JP2015179028A - Defect depth estimation method and defect depth estimation device - Google Patents

Defect depth estimation method and defect depth estimation device Download PDF

Info

Publication number
JP2015179028A
JP2015179028A JP2014056792A JP2014056792A JP2015179028A JP 2015179028 A JP2015179028 A JP 2015179028A JP 2014056792 A JP2014056792 A JP 2014056792A JP 2014056792 A JP2014056792 A JP 2014056792A JP 2015179028 A JP2015179028 A JP 2015179028A
Authority
JP
Japan
Prior art keywords
defect
inspection
width
inspection object
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056792A
Other languages
Japanese (ja)
Other versions
JP6296851B2 (en
Inventor
森 大輔
Daisuke Mori
大輔 森
下田 佳幸
Yoshiyuki Shimoda
佳幸 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014056792A priority Critical patent/JP6296851B2/en
Publication of JP2015179028A publication Critical patent/JP2015179028A/en
Application granted granted Critical
Publication of JP6296851B2 publication Critical patent/JP6296851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an estimation technique for highly accurately estimating a defect depth of relatively small defect formed from an internal surface to an external surface of an inspection object on the basis of relatively limited data that is detectable.SOLUTION: A defect depth is estimated based on an estimation formula including an amplitude which is a width between a maximum value and a minimum value of a differential signal acquired from detection signals of a pair of magnetic sensors 22a, 22b, a tube axis direction width of the differential signal, and a tube circumferential direction width of the differential signal as independent variables, and including a defect depth as a dependent variable.

Description

本発明は、検査対象物の近傍に磁場を発生させ、前記検査対象物からの漏洩磁束を測定し、当該測定値から前記検査対象物に形成された欠陥の欠陥深さを推定する欠陥深さ推定方法、及びその方法を使用する欠陥深さ推定装置に関する。   The present invention generates a magnetic field in the vicinity of an inspection object, measures a leakage magnetic flux from the inspection object, and estimates a defect depth of a defect formed on the inspection object from the measured value The present invention relates to an estimation method and a defect depth estimation apparatus using the method.

従来、配管等の外表面に腐食等により形成される欠陥を検出する検出方法として、所謂、漏洩磁束検査法が知られている。この漏洩磁束検査法では、所定の磁化手段(例えば、検査対象物の表面の異なった部位を、別の極として磁化する磁化器や、検査対象物の異なった部位に配置される一対の磁化コイルを備えた磁化器)により、検査対象物の検査対象部位を磁化する。このようにして磁化された検査対象部位に、腐食等により発生した欠陥が存在すると、その欠陥の存在により検査対象物内に形成される磁束の分布が乱れ、その一部が検査対象物外に漏洩してくる。このようにして漏洩してくる漏洩磁束を、ホール素子等の磁気センサにより検出することで、欠陥の検出が可能となる(非特許文献1を参照)。通常、このような漏洩磁束検査法で採用されるホール素子の数は単一である。   Conventionally, a so-called leakage magnetic flux inspection method is known as a detection method for detecting defects formed on the outer surface of piping or the like due to corrosion or the like. In this leakage magnetic flux inspection method, predetermined magnetizing means (for example, a magnetizer that magnetizes different parts of the surface of the inspection object as separate poles, or a pair of magnetized coils arranged at different parts of the inspection object) Is magnetized by the magnetizer equipped with the above. If there is a defect caused by corrosion or the like in the inspection target portion magnetized in this way, the distribution of magnetic flux formed in the inspection target is disturbed by the presence of the defect, and a part of the defect is outside the inspection target. It leaks. By detecting the leakage magnetic flux leaking in this way by a magnetic sensor such as a Hall element, a defect can be detected (see Non-Patent Document 1). Usually, the number of Hall elements employed in such a leakage magnetic flux inspection method is single.

また、上述した磁束漏洩法に基づいて、検査対象物に存在する欠陥の欠陥深さを推定する技術が知られている(特許文献1を参照)。
説明を加えると、当該特許文献1に開示の技術では、検査対象物としての配管に試験欠陥を作成し、検査対象物の検査対象部位を磁化する磁化器及び磁気センサ等から成る磁束検出ユニットを、上記試験欠陥に沿って移動させることにより得られる検出信号からパラメータとして、漏洩磁束ピーク値等の複数のパラメータ(漏洩磁束ピーク値、軸方向分布幅、周方向分布幅、データ取得速度、欠陥の周方向角度)を取得し、これら原パラメータに加えて、それらの関数演算値(特許文献1では、漏洩磁束ピーク値/周方向分布幅として規定されている)を求め、当該原パラメータ及び関数演算値と試験欠陥の欠陥深さとの関係を重回帰分析して、欠陥深さ推定式を得て欠陥深さを導出する。特許文献1では、その〔0006〕段落に、欠陥の口径として20mmのものが例示されている。
Further, a technique for estimating the defect depth of a defect existing in an inspection object based on the above-described magnetic flux leakage method is known (see Patent Document 1).
In addition, in the technique disclosed in Patent Document 1, a magnetic flux detection unit including a magnetizer and a magnetic sensor that create a test defect in a pipe serving as an inspection target and magnetizes the inspection target portion of the inspection target is provided. As a parameter from the detection signal obtained by moving along the test defect, a plurality of parameters such as a leakage magnetic flux peak value (leakage magnetic flux peak value, axial distribution width, circumferential distribution width, data acquisition speed, defect (Circumferential direction angle) is acquired, and in addition to these original parameters, their function calculation values (specified in Patent Document 1 as leakage flux peak value / circumferential distribution width) are obtained, and the original parameter and function calculation are obtained. The relationship between the value and the defect depth of the test defect is subjected to multiple regression analysis to obtain the defect depth estimation formula to derive the defect depth. In Patent Document 1, the [0006] paragraph exemplifies a defect aperture of 20 mm.

1992年10月15日発行「新 非破壊検査便覧」2.11 漏洩磁束探傷試験Published on October 15, 1992 "New Nondestructive Inspection Handbook" 2.11 Leakage magnetic flux test

特許第4234914号公報Japanese Patent No. 4234914

発明者等は、検査対象物としての配管外表面に形成される欠陥の欠陥深さを、配管内に磁化手段及び磁気センサ等からなる磁束検出ユニットを移動させ、検出信号を得ることで当該検出信号から欠陥深さを推定する推定式を導出することを検討してきた。
即ち、所定の概略馬蹄形のコアを備えた磁化手段を使用して、検査対象部位を当該コアの両端間において磁化し、両端間に配置した単一の磁気センサの検出信号に基づいて、欠陥深さを推定する推定方法の確立を試みた。しかしながら、従来の漏洩磁束検査法では、、管外表面に形成される大きな欠陥(検査対象物の表面での欠陥の開口径が大きく、さらに欠陥深さが深いもの)については、その存在が検出が可能であるものの、発明者らが検出の目的とした、開口径が例えば10mm程度で、その深さが管厚の50%程度に留まっている欠陥の存在を確実に検出することができなかった。従って、欠陥自体を良好に検出することができないという状況から、その欠陥の深さを精度よく推定することはできなかった。一方、特許文献1に開示の技術では、漏洩磁束ピーク値、軸方向分布幅、周方向分布幅、データ取得速度、欠陥の周方向角度を取得し、これら原パラメータに加えて、関数演算値を求める必要があり、原パラメータの種類が過多である等の理由から、信頼性に足る重回帰分析を行うことができず、発明者らが目的とする小形の欠陥に対しては、実際上、実用化には至っていない。
The inventors detect the defect depth of the defect formed on the outer surface of the pipe as the inspection object by moving a magnetic flux detection unit including a magnetizing means and a magnetic sensor into the pipe and obtaining a detection signal. It has been studied to derive an estimation formula to estimate the defect depth from the signal.
That is, using a magnetizing means having a predetermined roughly horseshoe-shaped core, the inspection target part is magnetized between both ends of the core, and the defect depth is determined based on the detection signal of a single magnetic sensor disposed between both ends. An attempt was made to establish an estimation method for estimating the height. However, in the conventional leakage magnetic flux inspection method, the presence of a large defect formed on the outer surface of the tube (having a large defect opening diameter and a deep defect depth on the surface of the inspection object) is detected. However, it is impossible to reliably detect the presence of a defect whose opening diameter is about 10 mm, for example, and whose depth remains at about 50% of the tube thickness. It was. Therefore, the depth of the defect cannot be accurately estimated from the situation where the defect itself cannot be detected well. On the other hand, in the technique disclosed in Patent Document 1, the leakage flux peak value, the axial distribution width, the circumferential distribution width, the data acquisition speed, the circumferential angle of the defect are acquired, and in addition to these original parameters, the function calculation value is calculated. It is necessary to find out, for the reason that there are too many kinds of original parameters, it is impossible to perform a reliable multiple regression analysis, and for the small defects aimed by the inventors, in practice, It has not been put into practical use.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、例えば、検査対象物の内表面側から、検査対象物の外表面に形成される比較的小形の欠陥の欠陥深さを、検出が可能な比較的限られたデータに基づいて精度良く推定可能な推定技術を提供する点にある。   The present invention has been made in view of the above-described problems, and an object thereof is, for example, a defect depth of a relatively small defect formed on the outer surface of the inspection object from the inner surface side of the inspection object. Is to provide an estimation technique that can be accurately estimated based on relatively limited data that can be detected.

