JP2015178666A - Alloy electrode for hydrogen generation and manufacturing method therefor - Google Patents

Alloy electrode for hydrogen generation and manufacturing method therefor Download PDF

Info

Publication number
JP2015178666A
JP2015178666A JP2014057227A JP2014057227A JP2015178666A JP 2015178666 A JP2015178666 A JP 2015178666A JP 2014057227 A JP2014057227 A JP 2014057227A JP 2014057227 A JP2014057227 A JP 2014057227A JP 2015178666 A JP2015178666 A JP 2015178666A
Authority
JP
Japan
Prior art keywords
electrode
alloy
atomic
hydrogen generation
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014057227A
Other languages
Japanese (ja)
Other versions
JP6348743B2 (en
Inventor
橋本 功二
Koji Hashimoto
功二 橋本
祐介 佐々木
Yusuke Sasaki
祐介 佐々木
善大 加藤
Yoshihiro Kato
善大 加藤
博之 四宮
Hiroyuki Shinomiya
博之 四宮
泉屋 宏一
Koichi Izumiya
宏一 泉屋
熊谷 直和
Naokazu Kumagai
直和 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014057227A priority Critical patent/JP6348743B2/en
Publication of JP2015178666A publication Critical patent/JP2015178666A/en
Application granted granted Critical
Publication of JP6348743B2 publication Critical patent/JP6348743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an alloy electrode for hydrogen generation having high activity to hydrogen generation when used for electrolysis of an alkali aqueous solution and a manufacturing method therefor.SOLUTION: There is provided an alloy electrode manufactured by forming alloy having composition containing iron:45 to 65 atom% and carbon:0.6 to 10 atom%, the balance 5 atom% or more of nickel and 0.1 atom% or more cobalt on an appropriate electrode substrate. The alloy electrode is manufactured by conducting electrolysis with using a plating liquid containing soluble salt of cobalt, soluble salt of nickel, amino carboxylic acid and boric acid and adjusted pH to 2 or less by adding acid and depositing Fe-Co-Ni-C alloy on a cathode base material.

Description

本発明は、アルカリ水溶液を電解して水素を発生させるための合金電極と、その製造方法に関する。本発明の電極は、高温の、中性ないし強アルカリ性の水溶液の電気分解に使用したとき、水素を高い速度で発生させることがでる。 The present invention relates to an alloy electrode for electrolyzing an alkaline aqueous solution to generate hydrogen and a method for producing the same. The electrode of the present invention can generate hydrogen at a high rate when it is used for electrolysis of a hot, neutral or strongly alkaline aqueous solution.

再生可能エネルギーを利用するために、太陽光発電や風力発電をはじめとする技術が開発されつつあるが、これらの再生可能エネルギーを起源とする電力に伴う問題は、その電力の発生量が刻々変動ないし断続することにある。この問題に対処するひとつの方策として、その電力を用いて、水電解、とくにアルカリ水溶液の電解を行なって水素を製造し、エネルギー源とすることが検討されている。電解を効率よく実施するためには、少ない電力消費で水溶液の電解が進む陰極および陽極が要求され、そうした電極を製造する技術が開発されつつある。 In order to use renewable energy, technologies such as solar power generation and wind power generation are being developed, but the problem with the power derived from these renewable energy is that the amount of generated power fluctuates every moment. Or to be intermittent. As one measure for coping with this problem, it has been studied that water is electrolyzed using the electric power, in particular, electrolysis of an alkaline aqueous solution to produce hydrogen to serve as an energy source. In order to efficiently perform electrolysis, a cathode and an anode in which electrolysis of an aqueous solution proceeds with low power consumption is required, and a technique for manufacturing such an electrode is being developed.

