JP2015179038A - Chip for measurement - Google Patents

Chip for measurement Download PDF

Info

Publication number
JP2015179038A
JP2015179038A JP2014056982A JP2014056982A JP2015179038A JP 2015179038 A JP2015179038 A JP 2015179038A JP 2014056982 A JP2014056982 A JP 2014056982A JP 2014056982 A JP2014056982 A JP 2014056982A JP 2015179038 A JP2015179038 A JP 2015179038A
Authority
JP
Japan
Prior art keywords
blood
measurement
width
reagent
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056982A
Other languages
Japanese (ja)
Other versions
JP6278772B2 (en
Inventor
健行 森内
Takeyuki Moriuchi
健行 森内
落合 庄司
Shoji Ochiai
庄司 落合
雅夫 滝浪
Masao Takinami
雅夫 滝浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2014056982A priority Critical patent/JP6278772B2/en
Publication of JP2015179038A publication Critical patent/JP2015179038A/en
Application granted granted Critical
Publication of JP6278772B2 publication Critical patent/JP6278772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce reaction irregularity of fluid to a reagent with a simple structure.SOLUTION: A chip 10 for measurement comprises: a blood passage 48 capable of circulating blood in an extension direction; a blood expansion part 54 having plural projections 60 on a midway position of the blood passage 48 and to which a reagent is applied; and a measurement part 56 disposed on a downstream side of the blood expansion part 54. The measurement part 56 is configured so that width W2 in a direction orthogonal to the extension direction on a connection floor part 62 continuous to at least the blood expansion part 54 is narrower than width W1 in a direction orthogonal to the extension direction of the blood expansion part 54.

Description

本発明は、流体と試薬を反応させて流体中の所定成分を光学的に測定するための測定用チップに関する。   The present invention relates to a measurement chip for optically measuring a predetermined component in a fluid by reacting the fluid with a reagent.

血液等の体液(流体)の成分量や性質等を測定するために、従来、成分測定装置が開発されている。この種の成分測定装置としては、例えば、糖尿病診断、インシュリン投与量の決定のための簡易型の血糖計が挙げられる。血糖計による血糖の測定原理には、電極に試薬を固定して電気的変化を測定する「電極式」と、多孔質膜等に浸み込ませた試薬と血液とを反応させその呈色度合を光学的に測定する「比色式」とがある。   Conventionally, a component measuring device has been developed in order to measure the amount and properties of a body fluid (fluid) such as blood. Examples of this type of component measuring apparatus include a simple blood glucose meter for diabetes diagnosis and determination of insulin dose. The principle of blood glucose measurement using a blood glucose meter is based on the "electrode type", in which a reagent is fixed to an electrode and the electrical change is measured, and the color level of the reaction between the reagent soaked in a porous membrane and blood. There is a “colorimetric method” for optically measuring the color.

このうち比色式を採用した比色式血糖計は、血糖値の算出の際にヘマトクリット値を用いた補正が容易、製造工程が簡易等の利点を有している。比色式血糖計を用いて血糖値を測定する場合、ポリスルホンやポリエーテルスルホン等の多孔質膜内に試薬(酵素、発色試薬等)を担持させた試験紙を有する測定用チップを血糖計に装着する。そして、測定用チップの内部に血液を取り込んで試験紙に浸み込ませ、血液中のブドウ糖と試薬との反応により呈色した試験紙の色を光学的に検出することにより血糖値を測定する(例えば、特許文献1参照)。   Among these, the colorimetric blood glucose meter adopting the colorimetric method has advantages such as easy correction using the hematocrit value when calculating the blood glucose level and a simple manufacturing process. When measuring a blood glucose level using a colorimetric blood glucose meter, a measuring chip having a test paper carrying a reagent (enzyme, coloring reagent, etc.) in a porous membrane such as polysulfone or polyethersulfone is used as the blood glucose meter. Installing. The blood glucose level is measured by optically detecting the color of the test paper that is colored by the reaction of glucose in the blood with the reagent by taking blood into the measurement chip and immersing it in the test paper. (For example, refer to Patent Document 1).

特開2011−64596号公報JP 2011-64596 A

ところで、比色式血糖計(成分測定装置)の測定用チップは、その内部において光学系の測定部まで血液を流動させ、流動過程において試薬と反応させるように構成してもよい。このように構成すると、試薬を担持させた試験紙(多孔質膜)の構造制御を省くことができ、製造コストの低減等が図られる。   By the way, the measuring chip of the colorimetric blood glucose meter (component measuring device) may be configured to cause blood to flow to the measuring part of the optical system inside and to react with the reagent in the flow process. If comprised in this way, the structure control of the test paper (porous membrane) which carry | supported the reagent can be omitted, and reduction of a manufacturing cost etc. will be aimed at.

しかしながら、上記のように流動中に試薬と反応させる場合、血液は、試薬に充分反応する部分と、試薬に殆ど反応しない部分とを有して(以下、反応むらという)呈色する可能性がある。そして、このように血液と試薬の反応むらが生じると、成分測定用の光が照射される箇所の呈色状態が不安定となり、血糖値の測定精度が低下する要因となる。   However, when reacting with a reagent during flow as described above, blood may have a color that has a part that reacts sufficiently with the reagent and a part that hardly reacts with the reagent (hereinafter referred to as uneven reaction). is there. If uneven reaction between the blood and the reagent occurs in this way, the coloration state of the portion irradiated with the light for component measurement becomes unstable, which causes a decrease in blood glucose measurement accuracy.

本発明は、上記の実情に鑑みてなされたものであって、簡単な構成によって試薬に対する流体の反応むらを低減することができ、これにより成分測定の測定精度の向上及び安定化を図ることが可能な測定用チップを提供することを目的とする。   The present invention has been made in view of the above circumstances, and can reduce the uneven reaction of the fluid with respect to the reagent with a simple configuration, thereby improving and stabilizing the measurement accuracy of the component measurement. The object is to provide a possible measuring chip.

前記の目的を達成するために、本発明に係る測定用チップは、本体部と、前記本体部内を直線状に延在し、延在方向に流体を流動可能な流体通路と、前記流体通路の途中位置に設けられ、成分測定用の試薬が塗布された流体展開部と、前記流体通路の前記流体展開部よりも流体の流れ方向下流側に設けられ、成分測定用の光が照射される測定部と、を備え、前記測定部は、少なくとも前記流体展開部に連なる連結部において前記延在方向と直交する方向の幅が、前記流体展開部の前記延在方向と直交する方向の幅よりも狭いことを特徴とする。   In order to achieve the above object, a measuring chip according to the present invention includes a main body, a fluid passage that linearly extends in the main body, and can flow a fluid in the extending direction, and the fluid passage. A fluid development part provided at a midway position and coated with a component measurement reagent, and a measurement provided in the fluid flow direction downstream of the fluid development part of the fluid passage and irradiated with light for component measurement A width of a direction perpendicular to the extending direction at least in a connecting part connected to the fluid developing part is greater than a width of the fluid developing part in a direction perpendicular to the extending direction. It is characterized by being narrow.

上記によれば、測定用チップは、流体展開部の幅に対し測定部の連結部の幅が狭いことで、試薬が充分に溶解した流体を流体展開部から測定部に流入させることができる。つまり、流体展開部では、流体に試薬が溶解するものの、試薬の塗布状態等によりその溶解度合が部分的(血液展開部の幅方向)に異なる。このため、流体展開部の幅よりも測定部の幅を狭くすることで、試薬の溶解が多い流体を測定部に流入させる一方で、試薬の溶解が少ない流体を試薬が存在する箇所に誘導する又は滞留させることができる。その結果、測定部上には、試薬が略均一に溶解した流体が存在することになり、この流体に対し成分測定を行うことで、測定精度の向上及び安定化を図ることが可能となる。   Based on the above, since the measurement chip has a narrow width of the connecting portion of the measuring portion relative to the width of the fluid developing portion, the fluid in which the reagent is sufficiently dissolved can flow into the measuring portion from the fluid developing portion. That is, although the reagent is dissolved in the fluid in the fluid development part, the solubility varies partially (in the width direction of the blood development part) depending on the application state of the reagent and the like. For this reason, by narrowing the width of the measurement section rather than the width of the fluid spreading section, a fluid with a high amount of reagent dissolution is allowed to flow into the measurement section, while a fluid with a small amount of reagent dissolution is guided to a location where the reagent exists. Or it can be retained. As a result, a fluid in which the reagent is dissolved substantially uniformly exists on the measurement unit, and measurement accuracy can be improved and stabilized by performing component measurement on the fluid.

この場合、前記連結部の前記延在方向と直交する方向の幅は、前記流体展開部の前記延在方向と直交する方向の幅に対し40%以下に設定されることが好ましい。   In this case, it is preferable that the width of the connecting portion in the direction orthogonal to the extending direction is set to 40% or less with respect to the width of the fluid spreading portion in the direction orthogonal to the extending direction.

このように、測定用チップは、連結部の幅が流体展開部の幅の40%以下に設定されることで、試薬が充分に溶解した流体を測定部に一層確実に流動させることができる。従って、より均一に試薬が溶解した流体に対し成分測定を行うことができる。   As described above, in the measuring chip, the width of the connecting portion is set to 40% or less of the width of the fluid developing portion, so that the fluid in which the reagent is sufficiently dissolved can flow more reliably to the measuring portion. Therefore, component measurement can be performed on the fluid in which the reagent is dissolved more uniformly.

また、前記測定部は、前記連結部よりも流体の流れ方向下流側に測定本体部を有し、前記測定本体部の前記延在方向と直交する方向の幅は、前記連結部の前記延在方向と直交する方向の幅に略一致するとよい。   In addition, the measurement unit has a measurement main body portion on the downstream side in the fluid flow direction with respect to the connection portion, and a width of the measurement main body portion in a direction orthogonal to the extension direction is the extension of the connection portion. It is preferable to substantially match the width in the direction orthogonal to the direction.

このように、測定部は、測定本体部の幅と連結部の幅が一致していることで、測定部に対し流体を比較的短時間に流入させることができ、成分測定にかかる時間を短縮することができる。   In this way, the measurement unit can allow the fluid to flow into the measurement unit in a relatively short time because the width of the measurement main body and the width of the connection unit match, thereby reducing the time required for component measurement. can do.

或いは、前記測定部は、前記連結部よりも流体の流れ方向下流側に測定本体部を有し、前記測定本体部の前記延在方向と直交する方向の幅は、前記連結部の前記延在方向と直交する方向の幅よりも広くてもよい。   Alternatively, the measurement part has a measurement main body part on the downstream side in the fluid flow direction with respect to the connection part, and the width of the measurement main body part in the direction orthogonal to the extension direction is the extension of the connection part. It may be wider than the width in the direction orthogonal to the direction.

このように、測定本体部の幅が連結部の幅よりも広いことで、試薬の溶解が多い流体を連結部に一旦流入させた後に、測定本体部において流入した流体を広げることができる。これにより、測定本体部に流入する流体に乱流が起きて、より均一に試薬が溶解した流体に対し成分測定を行うことができる。また、実際に成分測定用の光が照射される箇所が広くなるため、例えば測定用チップの装着が多少ずれても照射範囲をカバーすることができ、測定ミスを大幅に減らすことができる。   Thus, since the width of the measurement main body portion is wider than the width of the connection portion, the fluid that has been dissolved in the reagent once flows into the connection portion, and then the fluid that has flowed in the measurement main body portion can be widened. Thereby, turbulent flow occurs in the fluid flowing into the measurement main body, and component measurement can be performed on the fluid in which the reagent is dissolved more uniformly. Moreover, since the part where the light for component measurement is actually irradiated becomes wide, for example, even if the mounting of the measuring chip is slightly deviated, the irradiation range can be covered, and measurement errors can be greatly reduced.

また、前記流体展開部は、前記試薬が塗布された複数の突起を有するとよい。   The fluid development part may have a plurality of protrusions coated with the reagent.

このように複数の突起を設けることで、試薬と血液との接触面積を大きくし、さらに血液の流れに乱流効果(撹拌効果)をもたらす効果がある。よって、試薬と血糖との反応が促進され、測定時間を短くすることができる。   Providing a plurality of protrusions in this way has the effect of increasing the contact area between the reagent and blood and further providing a turbulent effect (stirring effect) on the blood flow. Therefore, the reaction between the reagent and blood glucose is promoted, and the measurement time can be shortened.

本発明に係る測定用チップは、簡単な構成によって試薬に対する流体の反応むらを低減することができ、これにより成分測定の測定精度の向上及び安定化を図ることが可能となる。   The measurement chip according to the present invention can reduce the uneven reaction of the fluid with respect to the reagent with a simple configuration, thereby improving the measurement accuracy and stabilizing the component measurement.

本発明の一実施形態に係る測定用チップを装着した成分測定装置を概略的に示す斜視図である。1 is a perspective view schematically showing a component measuring apparatus equipped with a measuring chip according to an embodiment of the present invention. 図1の測定用チップを拡大して示す斜視図である。It is a perspective view which expands and shows the measuring chip of FIG. 図2の測定用チップを分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the measurement chip | tip of FIG. 図1の測定用チップ及び成分測定装置の一部を概略的に示す側面断面図である。FIG. 2 is a side cross-sectional view schematically showing a part of the measuring chip and the component measuring apparatus in FIG. 1. 図5Aは、図1の測定用チップの血液通路を示す平面図であり、図5Bは、従来の測定用チップ血液通路を示す平面図である。5A is a plan view showing a blood passage of the measurement chip in FIG. 1, and FIG. 5B is a plan view showing a conventional measurement chip blood passage. 図6Aは、図1の測定用チップにおける血液を取り込んだ際の血液の流れを示す第1説明図であり、図6Bは、図6Aに続く血液の流れを示す第2説明図である。6A is a first explanatory diagram showing the blood flow when blood is taken in the measurement chip of FIG. 1, and FIG. 6B is a second explanatory diagram showing the blood flow following FIG. 6A. 第1変形例に係る測定用チップの血液通路を示す平面図である。It is a top view which shows the blood channel | path of the measuring chip which concerns on a 1st modification. 図8Aは、第2変形例に係る測定用チップを装着した成分測定装置を概略的に示す斜視図であり、図8Bは、図8Aの測定用チップ及び成分測定装置の一部を概略的に示す側面断面図である。FIG. 8A is a perspective view schematically showing a component measuring device equipped with a measuring chip according to a second modification, and FIG. 8B schematically shows a part of the measuring chip and component measuring device of FIG. 8A. It is side surface sectional drawing shown. 本発明に係る測定用チップの実験における透過光量の測定位置を示す平面図である。It is a top view which shows the measurement position of the transmitted light quantity in experiment of the measurement chip | tip which concerns on this invention. 図10Aは、実施例1に係る測定用チップの測定位置と透過光量の関係を示す折線グラフであり、図10Bは、実施例2に係る測定用チップの測定位置と透過光量の関係を示す折線グラフであり、図10Cは、実施例3に係る測定用チップの測定位置と透過光量の関係を示す折線グラフである。FIG. 10A is a line graph showing the relationship between the measurement position of the measurement chip according to Example 1 and the transmitted light amount, and FIG. 10B is a line graph showing the relationship between the measurement position of the measurement chip according to Example 2 and the transmitted light amount. FIG. 10C is a line graph showing the relationship between the measurement position of the measurement chip according to Example 3 and the amount of transmitted light.