上記目的を達成するための本発明の欠陥深さ推定方法は、
検査対象物の近傍に磁場を発生させ、前記検査対象物からの漏洩磁束を測定し、当該測定値から前記検査対象物に形成された欠陥の欠陥深さを推定する欠陥深さ推定方法であって、その特徴構成は、
中空円筒形状の前記検査対象物の筒軸心に沿う検査方向に沿って設けられる一対の磁気センサを、前記検査方向で前方側の前記磁気センサが前記欠陥から離間しているときの磁束の変化を検出している状態で、前記検査方向で後方側の前記磁気センサが前記欠陥へ接近しているときの磁束の変化を検出可能な間隔で配設し、
前記検査対象物の近傍に磁場を発生させている状態で、前記検査対象物に形成された試験欠陥に対し、前記一対の磁気センサを前記検査方向で移動させ、前記一対の磁気センサの検出信号から求まる検査対象物表面の法線方向における磁束成分の差分信号から、少なくとも、その差分信号の最大値と最小値との幅である振幅と、管軸方向幅と、管周方向幅とを抽出し、抽出した前記振幅、前記管軸方向幅及び前記管周方向幅を使用して、一対の磁気センサの検出信号から求まる差分信号の最大値と最小値との幅である振幅、当該差分信号の管軸方向幅、及び当該差分信号の管周方向幅を独立変数、欠陥深さを従属変数とする推定式に基づいて前記欠陥の深さを推定する点にある。
In order to achieve the above object, the defect depth estimation method of the present invention is:
A defect depth estimation method that generates a magnetic field in the vicinity of an inspection object, measures a magnetic flux leakage from the inspection object, and estimates a defect depth of a defect formed on the inspection object from the measured value. The feature configuration is
Changes in magnetic flux when a pair of magnetic sensors provided along an inspection direction along a cylindrical axis of the inspection object having a hollow cylindrical shape are separated from the defect in the inspection direction. In a state where the magnetic sensor on the rear side in the inspection direction is close to the defect, the change in magnetic flux is detected at an interval that can be detected.
In a state where a magnetic field is generated in the vicinity of the inspection object, the pair of magnetic sensors are moved in the inspection direction with respect to a test defect formed on the inspection object, and detection signals of the pair of magnetic sensors are detected. From the difference signal of the magnetic flux component in the normal direction of the surface of the inspection object obtained from the above, extract at least the amplitude, the width in the tube axis direction, and the width in the tube circumferential direction, which are the widths of the maximum and minimum values of the difference signal Then, using the extracted amplitude, the tube axis direction width and the tube circumferential direction width, the amplitude which is the width between the maximum value and the minimum value of the difference signal obtained from the detection signals of the pair of magnetic sensors, the difference signal The depth of the defect is estimated based on an estimation equation in which the width in the tube axis direction and the width in the tube circumferential direction of the difference signal are independent variables and the defect depth is a dependent variable.

検査対象物表面の法線方向における磁束成分を検出する場合、通常、磁気センサが欠陥へ接近しているときに検出する磁束の変化による検出信号と、当該欠陥から離間しているときに検出する磁束の変化による検出信号とは、夫々の磁気センサに対する磁束の方向(検査対象物の法線方向での磁束の方向)が逆向きになるため、それらを、横軸を検査方向としてグラフ化したときに、一方が上に凸で、他方が下に凸のグラフとなる。このため、これらの差分信号は、欠陥の近傍において大きいピークとなる。即ち、同一の欠陥を移動方向に配設された一対の磁気センサで同時にセンシング可能とすることで、このような検出信号の増幅が可能となる。
つまり、本発明はこの点に着目し、まず、一対の磁気センサを、検査方向において、検査方向で前方側の磁気センサが欠陥から離間しているときの磁束の変化を検出している状態で、検査方向で後方側の磁気センサが欠陥へ接近しているときの磁束の変化を検出可能な間隔で配設することで、一対の磁気センサの検出信号の差分信号が、欠陥を検出している状態で強い検出信号を得る。
即ち、一対の磁気センサの間隔を適切に選択することにより、特定の欠陥の検出信号を大きく取り出すことができるため、発明者らが目的とする比較的小形の欠陥に関しても、その大きさに対応する適切な検出信号(差分信号)を得ることができる。
更に、本発明にあっては、欠陥に対し、上述の如く、適切な間隔に設定された一対の磁気センサにて検出された複数の差分信号の夫々につき、その最大値と最小値の幅である振幅と、管軸方向幅と、管周方向幅とを抽出し、これら全て、且つ、これら限られた数の情報を独立変数とする推定式を使用して、欠陥深さを得るため、合理的な基準で、発明者らが対象とする比較的小形の欠陥の欠陥深さまでをも、適切に推定することができる。
When detecting the magnetic flux component in the normal direction of the surface of the inspection object, the detection signal is usually detected when the magnetic sensor is approaching the defect and detected when the magnetic sensor is away from the defect. The detection signal based on the change in magnetic flux is a graph in which the direction of magnetic flux with respect to each magnetic sensor (the direction of magnetic flux in the normal direction of the inspection object) is reversed, and the horizontal axis is the inspection direction. Sometimes the result is a graph with one convex upward and the other convex downward. For this reason, these difference signals have large peaks in the vicinity of the defect. That is, such detection signals can be amplified by enabling the same defect to be sensed simultaneously by a pair of magnetic sensors arranged in the moving direction.
In other words, the present invention pays attention to this point, and first detects a change in magnetic flux when a pair of magnetic sensors are in the inspection direction and the magnetic sensor on the front side in the inspection direction is separated from the defect. By arranging the magnetic flux change at a detectable interval when the rear magnetic sensor is approaching the defect in the inspection direction, the difference signal between the detection signals of the pair of magnetic sensors detects the defect. A strong detection signal is obtained in the state of being.
In other words, since the detection signal of a specific defect can be extracted largely by appropriately selecting the distance between the pair of magnetic sensors, the size of a relatively small defect intended by the inventors can be accommodated. An appropriate detection signal (difference signal) can be obtained.
Further, according to the present invention, for each of the plurality of difference signals detected by the pair of magnetic sensors set at appropriate intervals as described above, the width of the maximum value and the minimum value is determined. In order to obtain a defect depth by using an estimation formula that extracts a certain amplitude, a width in the tube axis direction, and a width in the tube circumferential direction, and uses all of these and a limited number of information as independent variables, With reasonable criteria, even the defect depth of relatively small defects targeted by the inventors can be estimated appropriately.

上記目的を達成するための本発明の欠陥深さの推定装置は、
検査対象物を磁化する磁化手段と、当該磁化手段により磁化された前記検査対象物から漏洩する漏洩磁束を検出する漏洩磁束検出手段とを、前記検査対象物の表面の検査方向に沿って移動させて、前記検査対象物に形成される欠陥の欠陥深さを前記漏洩磁束検出手段の出力から推定する欠陥深さの推定装置であって、その特徴構成は、
前記漏洩磁束検出手段が、中空円筒形状の前記検査対象物の筒軸心に沿う前記検査方向に沿って配置される少なくとも一対の磁気センサからなり、当該一対の磁気センサの前記検査方向での間隔を、前記検査方向で前方側の前記磁気センサが前記欠陥から離間しているときの磁束の変化を検出している状態で、前記検査方向で後方側の前記磁気センサが前記欠陥へ接近しているときの磁束の変化を検出可能な間隔として配設し、
複数の試験欠陥が形成された前記検査対象物に対し、前記一対の磁気センサを検査方向に沿って移動させて、当該一対の磁気センサの検出信号から求まる、検査対象物表面の法線方向における磁束成分の差分信号から、少なくとも、その最大値と最小値との差である振幅と、管軸方向幅と、管周方向幅とを抽出するパラメータ抽出手段と、
一対の磁気センサの検出信号から求まる差分信号の最大値と最小値との幅である振幅、当該差分信号の管軸方向幅、及び当該差分信号の管周方向幅を独立変数、欠陥深さを従属変数とする推定式を記憶する記憶部と、
前記差分信号のうち、前記検査対象物に形成された欠陥を前記一対の磁気センサが通過するときに得られる差分信号の振幅と、管軸方向幅と、管周方向幅とを、前記推定式導出手段にて導出された欠陥深さ推定式に入力して欠陥深さを推定する欠陥深さ推定手段とを備える点にある。
In order to achieve the above object, an apparatus for estimating a defect depth according to the present invention comprises:
Magnetizing means for magnetizing the inspection object and leakage magnetic flux detection means for detecting leakage magnetic flux leaking from the inspection object magnetized by the magnetization means are moved along the inspection direction of the surface of the inspection object. A defect depth estimation device for estimating a defect depth of a defect formed in the inspection object from an output of the leakage magnetic flux detection means, and the characteristic configuration thereof is:
The leakage magnetic flux detection means includes at least a pair of magnetic sensors arranged along the inspection direction along the cylindrical axis of the inspection object having a hollow cylindrical shape, and the distance between the pair of magnetic sensors in the inspection direction. In a state in which a change in magnetic flux is detected when the magnetic sensor on the front side in the inspection direction is separated from the defect, the magnetic sensor on the rear side in the inspection direction approaches the defect. Is arranged as a detectable interval of the change in magnetic flux when
The pair of magnetic sensors is moved along the inspection direction with respect to the inspection object on which a plurality of test defects are formed, and is obtained from detection signals of the pair of magnetic sensors in the normal direction of the surface of the inspection object. Parameter extraction means for extracting at least the amplitude, the tube axis direction width, and the tube circumferential direction width, which are the difference between the maximum value and the minimum value, from the difference signal of the magnetic flux component;
The amplitude that is the width between the maximum value and the minimum value of the difference signal obtained from the detection signals of the pair of magnetic sensors, the tube axis direction width of the difference signal, and the tube circumferential width of the difference signal are independent variables, and the defect depth is A storage unit for storing an estimation formula as a dependent variable;
Among the difference signals, the amplitude of the difference signal obtained when the pair of magnetic sensors pass through the defect formed in the inspection object, the tube axis direction width, and the tube circumferential direction width are the estimation equations. And a defect depth estimation unit that estimates the defect depth by inputting the defect depth estimation formula derived by the deriving unit.