発明者らの一人は、他の共同発明者らとともに、高活性で耐久性にすぐれた水素発生用合金電極を発明し、あわせてその製造を、簡便でコストの低い電極製造技術である電析法を利用して行なう方法を発明し、早期に開示した(特許文献1)。その水素発生用合金電極は、鉄:2.9〜45原子%および炭素:0.6〜10原子%を含有し、残部を5原子%以上のニッケルと、0.1原子%以上のコバルトが占める組成の合金を電極活物質として、適宜の電極基材の表面に形成してなる電極である。この水素発生用合金電極を製造する方法は、鉄の可溶性塩、コバルトの可溶性塩およびニッケルの可溶性塩に加えて、オキシカルボン酸またはアミノカルボン酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用して電解を行ない、陰極基材上に、Fe−Co−Ni−C合金を析出させることからなる。
特許第4561149号
One of the inventors, together with other co-inventors, invented a highly active and durable alloy electrode for hydrogen generation, and the electrodeposition is a simple and low cost electrode manufacturing technique. Invented a method that uses the law and disclosed it at an early stage (Patent Document 1). The alloy electrode for hydrogen generation contains iron: 2.9 to 45 atomic% and carbon: 0.6 to 10 atomic%, with the balance being 5 atomic% or more nickel and 0.1 atomic% or more cobalt. It is an electrode formed on the surface of an appropriate electrode base material using an alloy having an occupied composition as an electrode active material. This method of producing an alloy electrode for hydrogen generation includes an oxycarboxylic acid or an aminocarboxylic acid in addition to a soluble salt of iron, a soluble salt of cobalt, and a soluble salt of nickel, and an acid is added to reduce the pH to 2 or less. Electrolysis is performed using the adjusted plating solution, and the Fe—Co—Ni—C alloy is deposited on the cathode base material.
Japanese Patent No. 4561149

特許文献1の合金電極における鉄の含有量は2.9〜45原子%であるが、この上限値は、Ni−Co合金に多量のFeが加わると、合金の結晶構造が面心立方晶から体心立方晶に変り、電解中断時に電極からFeが溶けやすくなって電極の耐久性が損なわれる、ということから定めたものである。しかし、この問題は、電極の使用条件を調節することにより、かなり回避できるし、鉄の含有量が65原子%を超えるまでは、致命的なものではない。その後の研究により、45原子%を超える鉄の存在が、より高い水素発生に対する活性をもたらすことがわかった。 The iron content in the alloy electrode of Patent Document 1 is 2.9 to 45 atomic%, but this upper limit is that when a large amount of Fe is added to the Ni—Co alloy, the crystal structure of the alloy is changed from the face-centered cubic crystal. It is determined from the fact that it changes to a body-centered cubic crystal and Fe is easily dissolved from the electrode when electrolysis is interrupted, and the durability of the electrode is impaired. However, this problem can be largely avoided by adjusting the use conditions of the electrode, and is not fatal until the iron content exceeds 65 atomic%. Subsequent studies have shown that the presence of more than 45 atomic% iron results in higher activity against hydrogen generation.

本発明の目的は、この新しく得た知見を活用し、水溶液を電解して水素を発生させるために使用する電極であって、高い活性を示す合金電極を提供することにある。この合金電極を製造する方法を提供することもまた、本発明の目的に含まれる。 An object of the present invention is to utilize the newly obtained knowledge and provide an alloy electrode that is used for electrolyzing an aqueous solution to generate hydrogen and exhibiting high activity. It is also within the scope of the present invention to provide a method for manufacturing this alloy electrode.

本発明の水素発生用合金電極は、金属製の電極基材を、鉄:45原子%を超え65原子%以下および炭素:0.6〜10原子%を含有し、残部を5原子%以上のニッケルと、0.1原子%以上のコバルトが占める組成の合金で被覆してなる電極である。 The alloy electrode for hydrogen generation of the present invention comprises a metal electrode base material containing iron: more than 45 atomic% and 65 atomic% or less and carbon: 0.6-10 atomic%, with the balance being 5 atomic% or more. It is an electrode formed by coating with an alloy having a composition of nickel and 0.1 atomic% or more of cobalt.

上記の水素発生用合金電極を製造する本発明の方法は、鉄の可溶性塩、コバルトの可溶性塩、ニッケルの可溶性塩に加えて、アミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下としたメッキ液を使用し、金属製の電極基材を陰極として電解を行ない、電極基材上に上記の組成をもつFe−Co−Ni−C合金を析出させることからなる。このメッキ液に、ドデシル硫酸ナトリウムなどの添加剤を少量加えることも、得られる電極の表面の平滑性を高める上で有効である。 The method of the present invention for producing the above-described alloy electrode for hydrogen generation contains aminocarboxylic acid and boric acid in addition to soluble salt of iron, soluble salt of cobalt and soluble salt of nickel, and pH is adjusted by adding acid. Using a plating solution of 2 or less, electrolysis is performed using a metal electrode substrate as a cathode, and an Fe—Co—Ni—C alloy having the above composition is deposited on the electrode substrate. Adding a small amount of an additive such as sodium dodecyl sulfate to this plating solution is also effective in improving the smoothness of the surface of the resulting electrode.

