difluorobenzene was obtained (52% yield).
1 H-NMR (CDCl 3 , 21 ° C.): δ = 7.44 (d, J = 5.4 Hz, 2H), 7.39 (t, J = 7.8 Hz, 2H), 7.11 (d, J = 5.4 Hz, 2H).
MS m / z: 436 (M <+> , 100%), 276 (M <+ > - 2Br, 13).
(Synthesis of dithienobenzodithiophene)
In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 1,4-di (3-bromothienyl) -2,5-difluorobenzene 200 mg (0.458 mmol), NMP 10 ml, and sodium sulfide 9 hydrate (Wako Pure Chemical Industries, Ltd.) 240 mg (1.00 mmol) was added. The resulting mixture was heated at 170 ° C. for 6 hours and the resulting reaction mixture was cooled to room temperature. After adding toluene and water, the phases were separated, and the organic phase was washed with water twice and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the resulting residue was washed twice with hexane to obtain 95 mg of a light yellow solid of dithienobenzodithiophene (yield 69%).
1 H-NMR (CDCl 3 , 60 ° C.): δ = 8.28 (s, 2H), 7.51 (d, J = 5.2 Hz, 2H), 7.30 (d, J = 5.2 Hz, 2H).
MS m / z: 302 (M <+> , 100%), 270 (M <+> -S, 5), 151 (M <+ > / 2, 10).
(2,7-di (n-hexanoyl) dithienobenzodithiophene)
To a 100 ml Schlenk reaction vessel were added 86.8 mg (0.286 mmol) of dithienobenzodithiophene and 14 ml of dichloromethane. This mixture was ice-cooled, and 134 mg (1.00 mmol) of aluminum chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 115 mg (0.858 mmol) of hexanoyl chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added. The resulting mixture was stirred at room temperature for 30 hours, then ice-cooled and water was added to stop the reaction. Toluene was added to the resulting slurry mixture for phase separation. The organic phase of the yellow slurry was washed with water and concentrated under reduced pressure. The obtained residue was washed with hexane and methanol and dried under reduced pressure to obtain 99.8 mg of di-n-hexanoyldithienobenzodithiophene as a yellow solid (yield 70%).
1 H-NMR (heavy benzene, 80 ° C.): δ = 7.73 (s, 2H), 7.26 (s, 2H), 2.58 (t, J = 7.2 Hz, 4H), 1.71 (M, 4H), 1.28 (m, 8H), 0.86 (t, J = 7.0 Hz, 6H).
MS m / z: 498 (M +, 100%), 442 (M + -C 4 H 9 +1,46), 427 (M + -C 5 H 11, 13).
(Synthesis of 2,7- (di-n-hexyl) dithienobenzodithiophene)
In a 50 ml Schlenk reaction vessel, 50 mg (0.1 mmol) of di-n-hexanoyldithienobenzodithiophene, 5 mL of THF, 69 mg (0.52 mmol) of aluminum chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and borohydride was cooled with ice. Sodium (38 mg, 1.00 mmol) was slowly added, followed by heating under reflux for 4 hours. After cooling to room temperature, the reaction was stopped by adding water, and toluene was added to the resulting slurry mixture. After toluene and water were separated, water washing of the organic phase was repeated three times. The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / toluene = 10/1), and further recrystallized and purified three times from hexane (pure grade manufactured by Wako Pure Chemical Industries, Ltd.) to obtain 2,7-di (n- Hexyl) dithienobenzodithiophene white solid 28 mg (0.059 mmol) was obtained (yield 59%).
1 H-NMR (CDCl 3 ): δ = 8.17 (s, 2H), 7.00 (s, 2H), 2.97 (t, J = 7.2 Hz, 4H), 1.78 (m, 4H), 1.28 (m, 12H), 0.88 (t, J = 7.0 Hz, 6H).
MS m / z: 470 (M +, 100%), 399 (M + -C 5 H 11, 57), 328 (M + -2C 5 H 11, 47).
Melting point: 190.2-190.4 ° C.