以下、本発明に係る測定用チップについて好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the measuring chip according to the present invention will be described in detail with reference to the accompanying drawings.

図1に示すように、測定用チップ10は、流体中の所定成分を測定するために成分測定装置12に装着される部材である。本実施形態に係る成分測定装置12は、いわゆる血糖計として構成され、流体である血液を測定用チップ10内に取り込み、所定成分として血液中のブドウ糖(血糖)を測定する。なお、成分測定装置12は、血糖計に限定されず、流体に含まれる成分を測定可能な種々の装置を適用することができ、例えば、尿の成分を測定する装置、工業用水や排水の成分を測定する装置等でもよい。   As shown in FIG. 1, the measuring chip 10 is a member attached to the component measuring device 12 in order to measure a predetermined component in the fluid. The component measuring apparatus 12 according to the present embodiment is configured as a so-called blood glucose meter, takes blood as a fluid into the measuring chip 10, and measures glucose (blood sugar) in the blood as a predetermined component. The component measuring device 12 is not limited to a blood glucose meter, and various devices capable of measuring components contained in a fluid can be applied. For example, devices for measuring urine components, industrial water and wastewater components A device for measuring

成分測定装置12は、測定用チップ10内に取り込んだ血液を光学的に測定する構成となっている。この成分測定装置12は、筐体14と、筐体14の内部に設けられ光学系を動作させて血糖値の測定を行う制御部16とを備える。   The component measuring device 12 is configured to optically measure blood taken into the measuring chip 10. The component measuring device 12 includes a housing 14 and a control unit 16 that is provided inside the housing 14 and operates an optical system to measure a blood sugar level.

筐体14は、持ち運びが容易で、血糖値の測定時に把持操作し易い形状及び大きさであることが好ましく、例えば、図1中に示すように角が丸い長方形状に形成されるとよい。筐体14を構成する材料は特に限定されず、樹脂等を適用することができる。   The casing 14 is preferably easy to carry and has a shape and size that can be easily gripped when measuring blood sugar levels. For example, the casing 14 may be formed in a rectangular shape with rounded corners as shown in FIG. The material which comprises the housing | casing 14 is not specifically limited, Resin etc. can be applied.

筐体14には、ディスプレイ18、操作ボタン20、チップ装着部22、イジェクト操作部24等が設けられる。ディスプレイ18は、測定結果である血糖値の表示やエラー表示等のように血糖値の測定においてユーザ(測定者)に供する情報を表示する。操作ボタン20は、例えば、電源のオン/オフ、測定結果の表示切替等、血糖値の測定や表示を行う際のユーザの操作部として構成される。   The housing 14 is provided with a display 18, operation buttons 20, a chip mounting unit 22, an eject operation unit 24, and the like. The display 18 displays information to be provided to the user (measurement person) in blood glucose level measurement, such as display of a blood glucose level as a measurement result or error display. The operation button 20 is configured as a user operation unit when measuring or displaying a blood glucose level, for example, turning on / off the power supply, switching display of a measurement result, or the like.

チップ装着部22は、測定用チップ10を着脱自在に保持する機能を有する。例えば、チップ装着部22は、筐体14の一側面に形成された装着孔22aと、装着孔22a内で測定用チップ10をロック可能なロック機構(図示せず)とを有する。装着孔22aは、測定用チップ10の正面断面形状に略一致する比較的小さな断面形状に形成され、且つ測定用チップ10を部分的に挿入可能な奥行きを有する。装着孔22aの開口が小さいことで、孔内への塵芥等の侵入が抑制される。   The chip mounting portion 22 has a function of detachably holding the measurement chip 10. For example, the chip mounting portion 22 includes a mounting hole 22a formed on one side surface of the housing 14, and a lock mechanism (not shown) that can lock the measurement chip 10 in the mounting hole 22a. The mounting hole 22a is formed in a relatively small cross-sectional shape that substantially matches the front cross-sectional shape of the measurement chip 10, and has a depth that allows the measurement chip 10 to be partially inserted. Since the opening of the mounting hole 22a is small, entry of dust or the like into the hole is suppressed.

ロック機構は、例えば、測定用チップ10の上下面を摩擦によって強固に保持する構成を採ることができる。この場合、測定用チップ10の保持時には、ユーザに対し触覚的又は音的に保持したこと(クリック)を伝達する構成であるとよい。なお、ロック機構は、この構成に限らず、種々の機械的又は電気的構造を適用することができ、例えば装着孔22a内に凸部を設けると共に測定用チップ10に凹部66を設けて、両者を係合する構成でもよい。測定用チップ10は、装着孔22aの開口から所定の向きで挿入されて所定量押し込まれると、ロック機構により血糖値の測定が可能な位置に位置決め固定される。   For example, the lock mechanism can employ a configuration in which the upper and lower surfaces of the measurement chip 10 are firmly held by friction. In this case, when the measurement chip 10 is held, it may be configured to transmit the tactile or sound holding (click) to the user. The lock mechanism is not limited to this configuration, and various mechanical or electrical structures can be applied. For example, a convex portion is provided in the mounting hole 22a and a concave portion 66 is provided in the measurement chip 10, so that both The structure which engages may be sufficient. When the measuring chip 10 is inserted in a predetermined direction from the opening of the mounting hole 22a and pushed in a predetermined amount, the measuring chip 10 is positioned and fixed at a position where the blood glucose level can be measured by the lock mechanism.

また、イジェクト操作部24は、筐体14の一側面に操作子24aを有し、ユーザの操作子24aの操作に基づき、ロック機構による測定用チップ10のロック解除を行い、測定用チップ10を装着孔22aから押し出す。ユーザは、このイジェクト操作部24を操作することで、使用した(血液の取り込みを行った)測定用チップ10に触れずに測定用チップ10を廃棄することができる。   The eject operation unit 24 has an operation element 24a on one side surface of the housing 14, and based on the operation of the user operation element 24a, the ejection of the measurement chip 10 by the lock mechanism is performed. It pushes out from the mounting hole 22a. The user can discard the measuring chip 10 without touching the used measuring chip 10 (which has taken in blood) by operating the eject operation unit 24.

一方、成分測定装置12の制御部16は、図示しない演算部、記憶部、入出力部を有し、記憶部に記憶されたプログラムを演算部が処理することで、成分測定装置12全体の動作を制御する。例えば、制御部16は、チップ装着部22に対する測定用チップ10の装着状態を図示しないセンサにより検出する。また、測定用チップ10の装着状態においては、光学系の動作を制御して測定用チップ10に取り込まれた血液の成分測定(血糖値の測定)を行う。さらに、制御部16は、ユーザの操作ボタン20の操作に基づき、測定結果をディスプレイ18に表示する、又は表示内容を切り替える等の処理を行う。   On the other hand, the control unit 16 of the component measuring device 12 includes a calculation unit, a storage unit, and an input / output unit (not shown), and the calculation unit processes the program stored in the storage unit, whereby the operation of the entire component measurement device 12 is performed. To control. For example, the control unit 16 detects the mounting state of the measurement chip 10 with respect to the chip mounting unit 22 by a sensor (not shown). When the measuring chip 10 is attached, the operation of the optical system is controlled to measure the blood component taken into the measuring chip 10 (measure the blood sugar level). Further, the control unit 16 performs processing such as displaying the measurement result on the display 18 or switching display contents based on the operation of the operation button 20 by the user.

次に、成分測定装置12に装着される測定用チップ10について説明する。図2及び図3に示すように、測定用チップ10は、ベース部材30(第1部材)と、ベース部材30に重なるカバー部材32(第2部材)とを備える。測定用チップ10の本体部34は、ベース部材30とカバー部材32とを上下に組み付けることにより構成される。   Next, the measurement chip 10 attached to the component measurement device 12 will be described. As shown in FIGS. 2 and 3, the measurement chip 10 includes a base member 30 (first member) and a cover member 32 (second member) that overlaps the base member 30. The main body 34 of the measuring chip 10 is configured by assembling the base member 30 and the cover member 32 up and down.

また、ベース部材30とカバー部材32との間には、図3中の2点鎖線で示すガス透過性フィルム36が配置されてもよい。この場合、ベース部材30又はカバー部材32の一方の対向面には、ガス透過性フィルム36を配置するフィルム配置部(図示せず)が形成され、他方の対向面にはガスを流通するガス流通路(図示せず)が形成されることが好ましい。   Further, a gas permeable film 36 indicated by a two-dot chain line in FIG. 3 may be disposed between the base member 30 and the cover member 32. In this case, a film disposition portion (not shown) for disposing the gas permeable film 36 is formed on one facing surface of the base member 30 or the cover member 32, and a gas flow for circulating gas on the other facing surface. A path (not shown) is preferably formed.

本体部34は、平板状に形成され、平面視で、基端側において略方形状に形成された挿入部38と、挿入部38の先端側において角が丸い台形状に形成された取込部40とを有する。挿入部38は、正面断面視で、上述した成分測定装置12(筐体14)の装着孔22aに挿入可能な幅及び板厚を有する。一方、取込部40は、挿入部38が筐体14内に挿入保持された状態で、筐体14から突出し、ユーザが血液を取り込む(点着する)ための目印を構成する。なお、本体部34は、筐体14に装着可能であればその形状は特に問わず、例えば、円形、楕円形、多角形状等の他の形状に構成されてもよい。   The main body portion 34 is formed in a flat plate shape, and in a plan view, the insertion portion 38 formed in a substantially square shape on the proximal end side, and the intake portion formed in a trapezoidal shape with rounded corners on the distal end side of the insertion portion 38 40. The insertion portion 38 has a width and a thickness that can be inserted into the mounting hole 22a of the above-described component measuring device 12 (housing 14) in a front sectional view. On the other hand, the taking-in part 40 protrudes from the housing 14 in a state where the insertion part 38 is inserted and held in the housing 14 and constitutes a mark for the user to take in (drop on) blood. Note that the shape of the main body 34 is not particularly limited as long as it can be attached to the housing 14. For example, the main body 34 may be configured in another shape such as a circle, an ellipse, or a polygon.

また、本体部34は、血液を内部に流入させる中空状の流入部42と、本体部34内において流入部42に連通し血液を流動可能なスペース44とを有する。すなわち、測定用チップ10の使用に際しては、ユーザの血液を外部から内部に流入部42を介して取り込み、スペース44の基端側(奥行き側)に流動させる。血液は、スペース44の流動中に、後述する血液展開部54において試薬Tと血糖とが反応して発色した色(呈色濃度)となる。   The main body portion 34 includes a hollow inflow portion 42 that allows blood to flow into the inside, and a space 44 that communicates with the inflow portion 42 in the main body portion 34 and allows blood to flow. That is, when using the measuring chip 10, the user's blood is taken from the outside into the inside via the inflow portion 42 and flows to the proximal end side (depth side) of the space 44. During the flow of the space 44, the blood has a color (color density) developed by the reaction of the reagent T and blood glucose in the blood expanding section 54 described later.

比色式血糖計として構成される成分測定装置12(図1参照)は、この呈色濃度を検出することにより血糖値を算出する。具体的に、成分測定装置12は、呈色した血液に特定の波長の光を照射し、その透過光量又は反射光量を受光することによって血糖値に応じた発色の強度を検出し、あらかじめ作成した検量線に基づいて血糖値を算出する。従って、本体部34(ベース部材30又はカバー部材32)は光の照射・受光のために透明性のよい材料(樹脂等)が用いられる。   The component measuring device 12 (see FIG. 1) configured as a colorimetric blood glucose meter calculates a blood glucose level by detecting the color density. Specifically, the component measuring device 12 irradiates the colored blood with light of a specific wavelength, detects the intensity of color development according to the blood glucose level by receiving the transmitted light amount or the reflected light amount, and prepared in advance. A blood glucose level is calculated based on the calibration curve. Therefore, the main body 34 (the base member 30 or the cover member 32) is made of a highly transparent material (resin or the like) for light irradiation / light reception.

特に、照射源26と受光素子28を対向配置して透過光量を検出する構成(図4参照)では、ベース部材30とカバー部材32の両方が透明性のよい材料であることが好ましい。一方、後述するように照射源26と受光素子28を同じ側に配置して反射光量を検出する構成(図8A及び図8B参照)では、ベース部材30又はカバー部材32の一方が透明で、他方が光を反射するよう着色されるとよい。この場合、ベース部材30、カバー部材32ともに透明性のよい材料を用いたまま、ベース部材30、カバー部材32の間に反射用フィルムを挿入してもよいし、測定用チップ10が装着されるチップ装着部22側に反射面を設けてもよい。   In particular, in the configuration in which the irradiation source 26 and the light receiving element 28 are arranged to face each other and the amount of transmitted light is detected (see FIG. 4), it is preferable that both the base member 30 and the cover member 32 are materials with good transparency. On the other hand, as will be described later, in the configuration in which the irradiation source 26 and the light receiving element 28 are arranged on the same side to detect the amount of reflected light (see FIGS. 8A and 8B), either the base member 30 or the cover member 32 is transparent, May be colored to reflect light. In this case, a reflective film may be inserted between the base member 30 and the cover member 32 while using a material with good transparency for both the base member 30 and the cover member 32, or the measuring chip 10 is mounted. A reflective surface may be provided on the chip mounting portion 22 side.