本発明の水素発生用合金電極は、電解用のアルカリ水溶液に自然浸漬中の腐食溶解を防止するために、ニッケル成分が必須であるが、水素発生に対する活性を向上させるためには、鉄、コバルトおよび炭素を含む必要がある。中でも、炭素、コバルトとともに、鉄を50原子%付近またはそれ以上の多量に含む合金が、とくに水素発生の活性が高いことが確認された。このようにして本発明の電極は、アルカリ水溶液の電解に使用して水素を発生させるための電極であって、高い活性とすぐれた耐久性とを合わせ有する電極である。 In the alloy electrode for hydrogen generation of the present invention, a nickel component is essential in order to prevent corrosion dissolution during natural immersion in an alkaline aqueous solution for electrolysis, but in order to improve the activity against hydrogen generation, iron, cobalt And need to contain carbon. Among them, it has been confirmed that an alloy containing a large amount of iron in the vicinity of 50 atomic% or more together with carbon and cobalt has particularly high hydrogen generation activity. Thus, the electrode of the present invention is an electrode for generating hydrogen by using it in electrolysis of an alkaline aqueous solution, and has both high activity and excellent durability.

本発明の水素発生用合金電極の製造方法は、電気メッキという簡単な方法で所望の組成の合金を得ることができ、低い製造コストで高性能な電極を製造することを可能にした。 According to the method for producing an alloy electrode for hydrogen generation of the present invention, an alloy having a desired composition can be obtained by a simple method called electroplating, and a high-performance electrode can be produced at a low production cost.

以下、本発明の水素発生用電極を形成する合金の組成を、上記のように限定した理由を説明する。
Fe:45原子%を超え65原子%以下
鉄は、コバルトおよびニッケル上での水素の放電を加速する作用を有する元素であって、電極合金中に炭素と共存することによって、水素発生に対する高い活性を付与する。この目的にとって合金中2.9〜45原子%の鉄含有量が有用であることは、特許文献1に開示したが、45原子%を超える合金も、水素発生に高活性をそなえている。一方、Ni−Co系合金に多量の鉄を添加すると、電解中断時に鉄が溶解しやすくなって、電極の耐久性が低下するから、鉄の添加は65原子%以下に止める必要がある。
Hereinafter, the reason why the composition of the alloy forming the hydrogen generating electrode of the present invention is limited as described above will be described.
Fe: more than 45 atomic% and not more than 65 atomic% Iron is an element having an action of accelerating the discharge of hydrogen on cobalt and nickel, and has high activity against hydrogen generation by coexisting with carbon in the electrode alloy. Is granted. It is disclosed in Patent Document 1 that an iron content of 2.9 to 45 atomic% in the alloy is useful for this purpose. However, an alloy exceeding 45 atomic% has high activity for hydrogen generation. On the other hand, if a large amount of iron is added to the Ni—Co alloy, iron is easily dissolved when the electrolysis is interrupted, and the durability of the electrode is lowered. Therefore, it is necessary to stop the addition of iron to 65 atomic% or less.

C:0.6〜10原子%
炭素は、Fe−Co−Ni合金中でこれらの金属元素と結合し、電荷移動によって水素の放電を加速して水素発生に対する活性を向上させるとともに、電解停止時に金属元素が腐食されて溶解することを防止する作用を有する。この作用を発揮させるには、合金中に0.6原子%以上の炭素が存在する必要がある。しかし、過剰に添加すると、鉄炭化物相が面心立方体の母相から分離して生成してしまい、かえって電解中断時に鉄が溶解する原因となるため、10原子%以下としなければならない。
C: 0.6 to 10 atomic%
Carbon combines with these metal elements in the Fe-Co-Ni alloy, accelerates the discharge of hydrogen by charge transfer and improves the activity against hydrogen generation, and the metal elements are corroded and dissolved when electrolysis is stopped. It has the effect | action which prevents. In order to exert this effect, 0.6 atomic% or more of carbon must be present in the alloy. However, if added in excess, the iron carbide phase is separated from the face-centered cubic parent phase, and instead causes iron to dissolve when the electrolysis is interrupted, so it must be made 10 atomic% or less.

Co:残部のうち、ニッケルが占める5原子%以上を除く0.1原子%以上
コバルトは、ニッケルと共存すると合金の水素発生能力を高める元素であって、この効果を得るためには、合金中に0.1原子%以上存在する必要がある。
Co: 0.1 atomic% or more excluding 5 atomic% or more occupied by nickel in the balance, cobalt is an element that increases the hydrogen generation ability of the alloy when coexisting with nickel. It is necessary to be present at 0.1 atomic% or more.