実施例1
(フレキシブル基板)
厚み125μmのポリエチレンナフタレート(帝人デュポンフィルム社製、Teonex)をフレキシブル基板として用いた。
(表面平滑層の形成)
グローブボックス内で10mLのサンプル管にポリビニルフェノール(シグマ−アルドリッチ社製、Mw〜25000)0.5gとプロピレングリコール1−モノメチルエーテル2−アセテート(関東化学社製、鹿特級)4.5gを加え10時間攪拌することで得られた溶液2gと、グローブボックス内で10mLのサンプル管にポリ(メラミン−co−ホルムアルデヒド)(シグマ−アルドリッチ社製、Mn〜432)0.5gとプロピレングリコール1−モノメチルエーテル2−アセテート(関東化学社製、鹿特級)4.5gを加え10時間攪拌することで得られた溶液2gを混ぜて得られた溶液の内0.5mlを、上述のフレキシブル基板上にて、スピンコーター(ミカサ社製、MS−A100M)を用いてスピンコート製膜(1500rpm)を行った後、150℃×60分の熱処理により膜厚100nmの架橋ポリビニルフェノールの表面平滑層を形成した。
(ゲート電極の形成)
上述で形成した表面平滑層を、酸素プラズマ表面処理装置(サムコ社製、プラズマドライクリーナー PC−300)を用いて酸素プラズマ(100W、1分間)で処理した後、銀ナノ粒子インク水溶液(DIC社製、JAGLT−01)を10pLのカートリッジを用いたインクジェット装置(富士フィルムDimatix社製、DMP−2831、ステージ温度30℃)にて、滴下間隔60μmで描画し、テストチャンバー(エスペック社製、H−221、温度30℃、湿度95%RH)内で30分間乾燥させた後、140℃×60分焼成することで厚み100nm、線幅400μmのゲート電極を形成した。ここで、ゲート電極が形成され、かつ、ゲート絶縁膜が形成されていないプラスチック基板を「ゲート電極付プラスチック基板」という。
(ゲート絶縁膜の形成)
ジクロロジパラキシリレン(商品名:dix−C)(第三化成社製)0.9gをラボコータ(日本パリレン社製、PDS2010)にて、ゲート電極付プラスチック基板上に真空蒸着することで膜厚550nmのポリ(クロロパラキシリレン)のゲート絶縁膜を形成した。
(ソース・ドレイン電極の形成)
上述のゲート絶縁膜上に銀ナノ粒子インク(ハリマ化学社製、NPS−JL)を、インクジェット装置(富士フィルムDimatix社製、DMP−2831、ステージ温度50℃)を用いて滴下間隔60μmで描画した後、120℃×60分間焼成することでチャネル長91μm、チャネル幅1100μmのソース・ドレイン電極を形成した。ここで、ゲート電極、ゲート絶縁膜及びソース・ドレイン電極が形成されたプラスチック基板を「電極形成ゲート絶縁膜付プラスチック基板」という。
(ソース・ドレイン電極修飾)
電極形成ゲート絶縁膜付プラスチック基板をペンタフルオロベンゼンチオール(シグマ−アルドリッチ社製)と2−プロパノール(和光純薬工業社製)を合わせた溶液(5mM)に3分間浸漬した後、乾燥させることでソース・ドレイン電極修飾を行った。
(隔壁層の形成)
上述の電極形成ゲート絶縁膜付プラスチック基板を30℃に保ち、その上に商品名:テフロン(登録商標)(デュポン社製、AF1600)をディスペンサー装置(武蔵エンジニアリング社製、描画速度20mm/s、吐出圧7kPa、ノズル温度30℃)にて描画した後、大気中で10分間乾燥させることで、厚さ200nm、線幅300μm、内径1.1mm×2.5mmのソース・ドレイン電極を囲う隔壁層を形成した。
(有機半導体層の形成と有機薄膜トランジスタの作製)
空気下10mlサンプル管に、トルエン3.0g、及び2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェン30mgを加え、50℃に加熱して溶解させることで調製した有機半導体層形成用溶液(濃度:1.0質量%)を、ディスペンサー印刷装置(武蔵エンジニアリング社製、描画速度20mm/s、吐出圧1kPa、ノズル温度30℃)を用いて、上述で作製した隔壁層(30℃に保持)内に滴下し、乾燥させることで有機半導体層を形成させ、ボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,7−(n−ヘキシル)ジチエノベンゾジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びにポリ(クロロパラキシリレン)に対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは1.2mJ/mであった。
(半導体・電気物性の測定)
半導体パラメーターアナライザー(ケースレー社製、4200−SCS)を用いて、作製した有機薄膜トランジスタの電気物性をドレイン電圧(V=−20V)で、ゲート電圧(V)を+10〜−20Vまで0.5V刻みで走査し、伝達物性の評価を行った。キャリア移動度は1.9cm/V・s、しきい値電圧は−0.16V、電流オン・オフ比は2.9×10であった。
Example 1
(Flexible substrate)
Polyethylene naphthalate having a thickness of 125 μm (Teonex, manufactured by Teijin DuPont Films Ltd.) was used as a flexible substrate.
(Formation of surface smooth layer)
In a glove box, add 0.5 g of polyvinylphenol (Sigma-Aldrich, Mw-25000) and 4.5 g of propylene glycol 1-monomethyl ether 2-acetate (Kanto Chemical Co., deer special grade) to a 10 mL sample tube. 2 g of the solution obtained by stirring for a period of time, 0.5 g of poly (melamine-co-formaldehyde) (manufactured by Sigma-Aldrich, Mn˜432) and propylene glycol 1-monomethyl ether in a 10 mL sample tube in the glove box Add 0.5 g of 2-acetate (manufactured by Kanto Chemical Co., Ltd., deer special grade) and stir for 10 hours, and mix 0.5 g of the solution obtained by mixing 2 g of the solution on the above flexible substrate. Spin coat film formation (1500 using a spin coater (Mikasa, MS-A100M)) After pm), to form a smooth surface layer of the cross-linked polyvinyl phenol having a thickness of 100nm by a heat treatment of 0.99 ° C. × 60 minutes.
(Formation of gate electrode)
The surface smooth layer formed above was treated with oxygen plasma (100 W, 1 minute) using an oxygen plasma surface treatment apparatus (Plasma Dry Cleaner PC-300, manufactured by Samco), and then an aqueous silver nanoparticle ink solution (DIC Corporation). JAGLT-01) was drawn with an ink jet apparatus using a 10 pL cartridge (Fuji Film Dimatix, DMP-2831, stage temperature 30 ° C.) with a drop interval of 60 μm, and a test chamber (Espec Corp., H- 221, temperature 30 ° C., humidity 95% RH) for 30 minutes, and then fired at 140 ° C. for 60 minutes to form a gate electrode having a thickness of 100 nm and a line width of 400 μm. Here, the plastic substrate on which the gate electrode is formed and the gate insulating film is not formed is referred to as a “plastic substrate with a gate electrode”.
(Formation of gate insulating film)
A film thickness of 550 nm is obtained by vacuum-depositing 0.9 g of dichlorodiparaxylylene (trade name: dix-C) (manufactured by Daisan Kasei Co., Ltd.) on a plastic substrate with a gate electrode using a lab coater (manufactured by Parylene Japan, PDS2010). A poly (chloroparaxylylene) gate insulating film was formed.
(Formation of source / drain electrodes)
Silver nanoparticle ink (NPS-JL, manufactured by Harima Chemical Co., Ltd.) was drawn on the gate insulating film described above using an inkjet device (Fuji Film Dimatix, DMP-2831, stage temperature 50 ° C.) at a dropping interval of 60 μm. Thereafter, the source / drain electrodes having a channel length of 91 μm and a channel width of 1100 μm were formed by baking at 120 ° C. for 60 minutes. Here, the plastic substrate on which the gate electrode, the gate insulating film, and the source / drain electrodes are formed is referred to as “a plastic substrate with an electrode forming gate insulating film”.
(Source / drain electrode modification)
By immersing a plastic substrate with an electrode-forming gate insulating film in a solution (5 mM) of pentafluorobenzenethiol (manufactured by Sigma-Aldrich) and 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) for 3 minutes, and then drying. Source / drain electrode modification was performed.
(Formation of partition layer)
The above-mentioned plastic substrate with an electrode-forming gate insulating film is kept at 30 ° C., and a product name: Teflon (registered trademark) (manufactured by DuPont, AF1600) is dispensed onto the dispenser device (manufactured by Musashi Engineering, drawing speed 20 mm / s, discharge) After drawing at a pressure of 7 kPa and a nozzle temperature of 30 ° C., the partition wall layer surrounding the source / drain electrodes having a thickness of 200 nm, a line width of 300 μm, and an inner diameter of 1.1 mm × 2.5 mm is dried in the air for 10 minutes. Formed.
(Formation of organic semiconductor layer and production of organic thin film transistor)
A solution for forming an organic semiconductor layer prepared by adding 3.0 g of toluene and 30 mg of 2,7-di (n-hexyl) dithienobenzodithiophene to a 10 ml sample tube under air and heating to 50 ° C. to dissolve. (Concentration: 1.0% by mass) using a dispenser printing apparatus (manufactured by Musashi Engineering Co., Ltd., drawing speed 20 mm / s, discharge pressure 1 kPa, nozzle temperature 30 ° C.) The organic semiconductor layer was formed by dripping and drying in a) to produce a bottom gate-bottom contact type organic thin film transistor.
(Calculation of interface energy)
The interface energy calculated from the contact angle of water and diiodomethane with 2,7- (n-hexyl) dithienobenzodithiophene, and the contact angle of water and diiodomethane with poly (chloroparaxylylene) is 1 It was 2 mJ / m 2 .
(Measurement of semiconductor and electrical properties)
Using a semiconductor parameter analyzer (4200-SCS, manufactured by Keithley Co., Ltd.), the electrical properties of the prepared organic thin film transistor are 0.5 V from a drain voltage (V d = −20 V) to a gate voltage (V g ) of +10 to −20 V. Scanning was performed in increments to evaluate the transmission physical properties. The carrier mobility was 1.9 cm 2 / V · s, the threshold voltage was −0.16 V, and the current on / off ratio was 2.9 × 10 8 .

