JP2015178649A - Iron-based sinter alloy valve sheet - Google Patents

Iron-based sinter alloy valve sheet Download PDF

Info

Publication number
JP2015178649A
JP2015178649A JP2014055985A JP2014055985A JP2015178649A JP 2015178649 A JP2015178649 A JP 2015178649A JP 2014055985 A JP2014055985 A JP 2014055985A JP 2014055985 A JP2014055985 A JP 2014055985A JP 2015178649 A JP2015178649 A JP 2015178649A
Authority
JP
Japan
Prior art keywords
valve seat
iron
based sintered
sintered alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014055985A
Other languages
Japanese (ja)
Other versions
JP6392530B2 (en
Inventor
明子 嶋田
Akiko Shimada
明子 嶋田
浩二 逸見
Koji Henmi
浩二 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2014055985A priority Critical patent/JP6392530B2/en
Publication of JP2015178649A publication Critical patent/JP2015178649A/en
Application granted granted Critical
Publication of JP6392530B2 publication Critical patent/JP6392530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an iron-based sinter alloy valve sheet excellent in heat resistance, oxidation resistance and abrasion resistance as well as machinability and capable of being used for a valve sheet of an internal combustion engine using fuel gas even without containing Co.SOLUTION: An oxidation resistant film excellent in adhesiveness is formed by using a hard particle consisting of 12 mass% or more of Cr and forming a diffusive phase between matrix phases, and making a composition of the whole sintered body consisting the hard particle, the matrix phase and the diffusive phase with, by mass%, Cr:3.0 to 8.0%, Si:0.4 to 2.0%, Ni:4.0 to 10.0%, Mo:3.0 to 8.0%, V:0.5 to 5.0%, Nb:0.2 to 1.0%, C:0.5 to 1.5% and the balance Fe with inevitable impurities and excellent abrasion resistance from a low temperature range to a high temperature range is improved.

Description

本発明は、バルブシートに関し、特に、CNGやLPG等のガスエンジン、高出力ディーゼルエンジン、等の熱負荷の大きいエンジンに適する鉄基焼結合金製バルブシートに関する。   The present invention relates to a valve seat, and more particularly, to an iron-based sintered alloy valve seat suitable for an engine with a large heat load such as a gas engine such as CNG or LPG, a high-power diesel engine, or the like.

内燃機関に使用されるバルブシートは、高温で高圧の燃焼ガスに曝され、バルブの上下運動及び回転運動による高い衝撃や摺動を繰り返し受けるため、一般に、耐熱性及び耐摩耗性が必要とされる。さらに、近年、自動車エンジン等の内燃機関は、低燃費、低エミッション、高出力を指向し、高度な燃焼制御が行われるようになってきており、特に、CNGやLPG等の環境負荷を低減するクリーン燃料の使用は、高温燃焼となって、バルブシートの熱負荷や機械的負荷を増大し、また、燃費向上の観点から開発されたリーンバーン燃焼技術は、従来よりも高い酸素濃度雰囲気での燃焼となるため、バルブシートには、耐熱性や高温強度に加えて、優れた耐酸化性も求められている。   Since valve seats used in internal combustion engines are exposed to high-temperature and high-pressure combustion gas and repeatedly receive high impact and sliding due to the vertical and rotational movements of the valves, heat resistance and wear resistance are generally required. The Furthermore, in recent years, internal combustion engines such as automobile engines have been oriented toward low fuel consumption, low emissions, and high output, and advanced combustion control has been performed, and in particular, reduce the environmental load such as CNG and LPG. The use of clean fuel results in high-temperature combustion, increasing the heat load and mechanical load on the valve seat. The lean burn combustion technology developed from the viewpoint of improving fuel efficiency is used in an atmosphere with higher oxygen concentration than before. Due to combustion, the valve seat is required to have excellent oxidation resistance in addition to heat resistance and high temperature strength.

また、ガス燃料を使用した内燃機関に従来のバルブシートを用いると、液体燃料を用いた場合よりも高温環境下に曝され、さらにバルブとの摺動面に燃焼生成物が堆積しないため、摺動部が金属接触となって摩耗が大幅に増加するという問題も顕在化してきている。   In addition, when a conventional valve seat is used in an internal combustion engine using gas fuel, it is exposed to a higher temperature environment than when liquid fuel is used, and combustion products do not accumulate on the sliding surface with the valve. The problem that the moving part is in contact with metal and wear is greatly increased has also become apparent.