Ni:残部のうち、Coが占める0.1原子%以上を除く5原子%以上
ニッケルは、本発明の合金にとって必須の元素であり、水素発生に対する高い活性を与える。一方、電極使用時に電解を中断すると、Co−Fe系合金が水溶液中で腐食されやすいから、それを防ぐため、合金中にニッケルが5原子%以上存在すできである。
Ni: Of the balance, 5 atomic% or more excluding 0.1 atomic% or more occupied by Co is an essential element for the alloy of the present invention, and gives high activity against hydrogen generation. On the other hand, if the electrolysis is interrupted when the electrode is used, the Co—Fe-based alloy is easily corroded in the aqueous solution.

本発明の合金電極の製造方法において、メッキ浴に添加するアミノカルボン酸の好適な例は、リシン(C14)である。リシンは、塩酸塩(C14・HCl・HCl)の形で使用してもよい。本発明の電極を形成する合金において、主に原料中の不純物に由来するイオウやリンが少量含まれることがあり得るが、水素発生に対する活性にも、耐久性にも支障はない。 In the method for producing an alloy electrode of the present invention, a preferred example of the aminocarboxylic acid added to the plating bath is lysine (C 6 H 14 N 2 O 2 ). Lysine may be used in the form of hydrochloride (C 6 H 14 N 2 O 2 · HCl · HCl). The alloy forming the electrode of the present invention may contain a small amount of sulfur and phosphorus mainly derived from impurities in the raw material, but there is no hindrance to activity against hydrogen generation or durability.

[実施例1]
下記の組成の水溶液を用意し、
NiSO・6HO 1.14モル
NiCl・6HO 0.19モル
CoSO・7HO 0.001モル
FeSO・7HO 0.108モル
BO 0.49モル
1225NaSO 0.104ミリモル
14HCl 0.125または0.2モル
硫酸を添加してpHを1.5に調整し、メッキ浴とした。
[Example 1]
Prepare an aqueous solution with the following composition:
NiSO 4 · 6H 2 O 1.14 mol NiCl 2 · 6H 2 O 0.19 mol CoSO 4 · 7H 2 O 0.001 mol FeSO 4 · 7H 2 O 0.108 mol H 3 BO 3 0.49 mol C 12 H 25 NaSO 4 0.104 mmol C 6 H 14 N 2 O 2 HCl 0.125 or 0.2 molar sulfuric acid was added to adjust the pH to 1.5 to obtain a plating bath.

このメッキ浴を使用し、ニッケル基板に、電流密度500A/mで18分間、電気量540kC/mの条件でメッキを行なうことによって、電極を製造した。得られた電極を使用し、30重量%KOH水溶液中、90℃において定電流で電解を行ない、水素発生の定電流分極曲線を測定した。分極曲線のターフェル勾配は約36mV/decadeと低く、反応機構的に実現可能な最高の活性を示した。得られた電極の組成と、1,250A/mの電流密度における水素発生過電圧の値を、下の表1に示す。比較のため、特許文献1の電極と、電極活物質に炭素が含まれない電極のデータを併記した。 Using this plating bath, an electrode was manufactured by plating on a nickel substrate at a current density of 500 A / m 2 for 18 minutes under the condition of an electric quantity of 540 kC / m 2 . Using the obtained electrode, electrolysis was performed at 90 ° C. in a 30 wt% KOH aqueous solution at a constant current, and a constant current polarization curve of hydrogen generation was measured. The Tafel slope of the polarization curve was as low as about 36 mV / decade, indicating the highest activity that could be realized mechanistically. The composition of the obtained electrode and the value of hydrogen generation overvoltage at a current density of 1,250 A / m 2 are shown in Table 1 below. For comparison, the data of the electrode of Patent Document 1 and the electrode containing no carbon in the electrode active material are also shown.