実施例2
実施例1と同様の手法で有機薄膜トランジスタを作製し、該有機薄膜トランジスタを100素子配置した有機薄膜トランジスタアレイを作製した。
(半導体・電気物性の測定)
得られた有機薄膜トランジスタアレイを実施例1と同様の方法で電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した有機薄膜トランジスタアレイは100素子中100素子がトランジスタ動作し、動作した100素子の平均キャリア移動度が1.1cm/Vsで、かつ、キャリア移動度の標準偏差σが0.17であるため、変動係数CV(キャリア移動度)は15%あった。また、100素子の電流オン・オフ比の常用対数の平均が8.0で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.38であるため、変動係数CV(log10AR)は5%であった。また、しきい値電圧の平均が−0.011Vで、かつ、しきい値電圧の標準偏差σが0.086であった。
Example 2
An organic thin film transistor was prepared in the same manner as in Example 1, and an organic thin film transistor array in which 100 organic thin film transistors were arranged was prepared.
(Measurement of semiconductor and electrical properties)
The obtained organic thin film transistor array was subjected to measurement of electrical properties in the same manner as in Example 1. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, in the manufactured organic thin film transistor array, 100 of 100 elements operated as a transistor, the average carrier mobility of the operated 100 elements was 1.1 cm 2 / Vs, and the standard deviation σ of carrier mobility was 0.17. Therefore, the coefficient of variation CV (carrier mobility) was 15%. Further, since the average of the common logarithm of the current on / off ratio of 100 elements is 8.0 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.38, the coefficient of variation CV (log10AR) is It was 5%. The average threshold voltage was −0.011 V and the standard deviation σ of the threshold voltage was 0.086.

図2に得られた100素子の伝達特性図、図3に得られた100素子の移動度のヒストグラム、図4に得られた100素子のしきい値電圧のヒストグラムを示す。   FIG. 2 shows a 100-element transfer characteristic diagram, FIG. 3 shows a 100-element mobility histogram, and FIG. 4 shows a 100-element threshold voltage histogram.

以上より、非常に小さいばらつき特性を示すことが確認された。   From the above, it was confirmed that very small variation characteristics were exhibited.

実施例3
実施例1と同様の手法で作製した有機薄膜トランジスタを用いて差動増幅回路を作製した。作製した差動増幅回路を図5に示す。
(半導体・電気物性の測定)
半導体パラメーターアナライザー(ケースレー社製、4200−SCS)を用いて、定電流源(IDD)を500nAに設定し、入力電圧B(VINB)を6V〜20Vのいずれかに固定した値に対して入力電圧A(VINA)を0V〜30Vで掃引した際の出力電圧VOUTA及びVOUTBを測定した結果、入力電圧差0Vのときに出力電圧差0Vという理想的な入出力特性を示し、増幅度は3.5であり作製した差動増幅回路は適切な駆動を示した。
Example 3
A differential amplifier circuit was fabricated using an organic thin film transistor fabricated in the same manner as in Example 1. The produced differential amplifier circuit is shown in FIG.
(Measurement of semiconductor and electrical properties)
Using a semiconductor parameter analyzer (4200-SCS, manufactured by Keithley), the constant current source (I DD ) is set to 500 nA, and the input voltage B (V INB ) is fixed to any value between 6V and 20V. As a result of measuring the output voltage V OUTA and V OUTB when the input voltage A (V INA ) is swept from 0V to 30V, an ideal input / output characteristic of 0V output voltage difference is shown when the input voltage difference is 0V. The degree was 3.5, and the produced differential amplifier circuit showed appropriate driving.

実施例4
(ゲート絶縁膜の形成)
グローブボックス内でビスビニルシロキサンベンゾシクロブテン(BCB)(商品名:サイクロテン3022−35)(ダウ・ケミカル社製)3.0gとメシチレン3.0gとを混合して得られた溶液の内0.5ml用いてスピンコーター(ミカサ株式会社製、MS−A100M)で、ゲート電極付プラスチック基板上にスピンコート製膜し(500rpm/5秒、及び2000rpm/60秒)、さらに80℃×3分、150℃×3分、210℃×40分、及び250℃×60分の熱処理により得られた膜厚525nmのBCB樹脂をゲート絶縁膜とした以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びにBCB樹脂に対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは0.35mJ/mであった。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.85cm/Vsで、かつ、キャリア移動度の標準偏差σが0.15であるため、変動係数CV(キャリア移動度)は18%であった。また、100素子の電流オン・オフ比の常用対数の平均が7.2で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.45であるため、変動係数CV(log10AR)は6%であった。また、しきい値電圧の平均が−1.5Vで、かつ、しきい値電圧の標準偏差σが0.093であった。
Example 4
(Formation of gate insulating film)
0% of the solution obtained by mixing 3.0 g of bisvinylsiloxane benzocyclobutene (BCB) (trade name: cycloten 3022-35) (manufactured by Dow Chemical Co.) and 3.0 g of mesitylene in a glove box. Spin coater (500 rpm / 5 seconds and 2000 rpm / 60 seconds) on a plastic substrate with a gate electrode using a spin coater (manufactured by Mikasa Co., Ltd., MS-A100M) using 5 ml, and further 80 ° C. × 3 minutes, A bottom gate is formed in the same manner as in Example 1 except that a 525 nm thick BCB resin obtained by heat treatment at 150 ° C. × 3 minutes, 210 ° C. × 40 minutes, and 250 ° C. × 60 minutes is used as the gate insulating film. A bottom contact type organic thin film transistor was fabricated.
(Calculation of interface energy)
The interfacial energy calculated from the contact angle of water and diiodomethane with 2,7-di (n-hexyl) dithienobenzodithiophene, and the contact angle of water and diiodomethane with BCB resin was 0.35 mJ / m. 2 .
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, since the average carrier mobility of the fabricated 100 elements is 0.85 cm 2 / Vs and the standard deviation σ of the carrier mobility is 0.15, the coefficient of variation CV (carrier mobility) is 18%. there were. In addition, since the average of the common logarithm of the current on / off ratio of 100 elements is 7.2 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.45, the coefficient of variation CV (log10AR) is It was 6%. The average threshold voltage was −1.5 V, and the standard deviation σ of the threshold voltage was 0.093.

