JP2015178967A5 - - Google Patents

Download PDF

Info

Publication number
JP2015178967A5
JP2015178967A5 JP2014055586A JP2014055586A JP2015178967A5 JP 2015178967 A5 JP2015178967 A5 JP 2015178967A5 JP 2014055586 A JP2014055586 A JP 2014055586A JP 2014055586 A JP2014055586 A JP 2014055586A JP 2015178967 A5 JP2015178967 A5 JP 2015178967A5
Authority
JP
Japan
Prior art keywords
tube
pipe
gas
atomized gas
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014055586A
Other languages
Japanese (ja)
Other versions
JP6149770B2 (en
JP2015178967A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014055586A priority Critical patent/JP6149770B2/en
Priority claimed from JP2014055586A external-priority patent/JP6149770B2/en
Publication of JP2015178967A publication Critical patent/JP2015178967A/en
Publication of JP2015178967A5 publication Critical patent/JP2015178967A5/ja
Application granted granted Critical
Publication of JP6149770B2 publication Critical patent/JP6149770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ガス吹付式蒸発・乾固工程では、溶液導入管50が下降し、蓋部52とクッション52Aの中心の孔を通って回収容器53内に挿入される。これに伴ってシール管55も下降し、その先端がクッション52Aを押圧する。これにより、シール管55の先端がクッション52Aに密着し、回収容器53とシール管55の間が気密にシールされる。その後、溶液が内管50Aに、霧化ガスが外管50Bに、それぞれ送出される。これにより、内管50Aの先端から滴下された溶液が、外管50Bからの霧化ガス流によって剪断され、微小液滴(ミスト)となって回収容器53の内壁に付着する。回収容器53は温調ブロック54によって予め加熱されているため、内壁に付着した微小液滴の溶媒が蒸発して、目的成分(溶質)のみが粉末として残ることになる。回収容器53内に導入された霧化ガス及び該回収容器53内で蒸発した溶媒は、シール管55を通して排出される。 In the gas blowing type evaporation / drying process, the solution introduction pipe 50 is lowered and inserted into the collection container 53 through the hole at the center of the lid 52 and the cushion 52A. Along with this, the seal tube 55 is also lowered, and its tip presses the cushion 52A. As a result, the tip of the seal tube 55 comes into close contact with the cushion 52A, and the space between the collection container 53 and the seal tube 55 is hermetically sealed. Thereafter, the solution is sent to the inner tube 50A and the atomized gas is sent to the outer tube 50B. As a result, the solution dropped from the tip of the inner tube 50A is sheared by the atomized gas flow from the outer tube 50B, and becomes microdroplets (mist) and adheres to the inner wall of the collection container 53. Since the recovery container 53 is preheated by the temperature control block 54, the solvent of the fine droplets adhering to the inner wall evaporates, and only the target component (solute) remains as a powder. The atomized gas introduced into the recovery container 53 and the solvent evaporated in the recovery container 53 are discharged through the seal tube 55.

分取ヘッド16は試料導入管17と、その外側に一体に設けられた排気用シール管18を備え、複数のモータなどで構成されるXYZ駆動機構29により上下移動及び水平移動が可能となっている。試料導入管17は流路14に接続された内管40と、流路22に接続された外管41を備える(なお、図1の試料導入管17及び注入容器21は略図であり、具体的な構成は図2〜図4に示している)。後述するように、内管40には、流路14を通して目的成分を含む溶液が送出され、外管41には、流路22を通して霧化ガスが送出される。また、内管40は、外管41の下端より下に突出した突出部40Aを有する。 The sorting head 16 includes a sample introduction pipe 17 and an exhaust seal pipe 18 integrally provided outside thereof, and can be moved up and down and horizontally by an XYZ drive mechanism 29 including a plurality of motors. Yes. The sample introduction tube 17 includes an inner tube 40 connected to the flow channel 14 and an outer tube 41 connected to the flow channel 22 (note that the sample introduction tube 17 and the injection container 21 in FIG. Such a configuration is shown in FIGS. As will be described later, a solution containing a target component is sent to the inner pipe 40 through the flow path 14, and atomized gas is sent to the outer pipe 41 through the flow path 22. Further, the inner tube 40 has a protruding portion 40 </ b> A that protrudes below the lower end of the outer tube 41.