特許文献1は、ガス燃料用エンジンに使用した場合などのように、バルブシートとバルブ間の金属間接触が起こり易い条件下でも、優れた耐摩耗性と低い相手攻撃性を維持しうるバルブシートとして、基地成分にC:0.5〜1.5%、Cr及び/又はV:0.5〜10%、残部Feが少なくとも含有されているとともに、コバルト基硬質粒子が26〜50重量%含有された焼結合金を開示している。また、特許文献2は、CNGエンジンやヘビーデューティディーゼルエンジン等の高負荷エンジン環境において優れた高温耐摩耗性を発揮するバルブシート材として、全体組成が、質量比で、Co:12.7〜35.3%、Mo:5.4〜16.2%、Cr:1.8〜6%、V:0.02〜0.24%、Si:0.4〜1.5%、C:0.6〜1.2%、Ni:0.01〜1.8%、残部Fe及び不可避的不純物よりなり、ベイナイト組織中又はベイナイトとソルバイトの混合組織中に、主としてMo珪化物よりなる硬質相を核としてその周囲をCoが拡散してなる拡散相が取り囲む硬質相が分散する金属組織を呈する焼結合金を開示している。さらに、特許文献3は、ガス燃料エンジン用のバルブシートとして使用可能な鉄基焼結合金として、基地相が、質量%で、C:0.3〜1.5%と、Ni、Co、Mo、Cr、Vのうちから選ばれた1種又は2種以上を合計で1〜20%とを含有し、残部Fe及び不可避的不純物からなる基地相組成を有し、硬質粒子が、Fe、Mo、Siを主成分とする金属間化合物、Ni、Mo、Siを主成分とする金属間化合物のうちの1種又は2種以上を含み、ビッカース硬さで500 Hv0.1〜1200 Hv0.1の硬さを有する硬質粒子を、質量%で10〜60%含有し、6.7 g/cm3以上の密度と、350 MPa以上の圧環強さを有する鉄基焼結合金を開示している。 Patent Document 1 discloses a valve seat that can maintain excellent wear resistance and low opponent attack even under conditions where metal contact between the valve seat and the valve is likely to occur, such as when used in a gas fuel engine. As a sintered alloy, the base component contains C: 0.5 to 1.5%, Cr and / or V: 0.5 to 10%, and at least the balance Fe, and 26 to 50% by weight of cobalt-based hard particles. Disclosure. Patent Document 2 discloses that the overall composition is Co: 12.7 to 35.3% as a valve seat material that exhibits excellent high-temperature wear resistance in a high-load engine environment such as a CNG engine or a heavy-duty diesel engine. Mo: 5.4 to 16.2%, Cr: 1.8 to 6%, V: 0.02 to 0.24%, Si: 0.4 to 1.5%, C: 0.6 to 1.2%, Ni: 0.01 to 1.8%, balance Fe and inevitable impurities A sintered alloy exhibiting a metal structure in which a hard phase is dispersed in a bainite structure or a mixed structure of bainite and sorbite with a hard phase mainly composed of Mo silicide as a core and a diffusion phase in which Co is diffused around the hard phase. Is disclosed. Furthermore, Patent Document 3 discloses that an iron-based sintered alloy that can be used as a valve seat for a gas fuel engine has a matrix phase of mass%, C: 0.3 to 1.5%, Ni, Co, Mo, Cr, V 1 to 2% or more selected from among them, and has a matrix phase composition consisting of the balance Fe and inevitable impurities, and the hard particles are mainly composed of Fe, Mo, and Si. Including one or more of the intermetallic compounds, Ni, Mo, and Si as the main component, and having a Vickers hardness of 500 Hv0.1 to 1200 Hv0.1 An iron-based sintered alloy containing 10-60% by weight of hard particles, having a density of 6.7 g / cm 3 or more and a crushing strength of 350 MPa or more is disclosed.

上記の特許文献1〜3に開示された焼結合金は、いずれも、基地相及び/又は硬質粒子にCoを含有させて耐摩耗性と耐熱性を向上している。しかし、Coの存在は、密着性に優れた緻密な酸化皮膜の形成を阻害するため、特に250℃以下の低温域では、摺動面に酸化皮膜が形成され難く、耐摩耗性が十分でないのが実情である。   All of the sintered alloys disclosed in Patent Documents 1 to 3 described above have improved wear resistance and heat resistance by containing Co in the base phase and / or hard particles. However, the presence of Co hinders the formation of a dense oxide film with excellent adhesion, and therefore, particularly in a low temperature range of 250 ° C. or lower, it is difficult to form an oxide film on the sliding surface, and the wear resistance is not sufficient. Is the actual situation.

一方、Coを含有しない鉄基焼結合金として、特許文献4は、質量%で、Ni:3〜12%、Mo:3〜12%、Nb:0.1〜3%、Cr:0.5〜5%、V:0.6〜4%、C:0.5〜2%、残部Fe及び不可避的不純物からなる基地に、全体に対して3〜20質量%の硬質粒子を分散してなるとともに、前記基地が、Ni、Mo、Cr、Nb、Vを固溶してなる鉄マトリックスと、Mo、Cr、V、Nbの炭化物、若しくは、Mo、Cr、V、Nbの2種以上の金属間化合物あるいは前記炭化物と前記金属間化合物からなる分散粒子とからなる鉄基焼結合金を開示している。ここで、Coを含有しない硬質粒子として、Mo:60〜70%、C:0.1%以下、残部Feからなる第三の硬質粒子が教示され、この鉄基焼結合金によるバルブシートは、銅溶浸などの2次的処理をしなくても、特に、微細なNb炭化物及びプレアロイにより強制固溶されたNbの両者が高温強度を高めるため、高温でより大きな機械的熱的負荷のかかるガスエンジン用バルブシートに適していると教示している。また、特許文献5は、特許文献4のMo:60〜70%、C:0.1%以下、残部Feからなる第三の硬質粒子について、基地相との密着性に問題があることを指摘し、その密着性の改善を目的としてホウ素を極微量配合したMo:60〜70%、B:0.3〜1.0%、C:0.1%以下、残部Fe及び不可避的不純物からなる硬質粒子を教示している。   On the other hand, as an iron-based sintered alloy that does not contain Co, Patent Document 4 describes, in mass%, Ni: 3 to 12%, Mo: 3 to 12%, Nb: 0.1 to 3%, Cr: 0.5 to 5%, V: 0.6 to 4%, C: 0.5 to 2%, the balance consisting of Fe and unavoidable impurities, 3 to 20% by weight of hard particles are dispersed with respect to the whole, the base is Ni, An iron matrix in which Mo, Cr, Nb, and V are dissolved, and a carbide of Mo, Cr, V, and Nb, or two or more intermetallic compounds of Mo, Cr, V, and Nb, or the carbide and the metal An iron-based sintered alloy composed of dispersed particles composed of intermetallic compounds is disclosed. Here, as hard particles that do not contain Co, third hard particles composed of Mo: 60 to 70%, C: 0.1% or less, and the balance Fe are taught. Gas engines with higher mechanical and thermal loads at high temperatures, since both fine Nb carbide and Nb forcibly dissolved by prealloy increase the high-temperature strength without requiring secondary treatment such as immersion. It is taught that it is suitable for valve seats. Moreover, patent document 5 points out that there is a problem in adhesiveness with a base phase about the 3rd hard particle which consists of Mo: 60-70%, C: 0.1% or less, and remainder Fe of patent document 4, In order to improve the adhesion, it teaches hard particles composed of Mo: 60 to 70%, B: 0.3 to 1.0%, C: 0.1% or less, balance Fe and inevitable impurities.

特許文献4及び特許文献5は、Coフリーで高温強度に優れた鉄基焼結合金を開示したもので、密着性の良い緻密な酸化皮膜の阻害要因を排除したものの、250℃以下の低温域での酸化皮膜の形成は十分でなく、ガスエンジン用バルブシートの耐摩耗性には、まだ改善の余地がある。   Patent Documents 4 and 5 disclose iron-based sintered alloys that are Co-free and excellent in high-temperature strength, and have eliminated the obstructive factor of a dense oxide film with good adhesion, but at a low temperature range of 250 ° C. or lower. However, there is still room for improvement in the wear resistance of valve seats for gas engines.