ベース部材30又はカバー部材32のいずれか一方を反射面として使用する場合、反射させる方の部材を着色させなくてはならない。照射する波長の光を吸収せずに効率良く反射することができれば着色する色に特に制限はないが、白色が最も好ましい。着色される側の樹脂はポリプロピレン、ポリエチレン、ポリスチレン、ポリカーボネート、ポリメチルメタアクリレート、ポリエチレンテレフタレート等多くのプラスチックから選ぶことができ、必要に応じて樹脂に酸化チタンや硫酸バリウム等顔料を混ぜて成形してもよい。   When either one of the base member 30 or the cover member 32 is used as a reflection surface, the member to be reflected must be colored. The color to be colored is not particularly limited as long as it can be efficiently reflected without absorbing light having an irradiation wavelength, but white is most preferable. The resin to be colored can be selected from many plastics such as polypropylene, polyethylene, polystyrene, polycarbonate, polymethyl methacrylate, and polyethylene terephthalate. If necessary, the resin can be mixed with pigments such as titanium oxide and barium sulfate. May be.

また、反射面として使用する部材の少なくとも一部分に、真空蒸着やスパッタリング等の手段でアルミニウム、亜鉛等の金属、又は酸化チタンや二酸化ケイ素等の酸化物等を蒸着して反射面を得ることもできる。このような蒸着法を用いれば反射面を鏡面にすることができより効率よく光を反射することが可能である。   Further, a reflective surface can be obtained by depositing a metal such as aluminum or zinc or an oxide such as titanium oxide or silicon dioxide on at least a part of a member used as the reflective surface by means of vacuum deposition or sputtering. . If such a vapor deposition method is used, the reflecting surface can be made into a mirror surface, and light can be reflected more efficiently.

さらに、ベース部材30やカバー部材32を構成する透明性のよい樹脂材料としては、例えば、ポリメチルメタアクリレート、ポリスチレン、環状ポリオレフィン、ポリカーボネート等が挙げられる。血液は流入部42を介してスペース44を毛細管現象で流れるため、ベース部材30及びカバー部材32の素材は親水性の高いポリメチルメタアクリレートが最適である。なお、親水性に劣る樹脂であっても、流入部42、スペース44を形成する部分(流体に接触する部分)に対し既知の方法で親水化処理を施すことにより同様の効果を得ることができる。   Furthermore, examples of the highly transparent resin material constituting the base member 30 and the cover member 32 include polymethyl methacrylate, polystyrene, cyclic polyolefin, and polycarbonate. Since blood flows in the space 44 through the inflow portion 42 by capillary action, the material of the base member 30 and the cover member 32 is optimally polymethyl methacrylate having high hydrophilicity. Even if the resin is inferior in hydrophilicity, the same effect can be obtained by applying a hydrophilization treatment to the portion forming the inflow portion 42 and the space 44 (the portion contacting the fluid) by a known method. .

親水化処理の方法としては、例えば界面活性剤、ポリエチレングリコール、ポリプロピレングリコール、ヒドロキシプロピルセルロース、水溶性シリコーンの他、ポリアクリル酸、ポリビニルピロリドン、ポリアクリルアミド等の親水性高分子を含有した水溶液を浸漬法又はスプレー法等により塗布する方法や、プラズマ照射、グロー放電、コロナ放電、紫外線照射等の方法等が挙げられ、これらの方法を単独又は組み合わせてもよい。   Examples of the hydrophilic treatment method include immersion of an aqueous solution containing a hydrophilic polymer such as polyacrylic acid, polyvinyl pyrrolidone, and polyacrylamide in addition to surfactant, polyethylene glycol, polypropylene glycol, hydroxypropyl cellulose, water-soluble silicone, and the like. Examples thereof include a method of coating by a method or a spray method, a method of plasma irradiation, glow discharge, corona discharge, ultraviolet irradiation and the like, and these methods may be used alone or in combination.

本体部34内に設けられるスペース44は、精密に設計されたベース部材30とカバー部材32を組み合わせることにより得られる。スペース44の形状は任意であるが、高さH(厚み:図4参照)は、血液がスムーズに流れ、必要血液量が少なくて済み、且つ広い範囲の血糖値が測定できるように、例えば、30〜100μm程度が望ましい。スペース44の大きさについても、光学的測定が可能な範囲で必要血液量が少なくて済むように設定され、例えば幅W(図3参照)が0.5〜2mm程度(本実施形態では、1.3mm)、長さL(図4参照)が1〜10mm程度であることが望ましい。   The space 44 provided in the main body 34 is obtained by combining the base member 30 and the cover member 32 that are precisely designed. The shape of the space 44 is arbitrary, but the height H (thickness: see FIG. 4) is set so that blood flows smoothly, the necessary blood volume is small, and a wide range of blood sugar levels can be measured. About 30-100 micrometers is desirable. The size of the space 44 is also set so that the necessary blood volume is small as long as optical measurement is possible. For example, the width W (see FIG. 3) is about 0.5 to 2 mm (in this embodiment, 1 .3 mm) and the length L (see FIG. 4) is preferably about 1 to 10 mm.

スペース44の高さHが30μmより小さいと血糖値測定に必要な血液量が少なくて済むが、血液の展開が遅くなり、測定可能となるまでの時間がかかることが予想される。スペース44の高さHが100μmを超えると血糖値測定に必要な血液量が増える他、血液層が厚くなることにより透過光量又は反射光量を得にくい。この場合、照射光量を上げることで対処可能だが、電力消費が大きくなる。   If the height H of the space 44 is smaller than 30 μm, the amount of blood required for blood glucose level measurement can be reduced, but it is expected that blood development will be delayed and it will take time until measurement is possible. When the height H of the space 44 exceeds 100 μm, the amount of blood necessary for blood glucose level measurement increases, and the transmitted light amount or reflected light amount is difficult to obtain due to the thick blood layer. In this case, it can be dealt with by increasing the amount of irradiation light, but power consumption increases.

スペース44の幅Wは、0.5mmより小さいと光学的測定が困難になることから望ましくない。一方、2mmより大きければ測定系に特に支障はなく制限はないが測定に必要な血液量が増えることになる。   If the width W of the space 44 is smaller than 0.5 mm, optical measurement becomes difficult, which is not desirable. On the other hand, if it is larger than 2 mm, there is no particular problem in the measurement system and there is no limitation, but the amount of blood necessary for measurement increases.

スペース44の長さLは、流入した血液と試薬Tを混合するため、1mmより短いと混合が不十分となり正確な血糖値が得られない場合がある。逆に、スペース44の長さLが10mmより長いと、測定に必要な血液量が増えるばかりか、測定用チップ10そのものが大きくなる。   Since the length L of the space 44 mixes the blood that has flowed in and the reagent T, if it is shorter than 1 mm, the mixing may be insufficient and an accurate blood glucose level may not be obtained. On the other hand, when the length L of the space 44 is longer than 10 mm, not only the amount of blood necessary for measurement increases, but also the measuring chip 10 itself becomes large.

図3に示すように、本体部34の一方を構成するベース部材30は、本体部34の略半分の板厚に形成された平板状の部材である。ベース部材30の上面(対向面)には、カバー部材32の下面に設けられた嵌合突起32aに嵌合する複数(図示例では4つ)の嵌合穴30aが形成されている。   As shown in FIG. 3, the base member 30 that constitutes one of the main body portions 34 is a flat plate-like member that is formed to have a plate thickness that is substantially half that of the main body portion 34. A plurality (four in the illustrated example) of fitting holes 30 a that fit into fitting protrusions 32 a provided on the lower surface of the cover member 32 are formed on the upper surface (opposing surface) of the base member 30.

また、ベース部材30の上面には、上述したスペース44を構成するために、ベース部材30の幅方向中心を通り、先端から基端に延びる直線状の溝部46が形成されている。すなわち、スペース44は、ベース部材30とカバー部材32の組付により溝部46の上方がカバー部材32に覆われることで、所定体積を有するように本体部34内に形成される。この溝部46は、底面を構成する血液通路48(流体通路)と、血液通路48の両側に設けられる一対の側壁50とにより構成される。血液通路48は、スペース44内の血液を流動させる床である。側壁50は、血液通路48に対する垂直な壁であり一対の側壁50の間隔がスペース44の幅Wを構成する。なお、ベース部材30とカバー部材32の組付方法は嵌合以外にも例えば超音波溶着、溶剤接着等、既知の方法をとることもできる。   In addition, on the upper surface of the base member 30, a linear groove 46 extending from the distal end to the proximal end through the center in the width direction of the base member 30 is formed to form the space 44 described above. That is, the space 44 is formed in the main body 34 so as to have a predetermined volume by covering the upper part of the groove 46 with the cover member 32 by assembling the base member 30 and the cover member 32. The groove portion 46 is constituted by a blood passage 48 (fluid passage) constituting the bottom surface and a pair of side walls 50 provided on both sides of the blood passage 48. The blood passage 48 is a bed through which blood in the space 44 flows. The side wall 50 is a wall perpendicular to the blood passage 48, and the distance between the pair of side walls 50 forms the width W of the space 44. The base member 30 and the cover member 32 can be assembled by a known method such as ultrasonic welding or solvent bonding in addition to the fitting.

さらに具体的には、血液通路48は、血液の流れ方向の上流である先端側から下流である基端側に向かって、流入側通路52、血液展開部54(流体展開部)及び測定部56を含む。また溝部46は、測定部56の周囲においてさらに深く窪んだ段差溝58を有する。これにより測定部56は、先端側のみが血液展開部54に連なり、他の周囲が段差溝58に囲われた半島状となっている。   More specifically, the blood passage 48 extends from the distal end side upstream in the blood flow direction to the downstream proximal end side, the inflow side passage 52, the blood deployment section 54 (fluid deployment section), and the measurement section 56. including. Further, the groove part 46 has a step groove 58 that is further deeply recessed around the measurement part 56. As a result, the measurement unit 56 has a peninsular shape in which only the distal end side is connected to the blood deployment unit 54 and the other periphery is surrounded by the step groove 58.

流入側通路52は、先端部において流入部42に連通してベース部材30の中心方向に向かって直線状に延びている。流入側通路52は、毛細管現象により流入部42から流入した血液を血液通路48の基端方向に流動させる。   The inflow side passage 52 communicates with the inflow portion 42 at the tip portion and extends linearly toward the center direction of the base member 30. The inflow side passage 52 causes the blood flowing from the inflow portion 42 to flow in the proximal direction of the blood passage 48 by capillary action.

また、流入側通路52の先端は、一対の側壁50により多少狭まっている。本体部34の取込部40付近の流入側通路52は先端から基端方向に向かって徐々に幅広となるように形成されている。これにより、スペース44内にスムーズに血液を取り込むことが可能となる。また、流入側通路52は、本体部34の挿入部38に至ると基端方向に向かって略一定の幅Wで延在して血液展開部54に連なる。   Further, the tip of the inflow side passage 52 is somewhat narrowed by the pair of side walls 50. The inflow side passage 52 in the vicinity of the intake portion 40 of the main body 34 is formed so as to gradually become wider from the distal end toward the proximal end. Thereby, blood can be taken into the space 44 smoothly. Further, when the inflow side passage 52 reaches the insertion portion 38 of the main body portion 34, the inflow side passage 52 extends in a substantially constant width W toward the proximal end direction and continues to the blood deployment portion 54.

血液展開部54は、ベース部材30の略中心部付近に設けられている。この血液展開部54は、血液通路48の延在方向を長軸とする長方形状の領域として設定されている。血液展開部54の延在方向と直交する方向(血液展開部54の短軸方向)の幅W1(図5A参照)は、一対の側壁50により流入側通路52の基端側の幅に一致している。   The blood spreading part 54 is provided in the vicinity of the substantially central part of the base member 30. The blood spreader 54 is set as a rectangular region having the major axis in the direction in which the blood passage 48 extends. The width W1 (see FIG. 5A) in the direction orthogonal to the extending direction of the blood spreader 54 (the short axis direction of the blood spreader 54) coincides with the width of the proximal end side of the inflow side passage 52 by the pair of side walls 50. ing.

図4及び図5Aに示すように、血液展開部54では、その短軸方向(幅方向)に間隔をあけて複数の突起60が設けられることで列(以下、突起列61という)を構成し、この突起列61が血液展開部54の長軸方向に所定間隔をあけて複数列設けられている。突起列61は、図示例では、血液展開部54の長軸方向に沿って3列毎に比較的狭い間隔に配置されて一群をなし、この一群が多少広めの間隔を開けて5つ配置されている。一群を構成する突起列61において、隣り合う突起列61は、突起60同士の位相が短軸方向にずれるように配置されている。   As shown in FIG. 4 and FIG. 5A, the blood deployment part 54 forms a row (hereinafter, referred to as a projection row 61) by providing a plurality of projections 60 at intervals in the minor axis direction (width direction). The projection row 61 is provided in a plurality of rows at a predetermined interval in the major axis direction of the blood deployment portion 54. In the illustrated example, the protrusion rows 61 are arranged at a relatively narrow interval every three rows along the long axis direction of the blood spreader 54 to form a group, and this group is arranged at a slightly wider interval. ing. In the protrusion rows 61 constituting a group, the adjacent protrusion rows 61 are arranged such that the phases of the protrusions 60 are shifted in the minor axis direction.

また、血液展開部54には、試薬Tが塗布されている。試薬Tは、ベース部材30とカバー部材32を組み合わせる前に、成形により作製された多数の突起60を有する血液展開部54に塗布及び保持される。つまり、試薬Tが塗布される場所は、血糖値測定用の光が照射される測定部56ではなく、その手前(血液の流れ方向の上流側)に配置される。   In addition, a reagent T is applied to the blood spreader 54. Prior to combining the base member 30 and the cover member 32, the reagent T is applied and held on the blood deployment portion 54 having a large number of protrusions 60 produced by molding. That is, the place where the reagent T is applied is arranged not in front of the measurement unit 56 irradiated with the light for measuring blood glucose level, but in front of it (upstream in the blood flow direction).

測定用チップ10において、血液展開部54に血液が流入及び展開し、試薬Tが溶解した血液が測定部56に流れると、測定部56での発色が測定される。測定部56には試薬Tが溶解した血液が流入するので、測定の際には未溶解の試薬T自体の影響を排除することができる。また、測定場所(光が照射される場所)と試薬Tが保持される場所が異なるため、試薬Tが経時的に多少変色しても、測定前の光学系チェック(較正)のための光強度測定に影響することが無い。   In the measurement chip 10, when blood flows into and develops in the blood development part 54 and blood in which the reagent T is dissolved flows into the measurement part 56, the color development in the measurement part 56 is measured. Since the blood in which the reagent T is dissolved flows into the measurement unit 56, the influence of the undissolved reagent T itself can be eliminated at the time of measurement. Further, since the measurement place (place where the light is irradiated) and the place where the reagent T is held are different, even if the reagent T is slightly discolored over time, the light intensity for optical system check (calibration) before the measurement Does not affect the measurement.