溶出用溶媒容器3中のジクロロメタンを所定時間又は所定量、トラップカラム8に供給し、トラップカラム8から水が完全に排除されると、切替バルブ15を流路13(cポート)から流路14(bポート)に切り替え、目的成分の分取を開始する。また、制御部30は、ガス供給部23に窒素ガス(又は他の不活性ガス)の供給を開始させる。ガス供給部23から送出される霧化ガスは、流路22と外管41を経て、分岐管42の主管路42Aに導入される。主管路42Aの上端に設けられた入口部43は、外管41の下端部41Aによってシールされていると共に、主管路42Aの下端に設けられた出口部46は、内管40の外周によってシールされているため、主管路42Aに導入された霧化ガスは、副管路42Bの方に流れ、吹き出し管47より吹き出し始める。一方、トラップカラム8から送られてくる溶液、つまり目的成分を含むジクロロメタンは、流路12と流路14を経て、試料導入管17の内管40の下端から滴下される。上記のように、吹き出し管47は主管路42Aの中心線Cを向くように設計されているため、内管40から滴下された溶液に、吹き出し管47から吹き出した霧化ガスが当たり、溶液を剪断してミスト化する。 When the dichloromethane in the elution solvent container 3 is supplied to the trap column 8 for a predetermined time or in a predetermined amount and water is completely removed from the trap column 8, the switching valve 15 is changed from the flow path 13 (c port) to the flow path 14 Switch to (b port) and start sorting the target component. Further, the control unit 30 causes the gas supply unit 23 to start supplying nitrogen gas (or other inert gas). The atomized gas delivered from the gas supply unit 23 is introduced into the main pipeline 42 </ b> A of the branch pipe 42 through the flow path 22 and the outer pipe 41. The inlet 43 provided at the upper end of the main pipe 42A is sealed by the lower end 41A of the outer pipe 41, and the outlet 46 provided at the lower end of the main pipe 42A is sealed by the outer periphery of the inner pipe 40. Therefore, the atomized gas introduced into the main pipeline 42 </ b> A flows toward the secondary pipeline 42 </ b> B and starts to be blown out from the blowout pipe 47. On the other hand, the solution sent from the trap column 8, that is, dichloromethane containing the target component, is dropped from the lower end of the inner pipe 40 of the sample introduction pipe 17 through the flow path 12 and the flow path 14. As described above, the blowing pipe 47 is designed to face the center line C of the main pipe line 42A. Shears into mist.

本実施例の注入容器21では、従来とは異なり、溶液と霧化ガスが同軸上を流れないため、溶液が霧化ガスに晒される距離が短く、ミストの径が大きくなる。また、溶液が剪断される位置E(中心線Cと吹き出し管47の向きを示す直線Dとの交点)と吹き出し管47の先端の間の距離が広がるほど、霧化ガスが拡散してエネルギーを失うため、同様にミストの径が大きくなる。従って、得られるミストの径の大きさは、吹き出し管47の先端から剪断位置Eまでの距離dや、中心線Cと直線Dの為す角θ3を適宜調整することにより、変えることができる。蓋部20は、例えば吹き出し管47の先端の位置及び/又は角度を自由に変えることのできる構造を有していても良いし、吹き出し管47の先端の位置と角度の異なる蓋部20を複数種類用意しておいても良い。これにより、得ようとする粉末の大きさに応じて、或いは、試料の種類に応じて、適切なミストの大きさで上記のガス吹付式蒸発・乾固工程を行うことが可能となる。 In the injection container 21 of the present embodiment, unlike the conventional case, the solution and the atomized gas do not flow on the same axis, so the distance that the solution is exposed to the atomized gas is short and the diameter of the mist is large. In addition, as the distance between the position E at which the solution is sheared (intersection of the center line C and the straight line D indicating the direction of the blowing tube 47) and the tip of the blowing tube 47 increases, the atomized gas diffuses and the energy is increased. Since it loses, the diameter of mist becomes large similarly. Therefore, the size of the diameter of the mist obtained can be changed by appropriately adjusting the distance d from the tip of the blowing tube 47 to the shearing position E and the angle θ3 formed by the center line C and the straight line D. For example, the lid 20 may have a structure in which the position and / or angle of the tip of the blowing tube 47 can be freely changed, or a plurality of lids 20 having different angles from the position of the tip of the blowing tube 47 may be provided. Kinds may be prepared. Thereby, according to the magnitude | size of the powder to obtain or according to the kind of sample, it becomes possible to perform said gas spraying type | formula evaporation / drying process with a suitable magnitude | size of mist.