また、バルブと接触するバルブシートの当たり面は、エンジンヘッドの組み付け時に切削加工されるため、切削性(被削性)が良好であることも必須であり、より一層の切削性向上も求められている。   In addition, since the contact surface of the valve seat that comes into contact with the valve is cut when the engine head is assembled, it is essential that the cutting performance (machinability) is good, and further improvement in cutting performance is also required. ing.

特開平11−12697号公報JP-A-11-12697 特開2002−285293号公報JP 2002-285293 A 特開2006−299404号公報JP 2006-299404 A 特許4299042号公報Japanese Patent No. 4299042 特許4368245号公報Japanese Patent No. 4368245

上記問題に鑑み、本発明は、Coを含有しなくても、ガス燃料を使用した内燃機関のバルブシートに使用することが可能な、耐熱性、耐酸化性、耐摩耗性に優れ、かつ切削性にも優れた鉄基焼結合金製バルブシートを提供することを課題とする。   In view of the above problems, the present invention is excellent in heat resistance, oxidation resistance, wear resistance, and cutting that can be used for a valve seat of an internal combustion engine using gas fuel without containing Co. An object of the present invention is to provide a ferrous sintered alloy valve seat that is also excellent in performance.

本発明者達は、鋭意研究の結果、基地相中にCrが優先的に拡散する硬質粒子を分散複合することによって、硬質粒子から基地相へのCrの拡散を促し、硬質粒子と拡散相の摺動面における占有率を高め、さらに表面部にCrの不動態皮膜を優先的に形成して、耐酸化性及び耐摩耗性に優れ、かつ皮膜の密着性にも優れた鉄基焼結合金製バルブシートが得られることに想到した。   As a result of diligent research, the present inventors have promoted the diffusion of Cr from the hard particles to the base phase by dispersing and combining hard particles in which the Cr diffuses preferentially in the base phase. An iron-based sintered alloy with high occupancy on the sliding surface and a preferential formation of a Cr passive film on the surface, providing excellent oxidation resistance and wear resistance, and excellent film adhesion I came up with the idea that a valve seat made of metal could be obtained.

すなわち、本発明の鉄基焼結合金製バルブシートは、基地相中に硬質粒子が分散した鉄基焼結合金製バルブシートであって、前記硬質粒子は、12質量%以上のCrを含有する鉄合金であり、前記基地相との間に拡散相を形成し、前記硬質粒子と前記基地相と前記拡散相からなる焼結体全体の組成が、質量%で、Cr:3.0〜8.0%、Si:0.4〜2.0%、Ni:4.0〜10.0%、Mo:3.0〜8.0%、V:0.5〜5.0%、Nb:0.2〜1.0%、C:0.5〜1.5%、残部Fe及び不可避的不純物からなることを特徴とする   That is, the iron-based sintered alloy valve seat of the present invention is an iron-based sintered alloy valve seat in which hard particles are dispersed in the matrix phase, and the hard particles contain 12% by mass or more of Cr. It is an iron alloy, forms a diffusion phase between the matrix phase, and the composition of the entire sintered body composed of the hard particles, the matrix phase and the diffusion phase is in mass%, Cr: 3.0 to 8.0%, Si: 0.4-2.0%, Ni: 4.0-0.0%, Mo: 3.0-8.0%, V: 0.5-5.0%, Nb: 0.2-1.0%, C: 0.5-1.5%, balance Fe and inevitable impurities It is characterized by

本発明の鉄基焼結合金製バルブシートは、硬質粒子から基地相へのCrの拡散によって、硬質粒子と拡散相の摺動面における占有率を高め、摺動面全体の耐摩耗性を高めることができる。さらに表面部へのCrの濃縮を促進することによって、Crの不動態皮膜を優先的に形成するため、金属接触による摩耗を回避することができ、また改善された密着性により、優れた耐摩耗性を発揮する。基地相に固溶したCr、Mo、V、Nbの一部が微細な二次炭化物を生成すれば、耐摩耗性と高温強度の向上に貢献する。さらに、快削性物質であるMnSを分散複合することによって、耐熱性、耐酸化性、及び耐摩耗性を損なうことなく、切削性を向上することも可能となる。よって、本発明の鉄基焼結合金製バルブシートは、ガス燃料を使用した内燃機関のバルブシートに有利に使用することができる。   The iron-based sintered alloy valve seat of the present invention increases the occupation ratio of the hard particles and the diffusion phase on the sliding surface by diffusion of Cr from the hard particles to the matrix phase, and improves the wear resistance of the entire sliding surface. be able to. In addition, by promoting the concentration of Cr on the surface, a passive film of Cr is preferentially formed, so that wear due to metal contact can be avoided, and excellent adhesion is achieved by improved adhesion. Demonstrate sex. If a part of Cr, Mo, V, and Nb dissolved in the matrix phase produces fine secondary carbide, it contributes to the improvement of wear resistance and high temperature strength. Further, by dispersing and compounding MnS, which is a free-cutting material, it becomes possible to improve machinability without impairing heat resistance, oxidation resistance, and wear resistance. Therefore, the iron-based sintered alloy valve seat of the present invention can be advantageously used for a valve seat of an internal combustion engine using gas fuel.

実施例1の焼結体の断面の組織写真を示した図である。3 is a view showing a structure photograph of a cross section of a sintered body of Example 1. バルブシートの耐摩耗性評価に用いた単体摩耗試験の概略を示した図である。It is the figure which showed the outline of the single-piece | unit abrasion test used for abrasion resistance evaluation of a valve seat.