上記のように、多数の突起60を適切に設けることで、試薬Tと血液との接触面積を大きくし、さらに血液の流れに乱流効果(撹拌効果)をもたらす効果がある。結果として、試薬Tと血糖との反応が促進され、測定時間を短くすることができる。また、狭い間隔で配置される複数の突起60の毛細管力により、溶液状の試薬Tは血液通路48(血液展開部54)上に良好に保持される。このため、突起60の存在部分では、いわゆるコーヒーステイン現象等のコートむらを抑えて、試薬Tをスペース44の厚み方向に均一に高く塗れる利点がある。ただし、血液展開部54における一対の側壁50付近(短軸方向両側部)では、試薬Tが少なくなる可能性がある。この点については後述する。   As described above, by appropriately providing a large number of protrusions 60, the contact area between the reagent T and blood can be increased, and a turbulent flow effect (stirring effect) can be obtained in the blood flow. As a result, the reaction between the reagent T and blood glucose is promoted, and the measurement time can be shortened. Further, the solution-like reagent T is favorably held on the blood passage 48 (blood development portion 54) by the capillary force of the plurality of protrusions 60 arranged at a narrow interval. For this reason, there is an advantage that the coating T can be uniformly and highly applied in the thickness direction of the space 44 by suppressing uneven coating such as a so-called coffee stain phenomenon at the portion where the protrusion 60 is present. However, there is a possibility that the reagent T is reduced in the vicinity of the pair of side walls 50 (both sides in the short axis direction) in the blood deployment part 54. This point will be described later.

突起60の形状は、特に限定されず、円柱や楕円柱、三角柱・四角柱等の多角柱、円錐、三角錐・四角錐等の多角錐、半球形状のいずれを採用してもよい。また、これらの形状を単独で又は2つ以上組み合わせてもよいが、部品成形のための金型製作の観点からは円柱形状が最も作製し易い。   The shape of the protrusion 60 is not particularly limited, and any of a cylindrical shape, an elliptical shape, a polygonal shape such as a triangular shape and a quadrangular shape, a polygonal shape such as a cone, a triangular shape and a quadrangular shape, and a hemispherical shape may be adopted. These shapes may be used alone or in combination of two or more. From the viewpoint of producing a mold for forming a part, a cylindrical shape is most easily produced.

突起60が円柱形状である場合、その外径は10〜200μm程度であるのが望ましい。突起60が小さいと、一定面積に対して多く突起60を立てることができるため、試薬塗布の表面積が広がり有利であるが、外径が10μmより小さいと部品の成形上、一定高さに形成することが困難になる。一方、突起60の外径が200μmより大きくなると、血液展開部54の面積に対して設けることができる突起60の本数が少なくなり、試薬塗布の表面積が小さくなるばかりか血液の乱流効果が低下する。   When the protrusion 60 has a cylindrical shape, the outer diameter is desirably about 10 to 200 μm. If the protrusions 60 are small, a large number of protrusions 60 can be erected with respect to a certain area, which is advantageous in that the surface area of the reagent application is widened. However, if the outer diameter is smaller than 10 μm, the protrusions 60 are formed to have a constant height. It becomes difficult. On the other hand, when the outer diameter of the protrusion 60 is larger than 200 μm, the number of protrusions 60 that can be provided with respect to the area of the blood spreading portion 54 is reduced, and not only the surface area of the reagent application is reduced but also the blood turbulence effect is reduced. To do.

突起60の高さは、血液が展開するスペース44の高さHに対して30〜100%が望ましく、この範囲内で部分的に高さを変化させてもよい。突起60の高さがスペース44の高さHに対して30%より小さいと、血液の乱流効果が充分得られず血糖と試薬Tとの反応終点が不安定となる場合がある。また、多数の突起60の中で、部分的に高さの異なる突起60を設けることで、血液の展開速度が変化し、乱流効果をより高めることができる。   The height of the protrusion 60 is desirably 30 to 100% with respect to the height H of the space 44 where blood is developed, and the height may be partially changed within this range. If the height of the protrusion 60 is smaller than 30% with respect to the height H of the space 44, a sufficient blood turbulence effect cannot be obtained, and the reaction end point between the blood glucose and the reagent T may become unstable. In addition, by providing the protrusions 60 that are partially different in height from among the many protrusions 60, the blood deployment speed changes, and the turbulence effect can be further enhanced.

なお、突起60の配置は、血液の流入展開を妨げない範囲内で幅方向に広く配置されていれば、その間隔や配置状態に特に制限はない。例えば、血液展開部54の長軸方向に一定間隔で突起列61を配置してもよい。また例えば、血液展開部54内において、突起60同士又は突起列61同士の間隔を部分的に変化させてもよい。間隔を部分的に変化させることで、血液展開部54における血液の展開速度に変化が生じるため、乱流効果を高めることができる。   In addition, the arrangement | positioning of the processus | protrusion 60 will not have a restriction | limiting in particular in the space | interval and an arrangement | positioning state, if it is arrange | positioned widely in the width direction within the range which does not prevent the inflow expansion | deployment of blood. For example, the protrusion rows 61 may be arranged at regular intervals in the major axis direction of the blood deployment part 54. Further, for example, the interval between the protrusions 60 or the protrusion rows 61 may be partially changed in the blood deployment part 54. By changing the interval partially, a change occurs in the blood deployment speed in the blood deployment section 54, so that the turbulence effect can be enhanced.

さらに、試薬Tは、突起60の配置に応じて塗布量や成分を塗り分けることも可能であり、例えば、下流側に向かって試薬Tの塗布量を段々に多く(又は少なく)する等の変化をもたせてもよい。血液が血液展開部54を移動する際には、このように試薬Tの塗布状態によっても流れに変化を生じさせ得るため、乱流効果をより高めることができる。またさらに、測定部56までの血液の流動に勢いをつけるために、流入側通路52又は血液展開部54は、血液の流れ方向に沿って低くなる傾斜面に形成されていてもよい。   Furthermore, the reagent T can be applied in different amounts and components depending on the arrangement of the protrusions 60. For example, changes such as increasing (or decreasing) the amount of application of the reagent T gradually toward the downstream side. You may give it. When blood moves through the blood spreader 54, the flow can be changed depending on the application state of the reagent T as described above, so that the turbulence effect can be further enhanced. Furthermore, in order to give momentum to the blood flow to the measurement unit 56, the inflow side passage 52 or the blood deployment unit 54 may be formed on an inclined surface that becomes lower along the blood flow direction.

図5Aに示す血液通路48の測定部56は、上述したように成分測定装置12により光が照射される部分であり、測定用チップ10内に流入した血液の到達部でもある。この測定部56は、厚みが均一となるように血液を留めるため、平坦面に形成されている。また、測定部56は、周囲を段差溝58に囲まれていることで、測定部56の周辺部の血液を表面張力により保持する。   The measurement part 56 of the blood passage 48 shown in FIG. 5A is a part irradiated with light by the component measurement device 12 as described above, and is also an arrival part of blood flowing into the measurement chip 10. The measuring unit 56 is formed on a flat surface in order to retain blood so that the thickness is uniform. Further, the measurement unit 56 is surrounded by the step groove 58 so that the blood around the measurement unit 56 is held by surface tension.

さらに、測定部56は、平面視で、血液通路48の延在方向に沿って長軸を有する長方形状に形成され、血液展開部54の下流側に連なる連結床部62(連結部)と、実際に成分測定装置12の光が照射される測定主床部64(測定本体部)とを有する。そして、本実施形態では、測定部56(連結床部62及び測定主床部64)の短軸方向(血液通路48の延在方向に直交する方向)の幅W2が、血液展開部54の短軸方向の幅W1よりも狭く形成される。この血液展開部54と測定部56の幅寸法の関係については後に詳述する。なお、図3中に示す測定部56は、測定主床部64の短軸方向の幅W2a、連結床部62の短軸方向の幅W2bが一定に(略一致する形状)形成されているが、後述するように連結床部62の短軸方向の幅W2bは、測定主床部64の短軸方向の幅W2aより狭くてもよい(図7参照)。   Furthermore, the measurement unit 56 is formed in a rectangular shape having a long axis along the extending direction of the blood passage 48 in a plan view, and a connection floor 62 (connection unit) connected to the downstream side of the blood deployment unit 54; It has the measurement main floor part 64 (measurement main-body part) to which the light of the component measuring device 12 is actually irradiated. In the present embodiment, the width W2 in the minor axis direction (direction perpendicular to the extending direction of the blood passage 48) of the measurement unit 56 (the connection floor unit 62 and the measurement main floor unit 64) is the short of the blood deployment unit 54. It is formed narrower than the axial width W1. The relationship between the width dimensions of the blood spreading part 54 and the measuring part 56 will be described in detail later. In the measurement unit 56 shown in FIG. 3, the width W2a in the minor axis direction of the measurement main floor portion 64 and the width W2b in the minor axis direction of the connecting floor portion 62 are formed constant (substantially coincident shapes). As will be described later, the width W2b in the minor axis direction of the connecting floor 62 may be narrower than the width W2a in the minor axis direction of the measurement main floor 64 (see FIG. 7).

また、ベース部材30の段差溝58は、一対の側壁50が血液展開部54の一対の側壁50に同じ幅で連なって延びる一方、測定部56に対して多少低くなる床面に形成されている。この段差溝58は、ベース部材30の基端まで延びることで、ベース部材30の溝部46を先端から基端にかけて貫通させている。これにより、血液と試薬Tの反応において使用又は排出されるガスの流通を促進することができる。なお、ベース部材30の基端側は、血液が漏れないように壁部やフィルム等が設けられていてもよい。フィルムは、ガスを通過する一方で血液を遮断するもの(例えば、多孔質材料)を好適に用いることができる。   Further, the step groove 58 of the base member 30 is formed on the floor surface where the pair of side walls 50 extend to the pair of side walls 50 of the blood deployment part 54 with the same width, but is slightly lower than the measurement part 56. . The step groove 58 extends to the base end of the base member 30, thereby penetrating the groove portion 46 of the base member 30 from the front end to the base end. Thereby, circulation of the gas used or discharged in the reaction of blood and reagent T can be promoted. In addition, the base part side of the base member 30 may be provided with a wall part, a film, etc. so that blood may not leak. As the film, a film that passes gas while blocking blood (for example, a porous material) can be suitably used.

一方、ベース部材30と共に本体部34を構成するカバー部材32は、ベース部材30と略同じ平面形状を呈する平板状の部材に形成され、本体部34の略半分の板厚を有する。カバー部材32は、下面が平坦状に形成されており、溝部46を塞ぐことでスペース44の天井を構成する。また、カバー部材32の下面には、上述したように嵌合穴30aに嵌合される嵌合突起32aが複数(図示例では4つ)形成されている。   On the other hand, the cover member 32 that constitutes the main body portion 34 together with the base member 30 is formed as a flat plate member having substantially the same planar shape as the base member 30, and has approximately half the plate thickness of the main body portion 34. The cover member 32 has a flat bottom surface, and forms a ceiling of the space 44 by closing the groove 46. Further, as described above, a plurality of (four in the illustrated example) fitting protrusions 32a to be fitted into the fitting holes 30a are formed on the lower surface of the cover member 32.

さらに、カバー部材32は、図2に示すように、血液の流入部42を構成する凹部66を先端(本体部34の取込部40)に有する。凹部66は、カバー部材32の先端辺から基端方向に窪むと共に、上下(板厚)方向に貫通形成されている。   Further, as shown in FIG. 2, the cover member 32 has a concave portion 66 constituting the blood inflow portion 42 at the tip (the intake portion 40 of the main body portion 34). The recess 66 is recessed from the distal end side of the cover member 32 in the proximal direction and is formed to penetrate in the vertical (plate thickness) direction.

凹部66は、ベース部材30とカバー部材32の組付状態で、血液通路48の流入側通路52に重なる位置に配置され、その下部がベース部材30の溝部46(すなわち、本体部34のスペース44)に連通する。従って、凹部66は、ユーザの体表がカバー部材32の上面に接触し、且つ体表の血液流出箇所が重なると、血液を毛細管現象によって、本体部34のスペース44に流入させる。   The recessed portion 66 is disposed at a position overlapping the inflow side passage 52 of the blood passage 48 in the assembled state of the base member 30 and the cover member 32, and a lower portion thereof is the groove portion 46 of the base member 30 (that is, the space 44 of the main body portion 34). ). Therefore, when the user's body surface comes into contact with the upper surface of the cover member 32 and the blood outflow location on the body surface overlaps, the recess 66 allows blood to flow into the space 44 of the main body portion 34 by capillary action.

この凹部66は、ユーザの体表から流出する滴状の血液を流入可能な程度の幅と、ユーザが血液流出箇所を位置決めし易いように幅よりも深い奥行きを有することが好ましい。また、凹部66の深部は、血液が留まり難くなるように円弧状に形成されるとよい。   The recess 66 preferably has a width that allows the drop-like blood flowing out from the body surface of the user to flow in, and a depth deeper than the width so that the user can easily locate the blood outflow location. Moreover, the deep part of the recessed part 66 is good to be formed in circular arc shape so that it may become difficult for blood to stay.

なお、血液の流入部42の構成については、特に限定されるものではく、種々の構造を適用することができる。例えば、図8Aに示すように、流入口72及び導入路74を有する先細り形状の採血ノズル70をカバー部材80に設け、採血ノズル70の流入口72に血液を点着させ、毛細管現象により導入路74を介してスペース44に導く構成としてもよい。   The configuration of the blood inflow portion 42 is not particularly limited, and various structures can be applied. For example, as shown in FIG. 8A, a tapered blood collection nozzle 70 having an inlet 72 and an introduction path 74 is provided in the cover member 80, blood is spotted on the inlet 72 of the blood collection nozzle 70, and the introduction path is caused by capillary action. It is good also as a structure led to the space 44 through 74.

以上のように構成された測定用チップ10は、図4に示すように、成分測定装置12のチップ装着部22に対して基端側の挿入部38から挿入される。これにより、測定部56(測定主床部64)が、成分測定装置12の内部に設けられた測光部25(光学系)に重なる位置に配置される。   As shown in FIG. 4, the measurement chip 10 configured as described above is inserted from the insertion portion 38 on the proximal end side with respect to the chip mounting portion 22 of the component measurement device 12. Thereby, the measurement part 56 (measurement main floor part 64) is arrange | positioned in the position which overlaps with the photometry part 25 (optical system) provided in the inside of the component measurement apparatus 12. FIG.