上記特徴構成を有する欠陥深さ推定装置は、これまで説明した欠陥深さの推定方法を実施して欠陥深さを推定可能な装置であり、当該欠陥深さ推定装置によれば、上述した理由と同様の理由により、発明者らが検出の目的とする比較的小形の欠陥の欠陥深さまでをも、良好に推定することができる。   The defect depth estimation apparatus having the above-described characteristic configuration is an apparatus that can estimate the defect depth by performing the defect depth estimation method described above, and according to the defect depth estimation apparatus, the reason described above For the same reason as described above, even the defect depth of a relatively small defect, which is the object of detection by the inventors, can be estimated well.

本発明の欠陥深さ推定装置の更なる特徴構成は、
前記一対の磁気センサが、前記検査方向での検出対象の前記欠陥の幅未満の間隔で配設されている点にある。
A further characteristic configuration of the defect depth estimation apparatus of the present invention is:
The pair of magnetic sensors are arranged at intervals less than the width of the defect to be detected in the inspection direction.

更に、発明者らは、一対の磁気センサが、検査方向での検出対象の欠陥の幅未満の間隔に配設することで、一対の磁気センサのうち、一方にて欠陥から離間しているときに磁束の変化を検出している状態で、他方にて欠陥へ接近しているときに磁束の変化を検出することができることを見出した。
即ち、本発明の如く、一対の磁気センサを、検査方向での検出対象の欠陥の幅未満の間隔に配設することで、検出対象の幅以上の欠陥の検出信号を大きいピークとして出力し、欠陥をより適切に検出することができる。
Furthermore, the inventors have arranged the pair of magnetic sensors at an interval less than the width of the defect to be detected in the inspection direction, so that one of the pair of magnetic sensors is separated from the defect. It was found that a change in magnetic flux can be detected when a change in magnetic flux is detected and a defect is approached on the other side.
That is, as in the present invention, by arranging a pair of magnetic sensors at an interval less than the width of the defect to be detected in the inspection direction, a detection signal of a defect larger than the width of the detection object is output as a large peak, Defects can be detected more appropriately.

本発明の欠陥深さ推定装置の更なる特徴構成は、
前記一対の磁気センサは、前記検査対象物としての円筒状の配管の内周方向に沿って複数設けられている点にある。
A further characteristic configuration of the defect depth estimation apparatus of the present invention is:
The pair of magnetic sensors is provided in a plurality along the inner circumferential direction of a cylindrical pipe as the inspection object.

上記特徴構成によれば、一対の磁気センサが、検査対象物としての円筒状の配管の内周方向に亘って複数設けられているから、例えば、当該一対の磁気センサを内周方向に亘る全域に配置すれば、検査装置を、検査方向(配管の管軸方向)へ一度走査させるだけで、検出対象の配管の内周面の全周の検査を済ませることができる。また、周方向に於ける欠陥の検出漏れを低減できる。   According to the above characteristic configuration, a plurality of pairs of magnetic sensors are provided along the inner circumferential direction of a cylindrical pipe as an inspection object. If it arrange | positions to (1), the inspection of the perimeter of the inner peripheral surface of piping to be detected can be completed only by once scanning the inspection device in the inspection direction (the pipe axis direction of the pipe). In addition, it is possible to reduce detection failures of defects in the circumferential direction.

本発明の欠陥深さ推定装置の更なる特徴構成は、
前記磁化手段が前記検査対象物の表面との間に間隙を形成する状態で懸架されると共に前記磁気センサが振動吸収部を介して懸架される支持体と、前記検査対象物の表面に接地した状態で当該表面に沿って走行するローラとを備える点にある。
A further characteristic configuration of the defect depth estimation apparatus of the present invention is:
The magnetizing means is suspended in a state of forming a gap with the surface of the inspection object, and the magnetic sensor is suspended through a vibration absorbing portion, and is grounded to the surface of the inspection object. And a roller that travels along the surface in a state.

上記特徴構成によれば、まず、支持体は、磁化手段を検査対象物の表面との間に間隙を形成する状態で懸架されるから、磁化手段がその磁力により検査対象物に磁着することを防止でき、検査装置の検査方向への移動を円滑に行わせることができる。当該構成により、磁化手段により検査対象物を適切に磁化して、検査対象物の表面に沿って磁束を発生させることができる。
また、支持体には、一対の磁気センサを振動吸収部を介して懸架するから、一対の磁気センサへ、検査方向への移動に伴う振動を抑制できる。
According to the above characteristic configuration, first, the support is suspended in a state where a gap is formed between the magnetizing means and the surface of the inspection object, so that the magnetizing means is magnetically attached to the inspection object by its magnetic force. Can be prevented, and the inspection apparatus can be smoothly moved in the inspection direction. With this configuration, the inspection object can be appropriately magnetized by the magnetizing means, and a magnetic flux can be generated along the surface of the inspection object.
In addition, since the pair of magnetic sensors are suspended on the support via the vibration absorbing portion, it is possible to suppress vibration accompanying movement in the inspection direction to the pair of magnetic sensors.

本発明の欠陥深さ推定装置の使用状態を示す概略図Schematic which shows the use condition of the defect depth estimation apparatus of this invention 本発明の欠陥深さ推定装置を構成する検査ユニットの断面図、及びその制御装置の機能ブロック図Sectional drawing of the inspection unit which comprises the defect depth estimation apparatus of this invention, and the functional block diagram of the control apparatus 検査ユニットに設けられるセンサの配置を示す平面図Plan view showing the arrangement of sensors provided in the inspection unit 欠陥による磁束の変化を測定した検出信号、差分信号、及び移動平均した移動平均信号を示すグラフ図The graph which shows the detection signal which measured the change of the magnetic flux by a defect, a difference signal, and the moving average signal which carried out moving average φ=10mmの欠陥に対応するグラフ図Graph diagram corresponding to defect of φ = 10mm 一対の磁気センサの差分信号における振幅Vpp、管軸方向幅Vw、管周方向幅Vrを示す図The figure which shows the amplitude Vpp, the pipe-axis direction width Vw, and the pipe circumferential direction width Vr in the difference signal of a pair of magnetic sensor 一対の磁気センサの差分信号の振幅に加え、管軸方向幅Vw、管周方向幅Vrを含めて重回帰分析し欠陥深さ推定式を導出し、当該推定式により欠陥深さを推定した場合の推定誤差を示すグラフ図In the case where the defect depth estimation formula is derived by performing multiple regression analysis including the pipe axis direction width Vw and the pipe circumferential direction width Vr in addition to the amplitude of the difference signal of the pair of magnetic sensors, and the defect depth is estimated by the estimation formula Graph showing the estimation error of 磁気センサの振幅のみの回帰分析により欠陥深さ推定式を導出し、当該推定式により欠陥深さを推定した場合の推定誤差を示すグラフ図A graph showing the estimation error when a defect depth estimation formula is derived by regression analysis of only the amplitude of the magnetic sensor and the defect depth is estimated by the estimation formula

本発明の欠陥深さ推定装置100は、図1に示すように、配管10(検査対象物の一例)の外表面に形成される比較的小形の欠陥15の欠陥深さをも、適切に検出することが可能な推定装置100に関するものである。
当該欠陥深さ推定装置100は、図1に示すように、配管10の内部を、配管10の管軸方向(検査方向の一例:図1で矢印Xに沿う方向)に沿って、配管10の内部を走査可能な検査装置50と、当該検査装置50により検出された検出信号に基づいて、配管10の外表面に形成される欠陥15の欠陥深さを推定する検出データ解析用コンピュータから成る制御装置R等から構成されている。
本発明の欠陥深さ推定装置100にあっては、検査装置50による欠陥15の検出方式に特徴があるので、まず、当該検査装置50について説明する。
As shown in FIG. 1, the defect depth estimation apparatus 100 of the present invention appropriately detects the defect depth of a relatively small defect 15 formed on the outer surface of a pipe 10 (an example of an inspection object). It is related with the estimation apparatus 100 which can do.
As shown in FIG. 1, the defect depth estimation apparatus 100 moves the inside of the pipe 10 along the pipe axis direction of the pipe 10 (an example of the inspection direction: the direction along the arrow X in FIG. 1). Control comprising an inspection device 50 capable of scanning the inside and a detection data analysis computer for estimating the defect depth of the defect 15 formed on the outer surface of the pipe 10 based on a detection signal detected by the inspection device 50 It is comprised from the apparatus R etc.
The defect depth estimation apparatus 100 according to the present invention is characterized by the detection method of the defect 15 by the inspection apparatus 50. First, the inspection apparatus 50 will be described.