以上より、非常に小さいばらつき特性を示すことが確認された。   From the above, it was confirmed that very small variation characteristics were exhibited.

実施例5
(ゲート絶縁膜の形成)
グローブボックス内で環化点を有するポリアミド酸(架橋ポリイミド系樹脂の前駆体)の溶液(商品名:CT4112)(京セラケミカル社製)0.5mlをスピンコーター(ミカサ株式会社製、MS−A100M)を用いて、ゲート電極付プラスチック基板上にスピンコート製膜し(500rpm/5秒、及び6000rpm/120秒)、さらに80℃×60分、120℃×60分、及び180℃×60分の熱処理により得られた膜厚590nmの架橋ポリイミド系樹脂をゲート絶縁膜とした以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びに上述の架橋ポリイミド系樹脂に対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは1.6mJ/mであった。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行ったところ、作製した100素子の平均キャリア移動度が0.55cm/Vsで、かつ、キャリア移動度の標準偏差σが0.051であるため、変動係数CV(キャリア移動度)は9%であった。また、100素子の電流オン・オフ比の常用対数の平均が6.4で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.51であるため、変動係数CV(log10AR)は8%であった。また、しきい値電圧の平均が5.8Vで、かつ、しきい値電圧の標準偏差σが0.19であった。
Example 5
(Formation of gate insulating film)
Spin coater (manufactured by Mikasa Corporation, MS-A100M) 0.5 ml of a solution of polyamic acid (precursor of cross-linked polyimide resin) having a cyclization point in a glove box (trade name: CT4112) (manufactured by Kyocera Chemical Co., Ltd.) Is used to form a spin coat film on a plastic substrate with a gate electrode (500 rpm / 5 seconds and 6000 rpm / 120 seconds), and further heat treatment at 80 ° C. × 60 minutes, 120 ° C. × 60 minutes, and 180 ° C. × 60 minutes. A bottom-gate / bottom-contact type organic thin film transistor was produced in the same manner as in Example 1 except that the gate insulating film was a 590 nm-thick crosslinked polyimide-based resin obtained by the above.
(Calculation of interface energy)
The interfacial energy calculated from the contact angle of water and diiodomethane to 2,7-di (n-hexyl) dithienobenzodithiophene, and the contact angle of water and diiodomethane to the above-mentioned crosslinked polyimide resin is 1 0.6 mJ / m 2 .
(Measurement of semiconductor and electrical properties)
When an organic thin film transistor array was produced in the same manner as in Example 2 and the electrical properties of the organic thin film transistor array were measured, the average carrier mobility of the produced 100 elements was 0.55 cm 2 / Vs, and the carrier Since the standard deviation σ of mobility is 0.051, the coefficient of variation CV (carrier mobility) was 9%. Further, since the average of the common logarithm of the current on / off ratio of 100 elements is 6.4 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.51, the coefficient of variation CV (log10AR) is It was 8%. The average threshold voltage was 5.8 V, and the standard deviation σ of the threshold voltage was 0.19.

以上より、非常に小さいばらつき特性を示すことが確認された。   From the above, it was confirmed that very small variation characteristics were exhibited.

実施例6
(ゲート絶縁膜の形成)
グローブボックス内で環化点を有するポリアミド酸(架橋ポリイミド系樹脂の前駆体)の溶液(商品名:CT4200)(京セラケミカル社製)3.0gとN−メチル−2−ピロリドン3.0gを混合して得られた溶液の内0.5ml用いて、スピンコーター(ミカサ株式会社製、MS−A100M)でゲート電極付プラスチック基板上にスピンコート製膜し(500rpm/5秒、及び2500rpm/120秒)、さらに150℃×60分、250℃×30分、及び320℃×30分の熱処理により得られた膜厚490nmの架橋ポリイミド系樹脂をゲート絶縁膜とした以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びに上述の架橋ポリイミド系樹脂に対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは1.7mJ/mであった。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.42cm/Vsで、かつ、キャリア移動度の標準偏差σが0.087であるため、変動係数CV(キャリア移動度)は20%であった。また、100素子の電流オン・オフ比の常用対数の平均が3.1で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.31であるため、変動係数CV(log10AR)は10%であった。また、しきい値電圧の平均が6.2Vで、かつ、しきい値電圧の標準偏差σが0.19であった。
Example 6
(Formation of gate insulating film)
Mixing 3.0 g of a polyamic acid (precursor of cross-linked polyimide resin) having a cyclization point in a glove box (trade name: CT4200) (manufactured by Kyocera Chemical) and 3.0 g of N-methyl-2-pyrrolidone Using 0.5 ml of the obtained solution, spin coating was performed on a plastic substrate with a gate electrode using a spin coater (manufactured by Mikasa Co., Ltd., MS-A100M) (500 rpm / 5 seconds and 2500 rpm / 120 seconds). Further, the same as in Example 1 except that a cross-linked polyimide resin having a film thickness of 490 nm obtained by heat treatment at 150 ° C. × 60 minutes, 250 ° C. × 30 minutes, and 320 ° C. × 30 minutes was used as the gate insulating film. A bottom gate-bottom contact type organic thin film transistor was prepared by the method.
(Calculation of interface energy)
The interfacial energy calculated from the contact angle of water and diiodomethane to 2,7-di (n-hexyl) dithienobenzodithiophene, and the contact angle of water and diiodomethane to the above-mentioned crosslinked polyimide resin is 1 0.7 mJ / m 2 .
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, since the average carrier mobility of the fabricated 100 elements is 0.42 cm 2 / Vs and the standard deviation σ of the carrier mobility is 0.087, the coefficient of variation CV (carrier mobility) is 20%. there were. Further, since the average of the common logarithm of the current on / off ratio of 100 elements is 3.1 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.31, the coefficient of variation CV (log10AR) is 10%. Further, the average of the threshold voltages was 6.2 V, and the standard deviation σ of the threshold voltages was 0.19.

以上より、非常に小さいばらつき特性を示すことが確認された。   From the above, it was confirmed that very small variation characteristics were exhibited.