成分測定装置12の測光部25は、成分測定用の光を照射する照射源26と、測定部56を介してその光を受光する受光素子28とを含む。照射源26は、第1の波長を有する光を測定部56に照射する第1発光素子26aと、第1の波長とは異なる第2の波長を有する光を測定部56に照射する第2発光素子26bとを有する。第1発光素子26aと第2発光素子26bは、筐体14内において測定用チップ10を臨む方向(下方向)に設けられ、装着孔22aに連通するアパーチャ27を通して測定部56に光を照射する。アパーチャ27には、照射範囲を規定する図示しないレンズが設けられてもよい。   The photometry unit 25 of the component measurement device 12 includes an irradiation source 26 that irradiates light for component measurement, and a light receiving element 28 that receives the light via the measurement unit 56. The irradiation source 26 includes a first light emitting element 26a that irradiates the measurement unit 56 with light having a first wavelength, and a second light emission that irradiates the measurement unit 56 with light having a second wavelength different from the first wavelength. Element 26b. The first light emitting element 26a and the second light emitting element 26b are provided in the direction facing the measuring chip 10 (downward) in the housing 14, and irradiate the measuring unit 56 with light through the aperture 27 communicating with the mounting hole 22a. . The aperture 27 may be provided with a lens (not shown) that defines the irradiation range.

第1発光素子26aと第2発光素子26bは、紙面に対し垂直な方向に並設されている。第1発光素子26a及び第2発光素子26bは、例えば、発光ダイオード(LED)で構成され得る。第1の波長は、血糖量に応じた試薬Tの呈色濃度を検出するための波長であり、例えば、620〜640nmである。第2の波長は、血液中の赤血球濃度を検出するための波長であり、例えば、510〜540nmである。   The first light emitting element 26a and the second light emitting element 26b are juxtaposed in a direction perpendicular to the paper surface. The 1st light emitting element 26a and the 2nd light emitting element 26b may be comprised by a light emitting diode (LED), for example. The first wavelength is a wavelength for detecting the color density of the reagent T according to the blood glucose level, and is, for example, 620 to 640 nm. The second wavelength is a wavelength for detecting the concentration of red blood cells in blood, and is, for example, 510 to 540 nm.

受光素子28は、測定用チップ10の透過光を受光するものであり、測定用チップ10を間に挟んで照射源26の反対側に設けられ測定部56に臨むように配置される。受光素子28は、例えば、フォトダイオード(PD)で構成され得る。測定用チップ10からの透過光は、アパーチャ29を通って受光素子28に到達する。   The light receiving element 28 receives the transmitted light of the measuring chip 10 and is disposed on the opposite side of the irradiation source 26 with the measuring chip 10 in between so as to face the measuring unit 56. The light receiving element 28 may be configured by, for example, a photodiode (PD). The transmitted light from the measurement chip 10 reaches the light receiving element 28 through the aperture 29.

以上のように構成される測光部25は、測定部56の測定主床部64に対し所定の照射面積で成分測定用の光を照射し、測定主床部64を透過した光を受光する。この際、測定主床部64上の血液が、試薬Tにより満遍なく呈色した状態となっていることで、血糖値の測定精度の向上及び測定の安定化が図られる。   The photometry unit 25 configured as described above irradiates the measurement main floor 64 of the measurement unit 56 with component measurement light with a predetermined irradiation area, and receives the light transmitted through the measurement main floor 64. At this time, the blood on the measurement main floor 64 is uniformly colored by the reagent T, so that the measurement accuracy of the blood sugar level is improved and the measurement is stabilized.

呈色した血液を測定主床部64に誘導するため、本実施形態に係る測定用チップ10は、図5Aに示すように血液展開部54の短軸方向の幅W1に対し測定部56の短軸方向の幅W2が狭くなるように形成されている。また、血液展開部54の幅方向中心線に対し、測定部56の幅方向中心線が一致するように設定されている。   In order to guide the colored blood to the measurement main floor portion 64, the measurement chip 10 according to this embodiment has a short width of the measurement portion 56 with respect to the width W1 in the short axis direction of the blood expansion portion 54 as shown in FIG. 5A. The axial width W2 is formed to be narrow. Further, the center line in the width direction of the measuring unit 56 is set to coincide with the center line in the width direction of the blood deployment part 54.

より具体的には、血液展開部54の幅W1は、一対の側壁50に挟まれることで1.3mmに形成されている。これに対し、測定部56の幅W2は、両側に段差溝58が存在することで0.3mmに形成されている。すなわち、血液展開部54の幅W1に対する測定部56の幅W2の比率R(=W2/W1×100)は約23%となる。血液通路48は、このように血液展開部54の幅W1に対し測定部56の幅W2を狭くすることで、血液展開部54において展開して試薬Tと反応していた血液を、短軸方向中心部に寄せるように誘導して測定部56に流れ込ませることができる。   More specifically, the width W1 of the blood deployment part 54 is formed to be 1.3 mm by being sandwiched between the pair of side walls 50. On the other hand, the width W2 of the measurement unit 56 is formed to be 0.3 mm due to the presence of the step grooves 58 on both sides. That is, the ratio R (= W2 / W1 × 100) of the width W2 of the measurement unit 56 to the width W1 of the blood deployment unit 54 is about 23%. In this way, the blood passage 48 narrows the width W2 of the measurement unit 56 with respect to the width W1 of the blood deployment unit 54, so that the blood developed in the blood deployment unit 54 and reacting with the reagent T It can be guided to the central part and flow into the measuring part 56.

ここで、血液展開部54に塗布される試薬Tは、本来、血液展開部54全面に均等的な量(厚み)で塗布されることが望ましい。しかしながら、実施上においては、測定用チップ10の構造や製造の都合により、図5A及び図5Bに示すように短軸方向両側の試薬Tの塗布量が少なくなる。すなわち、測定用チップ10の製造においては、試薬Tの塗布箇所の偏りを防ぐため、基本的に血液展開部54の短軸方向中心部を基準に試薬Tの塗布を行う。特に複数の突起60を有するので、試薬Tが突起60に付着し易く、結果として血液展開部54の短軸方向両側部分に試薬Tが行き渡らずに量が少なくなる。   Here, it is desirable that the reagent T applied to the blood expansion part 54 is originally applied in an equal amount (thickness) over the entire surface of the blood expansion part 54. However, in practice, the application amount of the reagent T on both sides of the short axis direction is reduced as shown in FIGS. 5A and 5B due to the structure of the measurement chip 10 and manufacturing convenience. That is, in the manufacture of the measuring chip 10, the reagent T is basically applied with reference to the central portion in the short axis direction of the blood deployment portion 54 in order to prevent the application portion of the reagent T from being biased. In particular, since the plurality of protrusions 60 are provided, the reagent T easily adheres to the protrusions 60, and as a result, the amount of the reagent T does not reach the both sides in the short axis direction of the blood spreader 54 and the amount decreases.

仮に製造時に、試薬Tの量を増やして短軸方向に行き渡らせることも考えられるが、元々幅狭の溝部46に形成されているため、塗布された多量の試薬Tは短軸方向(溝部46の両隅)に簡単に移動してしまう。そして、試薬Tは、短軸方向両側部分の側壁50と血液通路48の間に多く集まると、集まった試薬Tは、短軸方向両側部分に残るよりも長軸方向に容易に流れるように作用する。結果的に、血液展開部54の短軸方向両側部分は、多数の突起60が存在する部分に比べて試薬Tの塗布量が少なくなることになる。   Although it is conceivable that the amount of the reagent T is increased and spread in the minor axis direction at the time of manufacture, since it is originally formed in the narrow groove portion 46, a large amount of the applied reagent T is in the minor axis direction (groove portion 46). Easily move to both corners. When a large amount of the reagent T collects between the side wall 50 and the blood passage 48 on both sides in the short axis direction, the collected reagent T acts so as to flow more easily in the long axis direction than remains on both side portions in the short axis direction. To do. As a result, the application amount of the reagent T is smaller at both side portions in the short axis direction of the blood spreading portion 54 than at the portion where many protrusions 60 are present.

そのため、例えば図5Bに示すように、血液展開部100の幅W1と測定部102の幅W2が同一である場合、血液を流動させると血液展開部54の幅方向両側部分において試薬Tとの反応が少ない部分(反応むら)が生じ易くなる。特にスペース104内では、取り込まれた血液が、試薬Tと同様に幅方向両側部分に移動して集まり、この状態で長軸方向に流れていくことで、未反応部分が一層増加する懸念がある。   Therefore, for example, as shown in FIG. 5B, when the width W1 of the blood deployment unit 100 and the width W2 of the measurement unit 102 are the same, when blood flows, the reaction with the reagent T occurs at both sides in the width direction of the blood deployment unit 54. The portion where there is little (uneven reaction) is likely to occur. In particular, in the space 104, the taken-in blood moves and gathers on both sides in the width direction like the reagent T, and there is a concern that the unreacted portion further increases by flowing in the long axis direction in this state. .

これに対し、本実施形態に係る血液通路48は、図5Aに示すように、血液展開部54の幅W1に対し測定部56の幅W2が狭くなっている。これにより、血液通路48は、血液展開部54と測定部56の連結床部62の境界部分において幅方向中心部分を通る血液を優先的に流入させる一方で、幅方向両側部分の血液が血液展開部54を回り込むように誘導することができる。その結果、測定主床部64では、試薬Tに充分反応した血液が溜められる。   In contrast, in the blood passage 48 according to the present embodiment, as shown in FIG. 5A, the width W2 of the measurement unit 56 is narrower than the width W1 of the blood deployment unit 54. As a result, the blood passage 48 preferentially flows blood passing through the center portion in the width direction at the boundary portion between the blood developing portion 54 and the connecting floor portion 62 of the measuring portion 56, while the blood on both side portions in the width direction is blood expanded. It can be guided around the part 54. As a result, blood that has sufficiently reacted with the reagent T is stored in the measurement main floor 64.

なお、血液展開部54の幅W1に対する測定部56の幅W2の比率Rは、約23%に限定されるものではなく、後述する実験結果を参考にして40%〜20%の範囲に設定することが望ましい。比率Rが40%を超えると、血液展開部54において、試薬Tと充分に反応していない血液が測定部56に入り込み易くなることが懸念されるからである。一方、比率Rが20%を下回ると、側光部の照射範囲が狭まるので測定用チップ10の装着における機械的誤差により測定部56に光が照射されない可能性が高まると共に、血液が測定部56に流れ込み難くなるからである。また、図5A中では、血液展開部54の基端側の辺と測定部56の短軸方向両側の辺が直角に交わっているが、これに限定されず、例えば丸角に形成してもよく、或いは基端方向に向かって幅狭となるテーパ状に形成してもよい。   Note that the ratio R of the width W2 of the measurement unit 56 to the width W1 of the blood deployment unit 54 is not limited to about 23%, and is set to a range of 40% to 20% with reference to experimental results described later. It is desirable. This is because if the ratio R exceeds 40%, there is a concern that blood that has not sufficiently reacted with the reagent T may easily enter the measurement unit 56 in the blood deployment unit 54. On the other hand, when the ratio R is less than 20%, the irradiation range of the side light portion is narrowed, so that the possibility that the measurement portion 56 is not irradiated with light increases due to a mechanical error in mounting the measurement chip 10, and blood is measured in the measurement portion 56. This is because it becomes difficult to flow into. In FIG. 5A, the base end side of the blood deployment portion 54 and the sides on the short axis direction side of the measurement portion 56 intersect at right angles. However, the present invention is not limited to this. Alternatively, it may be formed in a taper shape that becomes narrower in the proximal direction.

本実施形態に係る測定用チップ10は、基本的には以上のように構成されるものであり、以下成分測定装置12による成分測定との関係に基づきその作用効果について説明する。   The measurement chip 10 according to the present embodiment is basically configured as described above, and the operation and effect will be described below based on the relationship with component measurement by the component measurement device 12.

ユーザは、血糖値の測定を行う場合、成分測定装置12の電源をオンにして、筐体14のチップ装着部22に測定用チップ10を装着する。制御部16は、図示しないセンサ等により測定用チップ10の装着を検出すると、照射源26(第1発光素子26a及び第2発光素子26b)を発光して、血液を採取する前の測定用チップ10の透過光を受光素子28にて検出する。照射源26の光は、試薬Tが塗布されていない測定部56を透過して受光素子28に受光される。このため、血液展開部54で試薬Tが経時的に色変化を生じている場合でも、測定部56の状態に影響を与えることがない。制御部16は、検出された透過光の強度(以下、「第1の透過強度」と呼ぶ)を記憶部に記憶する。第1発光素子26a及び第2発光素子26bは、その後も測定部56に対する照射を継続する。   When measuring the blood sugar level, the user turns on the power of the component measuring device 12 and attaches the measurement chip 10 to the chip attachment portion 22 of the housing 14. When the control unit 16 detects the mounting of the measurement chip 10 by a sensor (not shown) or the like, the measurement chip before emitting blood by emitting the irradiation source 26 (the first light emitting element 26a and the second light emitting element 26b) is collected. Ten transmitted lights are detected by the light receiving element 28. The light from the irradiation source 26 passes through the measurement unit 56 not coated with the reagent T and is received by the light receiving element 28. For this reason, even when the reagent T has undergone a color change over time in the blood spreader 54, the state of the measurement unit 56 is not affected. The control unit 16 stores the detected transmitted light intensity (hereinafter referred to as “first transmission intensity”) in the storage unit. The 1st light emitting element 26a and the 2nd light emitting element 26b continue irradiation with respect to the measurement part 56 after that.

次に、ユーザは、体表(例えば、手指)を穿刺器で穿刺して皮膚上に少量(例えば、0.3〜1.5μL程度)の血液を流出させる。その後、血液の流出箇所を測定用チップ10の流入部42に位置決めして、ユーザの血液を測定用チップ10内に流入させる。これにより血液は、流入部42からスペース44へ流入し、さらにスペース44を構成する血液通路48上を流れて測定部56へと向かう。   Next, the user punctures the body surface (for example, a finger) with a puncture device and causes a small amount (for example, about 0.3 to 1.5 μL) of blood to flow out on the skin. Thereafter, the blood outflow location is positioned at the inflow portion 42 of the measurement chip 10, and the user's blood is caused to flow into the measurement chip 10. As a result, blood flows from the inflow portion 42 into the space 44, further flows on the blood passage 48 that forms the space 44, and travels toward the measurement portion 56.