表1

Figure 2015178666
Table 1
Figure 2015178666

[実施例2]
下記の組成の水溶液を用意した。これは実施例1の組成よりも、コバルト塩の濃度が一桁高いものである。
NiSO・6HO 1.14モル
NiCl・6HO 0.19モル
CoSO・7HO 0.01モル
FeSO・7HO 0.108モル
BO 0.49モル
1225NaSO 0.104ミリモル
14HCl 0.1〜0.4モル
硫酸を添加してpHを1.5に調整した。このメッキ液を使用して、ニッケル基板に、電流密度が300A/m、10分間の条件で電気量180kC/mのメッキを行なって、水素発生用電極を製造した。
[Example 2]
An aqueous solution having the following composition was prepared. This is a one-digit higher cobalt salt concentration than the composition of Example 1.
NiSO 4 · 6H 2 O 1.14 mol NiCl 2 · 6H 2 O 0.19 mol CoSO 4 · 7H 2 O 0.01 mol FeSO 4 · 7H 2 O 0.108 mol H 3 BO 3 0.49 mol C 12 H 25 NaSO 4 0.104 mmol C 6 H 14 N 2 O 2 HCl 0.1-0.4 mol sulfuric acid was added to adjust the pH to 1.5. Using this plating solution, a nickel substrate was plated with a current density of 300 A / m 2 and an electric quantity of 180 kC / m 2 under the conditions of 10 minutes to produce an electrode for hydrogen generation.

得られた電極を用い、30重量%KOH水溶液中、90℃において定電流で電解を行ない、水素発生の定電流分極曲線を測定した。実施例2の電極も、実施例1の電極と同様に、水素発生の分極曲線のターフェル勾配は約36mV/decadeと低く、反応機構的に実現可能な最高の活性を示した。得られた電極の組成と、1,250A/mの電流密度における水素発生過電圧の値を、下の表2に示す。参照の便のため、比較例のデータを併記する。 Using the obtained electrode, electrolysis was performed at 90 ° C. in a 30 wt% KOH aqueous solution at a constant current, and a constant current polarization curve of hydrogen generation was measured. Similarly to the electrode of Example 1, the electrode of Example 2 had a low Tafel slope of the polarization curve for hydrogen generation of about 36 mV / decade, and exhibited the highest activity that could be realized in terms of reaction mechanism. The composition of the obtained electrode, the value of the hydrogen overvoltage at a current density of 1,250A / m 2, given in Table 2 below. The data of the comparative example is also shown for convenience of reference.

表2

Figure 2015178666
Table 2
Figure 2015178666

本発明の電極は、特許文献1の電極と同等またはそれより低い水素発生過電圧を示し、高温で濃厚なアルカリ水溶液を電解して水素を発生させる目的で使用するのに好適な、省エネルギーを実現できる陰極である。 The electrode of the present invention exhibits a hydrogen generation overvoltage equivalent to or lower than that of the electrode of Patent Document 1, and can realize energy saving suitable for use for the purpose of generating hydrogen by electrolyzing a concentrated alkaline aqueous solution at a high temperature. The cathode.

Claims (2)

金属製の電極基材を、鉄:45原子%を超え65原子%以下および炭素:0.6〜10原子%を含有し、残部を5原子%以上のニッケルと0.1原子%以上のコバルトとが占める組成の合金で被覆してなる水素発生用合金電極。 A metal electrode base material containing iron: more than 45 atomic% and 65 atomic% or less and carbon: 0.6-10 atomic%, with the balance being 5 atomic% or more nickel and 0.1 atomic% or more cobalt An alloy electrode for hydrogen generation formed by coating with an alloy having a composition occupied by. 請求項1に記載した水素発生用合金電極を製造する方法であって、鉄の可溶性塩、コバルトの可溶性塩、ニッケルの可溶性塩、アミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下としたメッキ液を使用し、金属製の電極基材を陰極として電解を行ない、電極基材上にFe−Co−Ni−C合金を析出させることからなる製造方法。 A method for producing an alloy electrode for hydrogen generation according to claim 1, comprising a soluble salt of iron, a soluble salt of cobalt, a soluble salt of nickel, an aminocarboxylic acid and boric acid, and the pH is adjusted by adding an acid. A production method comprising using a plating solution of 2 or less, performing electrolysis using a metal electrode substrate as a cathode, and precipitating a Fe—Co—Ni—C alloy on the electrode substrate.
JP2014057227A 2014-03-19 2014-03-19 Alloy electrode for hydrogen generation and method for producing the same Active JP6348743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057227A JP6348743B2 (en) 2014-03-19 2014-03-19 Alloy electrode for hydrogen generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057227A JP6348743B2 (en) 2014-03-19 2014-03-19 Alloy electrode for hydrogen generation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015178666A true JP2015178666A (en) 2015-10-08
JP6348743B2 JP6348743B2 (en) 2018-06-27

Family

ID=54262914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057227A Active JP6348743B2 (en) 2014-03-19 2014-03-19 Alloy electrode for hydrogen generation and method for producing the same