本発明の鉄基焼結合金製バルブシートにおいて、硬質粒子は、12質量%以上のCrを含有する鉄合金であり、基地相との間にCrが拡散した拡散相を形成する。硬質粒子と基地相と拡散相からなる焼結体全体の組成は、質量%で、Cr:3.0〜8.0%、Si:0.4〜2.0%、Ni:4.0〜10.0%、Mo:3.0〜8.0%、V:0.5〜5%、Nb:0.2〜1.0%、C:0.5〜1.5%、残部Fe及び不可避的不純物からなる。基地相中に分散する硬質粒子は、基本的に、基地相を構成する元素の一部からなることが好ましく、質量%で、Cr:20.0〜25.0%、Ni:10.0〜18.0%、Mo:4.0〜6.0%、並びに残部Fe及び不可避的不純物からなるFe-Cr-Ni-Mo合金粒子、又は、質量%で、Cr:20.0〜25.0%、Ni:10.0〜18.0%、Mo:4.0〜6.0%、Si:0.5〜2.0%、C:1.0〜2.5%、残部Fe及び不可避的不純物からなるFe-Cr-Ni-Mo-Si-C合金粒子であることが好ましい。すなわち、硬質粒子と基地相の間に異質な反応生成物を生じることはないが、合金元素の一部は焼結中に硬質粒子から基地相中に拡散する。この拡散によって、拡散相が形成され、組織中で硬質粒子と拡散相が主体となる。硬質粒子と拡散相の摺動面に占める面積率は50〜90%となることが好ましく、60〜90%であればより好ましい。また、摺動面の表面部は、Cr酸化物皮膜を含むことが好ましい。   In the iron-based sintered alloy valve seat of the present invention, the hard particles are an iron alloy containing 12% by mass or more of Cr, and form a diffusion phase in which Cr diffuses between the base phase. The composition of the entire sintered body composed of hard particles, matrix phase and diffusion phase is mass%, Cr: 3.0 to 8.0%, Si: 0.4 to 2.0%, Ni: 4.0 to 10.0%, Mo: 3.0 to 8.0%, V: 0.5 to 5%, Nb: 0.2 to 1.0%, C: 0.5 to 1.5%, balance Fe and inevitable impurities. The hard particles dispersed in the matrix phase are preferably basically composed of a part of the elements constituting the matrix phase, and in mass%, Cr: 20.0 to 25.0%, Ni: 10.0 to 18.0%, Mo: 4.0 Fe-Cr-Ni-Mo alloy particles consisting of ~ 6.0% and the balance Fe and inevitable impurities, or by mass, Cr: 20.0-25.0%, Ni: 10.0-18.0%, Mo: 4.0-6.0%, It is preferably Fe—Cr—Ni—Mo—Si—C alloy particles comprising Si: 0.5 to 2.0%, C: 1.0 to 2.5%, the balance Fe and inevitable impurities. That is, no heterogeneous reaction product is produced between the hard particles and the matrix phase, but some of the alloy elements diffuse from the hard particles into the matrix phase during sintering. By this diffusion, a diffusion phase is formed, and the hard particles and the diffusion phase are mainly contained in the structure. The area ratio of the hard particles and the diffusion phase to the sliding surface is preferably 50 to 90%, more preferably 60 to 90%. Further, the surface portion of the sliding surface preferably contains a Cr oxide film.

一方、基地相は、焼入、焼戻の後、マルテンサイト相又はソルバイト相を含むことが好ましく、Cr、Mo、V、Nb及びFeの1種又は2種以上の二次炭化物を含むことがより好ましく、前記二次炭化物の平均粒径が2μm未満であればさらに好ましい。上記Cr、Si、Ni、Mo、V、NbのFe中への固溶や、二次炭化物の析出・分散により、耐熱性や耐酸化性、さらに耐摩耗性を向上する。   On the other hand, the matrix phase preferably contains a martensite phase or a sorbite phase after quenching and tempering, and may contain one or more secondary carbides of Cr, Mo, V, Nb and Fe. More preferably, the average particle size of the secondary carbide is more preferably less than 2 μm. The solid solution of Cr, Si, Ni, Mo, V and Nb in Fe and precipitation / dispersion of secondary carbides improve heat resistance, oxidation resistance and wear resistance.

本発明においては、切削性を向上するため、快削性物質としてMnS粒子を添加することができる。MnS粒子は、質量%で、0.5〜3%分散させることが好ましいが、CaF2やBNのように空隙と同様の挙動をする快削性物質(固体潤滑材)は強度を低下させるので好ましくない。 In the present invention, MnS particles can be added as a free-cutting substance in order to improve machinability. MnS particles are preferably dispersed by mass of 0.5 to 3%, but free-cutting substances (solid lubricants) that behave like voids, such as CaF 2 and BN, are not preferred because they reduce strength. .

本発明の鉄基焼結合金製バルブシートを構成する組成は、質量%で、Cr:3.0〜8.0%、Si:0.4〜2.0%、Ni:4.0〜10.0%、Mo:3.0〜8.0%、V:0.5〜5%、Nb:0.2〜1.0%、C:0.5〜1.5%、残部Fe及び不可避的不純物からなる。特に、Crは、基地相に固溶又は炭化物を形成して基地相を強化することに加え、空気中の酸素と結合して表面にCrの水和オキシ酸化物からなる不動態皮膜を形成し、耐酸化性の向上に大きく貢献する。Cr含有量が3.0%未満ではその効果が少なく、8.0%を超えると不動態皮膜の形成には好ましいものの、オーステナイト安定化元素のNi、炭化物生成元素のMo、V、Nbとのバランスを考慮し、本発明では上限を8.0%とする。よって、Cr含有量は3〜8.0%とする。5.0〜8.0%がより好ましい。   The composition of the valve seat made of an iron-based sintered alloy according to the present invention is, in mass%, Cr: 3.0 to 8.0%, Si: 0.4 to 2.0%, Ni: 4.0 to 10.0%, Mo: 3.0 to 8.0%, V : 0.5-5%, Nb: 0.2-1.0%, C: 0.5-1.5%, balance Fe and unavoidable impurities. In particular, Cr strengthens the matrix phase by forming a solid solution or carbide in the matrix phase, and forms a passive film consisting of Cr hydrated oxyoxide on the surface by combining with oxygen in the air. , Greatly contribute to the improvement of oxidation resistance. If the Cr content is less than 3.0%, the effect is small, and if it exceeds 8.0%, it is preferable for the formation of a passive film, but considering the balance between Ni for the austenite stabilizing element, Mo, V, and Nb for the carbide forming elements. In the present invention, the upper limit is set to 8.0%. Therefore, the Cr content is 3 to 8.0%. 5.0 to 8.0% is more preferable.