図6Aに示すように、血液Bは、血液通路48の流動において、流入側通路52の通過後に血液展開部54に流入する。血液展開部54では、流入した血液B中の血糖が試薬Tと反応を開始し、血糖の量に応じて呈色する。複数の突起60が形成された血液展開部54に試薬Tが塗布されていることから、血液展開部54に血液Bが流入した際の試薬Tの溶解が促進される。すなわち、多数の突起60が設けられていることにより、毛細管力によって血液展開部54上で血液Bが迅速に展開すると共に、血液Bの乱流効果が生じ、試薬Tの溶解が効率的に行われる。   As shown in FIG. 6A, the blood B flows into the blood deployment part 54 after passing through the inflow side passage 52 in the flow of the blood passage 48. In the blood spreader 54, the blood glucose in the blood B that has flowed starts to react with the reagent T and is colored according to the amount of blood glucose. Since the reagent T is applied to the blood development part 54 in which the plurality of protrusions 60 are formed, dissolution of the reagent T when the blood B flows into the blood development part 54 is promoted. That is, by providing a large number of protrusions 60, blood B rapidly develops on the blood deployment portion 54 by capillary force, and a turbulent flow effect of the blood B occurs, so that the reagent T is efficiently dissolved. Is called.

この際、血液展開部54の短軸方向両側付近を流動する血液Bは、突起60の影響を受けた血液Bにより多少の乱流効果を得るものの、継続的に長軸方向に流動する。つまり、血液Bは、血液展開部54の短軸方向中央付近における試薬Tの溶解量に対し、短軸方向両側付近における試薬Tの溶解量が少ない状態で血液展開部54の基端側に流動する。   At this time, the blood B that flows in the vicinity of both sides in the short axis direction of the blood spreader 54 continuously flows in the long axis direction although it obtains some turbulence effect by the blood B affected by the protrusion 60. That is, the blood B flows to the proximal end side of the blood expansion part 54 in a state where the dissolution amount of the reagent T near both sides in the short axis direction is smaller than the dissolution amount of the reagent T near the center in the short axis direction of the blood expansion part 54 To do.

図6Bに示すように、血液Bが血液展開部54から測定部56に流入する段階では、血液展開部54の幅W1に対し測定部56の幅W2が狭いことで、先ず血液展開部54の短軸方向中央付近の血液Bが測定部56に入り込む。上述したように、この部分の血液Bは試薬Tが充分に溶解している。従って、測定部56には試薬Tを含んだ血液Bが流れ込んでいく。   As shown in FIG. 6B, at the stage where blood B flows into the measurement unit 56 from the blood expansion unit 54, the width W2 of the measurement unit 56 is narrower than the width W1 of the blood expansion unit 54. Blood B near the center in the minor axis direction enters the measurement unit 56. As described above, the reagent T is sufficiently dissolved in the blood B in this portion. Accordingly, the blood B containing the reagent T flows into the measurement unit 56.

さらに、試薬Tが溶解している血液展開部54の短軸方向中央部分周囲の血液Bが順次流入していくが、測定部56の幅W2が狭いことで、血液展開部54と測定部56の境界部周辺で血液Bが混み合うことになる。そのため、血液展開部54の短軸方向両側付近を流動していた血液Bは、短軸方向両側付近に滞留する、又は内側に大きく回り込むように流動する。この際、内側に回り込んだ血液Bは、突起60に塗布されている試薬Tが接触して溶解することになる。従って、測定部56には、充分に試薬Tが溶解した血液Bを流れ込ませることができる。なお、上記の血液Bの流動を鑑み、試薬Tは血液展開部54の基端側に多量に塗布しておくことが好ましい。血液展開部54の基端側であれば、試薬Tの塗布時においても試薬Tの流動を抑えることが比較的容易となる。   Furthermore, the blood B around the central portion in the short axis direction of the blood development part 54 in which the reagent T is dissolved sequentially flows in, but the width W2 of the measurement part 56 is narrow, so that the blood development part 54 and the measurement part 56 The blood B is crowded around the boundary portion. Therefore, the blood B that has flowed near the both sides in the short axis direction of the blood expanding portion 54 stays in the vicinity of both sides in the short axis direction, or flows so as to wrap around inwardly. At this time, the blood B circulated inward is dissolved by the contact of the reagent T applied to the protrusion 60. Therefore, the blood B in which the reagent T is sufficiently dissolved can flow into the measurement unit 56. In view of the flow of the blood B, it is preferable to apply a large amount of the reagent T to the proximal end side of the blood spreading portion 54. If it is the base end side of the blood spreader 54, it is relatively easy to suppress the flow of the reagent T even when the reagent T is applied.

そして、成分測定装置12は、血液Bが到達した測定部56に、第1発光素子26a及び第2発光素子26bから成分測定用の光を照射し、その透過光を受光素子28にて検出し、透過強度(透過光量)に基づき呈色濃度を測定する。具体的には、試薬Tと血糖との反応が進んで透過強度が大きく変化した時点から所定時間経過後(例えば、10秒後)の透過強度(以下、これを「第2の透過強度」と呼ぶ)を測定する。そして、第1の透過強度と第2の透過強度とから吸光度を求め、吸光度と血糖値との関係を示した検量線(記憶部に記憶されている)を参照して、血糖値を算出する。なお、より精度の高い測定を行うため、さらに第3、第4の透過強度の測定を追加してもよい。   Then, the component measuring apparatus 12 irradiates the measurement unit 56 to which the blood B has arrived with component measurement light from the first light emitting element 26a and the second light emitting element 26b, and detects the transmitted light by the light receiving element 28. The color density is measured based on the transmission intensity (transmitted light amount). Specifically, the transmission intensity (hereinafter referred to as “second transmission intensity”) after a predetermined time (for example, 10 seconds) after the reaction intensity between the reagent T and blood glucose has advanced and the transmission intensity has changed greatly. Call). Then, the absorbance is obtained from the first transmission intensity and the second transmission intensity, and the blood glucose level is calculated with reference to a calibration curve (stored in the storage unit) indicating the relationship between the absorbance and the blood glucose level. . In order to perform measurement with higher accuracy, third and fourth transmission intensity measurements may be further added.

この場合、第1発光素子26aから出射した光によって試薬Tと血糖との反応で生じた色素を検出し、血糖の量に応じた呈色濃度を測定する。また、第2発光素子26bから出射した光によって赤血球を検出し、赤血球濃度を測定する。そして、呈色濃度から得られる血糖値を赤血球濃度から得られるヘマトクリット値を用いて補正し、血糖値を求める。なお、スペース44の高さHを推測するため、或いは赤血球色の個人差を補正するために、さらに測定波長を増やしてもよい。   In this case, the pigment produced by the reaction between the reagent T and blood glucose is detected by the light emitted from the first light emitting element 26a, and the color density corresponding to the amount of blood glucose is measured. Further, red blood cells are detected by the light emitted from the second light emitting element 26b, and the red blood cell concentration is measured. Then, the blood sugar level obtained from the color density is corrected using the hematocrit value obtained from the red blood cell concentration to obtain the blood sugar level. Note that the measurement wavelength may be further increased in order to estimate the height H of the space 44 or to correct individual differences in red blood cell color.

以上説明したように、測定用チップ10によれば、血液展開部54の幅W1に対し測定部56の幅W2が狭いことで、試薬Tが充分に溶解した血液Bを血液展開部54から測定部56に流入させることができる。つまり、測定用チップ10は、試薬Tの溶解が多い血液Bを測定部56に流入させる一方で、試薬Tの溶解が少ない血液Bを試薬Tが存在する箇所に誘導する又は滞留させることができる。その結果、測定部56上には、試薬Tが略均一に溶解した状態の血液Bが流入することになる。よって、成分測定装置12は、この血液B中の糖分の測定を行うことで、高い精度且つ安定的な測定精度の血糖値を得ることができる。   As described above, according to the measurement chip 10, the blood B in which the reagent T is sufficiently dissolved is measured from the blood expansion part 54 because the width W 2 of the measurement part 56 is narrower than the width W 1 of the blood expansion part 54. It is possible to flow into the portion 56. In other words, the measurement chip 10 can introduce or retain the blood B in which the reagent T is present at the location where the reagent T exists, while allowing the blood B in which the reagent T is highly dissolved to flow into the measurement unit 56. . As a result, the blood B in which the reagent T is dissolved almost uniformly flows onto the measurement unit 56. Therefore, the component measuring apparatus 12 can obtain a blood glucose level with high accuracy and stable measurement accuracy by measuring the sugar content in the blood B.

この場合、測定部56は、測定主床部64の幅と連結床部62の幅が一致していることで、測定部56に対し血液Bを比較的短時間に流入させることができ、成分測定にかかる時間を短縮することができる。   In this case, the measurement unit 56 can cause the blood B to flow into the measurement unit 56 in a relatively short time because the width of the measurement main floor portion 64 and the width of the connection floor portion 62 coincide with each other. Measurement time can be shortened.

なお、測定用チップ10は、上記の実施形態に限定されるものではなく、種々の応用例及び変形例をとり得ることができる。例えば、本実施形態において血液通路48(溝部46:突起60を含む)は、ベース部材30に設けられているが、これに限定されずカバー部材32に設けられてもよい。また、血液展開部54の突起60は、ベース部材30とカバー部材32の両方に設けられてもよい。さらに、測定用チップ10の血液展開部54には、突起60が設けられず、単に試薬Tが床面状に塗布されているだけでもよい。   The measurement chip 10 is not limited to the above-described embodiment, and various application examples and modifications can be taken. For example, in the present embodiment, the blood passage 48 (including the groove 46: the protrusion 60) is provided in the base member 30, but is not limited thereto, and may be provided in the cover member 32. Further, the protrusion 60 of the blood deployment part 54 may be provided on both the base member 30 and the cover member 32. Furthermore, the blood deployment part 54 of the measuring chip 10 is not provided with the projection 60, and the reagent T may simply be applied to the floor surface.

図7に示すように、第1変形例に係る測定用チップ10Aは、測定部56Aの血液展開部54に連なる部分(連結床部62A)を括れた形状に形成している点で、測定用チップ10と異なる。すなわち、連結床部62Aの短軸方向の幅W2bが、血液展開部54の短軸方向の幅W1及び測定主床部64Aの短軸方向の幅W2aよりも狭く形成されている。なお、測定主床部64Aの短軸方向の幅W2aも、血液展開部54の短軸方向の幅W1より狭くなっている。要するに、血液通路48Aの幅の関係はW1>W2a>W2bに設定されている。   As shown in FIG. 7, the measurement chip 10A according to the first modified example is for measurement in that the portion (connection floor portion 62A) connected to the blood deployment portion 54 of the measurement portion 56A is formed in a constricted shape. Different from the chip 10. That is, the width W2b in the minor axis direction of the connecting floor portion 62A is formed to be narrower than the width W1 in the minor axis direction of the blood deployment portion 54 and the width W2a in the minor axis direction of the measurement main floor portion 64A. The width W2a in the minor axis direction of the measurement main floor portion 64A is also narrower than the width W1 in the minor axis direction of the blood deployment portion 54. In short, the relationship of the width of the blood passage 48A is set to W1> W2a> W2b.

この場合、例えば、血液展開部54の幅W1を1.3mm、測定主床部64Aの幅W2aを0.8mm、連結床部62Aの幅W2bを0.3mmに設定することができる。従って、血液展開部54の幅W1に対する連結床部62Aの幅W2bの比率Rは、測定用チップ10と同様に、約23%となる。また、連結床部62Aの短軸方向両側の辺63は、円弧状に形成されており、測定部56Aへの血液Bの流入をスムーズに案内すると共に、連結床部62Aから測定主床部64Aへの血液Bの広がりをスムーズに誘導することができる。   In this case, for example, the width W1 of the blood deployment portion 54 can be set to 1.3 mm, the width W2a of the measurement main floor portion 64A can be set to 0.8 mm, and the width W2b of the connection floor portion 62A can be set to 0.3 mm. Accordingly, the ratio R of the width W2b of the connecting floor portion 62A to the width W1 of the blood spreading portion 54 is about 23%, as in the measurement chip 10. Further, the sides 63 on both sides in the short axis direction of the connection floor 62A are formed in an arc shape, and smoothly guide the inflow of blood B into the measurement unit 56A, and from the connection floor 62A to the measurement main floor 64A. The blood B can be smoothly spread.

このように血液展開部54から測定部56Aに血液Bが流入する連結床部62Aの幅W2bを狭めることでも、測定用チップ10と同様の効果を得ることができる。また、測定主床部64Aの幅W2aが広くなることで、試薬Tの溶解が多い血液Bを連結床部62Aに一旦流入させた後に、測定主床部64Aにおいて流入した血液Bを広げることができる。これにより、 測定主床部64Aに流入する試薬Tの溶解が多い血液Bに乱流が起きて、試薬Tがより均一に溶解した血液Bに対し成分測定を行うことができる。また、測定用チップ10Aと成分測定装置12の装着状態で機械的誤差が生じても、測光部25の照射範囲を充分にカバーすることが可能となり、測定ミス等の機会を大幅に減らすことができる。   Thus, the same effect as the measurement chip 10 can also be obtained by narrowing the width W2b of the connecting floor portion 62A into which the blood B flows from the blood deployment portion 54 into the measurement portion 56A. Further, since the width W2a of the measurement main floor portion 64A is widened, the blood B having a large amount of dissolution of the reagent T is once allowed to flow into the connection floor portion 62A, and then the blood B that has flowed into the measurement main floor portion 64A is expanded. it can. Thereby, a turbulent flow occurs in the blood B in which the reagent T flowing into the measurement main floor portion 64A is much dissolved, and the component measurement can be performed on the blood B in which the reagent T is dissolved more uniformly. Further, even if a mechanical error occurs in the mounting state of the measuring chip 10A and the component measuring device 12, the irradiation range of the photometry unit 25 can be sufficiently covered, and the chance of measurement errors and the like can be greatly reduced. it can.

図8A及び図8Bに示す第2変形例に係る測定用チップ10Bは、本体部76が円盤状に形成され、この本体部76を成分測定装置12Aの先端面に装着する構成となっている。本体部76は、測定用チップ10と同様に、ベース部材78とカバー部材80によって構成される。   The measurement chip 10B according to the second modification shown in FIGS. 8A and 8B has a configuration in which a main body 76 is formed in a disc shape, and the main body 76 is attached to the distal end surface of the component measurement device 12A. The main body 76 is composed of a base member 78 and a cover member 80 as in the measurement chip 10.