Country Status (1)

Country Link
JP (1) JP6348743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169762A1 (en) * 2016-08-12 2019-06-06 Hitachi Zosen Corporation Method for producing electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591984A (en) * 1979-01-05 1980-07-11 Showa Denko Kk Cathode for water electrolysis and production thereof
JPS5741389A (en) * 1980-08-22 1982-03-08 Showa Denko Kk Cathode for electrolyzing aqueous alkali metal halide and its manufacture
JPS5760086A (en) * 1980-09-29 1982-04-10 Showa Denko Kk Cathode for electrolyzing water and its manufacture
US4410413A (en) * 1981-10-05 1983-10-18 Mpd Technology Corporation Cathode for electrolytic production of hydrogen
JPS6053757B2 (en) * 1981-10-15 1985-11-27 東亞合成株式会社 Manufacturing method of low hydrogen overvoltage cathode
JPH11172483A (en) * 1996-12-17 1999-06-29 Tosoh Corp Low hydrogen over potential cathode and its production
JP4561149B2 (en) * 2004-04-01 2010-10-13 アタカ大機株式会社 Alloy electrode for hydrogen generation and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591984A (en) * 1979-01-05 1980-07-11 Showa Denko Kk Cathode for water electrolysis and production thereof
JPS5741389A (en) * 1980-08-22 1982-03-08 Showa Denko Kk Cathode for electrolyzing aqueous alkali metal halide and its manufacture
JPS5760086A (en) * 1980-09-29 1982-04-10 Showa Denko Kk Cathode for electrolyzing water and its manufacture
US4410413A (en) * 1981-10-05 1983-10-18 Mpd Technology Corporation Cathode for electrolytic production of hydrogen
JPS6053757B2 (en) * 1981-10-15 1985-11-27 東亞合成株式会社 Manufacturing method of low hydrogen overvoltage cathode
JPH11172483A (en) * 1996-12-17 1999-06-29 Tosoh Corp Low hydrogen over potential cathode and its production
JP4561149B2 (en) * 2004-04-01 2010-10-13 アタカ大機株式会社 Alloy electrode for hydrogen generation and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169762A1 (en) * 2016-08-12 2019-06-06 Hitachi Zosen Corporation Method for producing electrode
EP3498888A4 (en) * 2016-08-12 2020-04-08 Hitachi Zosen Corporation Electrode manufacturing method

Also Published As

Publication number Publication date
JP6348743B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
Safizadeh et al. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review
Mizushima et al. Residual stress in Ni–W electrodeposits
Dolati et al. The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing
KR20110106303A (en) Electrode suitable as hydrogen-evolving cathode
JP5857339B2 (en) Ni-W alloy / CNT composite plating method and Ni-W alloy / CNT composite plating solution
JP6208992B2 (en) Alloy electrode for oxygen generation and manufacturing method thereof
JP6348743B2 (en) Alloy electrode for hydrogen generation and method for producing the same
JP4561149B2 (en) Alloy electrode for hydrogen generation and method for producing the same
JP6411042B2 (en) Method for producing electrode for aqueous solution electrolysis
JP2006104574A (en) Nickel-tungsten alloy plating liquid and method for forming nickel-tungsten alloy plated film
Zabinski et al. Electrodeposition of functional Ni-Re alloys for hydrogen evolution
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
WO2018029967A1 (en) Electrode manufacturing method
JP4085772B2 (en) Alloy electrode for hydrogen generation and method for producing the same
Elias et al. A comparative study on the electrocatalytic activity of electrodeposited Ni-W and Ni-P alloy coatings
CN110373682B (en) Ti-Mn-based porous hydrogen evolution cathode material, preparation method and application
JPH11172483A (en) Low hydrogen over potential cathode and its production
WO2018029968A1 (en) Electrode manufacturing method
JP6638044B2 (en) Method for producing electrode for aqueous solution electrolysis
CN106676588A (en) Manufacturing method of nickel-tungsten plating layer
KR20090039944A (en) Invar alloy and manufacturing method thereof
JP4740528B2 (en) Nickel-molybdenum alloy plating solution, plating film and plated article
JP4286427B2 (en) High strength alloy and metal coated with the high strength alloy
JP6875114B2 (en) Hydrogen production method
CN105543911A (en) Chloride 1-heptyl-3-methylimidazole/nickel chloride system electroplating solution

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180601

R150 Certificate of patent or registration of utility model

Ref document number: 6348743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250