検査装置50は、図1に示すように、地中に埋設される配管10(検査対象物の一例)の外表面に形成されることのある腐食及び減肉等の欠陥15の有無を検査可能に構成されており、牽引装置11a,11bに連結され牽引される状態で配管10の内部を走査可能に構成されており、当該検査装置50により検査された検査データは、イーサネット(登録商標)等の通信回線13を介して、地上に配設される検出データ解析用コンピュータ(制御装置R)に収集される。   As shown in FIG. 1, the inspection device 50 can inspect for defects 15 such as corrosion and thinning that may be formed on the outer surface of a pipe 10 (an example of an inspection object) embedded in the ground. The inside of the pipe 10 can be scanned while being connected to the traction devices 11a and 11b and the inspection data inspected by the inspection device 50 is Ethernet (registered trademark) or the like. Are collected by a detection data analysis computer (control device R) arranged on the ground.

当該検査装置50は、図2に示す検査ユニット50aの複数が周方向に配置されて構成されている。
単一の検査ユニット50aは、図2に示すように、配管10を磁化するための永久磁石21(磁化手段の一例)と、当該永久磁石21により磁化された配管10から漏洩する漏洩磁束を検出する磁気センサ22(漏洩磁束検出手段の一例)とを備えている。
当該検査ユニット50aでは、配管10の表面の検査方向(図1、2で矢印Xの矢示方向である管軸方向)に沿って移動すべく、永久磁石21とその磁界を配管10に伝搬させる鉄心27が配管10の表面との間に間隙を形成する状態で懸架されると共に磁気センサ22が検査方向に直交する方向(図2で矢印Yに沿う方向である配管表面に対して近接、離間する方向)に伸縮自在なバネ23(振動吸収部の一例)を介して懸架される支持体24と、配管10の表面に設置した状態で当該表面に沿って走行させる一対のローラ25とを備えている。これにより、検査ユニット50aは、検査方向に沿ってスムーズに移動して、配管10に形成される欠陥15を、磁気センサ22の出力により検出することができる。
The inspection apparatus 50 is configured by arranging a plurality of inspection units 50a shown in FIG. 2 in the circumferential direction.
As shown in FIG. 2, the single inspection unit 50 a detects a permanent magnet 21 for magnetizing the pipe 10 (an example of a magnetizing unit) and leakage magnetic flux leaking from the pipe 10 magnetized by the permanent magnet 21. And a magnetic sensor 22 (an example of leakage magnetic flux detection means).
In the inspection unit 50 a, the permanent magnet 21 and its magnetic field are propagated to the pipe 10 so as to move along the inspection direction of the surface of the pipe 10 (the pipe axis direction which is the direction of the arrow X in FIGS. 1 and 2). The iron core 27 is suspended in a state of forming a gap with the surface of the pipe 10, and the magnetic sensor 22 is in a direction perpendicular to the inspection direction (close to and away from the pipe surface which is the direction along the arrow Y in FIG. 2). A support 24 suspended via a spring 23 (an example of a vibration absorbing portion) that can be expanded and contracted in a direction), and a pair of rollers 25 that run along the surface while being installed on the surface of the pipe 10. ing. Thereby, the inspection unit 50a can smoothly move along the inspection direction and detect the defect 15 formed in the pipe 10 by the output of the magnetic sensor 22.

本発明に言う磁化手段は、検査方向において、磁気センサ22を挟む状態で、略馬蹄形状に配設された鉄心27と、当該鉄心27により磁気的に連結される一対の永久磁石21a、21bから構成されている。これにより、一対の永久磁石21a、21bに対向する配管10の表面を磁化し、磁化された配管10から漏洩する漏洩磁束を磁気センサ22にて測定することが可能となる。
尚、一対の鉄心27の配管10側端(異なった磁極が形成されている)と、配管10の表面との間に形成される間隙の幅L1(図2に図示)は、鉄心27が、その磁力により、配管10の表面に磁着しない程度の幅に設定されており、検査ユニット50aの検査方向での移動を妨げない程度で、配管10を適切に磁化できる程度の幅とされている。具体的には、磁気約4000ガウスで、1.5mm程度にすることが好ましい。
The magnetizing means according to the present invention includes an iron core 27 disposed in a substantially horseshoe shape and a pair of permanent magnets 21a and 21b magnetically coupled by the iron core 27 with the magnetic sensor 22 sandwiched in the inspection direction. It is configured. As a result, the surface of the pipe 10 facing the pair of permanent magnets 21a and 21b is magnetized, and the leakage magnetic flux leaking from the magnetized pipe 10 can be measured by the magnetic sensor 22.
The width L1 (shown in FIG. 2) of the gap formed between the pipe 10 side ends of the pair of iron cores 27 (different magnetic poles are formed) and the surface of the pipe 10 is as follows. Due to the magnetic force, the width is set so as not to be magnetically attached to the surface of the pipe 10, and the width is such that the pipe 10 can be appropriately magnetized without hindering movement of the inspection unit 50 a in the inspection direction. . Specifically, the magnetism is preferably about 4000 gauss and about 1.5 mm.

次に、磁気センサ22について説明する。本発明の発明者らは、一般に、磁気センサ22は、欠陥15から離間しているときに検出する磁束の変化に伴う検出信号と、欠陥15に近接しているときに検出する磁束の変化に伴う検出信号とは、その振幅の上下方向が逆となって出力されることに着目し、比較的小形の欠陥を検出するべく、以下の構成を採用するに至った。このような磁気センサ22としては、所謂、ホール素子を採用する。   Next, the magnetic sensor 22 will be described. The inventors of the present invention generally detect the magnetic sensor 22 in accordance with a detection signal accompanying a change in magnetic flux detected when the magnetic sensor 22 is separated from the defect 15 and a change in magnetic flux detected when the magnetic sensor 22 is close to the defect 15. Focusing on the fact that the accompanying detection signal is output with the amplitude being reversed in the vertical direction, the following configuration has been adopted in order to detect a relatively small defect. As such a magnetic sensor 22, a so-called Hall element is employed.

即ち、本発明にあっては、磁気センサ22を、検査方向(図2で矢印Xの矢示方向)に沿って一対配設し、当該一対の磁気センサ22a、22bは、検査方向において、検査方向で前方側(図2で矢印Xの矢示側)に設けられる磁気センサ22aが欠陥15から離間することによる磁束の変化を検出している状態で、検査方向で後方側(図2で矢印Xの矢示反対側)に設けられる磁気センサ22bが欠陥15へ接近することによる磁束の変化を検出可能な間隔で配設している。
換言すると、一対の磁気センサ22a、22bは、検査方向での検出対象の欠陥15の幅未満の間隔L2で配設している。尚、本発明にあっては、比較的小形の欠陥15(検査方向での開口径が10mm程度のもの)を検査対象としているため、一対の磁気センサ22a、22bの配設間隔L2は、数mmとしている。
That is, in the present invention, a pair of magnetic sensors 22 are arranged along the inspection direction (the direction indicated by arrow X in FIG. 2), and the pair of magnetic sensors 22a and 22b are inspected in the inspection direction. The magnetic sensor 22a provided on the front side in the direction (indicated by the arrow X in FIG. 2) detects a change in magnetic flux due to separation from the defect 15, and the rear side in the inspection direction (the arrow in FIG. 2). The magnetic sensor 22b provided on the opposite side of the arrow X is disposed at an interval that can detect a change in magnetic flux caused by approaching the defect 15.
In other words, the pair of magnetic sensors 22a and 22b are arranged at an interval L2 that is less than the width of the defect 15 to be detected in the inspection direction. In the present invention, since the relatively small defect 15 (having an opening diameter of about 10 mm in the inspection direction) is to be inspected, the arrangement interval L2 between the pair of magnetic sensors 22a and 22b is several. mm.

これにより、当該磁気センサ22a、22bは、欠陥15の近傍を通過する場合、検査方向で前方側の磁気センサ22aが欠陥15から離間するときに、検査方向で後方側の磁気センサ22bが欠陥15に接近する状態となる。このとき、検査方向で前方側の磁気センサ22aが検出する配管10表面の法線方向の磁束成分と、検査方向で後方側の磁気センサ22bが検出する配管10表面の法線方向の磁束成分とが、逆向きとなる。
即ち、検査方向で前方側の磁気センサ22aの磁束の検出信号と、検査方向で後方側の磁気センサ22bの磁束の検出信号とが、横軸を検査方向としてグラフ化したときに、一方が上に凸で、他方が下に凸のグラフとして出力されるから、それらの差分信号をとることで、高いピークが出力されることとなる。
結果、検査方向において、一対の磁気センサ22a、22bの検査方向での間隔L2より大きい開口径を有する欠陥15を、適切に検出できる。
Accordingly, when the magnetic sensors 22a and 22b pass near the defect 15, when the magnetic sensor 22a on the front side in the inspection direction is separated from the defect 15, the magnetic sensor 22b on the rear side in the inspection direction has the defect 15 It will be in the state approaching. At this time, the magnetic flux component in the normal direction on the surface of the pipe 10 detected by the front magnetic sensor 22a in the inspection direction and the magnetic flux component in the normal direction on the surface of the pipe 10 detected by the rear magnetic sensor 22b in the inspection direction. However, the reverse is true.
That is, when the detection signal of the magnetic flux of the magnetic sensor 22a on the front side in the inspection direction and the detection signal of the magnetic flux of the magnetic sensor 22b on the rear side in the inspection direction are plotted with the horizontal axis as the inspection direction, Since it is output as a graph having a convex shape on the other side and a convex side on the other side, a high peak is output by taking the difference signal between them.
As a result, it is possible to appropriately detect the defect 15 having an opening diameter larger than the distance L2 in the inspection direction of the pair of magnetic sensors 22a and 22b in the inspection direction.