ベース部材78の一方面(カバー部材80の組付面)には、測定用チップ10、10Aと同様に、スペース44を構成する溝部46が設けられている。また、ベース部材78の一方面(カバー部材32が組付面と反対面)には、成分測定装置12Aのチップ装着部23の嵌合穴23aに装着するための装着用突起78aが設けられている。この測定用チップ10Bは、スペース44が上下方向に延びるように成分測定装置12Aに取り付けられる。   On one surface of the base member 78 (an assembly surface of the cover member 80), a groove portion 46 that constitutes the space 44 is provided in the same manner as the measurement chips 10 and 10A. Further, a mounting protrusion 78a for mounting in the fitting hole 23a of the chip mounting portion 23 of the component measuring device 12A is provided on one surface of the base member 78 (the cover member 32 is the surface opposite to the mounting surface). Yes. The measurement chip 10B is attached to the component measurement device 12A so that the space 44 extends in the vertical direction.

カバー部材80には、流入口72及び導入路74を有する採血ノズル70が設けられており、この導入路74が本体部76内のスペース44に連通する構成となっている。流入口72及び導入路74を介してスペース44に流入した血液Bは、下方向に流動し血液展開部54にて試薬Tと反応し、さらに血液展開部54よりも幅が狭い測定部56に流れ込む。従って、測定用チップ10Bは、血液展開部54から測定部56に対し充分に試薬Tが溶解した血液Bを流入させることができ、測定用チップ10と同様の効果を得ることができる。   The cover member 80 is provided with a blood collection nozzle 70 having an inlet 72 and an introduction path 74, and the introduction path 74 communicates with the space 44 in the main body 76. The blood B that has flowed into the space 44 via the inlet 72 and the introduction path 74 flows downward, reacts with the reagent T at the blood deployment section 54, and further enters the measurement section 56 that is narrower than the blood deployment section 54. Flows in. Therefore, the measurement chip 10B can flow the blood B in which the reagent T is sufficiently dissolved from the blood development part 54 into the measurement part 56, and the same effect as the measurement chip 10 can be obtained.

なお、成分測定装置12Aは、測光部25が血液Bの反射強度(反射光量)を受光する構成となっている。具体的には、測定用チップ10Bの装着により閉塞される開口部15を筐体14Aの先端面に備え、この開口部15の奥側の筐体14A内に照射源26と受光素子28を上下(又は左右)にずれる位置に配置している。照射源26が照射した光は、開口部15を介して、測定部56に存在する血液Bやカバー部材80に当たり受光素子28に向かって反射する。受光素子28は、測定部56において試薬Tと反応した一様な血液Bの反射光を受光することになる。よって成分測定装置12Aは、血糖値を精度良く且つ安定的に算出することができる。なお、カバー部材80には、光を充分に反射し得る反射部82(膜、板材、フィルタ等)が設けられてもよい。   In the component measuring apparatus 12A, the photometric unit 25 receives the reflection intensity (the amount of reflected light) of the blood B. Specifically, an opening 15 that is blocked by mounting of the measurement chip 10B is provided at the front end surface of the housing 14A, and the irradiation source 26 and the light receiving element 28 are vertically moved in the housing 14A on the back side of the opening 15. (Or right and left) The light emitted from the irradiation source 26 hits the blood B or the cover member 80 existing in the measurement unit 56 through the opening 15 and is reflected toward the light receiving element 28. The light receiving element 28 receives the uniform reflected light of the blood B that has reacted with the reagent T in the measurement unit 56. Therefore, the component measuring apparatus 12A can calculate the blood sugar level accurately and stably. The cover member 80 may be provided with a reflecting portion 82 (film, plate material, filter, etc.) that can sufficiently reflect light.

本発明に係る測定用チップ10、10Aについて、上記の構成により得られる効果を確認するための実験を行った。実験において、試薬Tには青色の色素(色素2mg/ml、ルーセンタイト0.3%)を用い、通常の製造工程に倣って複数の突起60を有する血液展開部54への塗布及び乾燥を行った。血液BのサンプルとしてはRO水を用い、実際の血糖値の測定と同様に、測定用チップ10、10Aの流入部42からRO水の点着を行って本体部34内のスペース44(血液通路48)を流動させることにより、血液展開部54で色素を溶解させて測定部56、56Aに流入させた。   An experiment for confirming the effect obtained by the above configuration was performed on the measurement chips 10 and 10A according to the present invention. In the experiment, a blue dye (dye 2 mg / ml, Lucentite 0.3%) is used as the reagent T, and applied to the blood spreader 54 having a plurality of protrusions 60 and dried following a normal manufacturing process. It was. As the blood B sample, RO water is used, and the RO water is spotted from the inflow portion 42 of the measuring chips 10 and 10A in the same manner as the actual blood glucose level measurement, and the space 44 (blood passage) in the main body 34 is obtained. 48) was allowed to flow, the dye was dissolved in the blood spreader 54 and flowed into the measuring portions 56 and 56A.

そして、色素が溶解したRO水が測定部56、56A上に到達した状態で、所定光量を測定部56、56Aに照射しその透過率を画像解析した。画像解析では、図9に示すように、測定主床部64、64Aの所定位置に対し画像処理範囲(0.15mm×0.15mm)を設定した。具体的な測定部56、56A上の位置を説明すると、測定部56、56Aの短軸方向中心を通るラインC上において、上流位置Cu、中心位置Cc、下流位置Cdを等間隔あけて設定した。また、測定部56、56Aの短軸方向片側を通るラインS上において、上流位置Su、中心位置Sc、下流位置Sdを等間隔あけて設定した。上流位置Cu、Suと、中心位置Cc、Scと、下流位置Cd、Sdとは、測定部56、56Aの短軸方向に並んだ位置に設定している。   Then, in a state where the RO water in which the dye was dissolved reached the measurement units 56 and 56A, the measurement units 56 and 56A were irradiated with a predetermined amount of light, and the transmittance was subjected to image analysis. In the image analysis, as shown in FIG. 9, an image processing range (0.15 mm × 0.15 mm) was set for a predetermined position of the measurement main floor 64, 64A. The specific positions on the measurement units 56 and 56A will be described. On the line C passing through the center in the minor axis direction of the measurement units 56 and 56A, the upstream position Cu, the center position Cc, and the downstream position Cd are set at equal intervals. . In addition, the upstream position Su, the center position Sc, and the downstream position Sd were set at equal intervals on the line S passing through one side of the measuring units 56 and 56A in the short axis direction. The upstream positions Cu and Su, the center positions Cc and Sc, and the downstream positions Cd and Sd are set to positions aligned in the minor axis direction of the measuring units 56 and 56A.

実験では、測定部56、56Aの幅W又は形状を変えた測定用チップ10を用意して、上記各位置Cu、Cc、Cd、Su、Sc、Sdの画像解析に基づく透過率を算出した。この画像解析の結果を表1に示す。   In the experiment, the measurement chip 10 with the width W or the shape of the measurement units 56 and 56A changed was prepared, and the transmittance based on the image analysis of each of the positions Cu, Cc, Cd, Su, Sc, and Sd was calculated. The results of this image analysis are shown in Table 1.

Figure 2015179038
Figure 2015179038

ここで、測定部56、56Aは、各位置Cu、Cc、Cd、Su、Sc、Sdにおける透過率の相違(差)が小さいことが重要となる。透過率の差が小さければ、測定部56、56A上の血液Bに試薬Tが均一的に溶解していることになるからである。以下、実施例1〜3について検証していく。   Here, it is important that the measurement units 56 and 56A have a small difference (difference) in transmittance between the positions Cu, Cc, Cd, Su, Sc, and Sd. This is because if the difference in transmittance is small, the reagent T is uniformly dissolved in the blood B on the measurement units 56 and 56A. Hereinafter, Examples 1 to 3 will be verified.

実施例1に係る測定用チップ10αは、血液展開部54の短軸方向の幅W1を1.3mmとし、測定部56の短軸方向の幅W2を0.5mmとしている。従って、血液展開部54の幅に対する測定部56の比率Rは約38%となる。また、図10Aは、実施例1に係る測定用チップ10αにおいて、ラインC上で位置を変えた場合の透過率と、ラインS上で位置を変えた場合の透過率とを示すグラフである。   In the measurement chip 10α according to Example 1, the width W1 in the minor axis direction of the blood deployment part 54 is 1.3 mm, and the width W2 in the minor axis direction of the measurement part 56 is 0.5 mm. Therefore, the ratio R of the measurement unit 56 to the width of the blood deployment unit 54 is about 38%. FIG. 10A is a graph showing the transmittance when the position is changed on the line C and the transmittance when the position is changed on the line S in the measurement chip 10α according to the first embodiment.

測定用チップ10αでは、測定主床部64の長軸方向に沿ってラインCとラインSが略同じ透過率(3%前後のバラツキ)で変動していることが分かる。ここで、図5Bに示す測定用チップのように、例えば血液展開部100と測定部102の幅が同じ(=1.3mm)の場合は、ラインCとラインSとの間で透過率が10%以上のバラツキを見せることがあり、また透過率も80%以上と高い値を示していた。これに対し実施例1に係る測定用チップ10αでは、ラインCとラインSの透過率のバラツキが3%程度であり、充分に近い透過率を示していると言うことができる。すなわち、測定部56の幅は、血液展開部54の幅に対し比率Rが40%以下であれば、測定主床部64上の血液Bに試薬Tが略均一的に溶解しているとみなすことができる。従って、測定用チップ10αは、血糖値の測定精度の向上や安定化を図ることが可能である。   In the measurement chip 10α, it can be seen that the line C and the line S vary with substantially the same transmittance (a variation of about 3%) along the major axis direction of the measurement main floor 64. Here, as in the measurement chip shown in FIG. 5B, for example, when the widths of the blood deployment unit 100 and the measurement unit 102 are the same (= 1.3 mm), the transmittance between the line C and the line S is 10%. % Or more, and the transmittance was as high as 80% or more. On the other hand, in the measurement chip 10α according to Example 1, it can be said that the variation in the transmittance of the line C and the line S is about 3%, indicating a sufficiently close transmittance. In other words, if the ratio R of the width of the measurement unit 56 is 40% or less with respect to the width of the blood deployment unit 54, it is considered that the reagent T is dissolved almost uniformly in the blood B on the measurement main floor 64. be able to. Therefore, the measurement chip 10α can improve and stabilize the blood glucose level measurement accuracy.

なお、実施例1に係る測定用チップ10αは、上流位置Cu、Su、中心位置Cc、Sc、下流位置Cd、Sdの順に透過率が上がっている。これは、下流位置Cd、Sdに存在するRO水が、血液展開部54で時間をかけずに流動し測定主床部64に最初に流れ込むため、色素の溶解が多少低下したものと推定される。特に、サンプルであるRO水の粘性が血液Bの粘性に比べて低いため透過率が変化したと考えられ、実際に血糖値を測定する場合には充分に改善されることが期待できる。   Note that the measurement chip 10α according to Example 1 has an increasing transmittance in the order of the upstream positions Cu and Su, the center positions Cc and Sc, and the downstream positions Cd and Sd. This is presumed that the RO water present in the downstream positions Cd and Sd flows without taking time in the blood deployment part 54 and flows into the measurement main bed part 64 first, so that the dissolution of the dye is somewhat lowered. . In particular, it is considered that the permeability has changed because the viscosity of the RO water that is the sample is lower than the viscosity of blood B, and can be expected to be sufficiently improved when the blood glucose level is actually measured.

実施例2に係る測定用チップ10は、上述した実施形態を適用している。つまり、血液展開部54の短軸方向の幅W1を1.3mmとし、測定部56の短軸方向の幅W2を0.3mmとしている。従って、血液展開部54の幅に対する測定部56の比率Rは約23%となる。また、図10Bは、実施例2に係る測定用チップ10において、ラインC上で位置を変えた場合の透過率と、ラインS上で位置を変えた場合の透過率とを示すグラフである。   The embodiment described above is applied to the measurement chip 10 according to Example 2. That is, the width W1 in the minor axis direction of the blood deployment part 54 is 1.3 mm, and the width W2 in the minor axis direction of the measurement part 56 is 0.3 mm. Therefore, the ratio R of the measurement unit 56 to the width of the blood deployment unit 54 is about 23%. FIG. 10B is a graph showing the transmittance when the position is changed on the line C and the transmittance when the position is changed on the line S in the measuring chip 10 according to the second embodiment.

この測定用チップ10では、実施例1に係る測定用チップ10αと同様に、測定主床部64の長軸方向に沿ってラインCとラインSが略同じ透過率で変動していることが分かる。特に、ラインC及びラインSとも、上流位置Cu、Su、中心位置Cc、Sc、下流位置Cd、Sdでの透過率の変化がより少なくなっている。従って、実施例2に係る測定用チップ10は、測定主床部64に流入する血液Bに対し試薬Tが一層均一に溶解していると言うことができる。   In this measuring chip 10, as with the measuring chip 10 α according to the first embodiment, it can be seen that the line C and the line S vary with substantially the same transmittance along the major axis direction of the measuring main floor 64. . In particular, in both the line C and the line S, the transmittance changes at the upstream positions Cu and Su, the center positions Cc and Sc, and the downstream positions Cd and Sd are smaller. Therefore, in the measurement chip 10 according to Example 2, it can be said that the reagent T is more uniformly dissolved in the blood B flowing into the measurement main floor portion 64.

実施例3に係る測定用チップ10Aは、上述した第1変形例を適用している。つまり、血液展開部54の短軸方向の幅を1.3mmとし、測定主床部64Aの短軸方向の幅W2aを0.8mmとし、連結床部62Aの短軸方向の幅W2bを0.3mmとしている。従って、血液展開部54の幅に対する連結床部62Aの比率Rは約23%となる。また、図10Cは、実施例3に係る測定用チップ10において、ラインC上で位置を変えた場合の透過率と、ラインS上で位置を変えた場合の透過率とを示すグラフである。   The first modification example described above is applied to the measurement chip 10A according to the third embodiment. That is, the width in the minor axis direction of the blood deployment portion 54 is 1.3 mm, the width W2a in the minor axis direction of the measurement main floor portion 64A is 0.8 mm, and the width W2b in the minor axis direction of the connecting floor portion 62A is 0. It is 3 mm. Accordingly, the ratio R of the connecting floor portion 62A to the width of the blood spreading portion 54 is about 23%. FIG. 10C is a graph showing the transmittance when the position is changed on the line C and the transmittance when the position is changed on the line S in the measuring chip 10 according to the third embodiment.