Siは、Crが不動態皮膜を形成する上で重要な役割を果たしている。一般にCr主体の酸化物皮膜を形成するには、約18質量%以上のCrが必要とされるが、本発明のバルブシートにおいては、3.0〜8.0%のCr含有量でも、0.4%以上のSiの添加によりCrの表面への濃縮が促進され、表面部にCr酸化物皮膜が形成される。また、Siは下部皮膜としてFe2SiO4を形成し、表面のFe酸化物皮膜(Fe2O3皮膜)の密着性向上にも寄与している。しかし、Si含有量が2.0%を超えると、下部皮膜が厚くなりすぎて、逆に密着性を低下させ、好ましくない。よって、Si含有量は0.4〜2.0%とする。0.6〜1.8%が好ましく、0.8〜1.6%がより好ましい。Siの添加により表面部にCr酸化物が含まれるが、表面部全体がCr酸化物皮膜で覆われている必要はなく、Fe酸化物が存在しても、さらにはFeとSiを含む酸化物が存在しても、金属接触を回避するという目的は十分達成される。 Si plays an important role in forming a passive film by Cr. Generally, about 18% by mass or more of Cr is required to form a Cr-based oxide film. However, in the valve seat of the present invention, even if the Cr content is 3.0 to 8.0%, 0.4% or more of Si is required. Is added to promote the concentration of Cr on the surface, and a Cr oxide film is formed on the surface. Further, Si forms Fe 2 SiO 4 as a lower film, and contributes to improving the adhesion of the surface Fe oxide film (Fe 2 O 3 film). However, if the Si content exceeds 2.0%, the lower film becomes too thick, which adversely decreases the adhesion, which is not preferable. Therefore, the Si content is set to 0.4 to 2.0%. 0.6 to 1.8% is preferable, and 0.8 to 1.6% is more preferable. Although the surface portion contains Cr oxide by the addition of Si, the entire surface portion does not need to be covered with a Cr oxide film, and even if Fe oxide is present, an oxide containing Fe and Si The objective of avoiding metal contact is fully achieved even in the presence of.

Niは、基地相強化及び耐摩耗性の向上の効果を有する。耐摩耗性とオーステナイトの増加による熱膨張特性とのバランスを見て、本発明では、Ni含有量は4.0〜10.0%とする。5.0〜9.0%が好ましく、6.0〜8.0%がより好ましい。   Ni has the effect of strengthening the base phase and improving the wear resistance. In view of the balance between the wear resistance and the thermal expansion characteristics due to the increase in austenite, the Ni content is 4.0 to 10.0% in the present invention. 5.0 to 9.0% is preferable, and 6.0 to 8.0% is more preferable.

Mo、V、Nbは、ともに炭化物や金属間化合物を形成して、硬さや、耐摩耗性を向上する。特に、高温での強度や硬さを向上させる。本発明では、Mo含有量は3.0〜8.0%とするが、3.5〜7.5%が好ましく、4〜6%がより好ましい。また、V含有量は0.5〜5%とするが、0.5〜4%が好ましく、1〜3%がより好ましい。また、Nb含有量は0.2〜1.0%とするが、0.3〜0.9%が好ましく、0.4〜0.8%がより好ましい。   Mo, V, and Nb together form carbides and intermetallic compounds to improve hardness and wear resistance. In particular, the strength and hardness at high temperatures are improved. In the present invention, the Mo content is 3.0 to 8.0%, preferably 3.5 to 7.5%, more preferably 4 to 6%. Moreover, although V content shall be 0.5 to 5%, 0.5 to 4% is preferable and 1-3% is more preferable. Moreover, although Nb content shall be 0.2-1.0%, 0.3-0.9% is preferable and 0.4-0.8% is more preferable.

Cは、一般に、基地に固溶して基地を強化するとともに、他の合金元素と炭化物を形成して耐摩耗性を向上させる。本発明では、Cが0.5%未満ではフェライトが生成して所定の硬さが得られないで、耐摩耗性が不足する。一方、1.5%を超えて含有させると、マルテンサイト及び各種炭化物が過剰に形成された靱性が低下し、耐摩耗性が低下する。よって、Cの含有量は0.5〜1.5%とする。0.6〜1.4%が好ましく、0.7〜1.3%がより好ましい。   In general, C dissolves in the matrix to strengthen the matrix, and forms carbides with other alloy elements to improve wear resistance. In the present invention, if C is less than 0.5%, ferrite is generated and a predetermined hardness cannot be obtained, and the wear resistance is insufficient. On the other hand, if the content exceeds 1.5%, the toughness in which martensite and various carbides are excessively formed is lowered, and the wear resistance is lowered. Therefore, the C content is 0.5 to 1.5%. 0.6 to 1.4% is preferable, and 0.7 to 1.3% is more preferable.

また、優れた耐摩耗性を示すために、基地相は、焼結後に焼入、焼戻を行い、焼戻マルテンサイト相又はソルバイト相を含むことが好ましい。硬度を優先した場合は焼戻マルテンサイト相、靱性を優先した場合はソルバイト相を選択する。焼戻処理によりCr、Mo、V、Nb及びFeの1種又は2種以上の微細な二次炭化物を析出分散させれば、さらに高強度、高硬度とすることができ、耐熱性も向上する。高硬度、高靱性を目指す場合は、二次炭化物の平均粒径は2μm未満であることが好ましく、1μm未満であればより好ましい。   In order to exhibit excellent wear resistance, the matrix phase is preferably quenched and tempered after sintering and contains a tempered martensite phase or a sorbite phase. When hardness is given priority, tempered martensite phase is selected, and when toughness is given priority, sorbite phase is selected. If one or more fine secondary carbides of Cr, Mo, V, Nb and Fe are precipitated and dispersed by tempering treatment, the strength and hardness can be further increased, and the heat resistance is also improved. . When aiming for high hardness and high toughness, the average particle size of the secondary carbide is preferably less than 2 μm, more preferably less than 1 μm.