尚、一対の磁気センサ22a、22bにて検出される検出信号は、一般に用いられる電気回路により処理される。具体的には、差分回路により差分がとられ、ローパスフィルタ回路により低周波成分が除去され、ロックインアンプにより増幅され、制御回路で移動平均がとられた後、検出データ解析用コンピュータ(制御装置R)に送信される。ここで、差分回路、ローパスフィルタ回路、ロックインアンプ、及び制御回路については、公知の構成であるため、ここでは、その詳細な説明及び図示を省略する。   The detection signals detected by the pair of magnetic sensors 22a and 22b are processed by a generally used electric circuit. Specifically, a difference is taken by a difference circuit, a low frequency component is removed by a low-pass filter circuit, amplified by a lock-in amplifier, a moving average is taken by a control circuit, and then a computer for detecting data analysis (control device) R). Here, since the difference circuit, the low-pass filter circuit, the lock-in amplifier, and the control circuit have known configurations, detailed description and illustration thereof are omitted here.

検査ユニット50aには、図2、3に示すように、一対の磁気センサ22a、22bが、配管10の内周方向、即ち、検査方向に直交する方向で、配管10の表面に沿う方向(図2で紙面表裏方向、図3で矢印Zに沿う方向)に、間隔L3(本実施形態では、118mm)で、3組設けられている。
そして、本発明の検査装置50は、図示は省略するが、当該検査ユニット50aを、配管10の内周に沿って8つ備えており、これにより、配管10の内周方向で全域を、一度に検査可能となっている。
In the inspection unit 50a, as shown in FIGS. 2 and 3, a pair of magnetic sensors 22a and 22b are provided along the inner circumferential direction of the pipe 10, that is, in the direction perpendicular to the inspection direction, along the surface of the pipe 10 (see FIG. Three sets are provided at a distance L3 (118 mm in this embodiment) in the front and back direction of the paper surface 2 and in the direction along the arrow Z in FIG.
The inspection apparatus 50 according to the present invention includes eight inspection units 50a along the inner periphery of the pipe 10 (not shown). Inspection is possible.

図4に、これまで説明してきた検査装置50を用いた場合の欠陥15の検出結果を示す。
当該図4のグラフ図は、便宜的に、一対の磁気センサ22a、22bによる磁束の測定結果に基づいたグラフ図である。検査対象は、検査方向でその直径が10mmの欠陥15を、配管10の検査方向(管軸方向)に沿って複数(図4では4つ)設けた配管10とした。尚、複数の欠陥15は、検査方向で前方側(図4で矢印Xの矢示側)ほど、深く形成している。
一対の磁気センサ22a、22bの間隔L2は、数mmに設定しており、欠陥15の検査方向の幅(10mm)未満に設定している。
FIG. 4 shows a detection result of the defect 15 when the inspection apparatus 50 described so far is used.
The graph of FIG. 4 is a graph based on the measurement results of magnetic flux by the pair of magnetic sensors 22a and 22b for convenience. The inspection object was a pipe 10 provided with a plurality (four in FIG. 4) of defects 15 having a diameter of 10 mm in the inspection direction along the inspection direction (tube axis direction) of the pipe 10. The plurality of defects 15 are formed deeper toward the front side (indicated by the arrow X in FIG. 4) in the inspection direction.
The distance L2 between the pair of magnetic sensors 22a and 22b is set to several mm, and is set to be less than the width (10 mm) of the defect 15 in the inspection direction.

図4(a)〜(d)に示すグラフ図は、縦軸が配管10表面の法線方向での磁束の強さを示す電圧信号であり、横軸が検査方向における位置を示している。
図4(a)は、一対の磁気センサ22a、22bのうち、検査方向で前方側の磁気センサ22aによる磁束の変化の検出信号であり、図4(b)は、検査方向で後方側の磁気センサ22bによる磁束の変化の検出信号であり、図4(c)は、図4(a)と図4(b)との差分信号であり、図4(d)は、図4(c)の差分信号を移動平均した移動平均信号である。
図4で、矢印αで示す位置には、配管10の厚み方向で深い欠陥15が存在する位置であり、グラフの変化が顕著であるので、以下、当該矢印αの位置の検査信号に基づいて、説明する。
この位置では、検査方向で前方側の磁気センサ22aによる磁束の変化の検出信号(図4(a)に示す信号)が、下向きに凸の状態で現れており、検査方向で後方側の磁気センサ22bによる磁束の変化の検出信号(図4(b)に示す信号)は、上向きに凸の状態で現れている。そして、これらの検出信号の差分信号をとると、図4(c)に示すように、欠陥15が存在する位置で、比較的大きいピークの差分信号が現れる。当該差分信号の移動平均をとった移動平均信号は、図4(d)に示すように、細かいノイズを除去した信号となる。
In the graphs shown in FIGS. 4A to 4D, the vertical axis is a voltage signal indicating the strength of magnetic flux in the normal direction of the surface of the pipe 10, and the horizontal axis indicates the position in the inspection direction.
4A is a detection signal of a change in magnetic flux by the magnetic sensor 22a on the front side in the inspection direction of the pair of magnetic sensors 22a and 22b, and FIG. 4B is a magnetic signal on the rear side in the inspection direction. FIG. 4 (c) is a difference signal between FIG. 4 (a) and FIG. 4 (b), and FIG. 4 (d) is a difference signal of FIG. 4 (c). It is a moving average signal obtained by moving and averaging the difference signal.
In FIG. 4, the position indicated by the arrow α is a position where the deep defect 15 exists in the thickness direction of the pipe 10, and the change in the graph is remarkable. Hereinafter, based on the inspection signal at the position indicated by the arrow α. ,explain.
At this position, the detection signal (the signal shown in FIG. 4A) of the change in magnetic flux by the magnetic sensor 22a on the front side in the inspection direction appears in a downwardly convex state, and the magnetic sensor on the rear side in the inspection direction. The detection signal (the signal shown in FIG. 4B) of the change in the magnetic flux by 22b appears in a convex state upward. Then, when the difference signal of these detection signals is taken, as shown in FIG. 4C, a relatively large peak difference signal appears at the position where the defect 15 exists. The moving average signal obtained by taking the moving average of the difference signal is a signal from which fine noise has been removed, as shown in FIG.

次に、一対の磁気センサ22a、22bが、検査方向に直交する方向で、欠陥15の中心を通過するときの移動平均信号(図5(a)に図示)と、一対の磁気センサ22a、22bが、検査方向に直交する方向で、欠陥15の中心から6mmずれた位置を通過するときの移動平均信号(図5(b)に図示)とを示す。
欠陥15としては、検査方向での開口径が10mmで、その深さが配管10の厚みの50%、70%、90%としたものを、検査方向に記載順に並べている。
Next, a moving average signal (shown in FIG. 5A) when the pair of magnetic sensors 22a and 22b pass through the center of the defect 15 in a direction orthogonal to the inspection direction, and the pair of magnetic sensors 22a and 22b. Shows a moving average signal (shown in FIG. 5B) when passing through a position 6 mm away from the center of the defect 15 in a direction perpendicular to the inspection direction.
As the defects 15, those having an opening diameter of 10 mm in the inspection direction and depths of 50%, 70%, and 90% of the thickness of the pipe 10 are arranged in the order of description in the inspection direction.

図5(a)に示すように、一対の磁気センサ22a、22bが、検査方向に直交する方向で、欠陥15の中心を通過するときの移動平均信号では、深さが配管10の厚みの50%、70%、90%の何れの欠陥15においても、良好なピークが形成されており、適切に検出可能であることがわかる。
一方、図5(b)に示すように、一対の磁気センサ22a、22bが、検査方向に直交する方向で、欠陥15の中心から6mmずれた位置を通過するときの移動平均信号においても、深さが配管10の厚みの50%、70%、90%の何れの欠陥15でも、良好なピークが形成されており、適切に検出可能であることがわかる。
ここで、欠陥15として、その開口径が10mm程度のものの結果を示したが、磁気センサ22a、22bを近接させ、さらにその差分を取る構成を採用したことによるデメリットとして、開口径が大きいものの検出が難しくなるのではと考えたが、発明者らの検討によると、開口径30mm、開口径50mm程度の欠陥も、これまで通り良好に検出できた。
As shown in FIG. 5A, in the moving average signal when the pair of magnetic sensors 22a and 22b pass through the center of the defect 15 in the direction orthogonal to the inspection direction, the depth is 50 of the thickness of the pipe 10. It can be seen that a good peak is formed in any defect 15 of%, 70%, and 90%, and can be detected appropriately.
On the other hand, as shown in FIG. 5B, even in the moving average signal when the pair of magnetic sensors 22a and 22b pass through a position that is 6 mm away from the center of the defect 15 in the direction orthogonal to the inspection direction, It can be seen that a good peak is formed at any defect 15 of 50%, 70% or 90% of the thickness of the pipe 10 and can be appropriately detected.
Here, the result of the defect 15 having an opening diameter of about 10 mm was shown. However, as a disadvantage of adopting a configuration in which the magnetic sensors 22a and 22b are brought close to each other and the difference between them is adopted, detection of a large opening diameter is detected. However, according to the study by the inventors, defects having an opening diameter of about 30 mm and an opening diameter of about 50 mm were successfully detected as before.