更に、本実施例の構成では、霧化ガスを注入容器19の底面に斜めから当てることができるため、注入容器19の底面に溜まった溶液を撹拌させ、蒸発を促進させるという効果も得ることができる。この際、吹き出し管47の角度や位置、注入容器19の高さ等を適切に設計し、霧化ガスが底面の中心部に当たるようにすれば、底面に溜まった溶液をより効率的に拡散させることができる。図5(a)は、霧化ガスが底面の中心部に当たるように設計した注入容器19の各部の寸法の一例であり、この設計では、霧化ガスが底面の中心から0.2mm離れた部分に斜めから入射される。
また、この図5(a)の注入容器19を用いて、図5(b)の表に示すガス流量、平均流速、動粘度、吹き出し管内径で霧化ガスを流したときのレイノルズ数を計算した。この表に示すように、このときのレイノルズ数Reは2245572であり、臨界レイノルズ数Rec=2320より大きくなった。このように、レイノルズ数Reが臨界レイノルズ数Recよりも大きくなるとき、吹き出し管47から吹き出る霧化ガスは乱流となる。
Further, in the configuration of the present embodiment, since the atomizing gas can be applied to the bottom surface of the injection container 19 from an oblique direction, the solution accumulated on the bottom surface of the injection container 19 can be agitated to promote evaporation. it can. At this time, if the angle and position of the blowing tube 47, the height of the injection container 19 and the like are appropriately designed so that the atomized gas hits the center of the bottom surface, the solution accumulated on the bottom surface is more efficiently diffused. be able to. FIG. 5 (a) is an example of the dimensions of each part of the injection container 19 designed so that the atomized gas hits the center of the bottom surface. In this design, the atomized gas is placed at a portion 0.2 mm away from the center of the bottom surface. Incident from an angle.
Further, using the injection container 19 of FIG. 5 (a), the Reynolds number when the atomized gas is flowed with the gas flow rate, the average flow velocity, the kinematic viscosity, and the inner diameter of the blowing tube shown in the table of FIG. Calculated. As shown in this table, the Reynolds number Re at this time was 2254572, which was larger than the critical Reynolds number Rec = 2320. As described above, when the Reynolds number Re becomes larger than the critical Reynolds number Rec, the atomized gas blown from the blowing pipe 47 becomes turbulent.

内管40をPTFE系樹脂材料から形成した場合、蓋部20の出口部46に対して内管40の突出部40Aの抜挿を繰り返すと、内管40の突出部40Aが損耗することがある。そこで、図7に示すように、試料導入管17を分岐管42に挿入したときに内管40の突出部40Aが主管路42A内に収まるように分岐管42と内管40の長さを設計し、分岐管42の出口部46に筒状の袖口部46Aを取付けても良い。試料導入管17を分岐管42に挿入したとき、内管40の突出部40Aの下端が袖口部46Aの上端に近接するように該袖口部46Aの長さが設計されている。このような構成によれば、試料導入管17を分岐管42に挿入したときに突出部40Aが出口部46に接触しないため、該突出部40Aの損耗を防止できる。 When the inner tube 40 is formed from a PTFE-based resin material, if the projection 40A of the inner tube 40 is repeatedly inserted and removed from the outlet 46 of the lid portion 20, the projection 40A of the inner tube 40 may be worn out. . Therefore, as shown in FIG. 7, the lengths of the branch pipe 42 and the inner pipe 40 are designed so that the protruding portion 40A of the inner pipe 40 is accommodated in the main pipe path 42A when the sample introduction pipe 17 is inserted into the branch pipe 42. A cylindrical cuff 46A may be attached to the outlet 46 of the branch pipe 42. When the sample introduction tube 17 is inserted into the branch tube 42, the length of the cuff portion 46A is designed so that the lower end of the protruding portion 40A of the inner tube 40 is close to the upper end of the cuff portion 46A. According to such a configuration, the protrusion 40A does not come into contact with the outlet 46 when the sample introduction tube 17 is inserted into the branch tube 42, so that the wear of the protrusion 40A can be prevented.