実施例7
(ゲート絶縁膜の形成)
ジパラキシリレン(商品名:dix−N))(第三化成社製)2.7gをラボコータ(日本パリレン社製、PDS2010)にて、ゲート電極付プラスチック基板上に真空蒸着することで膜厚431nmのポリ(パラキシリレン)をゲート絶縁膜とした以外は実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びにポリ(パラキシリレン)に対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは1.5mJ/mであった。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.75cm/Vsで、かつ、キャリア移動度の標準偏差σが0.072であるため、変動係数CV(キャリア移動度)は9%であった。また、100素子の電流オン・オフ比の常用対数の平均が6.8で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.53であるため、変動係数CV(log10AR)は8%であった。また、しきい値電圧の平均が−0.052Vで、かつ、しきい値電圧の標準偏差σが0.18であった。
Example 7
(Formation of gate insulating film)
2.7 g of diparaxylylene (trade name: dix-N)) (manufactured by Daisan Kasei Co., Ltd.) is vacuum-deposited on a plastic substrate with a gate electrode on a plastic substrate with a gate electrode using a laboratory coater (manufactured by Parylene Japan, PDS2010). A bottom gate-bottom contact type organic thin film transistor was fabricated in the same manner as in Example 1 except that (paraxylylene) was used as the gate insulating film.
(Calculation of interface energy)
The interfacial energy calculated from the contact angle of water and diiodomethane to 2,7-di (n-hexyl) dithienobenzodithiophene, and the contact angle of water and diiodomethane to poly (paraxylylene) was 1.5 mJ. / M 2 .
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, since the average carrier mobility of the fabricated 100 elements is 0.75 cm 2 / Vs and the standard deviation σ of the carrier mobility is 0.072, the coefficient of variation CV (carrier mobility) is 9%. there were. In addition, since the average of the common logarithm of the current on / off ratio of 100 elements is 6.8 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.53, the coefficient of variation CV (log10AR) is It was 8%. The average threshold voltage was −0.052 V, and the standard deviation σ of the threshold voltage was 0.18.

以上より、非常に小さいばらつき特性を示すことが確認された。   From the above, it was confirmed that very small variation characteristics were exhibited.

比較例1
(有機半導体層の形成と有機薄膜トランジスタの作製)
有機半導体層の形成の際、0.2wt%のトルエン溶液を用いて、ドロップキャスト法(0.5μLを滴下)を用いた以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.37cm/Vsで、かつ、キャリア移動度の標準偏差σが0.13であるため、変動係数CV(キャリア移動度)は35%であった。また、100素子の電流オン・オフ比の常用対数の平均が7.3で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.48であるため、変動係数CV(log10AR)は7%であった。また、しきい値電圧の平均が−0.21Vで、かつ、しきい値電圧の標準偏差σが0.29であった。
Comparative Example 1
(Formation of organic semiconductor layer and production of organic thin film transistor)
When forming the organic semiconductor layer, a bottom gate-bottom contact type was used in the same manner as in Example 1 except that a 0.2 wt% toluene solution was used and a drop cast method (0.5 μL was dropped) was used. An organic thin film transistor was produced.
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, since the average carrier mobility of the fabricated 100 elements is 0.37 cm 2 / Vs and the standard deviation σ of the carrier mobility is 0.13, the coefficient of variation CV (carrier mobility) is 35%. there were. In addition, since the average of the common logarithm of the current on / off ratio of 100 elements is 7.3 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.48, the coefficient of variation CV (log10AR) is 7%. The average threshold voltage was −0.21 V, and the standard deviation σ of the threshold voltage was 0.29.

図6に得られた100素子の伝達特性図、図7に得られた100素子の移動度のヒストグラム、図8に得られた100素子のしきい値電圧のヒストグラムを示す。   FIG. 6 shows the 100-element transfer characteristic diagram, FIG. 7 shows the 100-element mobility histogram, and FIG. 8 shows the 100-element threshold voltage histogram.

印刷プロセスではないドロップキャスト法を用いて有機薄膜トランジスタを作製したため、ばらつき特性の小さい有機薄膜トランジスタを得ることができなかった。   Since an organic thin film transistor was produced using a drop casting method that is not a printing process, an organic thin film transistor with small variation characteristics could not be obtained.

比較例2
(有機半導体層の形成と有機薄膜トランジスタの作製)
有機半導体(溶質)に2,8−ジフルオロ−5,11−ビス(トリエチルシリルエチニル)アントラジチオフェン(シグマアルドリッチ社製)を用い、かつ溶媒にメシチレンを用いた以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,8−ジフルオロ−5,11−ビス(トリエチルシリルエチニル)アントラジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びにポリ(クロロパラキシリレン)に対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは0.79mJ/mであった。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.10cm/Vsで、かつ、キャリア移動度の標準偏差σが0.030であるため、変動係数CV(キャリア移動度)は30%であった。また、100素子の電流オン・オフ比の常用対数の平均が7.0で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.76であるため、変動係数CV(log10AR)は11%であった。また、しきい値電圧の平均が0.85Vで、かつ、しきい値電圧の標準偏差σが0.35であった。
Comparative Example 2
(Formation of organic semiconductor layer and production of organic thin film transistor)
The same as Example 1 except that 2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene (manufactured by Sigma-Aldrich) was used for the organic semiconductor (solute) and mesitylene was used for the solvent. A bottom gate-bottom contact type organic thin film transistor was prepared by the method.
(Calculation of interface energy)
Calculated from the contact angle of water and diiodomethane with 2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene, and the contact angle of water and diiodomethane with poly (chloroparaxylylene) Interface energy was 0.79 mJ / m 2 .
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, since the average carrier mobility of the fabricated 100 elements is 0.10 cm 2 / Vs and the standard deviation σ of the carrier mobility is 0.030, the coefficient of variation CV (carrier mobility) is 30%. there were. In addition, since the average of the common logarithm of the current on / off ratio of 100 elements is 7.0 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.76, the coefficient of variation CV (log10AR) is 11%. The average threshold voltage was 0.85 V, and the standard deviation σ of the threshold voltage was 0.35.

図9に得られた100素子の伝達特性図、図10に得られた100素子の移動度のヒストグラム、図11に得られた100素子のしきい値電圧のヒストグラムを示す。   FIG. 9 shows the 100-element transfer characteristic diagram, FIG. 10 shows the 100-element mobility histogram, and FIG. 11 shows the 100-element threshold voltage histogram.

有機半導体膜が一般式(1)に表される有機半導体を含んでいないため、ばらつき特性の小さい有機薄膜トランジスタを得ることができなかった。   Since the organic semiconductor film does not contain the organic semiconductor represented by the general formula (1), an organic thin film transistor having small variation characteristics cannot be obtained.