以上、検査装置50について説明してきたが、本発明は、上述の検査装置50によって検出される差分信号に基づいて、比較的小形の欠陥に関しても、その欠陥深さを推定する欠陥深さ推定式の導出方法、欠陥深さ推定方法、及び欠陥深さ推定装置100に関する。
以下、図2、6、7に基づいて、説明を追加する。
本発明の欠陥深さ推定装置100は、図2に示すように、検査装置50が送信する差分信号を、通信回線13を介して、受信する制御装置Rを備えている。
制御装置Rは、複数の試験欠陥の差分信号からパラメータを抽出するパラメータ抽出手段R1と、欠陥深さの導出に使用する欠陥深さ推定式を記憶する記憶部R2と、記憶されている欠陥深さ推定式に、検出対象の欠陥の差分信号から抽出した振幅Vpp等のパラメータを代入して欠陥深さを推定する欠陥深さ推定手段R3と、推定された欠陥深さを出力するモニタ等からなる出力部R4とを備えている。ここで、パラメータ抽出手段R1、記憶部R2、及び欠陥深さ推定手段R3は、制御装置Rにプログラムとして実装されるソフトウェアにて実現できる。
Although the inspection apparatus 50 has been described above, the present invention is based on the difference signal detected by the inspection apparatus 50 described above, and the defect depth estimation formula for estimating the defect depth of a relatively small defect. Are derived, a defect depth estimation method, and a defect depth estimation apparatus 100.
Hereinafter, description will be added based on FIGS.
As shown in FIG. 2, the defect depth estimation apparatus 100 of the present invention includes a control device R that receives a differential signal transmitted by the inspection apparatus 50 via the communication line 13.
The control device R includes parameter extraction means R1 that extracts parameters from the difference signals of a plurality of test defects, a storage unit R2 that stores a defect depth estimation formula used to derive the defect depth, and a stored defect depth Substituting parameters such as the amplitude Vpp extracted from the difference signal of the defect to be detected into the depth estimation equation, the defect depth estimation means R3 for estimating the defect depth, and the monitor for outputting the estimated defect depth Output section R4. Here, the parameter extraction unit R1, the storage unit R2, and the defect depth estimation unit R3 can be realized by software installed in the control device R as a program.

〔欠陥深推定式の導出〕
本発明に係る欠陥深さの導出に使用する欠陥深さ推定式の導出方法に関して、先ず、以下に説明する。
推定式の導出に際しては、まず、配管10(検査対象物の一例)に形成された複数の試験欠陥を形成し、それら複数の試験欠陥を個々に同定しておくとともに、その欠陥深さを別途測定しておく。そして、別途、それら複数の試験欠陥が形成された配管10(検査対象物の一例)を検査装置50にて検査し、複数の差分信号を取得する。このようにして、検査装置50が取得した複数の差分信号を、通信回線13を介して受信し、欠陥深さ推定式のパラメータとして、図6(a)、図6(b)に示すような差分信号から、当該差分信号の振幅Vpp、管軸方向幅Vw、管周方向幅Vrを、ここの同定されている欠陥について抽出する。ここで、図6(a)は、一対の磁気センサ21a、21bの差分信号が、漏洩磁束量が多いほど輝度が高くなる画像として表示されたものである。図面横方向が検査方向(管軸方向)に対応すると共に図面縦方向が管周方向に対応している。一方、図6(b)は、図6(a)で、一つの管周方向位置において管軸方向に沿う漏洩磁束量をグラフ化したものである。図面横方向が検査方向(管軸方向)に対応すると共に図面縦方向が漏洩磁束量に対応している。尚、図6(a)と図6(b)とは、紙面左右方向で、管軸方向の位置が対応して表示されている。
(Derivation of defect depth estimation formula)
First, the method for deriving the defect depth estimation formula used for deriving the defect depth according to the present invention will be described below.
In deriving the estimation formula, first, a plurality of test defects formed in the pipe 10 (an example of the inspection object) are formed, and the plurality of test defects are individually identified, and the defect depth is separately determined. Keep measuring. Then, separately, the pipe 10 (an example of the inspection object) on which the plurality of test defects are formed is inspected by the inspection apparatus 50, and a plurality of difference signals are acquired. In this way, a plurality of differential signals acquired by the inspection apparatus 50 are received via the communication line 13, and as parameters of the defect depth estimation formula, as shown in FIGS. 6 (a) and 6 (b). From the difference signal, the amplitude Vpp, tube axis direction width Vw, and tube circumferential direction width Vr of the difference signal are extracted for the identified defect. Here, FIG. 6A shows the difference signal of the pair of magnetic sensors 21a and 21b displayed as an image in which the luminance increases as the leakage magnetic flux amount increases. The horizontal direction in the drawing corresponds to the inspection direction (tube axis direction), and the vertical direction in the drawing corresponds to the pipe circumferential direction. On the other hand, FIG. 6B is a graph of the amount of magnetic flux leakage along the tube axis direction at one tube circumferential position in FIG. 6A. The horizontal direction of the drawing corresponds to the inspection direction (tube axis direction), and the vertical direction of the drawing corresponds to the leakage magnetic flux amount. 6A and 6B show the positions in the tube axis direction in the left-right direction on the paper.

振幅Vppは、図6(b)に示すように、差分信号の最小値と最大値との差を意味するものであり、基準値Voを基準として、下方に延びるピーク値から上方に延びるピーク値までの間の値とする。尚、基準値Voを基準として下方に延びるピーク値は、上方に延びるピーク値を挟む状態で一対存在するが、当該振幅Vppにおいては、大きい方のピーク値を採用している。
管軸方向幅Vwは、図6(b)に示すように、基準値Voを基準として、下方に延びる2つのピーク値の間隔とする。
管周方向幅Vrは、図6(a)に示すように、所定の設定値以上となる管周方向の幅とする。
As shown in FIG. 6B, the amplitude Vpp means the difference between the minimum value and the maximum value of the difference signal, and the peak value extending upward from the peak value extending downward based on the reference value Vo. The value is between. A pair of peak values extending downward with reference to the reference value Vo is present with the peak value extending upward therebetween, but the larger peak value is used for the amplitude Vpp.
As shown in FIG. 6B, the tube axis direction width Vw is defined as an interval between two peak values extending downward with reference to the reference value Vo.
As shown in FIG. 6A, the pipe circumferential width Vr is a width in the pipe circumferential direction that is equal to or larger than a predetermined set value.

ここで、欠陥深さの推定に際しては、本実施形態にあっては、独立変数である、差分信号の振幅Vpp、管軸方向幅Vw、及び管周方向幅Vrに関して、夫々対数を採用する。このようにパラメータに対数をとる理由は、非線形の関係を線形の関係にするためである。
推定式における従属変数は、欠陥深さとなるが、上記の3つの独立変数と従属変数との間の経緯数を求めるべく、判明している、それぞれの欠陥深さと、差分信号の振幅Vpp、管軸方向幅Vw、及び管周方向幅Vrとの間で重回帰分析を行う。
この重回帰分析においては、欠陥深さが、管厚に対して概ね20%〜100%の試験欠陥を分析対象として、係数a,b,c,dを定めた。
Here, in estimating the defect depth, in the present embodiment, logarithms are respectively employed for the amplitude Vpp of the differential signal, the tube axis direction width Vw, and the tube circumferential direction width Vr, which are independent variables. The reason for taking the logarithm for the parameter is to make the non-linear relationship a linear relationship.
The dependent variable in the estimation formula is the defect depth, but the respective defect depths, the amplitude Vpp of the difference signal, the tube, which have been found to determine the number of processes between the above three independent variables and the dependent variable. Multiple regression analysis is performed between the axial width Vw and the pipe circumferential width Vr.
In this multiple regression analysis, coefficients a, b, c, and d were determined with test defects having a defect depth of approximately 20% to 100% of the tube thickness as an analysis target.

欠陥深さ(%)=100×(a×LN(Vpp)+b×LN(Vw)+cLN(Vr)
+d)・・・(式1)
ここで、欠陥深さ(%)は、管厚に対する割合を意味するものとする。
上記重回帰分析により、得られた変数の値は、以下の通りである。
a: 0.242
b: 0.071
c:−0.203
d: 1.044
Defect depth (%) = 100 × (a × LN (Vpp) + b × LN (Vw) + cLN (Vr)
+ D) (Formula 1)
Here, the defect depth (%) means a ratio to the tube thickness.
The values of the variables obtained by the multiple regression analysis are as follows.
a: 0.242
b: 0.071
c: -0.203
d: 1.044

〔制御装置内での欠陥深推定〕
先に説明した制御装置Rとしての欠陥深さ推定手段R3は、あらかじめ記憶手段R2に記憶された欠陥深さ推定式に基づいて、検出対象の欠陥の欠陥深さを推定する。
説明を追加すると、欠陥深さ推定手段R3は、検査装置50から検出対象の欠陥の差分信号を受信すると、当該差分信号からパラメータとして、振幅Vpp、管軸方向幅Vw、管周方向幅Vrを抽出し、抽出したパラメータを、予め導出され記憶部R2に記憶されている欠陥深さ推定式(上述の(式1))に入力し、欠陥深さを推定する。
制御装置Rは、推定された欠陥深さを、出力部R4がモニタ(図示せず)等へ出力する。
[Defect depth estimation in the control unit]
The defect depth estimation means R3 as the control device R described above estimates the defect depth of the defect to be detected based on the defect depth estimation formula stored in advance in the storage means R2.
When the description is added, the defect depth estimation means R3, when receiving the difference signal of the defect to be detected from the inspection apparatus 50, sets the amplitude Vpp, the tube axis direction width Vw, and the tube circumferential direction width Vr as parameters from the difference signal. The extracted parameters are input to the defect depth estimation formula (previously described (Formula 1)) derived in advance and stored in the storage unit R2, and the defect depth is estimated.
In the control device R, the output unit R4 outputs the estimated defect depth to a monitor (not shown) or the like.