この測定用チップ10Aでも、実施例1及び2に係る測定用チップ10α、10と同様に、測定主床部64Aの長軸方向に沿ってラインCとラインSが略同じ透過率で変動していることが分かる。また、ラインC及びラインSとも、上流位置Cu、Su、中心位置Cc、Sc、下流位置Cd、Sdでの透過率の変化がより少なくなっている。従って、実施例3に係る測定用チップ10Aでも、測定主床部64Aに流入する血液Bに対し試薬Tが一層均一に溶解していると言うことができる。   In the measurement chip 10A, as in the measurement chips 10α and 10 according to the first and second embodiments, the line C and the line S vary with substantially the same transmittance along the major axis direction of the measurement main floor 64A. I understand that. Further, in both the line C and the line S, the change in transmittance at the upstream positions Cu and Su, the central positions Cc and Sc, and the downstream positions Cd and Sd is smaller. Therefore, in the measurement chip 10A according to Example 3, it can be said that the reagent T is more uniformly dissolved in the blood B flowing into the measurement main floor 64A.

上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。   In the above description, the present invention has been described with reference to preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Yes.

10、10A、10B、10α…測定用チップ
12、12A…成分測定装置 30、78…ベース部材
32、80…カバー部材 34、76…本体部
44…スペース 46…溝部
48、48A…血液通路 52…流入側通路
54、100…血液展開部 56、56A、102…測定部
60…突起 62、62A…連結床部
64、64A…測定主床部 B…血液
T…試薬
10, 10A, 10B, 10α ... measuring chip 12, 12A ... component measuring device 30, 78 ... base member 32, 80 ... cover member 34, 76 ... main body 44 ... space 46 ... groove 48, 48A ... blood passage 52 ... Inflow side passages 54, 100 ... Blood deployment parts 56, 56A, 102 ... Measurement part 60 ... Projection 62, 62A ... Connection floor part 64, 64A ... Measurement main floor part B ... Blood T ... Reagent

Claims (5)

本体部と、
前記本体部内を直線状に延在し、延在方向に流体を流動可能な流体通路と、
前記流体通路の途中位置に設けられ、成分測定用の試薬が塗布された流体展開部と、
前記流体通路の前記流体展開部よりも流体の流れ方向下流側に設けられ、成分測定用の光が照射される測定部と、を備え、
前記測定部は、少なくとも前記流体展開部に連なる連結部において前記延在方向と直交する方向の幅が、前記流体展開部の前記延在方向と直交する方向の幅よりも狭い
ことを特徴とする測定用チップ。
The main body,
A fluid passage extending linearly in the main body and capable of flowing fluid in the extending direction;
A fluid development portion provided in the middle of the fluid passage and coated with a component measurement reagent;
A measurement unit that is provided on the downstream side in the fluid flow direction of the fluid passage of the fluid passage and is irradiated with light for component measurement,
The measurement unit is characterized in that a width in a direction perpendicular to the extending direction is narrower than a width in a direction perpendicular to the extending direction of the fluid developing part at least in a connecting part connected to the fluid developing part. Measuring chip.
請求項1記載の測定用チップにおいて、
前記連結部の前記延在方向と直交する方向の幅は、前記流体展開部の前記延在方向と直交する方向の幅に対し40%以下に設定される
ことを特徴とする測定用チップ。
The measuring chip according to claim 1,
The width of the connecting portion in the direction orthogonal to the extending direction is set to 40% or less with respect to the width of the fluid spreading portion in the direction orthogonal to the extending direction.
請求項1又は2記載の測定用チップにおいて、
前記測定部は、前記連結部よりも流体の流れ方向下流側に測定本体部を有し、
前記測定本体部の前記延在方向と直交する方向の幅は、前記連結部の前記延在方向と直交する方向の幅に略一致する
ことを特徴とする測定用チップ。
The measuring chip according to claim 1 or 2,
The measurement part has a measurement main body part on the downstream side in the fluid flow direction from the connection part,
The measurement chip according to claim 1, wherein a width of the measurement main body portion in a direction orthogonal to the extending direction substantially coincides with a width of the connecting portion in a direction orthogonal to the extending direction.
請求項1又は2記載の測定用チップにおいて、
前記測定部は、前記連結部よりも流体の流れ方向下流側に測定本体部を有し、
前記測定本体部の前記延在方向と直交する方向の幅は、前記連結部の前記延在方向と直交する方向の幅よりも広い
ことを特徴とする測定用チップ。
The measuring chip according to claim 1 or 2,
The measurement part has a measurement main body part on the downstream side in the fluid flow direction from the connection part,
The measurement chip according to claim 1, wherein a width of the measurement main body portion in a direction orthogonal to the extending direction is wider than a width of the connecting portion in a direction orthogonal to the extending direction.
請求項1〜4のいずれか一項に記載の測定用チップにおいて、
前記流体展開部は、前記試薬が塗布された複数の突起を有する
ことを特徴とする測定用チップ。
In the measurement chip according to any one of claims 1 to 4,
The measurement tip, wherein the fluid deployment part has a plurality of protrusions coated with the reagent.
JP2014056982A 2014-03-19 2014-03-19 Blood glucose measurement chip Active JP6278772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056982A JP6278772B2 (en) 2014-03-19 2014-03-19 Blood glucose measurement chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056982A JP6278772B2 (en) 2014-03-19 2014-03-19 Blood glucose measurement chip

Publications (2)

Publication Number Publication Date
JP2015179038A true JP2015179038A (en) 2015-10-08
JP6278772B2 JP6278772B2 (en) 2018-02-14

Family

ID=54263183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056982A Active JP6278772B2 (en) 2014-03-19 2014-03-19 Blood glucose measurement chip

Country Status (1)

Country Link
JP (1) JP6278772B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075912A (en) * 2015-10-16 2017-04-20 ウシオ電機株式会社 Sample concentration measuring device and micro channel chip
WO2018173609A1 (en) * 2017-03-23 2018-09-27 テルモ株式会社 Component measurement device and component measurement device set
JP6480551B1 (en) * 2017-12-01 2019-03-13 ジャパン・メディカル・リーフ株式会社 Blood test container
WO2019171731A1 (en) * 2018-03-07 2019-09-12 テルモ株式会社 Method, reagent, and chip, for measuring analyte concentration in biological sample
WO2020162261A1 (en) * 2019-02-07 2020-08-13 ジャパン・メディカル・リーフ株式会社 Blood separation container
WO2020183916A1 (en) * 2019-03-11 2020-09-17 テルモ株式会社 Blood-sugar level calculation program, blood-sugar level calculation method, and blood-sugar level measurement device
US20200340888A1 (en) * 2018-01-15 2020-10-29 Terumo Kabushiki Kaisha Component measurement system, measurement device, and measurement tip
JPWO2020137532A1 (en) * 2018-12-28 2021-11-11 テルモ株式会社 Test strip and component measurement system
JPWO2023002996A1 (en) * 2021-07-19 2023-01-26

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223674A (en) * 1989-11-30 1991-10-02 Mochida Pharmaceut Co Ltd Reaction vessel
JPH0694722A (en) * 1985-08-05 1994-04-08 Biotrack Inc Analysis method utilizing flow in caplillary tube
JPH06509424A (en) * 1992-05-21 1994-10-20 バイオサイト・ダイアグノスティックス・インコーポレイテッド Diagnostic devices and instruments that do not have a membrane and control the movement of reagents
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
US20030178641A1 (en) * 2002-01-23 2003-09-25 Blair Steven M. Microfluidic platforms for use with specific binding assays, specific binding assays that employ microfluidics, and methods
JP2008547017A (en) * 2005-06-20 2008-12-25 オーミック・アクチボラゲット Method and means for generating fluid transport
JP3157523U (en) * 2006-03-29 2010-02-25 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Assay apparatus and assay method
JP2010525319A (en) * 2007-04-16 2010-07-22 オーミック・アーベー Apparatus for processing liquid samples
JP2012132879A (en) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd Microfluid device, and system and method for detecting microorganism contaminant
WO2012138701A1 (en) * 2011-04-06 2012-10-11 Ortho-Clinical Diagnostics, Inc Assay device having rhombus-shaped projections
JP2013507633A (en) * 2009-10-16 2013-03-04 オーミック・アーベー Assay method and apparatus involving the use of magnetic particles
JP2013148586A (en) * 2012-01-20 2013-08-01 Ortho-Clinical Diagnostics Inc Controlling fluid flow through assay device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694722A (en) * 1985-08-05 1994-04-08 Biotrack Inc Analysis method utilizing flow in caplillary tube
JPH03223674A (en) * 1989-11-30 1991-10-02 Mochida Pharmaceut Co Ltd Reaction vessel
JPH06509424A (en) * 1992-05-21 1994-10-20 バイオサイト・ダイアグノスティックス・インコーポレイテッド Diagnostic devices and instruments that do not have a membrane and control the movement of reagents
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
US20030178641A1 (en) * 2002-01-23 2003-09-25 Blair Steven M. Microfluidic platforms for use with specific binding assays, specific binding assays that employ microfluidics, and methods
JP2008547017A (en) * 2005-06-20 2008-12-25 オーミック・アクチボラゲット Method and means for generating fluid transport
JP3157523U (en) * 2006-03-29 2010-02-25 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Assay apparatus and assay method
JP2010525319A (en) * 2007-04-16 2010-07-22 オーミック・アーベー Apparatus for processing liquid samples
JP2013507633A (en) * 2009-10-16 2013-03-04 オーミック・アーベー Assay method and apparatus involving the use of magnetic particles
JP2012132879A (en) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd Microfluid device, and system and method for detecting microorganism contaminant
WO2012138701A1 (en) * 2011-04-06 2012-10-11 Ortho-Clinical Diagnostics, Inc Assay device having rhombus-shaped projections
JP2013148586A (en) * 2012-01-20 2013-08-01 Ortho-Clinical Diagnostics Inc Controlling fluid flow through assay device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075912A (en) * 2015-10-16 2017-04-20 ウシオ電機株式会社 Sample concentration measuring device and micro channel chip
WO2018173609A1 (en) * 2017-03-23 2018-09-27 テルモ株式会社 Component measurement device and component measurement device set
US11703456B2 (en) 2017-03-23 2023-07-18 Terumo Kabushiki Kaisha Component measurement device and component measurement device set
CN110476055A (en) * 2017-03-23 2019-11-19 泰尔茂株式会社 Component measuring device and component measuring device group
JPWO2018173609A1 (en) * 2017-03-23 2020-01-23 テルモ株式会社 Component measuring device and component measuring device set
JP7155109B2 (en) 2017-03-23 2022-10-18 テルモ株式会社 Component measuring device and component measuring device set
JP6480551B1 (en) * 2017-12-01 2019-03-13 ジャパン・メディカル・リーフ株式会社 Blood test container
WO2019107509A1 (en) * 2017-12-01 2019-06-06 ジャパン・メディカル・リーフ株式会社 Blood test container
JP2019100858A (en) * 2017-12-01 2019-06-24 ジャパン・メディカル・リーフ株式会社 Blood test container
US20200340888A1 (en) * 2018-01-15 2020-10-29 Terumo Kabushiki Kaisha Component measurement system, measurement device, and measurement tip
WO2019171731A1 (en) * 2018-03-07 2019-09-12 テルモ株式会社 Method, reagent, and chip, for measuring analyte concentration in biological sample
US11815448B2 (en) 2018-03-07 2023-11-14 Terumo Kabushiki Kaisha Method, reagent, and chip for measuring analyte concentration in specimen
JPWO2020137532A1 (en) * 2018-12-28 2021-11-11 テルモ株式会社 Test strip and component measurement system
JP7442461B2 (en) 2018-12-28 2024-03-04 テルモ株式会社 Component measurement system
WO2020162261A1 (en) * 2019-02-07 2020-08-13 ジャパン・メディカル・リーフ株式会社 Blood separation container
WO2020183916A1 (en) * 2019-03-11 2020-09-17 テルモ株式会社 Blood-sugar level calculation program, blood-sugar level calculation method, and blood-sugar level measurement device
JP7372310B2 (en) 2019-03-11 2023-10-31 テルモ株式会社 Blood sugar level calculation program, blood sugar level calculation method, and blood sugar level measuring device
JPWO2023002996A1 (en) * 2021-07-19 2023-01-26
WO2023002996A1 (en) * 2021-07-19 2023-01-26 ナノティス株式会社 Method for detecting virus in specimen, and virus detection apparatus
JP7412056B2 (en) 2021-07-19 2024-01-12 ナノティス株式会社 Method and virus detection device for detecting viruses in specimens

Also Published As

Publication number Publication date
JP6278772B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6278772B2 (en) Blood glucose measurement chip
US11035784B2 (en) Methods and systems for optical hemoglobin measurement
WO2014049704A1 (en) Measuring tip
JP7183294B2 (en) Porous membrane sensor element
IL150193A (en) Test device and methods of use thereof
US20240027423A1 (en) Sensor assembly and porous membrane sensor element
US20220050054A1 (en) Optical analyte detection
JP2011520113A (en) Diagnostic tape and diagnostic measurement system
US6338720B1 (en) Collection device for collecting liquid sample
US10661270B2 (en) Disposable cartridge system for point-of-care testing
WO2009119213A1 (en) Method of measuring hematocrit value or blood component concentration and measurement system
TWI230790B (en) Blood specimen collection device
TWI334925B (en)
US20210285887A1 (en) Single-use clinical spectrophotometer
TWI344542B (en)
KR20150004388U (en) Sensor strip structure
JP7093726B2 (en) Fluid sample analyzer
US20230020985A1 (en) Porous membrane sensor assembly
US20240094190A1 (en) Vertical Flow Assay Device and Method for Determination of Hemoglobin Concentration
JP2009133836A (en) Optical sensor
US20230001414A1 (en) Clinical spectrophotometer for general chemistry, immuno-assay and nucleic acid detection
KR20130099648A (en) Bio sensor
JP2024500238A (en) Determination of time response values of analytes in liquids
JP2008082899A (en) Component measuring chip
WO2006035675A1 (en) Component measuring chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180116

R150 Certificate of patent or registration of utility model

Ref document number: 6278772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250