比較例3
(有機半導体層の形成と有機薄膜トランジスタの作製)
有機半導体(溶質)に2,8−ジフルオロ−5,11−ビス(トリエチルシリルエチニル)アントラジチオフェン(シグマアルドリッチ社製)を用い、溶媒をメシチレンとして0.2wt%の溶液とし、かつ有機半導体層の形成の際、かかる0.2wt%のメシチレン溶液を用いて、ドロップキャスト法(0.5μLを滴下)を用いた以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.10cm/Vsで、かつ、キャリア移動度の標準偏差σが0.060であるため、変動係数CV(キャリア移動度)は60%であった。また、100素子の電流オン・オフ比の常用対数の平均が3.8で、かつ、電流オン・オフ比の常用対数の標準偏差σが1.5であるため、変動係数CV(log10AR)は39%であった。また、しきい値電圧の平均が0.22Vで、かつ、しきい値電圧の標準偏差σが0.68であった。
Comparative Example 3
(Formation of organic semiconductor layer and production of organic thin film transistor)
2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene (manufactured by Sigma Aldrich) is used as the organic semiconductor (solute), and the solvent is mesitylene to form a 0.2 wt% solution, and the organic semiconductor layer The bottom gate-bottom contact type organic thin film transistor was formed in the same manner as in Example 1 except that the 0.2 wt% mesitylene solution was used and the drop cast method (0.5 μL was dropped) was used. Was made.
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, the average carrier mobility of the fabricated 100 elements is 0.10 cm 2 / Vs, and the standard deviation σ of the carrier mobility is 0.060, so the coefficient of variation CV (carrier mobility) is 60%. there were. Further, since the average of the common logarithm of the current on / off ratio of 100 elements is 3.8 and the standard deviation σ of the common logarithm of the current on / off ratio is 1.5, the coefficient of variation CV (log10AR) is 39%. The average threshold voltage was 0.22 V, and the standard deviation σ of the threshold voltage was 0.68.

図12に得られた100素子の伝達特性図、図13に得られた100素子の移動度のヒストグラム、図14に得られた100素子のしきい値電圧のヒストグラムを示す。   FIG. 12 shows the 100-element transfer characteristic diagram, FIG. 13 shows the 100-element mobility histogram, and FIG. 14 shows the 100-element threshold voltage histogram.

有機半導体膜が一般式(1)に表される有機半導体を含んでおらず、かつ印刷プロセスではないドロップキャスト法を用いて有機薄膜トランジスタを作製したため、ばらつき特性の小さい有機薄膜トランジスタを得ることができなかった。   Since the organic semiconductor film does not contain the organic semiconductor represented by the general formula (1) and the organic thin film transistor is manufactured using a drop casting method that is not a printing process, an organic thin film transistor with small variation characteristics cannot be obtained. It was.

比較例4
(ゲート絶縁膜の形成)
グローブボックス内で10mLのサンプル管にポリビニルフェノール(シグマ−アルドリッチ社製、Mw〜25000)1.0gとプロピレングリコール1−モノメチルエーテル2−アセテート(関東化学社製、鹿特級)4.0gを加え10時間攪拌することで得られた溶液1gと、グローブボックス内で10mLのサンプル管にポリ(メラミン−co−ホルムアルデヒド)(シグマ−アルドリッチ社製、Mn〜432)0.5gとプロピレングリコール1−モノメチルエーテル2−アセテート(関東化学社製、鹿特級)4.5gを加え10時間攪拌することで得られた溶液2gを混ぜて得られた溶液の内0.5ml用いてスピンコーター(ミカサ株式会社製、MS−A100M)で、ゲート電極付プラスチック基板上にスピンコート製膜し(500rpm/5秒、及び1500rpm/30秒)、さらに90℃×10分、及び150℃×60分の熱処理により得られた膜厚535nmの架橋ポリビニルフェノールをゲート絶縁膜とした以外は、実施例1と同様の方法でボトムゲート−ボトムコンタクト型の有機薄膜トランジスタを作製した。
(界面エネルギーの算出)
2,7−ジ(n−ヘキシル)ジチエノベンゾジチオフェンに対する水の接触角及びジヨードメタンの接触角、並びに架橋ポリビニルフェノールに対する水の接触角及びジヨードメタンの接触角から算出した界面エネルギーは3.9mJ/mであった。
(半導体・電気物性の測定)
実施例2と同様の方法で有機薄膜トランジスタアレイを作製し、該有機薄膜トランジスタアレイの電気物性の測定を行った。そして、100素子の有機薄膜トランジスタのキャリア移動度及び電流オン・オフ比のばらつき度合いを変動係数CVで計算し、しきい値電圧のばらつき度合いを標準偏差σで計算した。その結果、作製した100素子の平均キャリア移動度が0.32cm/Vsで、かつ、キャリア移動度の標準偏差σが0.037であるため、変動係数CV(キャリア移動度)は11%であった。また、100素子の電流オン・オフ比の常用対数の平均が4.2で、かつ、電流オン・オフ比の常用対数の標準偏差σが0.87であるため、変動係数CV(log10AR)は21%であった。また、しきい値電圧の平均が−2.7Vで、かつ、しきい値電圧の標準偏差σが0.67であった。
Comparative Example 4
(Formation of gate insulating film)
In a glove box, 1.0 g of polyvinylphenol (manufactured by Sigma-Aldrich, Mw-25000) and 4.0 g of propylene glycol 1-monomethyl ether 2-acetate (manufactured by Kanto Chemical Co., Ltd., deer special grade) are added to a 10 mL sample tube. 1 g of the solution obtained by stirring for a period of time, 0.5 g of poly (melamine-co-formaldehyde) (manufactured by Sigma-Aldrich, Mn˜432) and propylene glycol 1-monomethyl ether in a 10 mL sample tube in the glove box Spin coater (manufactured by Mikasa Co., Ltd.) using 0.5 ml of the solution obtained by mixing 2 g of the solution obtained by adding 4.5 g of 2-acetate (Kanto Chemical Co., Ltd., deer special grade) and stirring for 10 hours. MS-A100M), spin coat film formation on a plastic substrate with a gate electrode ( 00 rpm / 5 seconds, and 1500 rpm / 30 seconds), and a crosslinked polyvinylphenol having a thickness of 535 nm obtained by heat treatment at 90 ° C. × 10 minutes and 150 ° C. × 60 minutes was used as the gate insulating film. A bottom-gate / bottom-contact type organic thin film transistor was prepared in the same manner as described above.
(Calculation of interface energy)
The interfacial energy calculated from the contact angle of water and diiodomethane with 2,7-di (n-hexyl) dithienobenzodithiophene, and the contact angle of water and diiodomethane with crosslinked polyvinylphenol was 3.9 mJ / It was m 2.
(Measurement of semiconductor and electrical properties)
An organic thin film transistor array was prepared in the same manner as in Example 2, and the electrical properties of the organic thin film transistor array were measured. Then, the carrier mobility and the current on / off ratio variation degree of the 100 organic thin film transistors were calculated with the coefficient of variation CV, and the threshold voltage variation degree was calculated with the standard deviation σ. As a result, since the average carrier mobility of the fabricated 100 elements is 0.32 cm 2 / Vs and the standard deviation σ of the carrier mobility is 0.037, the coefficient of variation CV (carrier mobility) is 11%. there were. Further, since the average of the common logarithm of the current on / off ratio of 100 elements is 4.2 and the standard deviation σ of the common logarithm of the current on / off ratio is 0.87, the coefficient of variation CV (log10AR) is 21%. The average threshold voltage was −2.7 V, and the standard deviation σ of the threshold voltage was 0.67.