次に、本発明において使用する欠陥深さ推定式により推定された欠陥深さの推定値の信頼性について説明する。
図6は、検出対象の欠陥として、異なる形状の欠陥α、欠陥β、欠陥γ、欠陥δにつき、縦軸に実欠陥深さ(%)を、横軸に推定欠陥深さ(%)をとり、プロットしたものである。即ち、当該図6にあっては、グラフ図で対角線上に示される直線に近いほど欠陥深さの推定値の誤差が少なく、直線から外れるほど、欠陥深さの推定値の誤差が大きいことを意味する。図6で、一点鎖線と二点鎖線の間の領域が、推定欠陥深さ(%)の実欠陥深さ(%)からのずれ量(推定誤差)が、20%以内にある領域である。この推定では、先に説明した、差分信号の振幅Vpp、管軸方向幅Vw、及び管周方向幅Vrの全てを独立変数としている。
尚、各検出対象の欠陥の形状・大きさは、以下の通りでる。
欠陥α:管軸方向幅が30mm、管周方向幅が10mmの欠陥
欠陥β:管軸方向幅が10mm、管周方向幅が30mmの欠陥
欠陥γ:管軸方向幅が70mm、管周方向幅が10mmの欠陥
欠陥δ:管軸方向幅が10mm、管周方向幅が30mmで形状がすり鉢状の欠陥
図6のグラフから、一部の欠陥深さの推定値を除き、すべての欠陥深さの推定値が、20%の誤差範囲内に収まっており、充分実用に足る精度で精度良く欠陥深さを推定できていることがわかる。
Next, the reliability of the estimated value of the defect depth estimated by the defect depth estimation formula used in the present invention will be described.
FIG. 6 shows the actual defect depth (%) on the vertical axis and the estimated defect depth (%) on the horizontal axis for defects α, defect β, defect γ, and defect δ having different shapes. , Plotted. That is, in FIG. 6, the closer to the straight line shown on the diagonal line in the graph, the smaller the error in the estimated value of the defect depth, and the greater the deviation from the straight line, the larger the error in the estimated value of the defect depth. means. In FIG. 6, the region between the one-dot chain line and the two-dot chain line is a region where the deviation amount (estimated error) of the estimated defect depth (%) from the actual defect depth (%) is within 20%. In this estimation, the amplitude Vpp, the tube axis direction width Vw, and the tube circumferential direction width Vr of the difference signal described above are all independent variables.
The shape and size of the defect to be detected are as follows.
Defect α: Defect with a tube axial width of 30 mm and a tube circumferential width of 10 mm Defect β: Defect with a tube axial width of 10 mm and a tube circumferential width of 30 mm Defect γ: Tube axial width of 70 mm, Tube circumferential width Defect δ: Defect δ: Defect having a mortar shape with a tube axial width of 10 mm and a tube circumferential width of 30 mm All defect depths except for some defect depth estimates from the graph of FIG. The estimated value is within an error range of 20%, and it can be seen that the defect depth can be accurately estimated with sufficient accuracy for practical use.

次に、本発明に係る差分信号の振幅Vppのみを独立変数とする場合の欠陥深さ推定式を使用した場合の実欠陥深さとの誤差を図7に示す。
図7のグラフ図に示されるように、かなりの割合の欠陥深さの推定値が、20%の誤差範囲から外れており、本発明の如く、高い推定精度で、欠陥深さを推定できず、実用に耐えないことがわかる。
Next, FIG. 7 shows an error from the actual defect depth when using the defect depth estimation formula when only the amplitude Vpp of the difference signal according to the present invention is used as an independent variable.
As shown in the graph of FIG. 7, the estimated value of the defect depth of a considerable proportion is out of the error range of 20%, and the defect depth cannot be estimated with high estimation accuracy as in the present invention. It turns out that it is not practical.

〔別実施形態〕
(1)上記実施形態において、一対の磁気センサ22a、22bの間隔L2は、数mmとしたが、当該間隔L2は、検査方向における検査対象の欠陥の幅に応じて、適宜変更可能である。
[Another embodiment]
(1) In the above embodiment, the distance L2 between the pair of magnetic sensors 22a and 22b is several mm, but the distance L2 can be appropriately changed according to the width of the defect to be inspected in the inspection direction.

本発明の欠陥深さの推定方法、及び欠陥深さの推定装置は、検査対象物の内表面側から、検査対象物の外表面に形成される比較的小形の欠陥の欠陥深さを、比較的信頼性良く、簡易に得ることができる情報を使用して、充分実用に耐える精度で有効に推定できる。   The defect depth estimation method and the defect depth estimation apparatus according to the present invention compare the defect depths of relatively small defects formed on the outer surface of the inspection object from the inner surface side of the inspection object. Using information that can be obtained easily and with good reliability, it can be effectively estimated with sufficient accuracy to withstand practical use.

10 :配管
15 :欠陥
22 :磁気センサ
23 :バネ
24 :支持体
25 :ローラ
R1 :パラメータ抽出手段
R2 :記憶部
R3 :欠陥深さ推定手段
R4 :出力部
Vpp :振幅
Vr :管周方向幅
Vw :管軸方向幅
10: Piping 15: Defect 22: Magnetic sensor 23: Spring 24: Support 25: Roller R1: Parameter extraction means R2: Storage section R3: Defect depth estimation means R4: Output section Vpp: Amplitude Vr: Pipe circumferential width Vw : Pipe axis width

Claims (5)