本発明の鉄基焼結合金製バルブシートの製造において、基地相の原料としては、例えば、質量%で、Cr:0.5〜2.0%、Mo:0.5〜4.0%、V:0.5〜5%、Nb:0.2〜1.0%、Si:0.4〜2.0%、C:0.8%以下、並びに残部Fe及び不可避的不純物からなるプレアロイ粉末を使用することが好ましい。このようなプレアロイ粉末に、各合金元素の金属粉末(カルボニルニッケル粉末、モリブデン粉末、)又はフェロアロイ粉末、黒鉛粉末等を加える。プレアロイ粉末及び合金元素粉末に、硬質粒子粉末を配合し、混合した混合粉を原料粉とする。原料粉、すなわち、プレアロイ粉末、合金元素粉末、硬質粒子の混合粉末の合計量に対して、ステアリン酸塩等を0.5〜2%、離型材として配合しても良い。   In the manufacture of the iron-based sintered alloy valve seat according to the present invention, the raw material of the base phase is, for example, mass%, Cr: 0.5-2.0%, Mo: 0.5-4.0%, V: 0.5-5%, Nb : 0.2 to 1.0%, Si: 0.4 to 2.0%, C: 0.8% or less, and a pre-alloy powder composed of the balance Fe and inevitable impurities is preferably used. To such a pre-alloy powder, a metal powder (carbonyl nickel powder, molybdenum powder) of each alloy element, ferroalloy powder, graphite powder or the like is added. The pre-alloy powder and the alloy element powder are mixed with hard particle powder, and the mixed powder is used as raw powder. You may mix | blend stearate etc. as a mold release material 0.5-2% with respect to the total amount of raw material powder, ie, a pre-alloy powder, alloy element powder, and the mixed powder of hard particles.

混合粉末は成形プレス等により圧縮・成形して圧粉体に成形され、前記圧粉体は、真空又は非酸化性(又は還元性)雰囲気中、1100〜1200℃で焼結され、500〜700℃で焼戻されることが好ましい。非酸化性(又は還元性)雰囲気としては、具体的にはNHガスやNとHの混合ガス等を用いた雰囲気とすることが望ましい。 The mixed powder is compressed and molded by a molding press or the like to be formed into a green compact. The green compact is sintered at 1100 to 1200 ° C. in a vacuum or a non-oxidizing (or reducing) atmosphere, and 500 to 700 It is preferable that the material is tempered at 0 ° C. Specifically, the non-oxidizing (or reducing) atmosphere is desirably an atmosphere using NH 3 gas, a mixed gas of N 2 and H 2 , or the like.

実施例1
質量%で、Cr:1.0%、Mo:2.0%、V:3.0%、Nb:0.5%、Si:1.1%、C:0.4%、残部Fe(及び不可避的不純物としてP:0.03%、S:0.03%)からなるプレアロイ粉末に、5.1質量%のNiと2.3質量%のMoと0.42質量%のCに対応する量のカルボニルニッケル粉末、モリブデン粉末及び黒鉛粉末を加え、硬質粒子として、質量%で、Cr:24.0%、Ni:11.0%、Mo:5.5%、Si:1.1%、C:2.3%、残部Fe及び不可避的不純物からなるFe-Cr-Ni-Mo-Si-C合金粉末を20質量%配合し、混合機で混練して混合粉を作製した。なお、原料粉末には、成形工程の型抜き性をよくするためにステアリン酸亜鉛を原料粉末の量に対して0.5%加えている。
Example 1
In mass%, Cr: 1.0%, Mo: 2.0%, V: 3.0%, Nb: 0.5%, Si: 1.1%, C: 0.4%, balance Fe (and P: 0.03% as an inevitable impurity, S: 0.03 To a pre-alloy powder consisting of 5.1 mass% Ni, 2.3 mass% Mo and 0.42 mass% C in amounts corresponding to carbonyl nickel powder, molybdenum powder and graphite powder. Cr: 24.0%, Ni: 11.0%, Mo: 5.5%, Si: 1.1%, C: 2.3%, Fe-Cr-Ni-Mo-Si-C alloy powder consisting of the remainder Fe and inevitable impurities is 20% by mass Blended and kneaded with a mixer to produce a mixed powder. In addition, to the raw material powder, zinc stearate is added in an amount of 0.5% with respect to the amount of the raw material powder in order to improve the mold release property in the molding process.

これらの混合粉を成形金型に充填し、成形プレスにより面圧600 MPaで圧縮・成形した後、温度1180℃、真空雰囲気の焼成炉にて焼結し、外径37.6 mmφ、内径26 mmφ、厚さ8 mmのリング状焼結体を作製した。焼結体の密度は6.83 Mg/m3であった。また、焼結体の硬さはHRBで94.8であり、バルブシート全体の組成について化学分析を行った結果、Cr:5.6%、Si:1.0%、Ni:7.0%、Mo:4.6%、V:2.35%、Nb:0.45%、C:1.18%、残部Feであった。 These mixed powders are filled into a molding die, compressed and molded with a molding press at a surface pressure of 600 MPa, sintered in a firing furnace in a vacuum atmosphere at a temperature of 1180 ° C, an outer diameter of 37.6 mmφ, an inner diameter of 26 mmφ, A ring-shaped sintered body having a thickness of 8 mm was produced. The density of the sintered body was 6.83 Mg / m 3 . The hardness of the sintered body was 94.8 in HRB. As a result of chemical analysis of the composition of the entire valve seat, Cr: 5.6%, Si: 1.0%, Ni: 7.0%, Mo: 4.6%, V: It was 2.35%, Nb: 0.45%, C: 1.18%, and the balance Fe.

図1は実施例1の焼結体の断面の組織写真であるが、硬質粒子1とその周りに硬質粒子1と色調をほぼ同じ(明白色)とする拡散相2が存在する。逆に混合粉末の段階では約70%を占めていたプレアロイ相3(濃暗色)の領域が狭められ、硬質粒子1と拡散相2の領域が主体となった組織を示している。   FIG. 1 is a structural photograph of the cross section of the sintered body of Example 1. Hard particles 1 and a diffusion phase 2 having the same color tone as that of the hard particles 1 (obvious color) exist around the hard particles 1. Conversely, the pre-alloy phase 3 (dark color) region, which accounted for about 70% in the mixed powder stage, is narrowed, indicating a structure mainly composed of the hard particle 1 and diffusion phase 2 regions.