ゲート絶縁膜に用いられる材料と有機半導体との間の界面エネルギーが2mJ/mよりも大きいため、ばらつき特性の小さい有機薄膜トランジスタを得ることができなかった。 Since the interface energy between the material used for the gate insulating film and the organic semiconductor is larger than 2 mJ / m 2, an organic thin film transistor with small variation characteristics cannot be obtained.

本発明の有機薄膜トランジスタは、キャリア移動度が高くしきい値電圧など性能のばらつきが小さい特徴を活かして、半導体pHセンサ、半導体イオンセンサ、半導体圧力センサ、半導体温度センサ、光センサなど各種高感度センサへの利用が可能である。   The organic thin film transistor of the present invention utilizes various characteristics such as a semiconductor pH sensor, a semiconductor ion sensor, a semiconductor pressure sensor, a semiconductor temperature sensor, and an optical sensor by taking advantage of high carrier mobility and small performance variations such as threshold voltage. Can be used.

(A):ボトムゲート−トップコンタクト型有機薄膜トランジスタ
(B):ボトムゲート−ボトムコンタクト型有機薄膜トランジスタ
(C):トップゲート−トップコンタクト型有機薄膜トランジスタ
(D):トップゲート−ボトムコンタクト型有機薄膜トランジスタ
1:有機半導体層 2:基板 3:ゲート電極
4:ゲート絶縁層 5:ソース電極 6:ドレイン電極
(A): Bottom gate-top contact type organic thin film transistor (B): Bottom gate-bottom contact type organic thin film transistor (C): Top gate-top contact type organic thin film transistor (D): Top gate-bottom contact type organic thin film transistor 1: Organic semiconductor layer 2: Substrate 3: Gate electrode 4: Gate insulating layer 5: Source electrode 6: Drain electrode

Claims (9)

ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体膜を有する有機薄膜トランジスタであって、該有機半導体膜が一般式(1)
Figure 2015179835
[式中、R〜Rは、各々独立して、水素原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルチオ基、炭素数1〜20のハロアルキル基、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、5〜14員環のヘテロアリール基、又は一般式(2)
Figure 2015179835
(式中、Rは、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、又は5〜14員環のヘテロアリール基を示し、Yは炭素数1〜6の2価アルキル基、又は炭素数1〜6の2価ハロアルキル基を示す。)
で表される基を示す。]
で表される有機半導体を含み、前記ゲート絶縁膜に用いられる材料と前記有機半導体との間の界面エネルギーが2.0mJ/m以下であり、かつ前記有機半導体膜が印刷プロセスで製膜して得られることを特徴とする有機薄膜トランジスタ。
An organic thin film transistor having a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor film, wherein the organic semiconductor film has the general formula (1)
Figure 2015179835
[Wherein, R 1 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 1 to 1 carbon atoms. 20 alkoxy groups, C1-C20 alkylthio groups, C1-C20 haloalkyl groups, C3-C10 cycloalkyl groups, C6-C14 aryl groups, and 3- to 12-membered cyclohetero heterocycles An alkyl group, a 5- to 14-membered heteroaryl group, or general formula (2)
Figure 2015179835
(In the formula, R 7 represents a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, a cycloheteroalkyl group having 3 to 12 members, or a heteroaryl group having 5 to 14 members. Y represents a divalent alkyl group having 1 to 6 carbon atoms or a divalent haloalkyl group having 1 to 6 carbon atoms.)
The group represented by these is shown. ]
The interface energy between a material used for the gate insulating film and the organic semiconductor is 2.0 mJ / m 2 or less, and the organic semiconductor film is formed by a printing process. An organic thin film transistor characterized by being obtained.
ゲート絶縁膜に用いられる材料が有機塗工型材料である、請求項1に記載の有機薄膜トランジスタ。 The organic thin-film transistor of Claim 1 whose material used for a gate insulating film is an organic coating type material. ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体膜を有する有機薄膜トランジスタあって、前記有機半導体膜が一般式(1)
Figure 2015179835
[式中、R〜Rは、各々独立して、水素原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルチオ基、炭素数1〜20のハロアルキル基、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、5〜14員環のヘテロアリール基、又は一般式(2)
Figure 2015179835
(式中、Rは、炭素数3〜10のシクロアルキル基、炭素数6〜14のアリール基、3〜12員環のシクロヘテロアルキル基、又は5〜14員環のヘテロアリール基を示し、Yは炭素数1〜6の2価アルキル基、又は炭素数1〜6の2価ハロアルキル基を示す。)
で表される基を示す。]
で表される有機半導体を含み、該ゲート絶縁膜に用いられる材料がポリ(クロロパラキシリレン)であり、かつ、有機半導体膜が印刷プロセスで製膜して得られることを特徴とする有機薄膜トランジスタ。
An organic thin film transistor having a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor film, wherein the organic semiconductor film has the general formula (1)
Figure 2015179835
[Wherein, R 1 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 1 to 1 carbon atoms. 20 alkoxy groups, C1-C20 alkylthio groups, C1-C20 haloalkyl groups, C3-C10 cycloalkyl groups, C6-C14 aryl groups, and 3- to 12-membered cyclohetero heterocycles An alkyl group, a 5- to 14-membered heteroaryl group, or general formula (2)
Figure 2015179835
(In the formula, R 7 represents a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, a cycloheteroalkyl group having 3 to 12 members, or a heteroaryl group having 5 to 14 members. Y represents a divalent alkyl group having 1 to 6 carbon atoms or a divalent haloalkyl group having 1 to 6 carbon atoms.)
The group represented by these is shown. ]
An organic thin film transistor characterized in that the material used for the gate insulating film is poly (chloroparaxylylene), and the organic semiconductor film is formed by a printing process .
ゲート絶縁膜に用いられる材料がポリ(パラキシリレン)、ポリ(ジクロロパラキシリレン)である、請求項1に記載の有機薄膜トランジスタ。 The organic thin-film transistor of Claim 1 whose material used for a gate insulating film is poly (paraxylylene) and poly (dichloroparaxylylene). 有機半導体が一般式(3)
Figure 2015179835
(式中、R、Rは、各々独立して、水素原子、炭素数1〜20のアルキル基、又は炭素数1〜20のアルコキシ基を示す。)
で表される、請求項1〜4のいずれかに記載の有機薄膜トランジスタ。
Organic semiconductor is represented by the general formula (3)
Figure 2015179835
(Wherein, R 1, R 2 are each independently a hydrogen atom, an alkyl group, or an alkoxy group having 1 to 20 carbon atoms having 1 to 20 carbon atoms.)
The organic thin-film transistor in any one of Claims 1-4 represented by these.
有機半導体膜を製膜する印刷プロセスが、ディスペンサー印刷、インクジェット印刷、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、スリットコート印刷又はスクリーン印刷である、請求項1〜5のいずれかに記載の有機薄膜トランジスタ。 The organic process according to any one of claims 1 to 5, wherein the printing process for forming the organic semiconductor film is dispenser printing, inkjet printing, offset printing, relief printing, intaglio printing, gravure printing, slit coat printing, or screen printing. Thin film transistor. 請求項1〜6のいずれかに記載の有機薄膜トランジスタを用いて得られる、有機薄膜トランジスタアレイ。 The organic thin-film transistor array obtained using the organic thin-film transistor in any one of Claims 1-6. 請求項1〜6のいずれかに記載の有機薄膜トランジスタを用いて得られる、差動増幅回路。 The differential amplifier circuit obtained using the organic thin-film transistor in any one of Claims 1-6. 請求項8に記載の差動増幅回路を用いて得られる、有機電子デバイス。 An organic electronic device obtained using the differential amplifier circuit according to claim 8.
JP2015036221A 2014-02-27 2015-02-26 Organic thin film transistor and organic electronic device Active JP6478705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036221A JP6478705B2 (en) 2014-02-27 2015-02-26 Organic thin film transistor and organic electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014036940 2014-02-27
JP2014036940 2014-02-27
JP2015036221A JP6478705B2 (en) 2014-02-27 2015-02-26 Organic thin film transistor and organic electronic device