検査対象物の近傍に磁場を発生させ、前記検査対象物からの漏洩磁束を測定し、当該測定値から前記検査対象物に形成された欠陥の欠陥深さを推定する欠陥深さ推定方法であって、
中空円筒形状の前記検査対象物の筒軸心に沿う検査方向に沿って設けられる一対の磁気センサを、前記検査方向で前方側の前記磁気センサが前記欠陥から離間しているときの磁束の変化を検出している状態で、前記検査方向で後方側の前記磁気センサが前記欠陥へ接近しているときの磁束の変化を検出可能な間隔で配設し、
前記検査対象物の近傍に磁場を発生させている状態で、前記検査対象物に形成された欠陥に対し、前記一対の磁気センサを前記検査方向で移動させ、前記一対の磁気センサの検出信号から求まる検査対象物表面の法線方向における磁束成分の差分信号から、少なくとも、その差分信号の最大値と最小値との幅である振幅と、管軸方向幅と、管周方向幅とを抽出し、抽出した前記振幅、前記管軸方向幅及び前記管周方向幅を使用して、一対の磁気センサの検出信号から求まる差分信号の最大値と最小値との幅である振幅、当該差分信号の管軸方向幅、及び当該差分信号の管周方向幅を独立変数、欠陥深さを従属変数とする推定式に基づいて前記欠陥の深さを推定する欠陥深さ推定方法。
A defect depth estimation method that generates a magnetic field in the vicinity of an inspection object, measures a magnetic flux leakage from the inspection object, and estimates a defect depth of a defect formed on the inspection object from the measured value. And
Changes in magnetic flux when a pair of magnetic sensors provided along an inspection direction along a cylindrical axis of the inspection object having a hollow cylindrical shape are separated from the defect in the inspection direction. In a state where the magnetic sensor on the rear side in the inspection direction is close to the defect, the change in magnetic flux is detected at an interval that can be detected.
In a state where a magnetic field is generated in the vicinity of the inspection object, the pair of magnetic sensors are moved in the inspection direction with respect to a defect formed on the inspection object, and detection signals of the pair of magnetic sensors are used. From the difference signal of the magnetic flux component in the normal direction of the surface of the inspection object to be obtained, extract at least the amplitude that is the width between the maximum value and the minimum value of the difference signal, the tube axis direction width, and the tube circumferential direction width. , Using the extracted amplitude, the tube axis direction width and the tube circumferential direction width, the amplitude which is the width between the maximum value and the minimum value of the difference signal obtained from the detection signals of the pair of magnetic sensors, A defect depth estimation method for estimating the depth of the defect based on an estimation formula in which the tube axis direction width and the tube circumferential direction width of the difference signal are independent variables and the defect depth is a dependent variable.
検査対象物を磁化する磁化手段と、当該磁化手段により磁化された前記検査対象物から漏洩する漏洩磁束を検出する漏洩磁束検出手段とを、前記検査対象物の表面の検査方向に沿って移動させて、前記検査対象物に形成される欠陥の欠陥深さを前記漏洩磁束検出手段の出力から推定する欠陥深さの推定装置であって、
前記漏洩磁束検出手段が、中空円筒形状の前記検査対象物の筒軸心に沿う前記検査方向に沿って配置される少なくとも一対の磁気センサからなり、当該一対の磁気センサの前記検査方向での間隔を、前記検査方向で前方側の前記磁気センサが前記欠陥から離間しているときの磁束の変化を検出している状態で、前記検査方向で後方側の前記磁気センサが前記欠陥へ接近しているときの磁束の変化を検出可能な間隔として配設し、
欠陥が形成された前記検査対象物に対し、前記一対の磁気センサを検査方向に沿って移動させて、当該一対の磁気センサの検出信号から求まる、検査対象物表面の法線方向における磁束成分の差分信号から、少なくとも、その最大値と最小値との差である振幅と、管軸方向幅と、管周方向幅とを抽出するパラメータ抽出手段と、
一対の磁気センサの検出信号から求まる差分信号の最大値と最小値との幅である振幅、当該差分信号の管軸方向幅、及び当該差分信号の管周方向幅を独立変数、欠陥深さを従属変数とする推定式を記憶する記憶部と、
前記差分信号のうち、前記検査対象物に形成された欠陥を前記一対の磁気センサが通過するときに得られる差分信号の振幅と、管軸方向幅と、管周方向幅とを推定式に入力して欠陥深さを推定する欠陥深さ推定手段とを備える欠陥深さ推定装置。
Magnetizing means for magnetizing the inspection object and leakage magnetic flux detection means for detecting leakage magnetic flux leaking from the inspection object magnetized by the magnetization means are moved along the inspection direction of the surface of the inspection object. A defect depth estimation device for estimating a defect depth of a defect formed in the inspection object from an output of the leakage magnetic flux detection means,
The leakage magnetic flux detection means includes at least a pair of magnetic sensors arranged along the inspection direction along the cylindrical axis of the inspection object having a hollow cylindrical shape, and the distance between the pair of magnetic sensors in the inspection direction. In a state in which a change in magnetic flux is detected when the magnetic sensor on the front side in the inspection direction is separated from the defect, the magnetic sensor on the rear side in the inspection direction approaches the defect. Is arranged as a detectable interval of the change in magnetic flux when
The pair of magnetic sensors are moved along the inspection direction with respect to the inspection object on which the defect is formed, and the magnetic flux component in the normal direction of the surface of the inspection object is obtained from the detection signals of the pair of magnetic sensors. Parameter extraction means for extracting at least the amplitude, the tube axis direction width, and the tube circumferential direction width, which are the difference between the maximum value and the minimum value, from the difference signal;
The amplitude that is the width between the maximum value and the minimum value of the difference signal obtained from the detection signals of the pair of magnetic sensors, the tube axis direction width of the difference signal, and the tube circumferential width of the difference signal are independent variables, and the defect depth is A storage unit for storing an estimation formula as a dependent variable;
Among the difference signals, the amplitude of the difference signal obtained when the pair of magnetic sensors pass through the defect formed in the inspection object, the tube axis direction width, and the tube circumferential direction width are input to the estimation equation. A defect depth estimation device comprising defect depth estimation means for estimating the defect depth.
前記一対の磁気センサが、前記検査方向での検出対象の前記欠陥の幅未満の間隔で配設されている請求項2に記載の欠陥深さ推定装置。   The defect depth estimation apparatus according to claim 2, wherein the pair of magnetic sensors are arranged at an interval less than the width of the defect to be detected in the inspection direction. 前記一対の磁気センサは、前記検査対象物としての円筒状の配管の内周方向に沿って複数設けられている請求項2又は3に記載の欠陥深さ推定装置。   4. The defect depth estimation apparatus according to claim 2, wherein a plurality of the pair of magnetic sensors are provided along an inner circumferential direction of a cylindrical pipe as the inspection object. 前記磁化手段が前記検査対象物の表面との間に間隙を形成する状態で懸架されると共に前記磁気センサが振動吸収部を介して懸架される支持体と、前記検査対象物の表面に接地した状態で当該表面に沿って走行するローラとを備える請求項2〜4の何れか一項に記載の欠陥深さ推定装置。   The magnetizing means is suspended in a state of forming a gap with the surface of the inspection object, and the magnetic sensor is suspended through a vibration absorbing portion, and is grounded to the surface of the inspection object. The defect depth estimation apparatus according to any one of claims 2 to 4, further comprising a roller that travels along the surface in a state.
JP2014056792A 2014-03-19 2014-03-19 Defect depth estimation method and defect depth estimation apparatus Active JP6296851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056792A JP6296851B2 (en) 2014-03-19 2014-03-19 Defect depth estimation method and defect depth estimation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056792A JP6296851B2 (en) 2014-03-19 2014-03-19 Defect depth estimation method and defect depth estimation apparatus

Publications (2)

Publication Number Publication Date
JP2015179028A true JP2015179028A (en) 2015-10-08
JP6296851B2 JP6296851B2 (en) 2018-03-20

Family

ID=54263174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056792A Active JP6296851B2 (en) 2014-03-19 2014-03-19 Defect depth estimation method and defect depth estimation apparatus

Country Status (1)

Country Link
JP (1) JP6296851B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568836A (en) * 2016-11-08 2017-04-19 上海航天精密机械研究所 Flexible eddy-current array probe used for rapid and accurate detection of conductive material
WO2017187791A1 (en) * 2016-04-28 2017-11-02 国立大学法人神戸大学 Measurement device and measurement method
KR102041072B1 (en) * 2019-03-19 2019-11-06 정길곤 Stress-Point Detection Device
CN111983013A (en) * 2020-08-24 2020-11-24 中山大学 Device for automatically detecting magnetic flux leakage of corrosion defects of irradiation region at top of reactor cabin
JP2021162360A (en) * 2020-03-30 2021-10-11 Jfeスチール株式会社 Method and device for inspection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604127Y2 (en) * 1975-12-05 1985-02-05 住友金属工業株式会社 Differential magnetic flaw detection device
JPH05164743A (en) * 1991-12-12 1993-06-29 Nkk Corp Method and device for inspecting internal surface of hollow body
US5739685A (en) * 1994-06-23 1998-04-14 Sumitomo Metal Industries Limited Method and apparatus for flaw detection by leakage fluexes and leakage flux sensor
JPH10239281A (en) * 1997-02-25 1998-09-11 Nkk Corp Magnetic flaw detection device with seamless pipe and its manufacture
JP2003043015A (en) * 2001-08-02 2003-02-13 Tokyo Gas Co Ltd Method of estimating depth of defect

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604127Y2 (en) * 1975-12-05 1985-02-05 住友金属工業株式会社 Differential magnetic flaw detection device
JPH05164743A (en) * 1991-12-12 1993-06-29 Nkk Corp Method and device for inspecting internal surface of hollow body
US5739685A (en) * 1994-06-23 1998-04-14 Sumitomo Metal Industries Limited Method and apparatus for flaw detection by leakage fluexes and leakage flux sensor
JPH10239281A (en) * 1997-02-25 1998-09-11 Nkk Corp Magnetic flaw detection device with seamless pipe and its manufacture
JP2003043015A (en) * 2001-08-02 2003-02-13 Tokyo Gas Co Ltd Method of estimating depth of defect

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187791A1 (en) * 2016-04-28 2017-11-02 国立大学法人神戸大学 Measurement device and measurement method
JPWO2017187791A1 (en) * 2016-04-28 2019-02-28 国立大学法人神戸大学 Measuring device and measuring method
US11366079B2 (en) 2016-04-28 2022-06-21 National University Corporation Kobe University Measurement device and measurement method
CN106568836A (en) * 2016-11-08 2017-04-19 上海航天精密机械研究所 Flexible eddy-current array probe used for rapid and accurate detection of conductive material
KR102041072B1 (en) * 2019-03-19 2019-11-06 정길곤 Stress-Point Detection Device
JP2021162360A (en) * 2020-03-30 2021-10-11 Jfeスチール株式会社 Method and device for inspection
CN111983013A (en) * 2020-08-24 2020-11-24 中山大学 Device for automatically detecting magnetic flux leakage of corrosion defects of irradiation region at top of reactor cabin

Also Published As

Publication number Publication date
JP6296851B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6060278B2 (en) Apparatus and method for detecting internal defects in steel sheet
CN102759567B (en) The EDDY CURRENT identification of steel pipe inside and outside wall defect and evaluation method under DC magnetization
JP6296851B2 (en) Defect depth estimation method and defect depth estimation apparatus
JP6579840B2 (en) Defect measurement method, defect measurement apparatus, and inspection probe
RU2342653C2 (en) Method for nondestructive testing of pipes and device for its realisation
CN107850570B (en) Defect measuring method, defect measuring device, and inspection probe
JP2014202483A (en) Inspection equipment and inspection method
Aguila-Muñoz et al. A magnetic perturbation GMR-based probe for the nondestructive evaluation of surface cracks in ferromagnetic steels
JP5946638B2 (en) Nondestructive inspection method
KR101746072B1 (en) Nondestructive inspection apparatus for ferromagnetic steam generator tubes and method thereof
JP2013160739A (en) Method and apparatus for detecting flaws in magnetic materials
JP6209119B2 (en) Flaw detection method and flaw detection system
JP2013148449A (en) Magnetic flaw detection device and magnetic flaw detection method
EP3081932B1 (en) Apparatus and method of inspecting defect of steel plate
KR101988887B1 (en) Lissajour curve display apparatus using magnetic sensor array
JPH04269653A (en) Leakage magnetic flux detector
RU2634366C2 (en) Method for magnetic flaw detection and device for its implementation
JP6550873B2 (en) Eddy current flaw detection method
JP6776676B2 (en) Signal processing device and signal processing method
JP2016008960A5 (en)
WO2015194428A1 (en) Non-destructive inspection device and non-destructive inspection method
JP2018054301A (en) Magnetic leakage flux flaw detector
JP2017090364A (en) Leakage magnetic flux flaw detection device of thin steel strip and flaw detection method
US9310337B2 (en) Non-destructive inspection device for pressure containers using leakage-flux measurement
JP2019020273A (en) Front surface scratch inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6296851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150