実施例2
硬質粒子として、Fe-Cr-Ni-Mo-Si-C合金粉末の代わりに、質量%で、Cr:12.5%、C:0.02%、残部Fe及び不可避的不純物からなるFe-Cr-C合金を使用した以外は実施例1と同様にして、リング状焼結体を作製した。焼結体の密度は6.97 Mg/m3、硬さは90.4 HRB、化学分析の結果は、Cr:3.3%、Si:0.8%、Ni:4.9%、Mo:3.3%、V:2.42%、Nb:0.46%、C:0.69%、残部Feであった。
Example 2
As hard particles, instead of Fe-Cr-Ni-Mo-Si-C alloy powder, Fe-Cr-C alloy consisting of Cr: 12.5%, C: 0.02%, balance Fe and inevitable impurities in mass% A ring-shaped sintered body was produced in the same manner as in Example 1 except that it was used. Density of sintered body is 6.97 Mg / m 3 , hardness is 90.4 HRB, chemical analysis results are Cr: 3.3%, Si: 0.8%, Ni: 4.9%, Mo: 3.3%, V: 2.42%, Nb : 0.46%, C: 0.69%, balance Fe.

比較例1
硬質粒子として、Fe-Cr-Ni-Mo-Si-C合金粉末の代わりに、質量%で、Mo:28.0%、Cr:9.0%、Si:2.5%、残部Co及び不可避的不純物からなるCo-Mo-Cr-Si合金を使用した以外は実施例1と同様にして、リング状焼結体を作製した。焼結体の密度は7.25 Mg/m3、硬さは97.2 HRB、化学分析の結果は、Co:12.4%、Cr:2.5%、Si:1.4%、Ni:5.0%、Mo:9.2%、V:2.34%、Nb:0.38%、C:0.72%、残部Feであった。
Comparative Example 1
As hard particles, instead of Fe-Cr-Ni-Mo-Si-C alloy powder, by mass%, Mo: 28.0%, Cr: 9.0%, Si: 2.5%, the remainder Co and Co-inevitable impurities A ring-shaped sintered body was produced in the same manner as in Example 1 except that the Mo—Cr—Si alloy was used. The density of the sintered body is 7.25 Mg / m 3 , the hardness is 97.2 HRB, and the results of chemical analysis are Co: 12.4%, Cr: 2.5%, Si: 1.4%, Ni: 5.0%, Mo: 9.2%, V : 2.34%, Nb: 0.38%, C: 0.72%, balance Fe.

比較例2
硬質粒子として、Fe-Cr-Ni-Mo-Si-C合金粉末の代わりに、質量%で、Mo:50.0%、残部Fe及び不可避的不純物からなるFe-Mo合金を使用した以外は実施例1と同様にして、リング状焼結体を作製した。焼結体の密度は6.85 Mg/m3、硬さは90.3 HRB、化学分析の結果は、Cr:0.6%、Si:0.9%、Ni:5.1%、Mo:13.7%、V:2.33%、Nb:0.34%、C:0.70%、残部Feであった。
Comparative Example 2
Example 1 except that instead of Fe—Cr—Ni—Mo—Si—C alloy powder, Fe—Mo alloy consisting of 50.0% by mass, Mo: 50.0%, balance Fe and inevitable impurities was used as the hard particles. In the same manner, a ring-shaped sintered body was produced. Density of sintered body is 6.85 Mg / m 3 , hardness is 90.3 HRB, chemical analysis results are Cr: 0.6%, Si: 0.9%, Ni: 5.1%, Mo: 13.7%, V: 2.33%, Nb : 0.34%, C: 0.70%, balance Fe.

実施例3
実施例1の原料粉末に1.0質量%のMnSをさらに配合した以外は実施例1と同様にして、リング状焼結体を作製した。焼結体の密度は6.79 Mg/m3、硬さは93.5 HRB、化学分析の結果は、Cr:5.4%、Si:0.9%、Ni:6.5%、Mo:4.5%、V:2.40%、Nb:0.44%、C:1.11%、Mn:0.42%、S:0.37%、残部Feであった。
Example 3
A ring-shaped sintered body was produced in the same manner as in Example 1 except that 1.0% by mass of MnS was further added to the raw material powder of Example 1. Density of sintered body is 6.79 Mg / m 3 , hardness is 93.5 HRB, chemical analysis results are Cr: 5.4%, Si: 0.9%, Ni: 6.5%, Mo: 4.5%, V: 2.40%, Nb : 0.44%, C: 1.11%, Mn: 0.42%, S: 0.37%, balance Fe.

実施例1〜3、比較例1〜2のバルブシート焼結体全体の化学組成を表1に、硬質粒子の種類、焼結密度及び硬さを表2に示す。   Table 1 shows the chemical composition of the entire valve seat sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 2, and Table 2 shows the types of hard particles, the sintered density, and the hardness.

[1] 摩耗試験
実施例1〜3及び比較例1〜2のリング状焼結体をバルブシートに加工し、図2に示した単体摩耗試験機を用いて耐摩耗性を評価した。バルブシート14はシリンダヘッド相当材のバルブシートホルダ12に圧入して試験機にセットされ、摩耗試験は、バーナー11によりバルブ13及びバルブシート14を加熱しながら、カム17の回転に連動してバルブ13を上下させることによって行われる。なお、バルブシート14には熱電対15, 16を埋め込み、バルブシートの当たり面が所定の温度になるようにバーナー11の火力を調節する。バルブシート14はバルブ13よって繰り返し叩かれることにより摩耗し、その摩耗量は試験前後のバルブシート及びバルブの形状を測定することにより、当たり面の後退量として算出した。ここで、バルブは上記バルブシートに適合するサイズのCo合金(Co-29%Cr-8%W-1.35%C-3%Fe)を盛金したものを使用した。試験条件としては、温度250℃(バルブシート当たり面)、カム回転数2000 rpm、試験時間5時間とした。試験結果を、比較例1のバルブシート摩耗量の値を1とした相対比率で、表3に示す。
[1] Wear Test The ring-shaped sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 2 were processed into valve seats, and the wear resistance was evaluated using a single wear tester shown in FIG. The valve seat 14 is press-fitted into a valve seat holder 12, which is equivalent to a cylinder head, and set in a testing machine. The wear test is performed in conjunction with the rotation of the cam 17 while the valve 13 and the valve seat 14 are heated by the burner 11. This is done by moving 13 up and down. Thermocouples 15 and 16 are embedded in the valve seat 14, and the heating power of the burner 11 is adjusted so that the contact surface of the valve seat has a predetermined temperature. The valve seat 14 was worn by being repeatedly struck by the valve 13, and the amount of wear was calculated as the amount of retreat of the contact surface by measuring the shape of the valve seat and the valve before and after the test. Here, the valve used was a gold alloy of a Co alloy (Co-29% Cr-8% W-1.35% C-3% Fe) of a size suitable for the valve seat. The test conditions were a temperature of 250 ° C. (surface per valve seat), a cam rotation speed of 2000 rpm, and a test time of 5 hours. The test results are shown in Table 3 as relative ratios with the value of the valve seat wear amount of Comparative Example 1 being 1.