JP2014055586A 2014-03-18 2014-03-18 Gas spray type liquid sample injection device and injection container used therefor Active JP6149770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055586A JP6149770B2 (en) 2014-03-18 2014-03-18 Gas spray type liquid sample injection device and injection container used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055586A JP6149770B2 (en) 2014-03-18 2014-03-18 Gas spray type liquid sample injection device and injection container used therefor

Publications (3)

Publication Number Publication Date
JP2015178967A JP2015178967A (en) 2015-10-08
JP2015178967A5 true JP2015178967A5 (en) 2016-09-23
JP6149770B2 JP6149770B2 (en) 2017-06-21

Family

ID=54263121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055586A Active JP6149770B2 (en) 2014-03-18 2014-03-18 Gas spray type liquid sample injection device and injection container used therefor

Country Status (1)

Country Link
JP (1) JP6149770B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737865B2 (en) * 2001-05-01 2011-08-03 ユースエンジニアリング株式会社 Solution concentrator
JP2003185538A (en) * 2001-12-19 2003-07-03 Gl Sciences Inc Micro plate solvent-evaporating apparatus
JP2003322639A (en) * 2002-05-01 2003-11-14 Shimadzu Corp Liquid chromatograph mass spectrometer
EP1651579A1 (en) * 2003-06-25 2006-05-03 Feracitas Oy Method and furnace device for hardening and cooling of a glass
US7255332B2 (en) * 2004-05-25 2007-08-14 The Board Of Trustees Of The University Of Arkansas System and method for dissolving gases in liquids
TW200622220A (en) * 2004-12-29 2006-07-01 Ind Tech Res Inst Process for collecting and concentrating trace organics in a liquid sample
WO2009044426A1 (en) * 2007-10-02 2009-04-09 Shimadzu Corporation Fractionation purification apparatus
GB2465956B (en) * 2007-10-02 2012-05-09 Shimadzu Corp Preparative separation/ purification system
JP5849896B2 (en) * 2012-08-22 2016-02-03 株式会社島津製作所 Gas blowing type evaporation / drying equipment

Similar Documents

Publication Publication Date Title
JP2014041062A5 (en)
SE0104077D0 (en) A method and instrumentation for micro dispensation of droplets
JP5849896B2 (en) Gas blowing type evaporation / drying equipment
US10870119B2 (en) Apparatus and a method for generating droplets
Wang et al. Bioinspired tip-guidance liquid jetting and droplet emission at a rotary disk via a surface energy gradient
CN102459001A (en) Gel card filling device comprising an ionizer
JP6539662B2 (en) Single hole single acting aerosol can
US20140000297A1 (en) Production of Particles from Liquids or Suspensions with Liquid Cryogens
JP2015178967A5 (en)
CN109564200A (en) For collecting the gas-liquid separator of chromatography fraction
CN110553951B (en) Particle impact and observation device and method
CN104208837A (en) Dry powder fire extinguishing system with nitrogen bottle set as power
JP6149770B2 (en) Gas spray type liquid sample injection device and injection container used therefor
CN104437925A (en) Spray gun for coating, spray coating device, and method for producing electrophotographic photoconductor
KR200469792Y1 (en) Device for spraying ultrafied liquid in facility house
JPH0661502B2 (en) Powder feeder
JP6260379B2 (en) Gas spray type liquid injection device and injection container used therefor
RU2018114025A (en) ADVANCED SPRAY HEAD
JP2014161839A (en) Separation device for mixed liquid and separation method for mixed liquid
US10184918B2 (en) Gas-spouting liquid-sample injector and injection container for the same
CN109317475A (en) A kind of glue spraying syringe needle cleaning device
CN104225853A (en) Powder extinguishing system with safety mechanism by taking nitrogen gas cylinder group as power
KR102061949B1 (en) Gravity Valve for Aerosol Spray
EP3015173B1 (en) Internal mix air atomizing spray nozzle
GB2531789A (en) Pierce device