Publications (2)

Publication Number Publication Date
JP2015179835A true JP2015179835A (en) 2015-10-08
JP6478705B2 JP6478705B2 (en) 2019-03-06

Family

ID=54009133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036221A Active JP6478705B2 (en) 2014-02-27 2015-02-26 Organic thin film transistor and organic electronic device

Country Status (3)

Country Link
JP (1) JP6478705B2 (en)
TW (1) TW201547075A (en)
WO (1) WO2015129819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053706A (en) * 2019-12-19 2020-04-02 純一 竹谷 Organic field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053265A (en) * 2005-08-18 2007-03-01 Seiko Epson Corp Semiconductor device, electro-optical device and electronic instrument
JP2013035814A (en) * 2011-08-11 2013-02-21 Ricoh Co Ltd Novel organic semiconductor material and electronic device using the same
JP2013069752A (en) * 2011-09-21 2013-04-18 Tosoh Corp Dithienobenzodithiophene derivative composition and organic thin film transistor comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774962A (en) * 2003-04-16 2006-05-17 松下电器产业株式会社 Discharging solution, method for producing patterns and method for producing an electronic device using the discharging solution, and electronic device
JP2012206953A (en) * 2011-03-29 2012-10-25 Tosoh Corp Dithienobenzodithiophene derivative, and organic thin-film transistor using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053265A (en) * 2005-08-18 2007-03-01 Seiko Epson Corp Semiconductor device, electro-optical device and electronic instrument
JP2013035814A (en) * 2011-08-11 2013-02-21 Ricoh Co Ltd Novel organic semiconductor material and electronic device using the same
JP2013069752A (en) * 2011-09-21 2013-04-18 Tosoh Corp Dithienobenzodithiophene derivative composition and organic thin film transistor comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053706A (en) * 2019-12-19 2020-04-02 純一 竹谷 Organic field effect transistor

Also Published As

Publication number Publication date
JP6478705B2 (en) 2019-03-06
WO2015129819A1 (en) 2015-09-03
TW201547075A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5160078B2 (en) Field effect transistor
JP5913107B2 (en) Organic semiconductor material, organic semiconductor composition, organic thin film, field effect transistor, and manufacturing method thereof
JP5851964B2 (en) Asymmetric dibenzodithienothiophene compounds
JP6252017B2 (en) Organic semiconductor layer forming solution, organic semiconductor layer, and organic thin film transistor
JP2007266285A (en) Field effect transistor
JP2015029020A (en) Liquid solution for organic semiconductor layer formation, organic semiconductor layer, and organic thin film transistor
JP2007266411A (en) Field effect transistor
KR101462526B1 (en) Organic semiconductor meterial, field-effect transistor, and manufacturing method thereof
KR20100031036A (en) A manufacturing method of a thin film organic semiconductor using a phase seperation of blend of organic semiconductor/insulating polymer and organic thin film transister
US8692238B2 (en) Semiconductor devices and methods of preparation
JP2012044109A (en) Field effect transistor and method of manufacturing the same
JP4868825B2 (en) Organic field effect transistor
JP6478705B2 (en) Organic thin film transistor and organic electronic device
US20070145357A1 (en) Thin-film transistor
JP5428113B2 (en) Field effect transistor
WO2014136942A1 (en) Method for forming organic thin film
US9123899B2 (en) Semiconductor compound
JP2017098490A (en) Organic semiconductor layer forming solution, organic semiconductor layer, and organic thin-film transistor
CN102255046B (en) Transparent organic polymer insulating layer, preparation method thereof and application thereof to organic field effect transistor
JP2013008927A (en) Composition for organic electronic device, manufacturing method of organic electronic device, organic electronic device and field-effect transistor
KR101910680B1 (en) Method for producing organic transistor, organic transistor, method for producing semiconductor device, semiconductor device, and electronic apparatus
JP2015002342A (en) Organic semiconductor, application thereof, and ink for semiconductor layer formation
KR101831858B1 (en) Semiconducting composition
JP2007266201A (en) Field effect transistor
JP2017098489A (en) Organic semiconductor layer forming solution, organic semiconductor layer, and organic thin-film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250