実施例1〜3では、250℃の温度で、比較例1と比較して、バルブ摩耗量は若干多めの摩耗量を示したが、バルブシート摩耗量は大きく低減し、優れた耐摩耗性を示した。また、比較例2と比較しても、バルブシート摩耗量は20〜30%低減していた。   In Examples 1 to 3, the valve wear amount was slightly higher than that in Comparative Example 1 at a temperature of 250 ° C., but the valve seat wear amount was greatly reduced, and excellent wear resistance was achieved. Indicated. Even when compared with Comparative Example 2, the amount of wear of the valve seat was reduced by 20 to 30%.

[2] 切削性試験
続いて、前述の実施例1〜3及び比較例1〜2の焼結体について切削性試験を行った。試験条件は汎用旋盤を用いた切削速度100 m/min、切り込み量0.1 mm、送り速度0.1 mm/revの乾式(切削液を使用しない)で、所謂トラバース方式の切削試験を行った。切削工具としてはCBNチップを使用し、切削性は所定の数量のバルブシートを加工したときの刃具最大摩耗量により評価した。結果を、比較例1の値を1とした相対比率で、表4に示す。
[2] Machinability Test Subsequently, a machinability test was performed on the sintered bodies of Examples 1 to 3 and Comparative Examples 1 and 2 described above. The test conditions were a dry traverse method using a general-purpose lathe with a cutting speed of 100 m / min, a cutting depth of 0.1 mm, and a feed speed of 0.1 mm / rev (no cutting fluid used), and a so-called traverse type cutting test was performed. A CBN chip was used as the cutting tool, and the cutting performance was evaluated by the maximum amount of cutting tool wear when a predetermined number of valve seats were processed. The results are shown in Table 4 as relative ratios with the value of Comparative Example 1 being 1.

快削性物質のMnSが添加された実施例3が最も切削性が良かったが、実施例1〜2も比較例1と比べれば優れた切削性を示していた。   Example 3 to which the free-cutting substance MnS was added had the best machinability, but Examples 1 and 2 also showed excellent machinability as compared with Comparative Example 1.

1 硬質粒子
2 拡散相
3 プレアロイ相
11 バーナー
12 バルブシートホルダ
13 バルブ
14 バルブシート
15 熱電対(高温側)
16 熱電対(低温側)
17 カム
1 Hard particles
2 Diffusion phase
3 Pre-alloyed phase
11 Burner
12 Valve seat holder
13 Valve
14 Valve seat
15 Thermocouple (High temperature side)
16 Thermocouple (low temperature side)
17 cams

Claims (10)

基地相中に硬質粒子が分散した鉄基焼結合金製バルブシートであって、前記硬質粒子は、12質量%以上のCrを含有する鉄合金であり、前記基地相との間に拡散相を形成し、前記硬質粒子と前記基地相と前記拡散相からなる焼結体全体の組成が、質量%で、Cr:3.0〜8.0%、Si:0.4〜2.0%、Ni:4.0〜10.0%、Mo:3.0〜8.0%、V:0.5〜5.0%、Nb:0.2〜1.0%、C:0.5〜1.5%、残部Fe及び不可避的不純物からなることを特徴とする鉄基焼結合金製バルブシート。   A valve seat made of an iron-based sintered alloy in which hard particles are dispersed in a matrix phase, wherein the hard particles are an iron alloy containing 12 mass% or more of Cr, and a diffusion phase is provided between the matrix phase and the matrix phase. The composition of the entire sintered body formed and composed of the hard particles, the matrix phase, and the diffusion phase is in mass%, Cr: 3.0 to 8.0%, Si: 0.4 to 2.0%, Ni: 4.0 to 10.0%, Mo : 3.0 to 8.0%, V: 0.5 to 5.0%, Nb: 0.2 to 1.0%, C: 0.5 to 1.5%, the balance Fe and unavoidable impurities, and a valve seat made of an iron-based sintered alloy. 請求項1に記載の鉄基焼結合金製バルブシートにおいて、前記硬質粒子が、質量%で、Cr:20.0〜25.0%、Ni:10.0〜18.0%、Mo:4.0〜6.0%、残部Fe及び不可避的不純物からなるFe-Cr-Ni-Mo合金粒子、又は、質量%で、Cr:20.0〜25.0%、Ni:10.0〜18.0%、Mo:4.0〜6.0%、Si:0.5〜2.0%、C:1.0〜2.5%、残部Fe及び不可避的不純物からなるFe-Cr-Ni-Mo-Si-C合金粒子であることを特徴とする鉄基焼結合金製バルブシート。   2. The valve seat made of an iron-based sintered alloy according to claim 1, wherein the hard particles are in mass%, Cr: 20.0 to 25.0%, Ni: 10.0 to 18.0%, Mo: 4.0 to 6.0%, remaining Fe and inevitable. Fe-Cr-Ni-Mo alloy particles consisting of mechanical impurities, or by mass, Cr: 20.0-25.0%, Ni: 10.0-18.0%, Mo: 4.0-6.0%, Si: 0.5-2.0%, C: An iron-based sintered alloy valve seat characterized by Fe-Cr-Ni-Mo-Si-C alloy particles comprising 1.0 to 2.5%, the remainder Fe and inevitable impurities. 請求項1又は2に記載の鉄基焼結合金製バルブシートにおいて、前記硬質粒子と前記拡散相の摺動面に占める面積率が50〜90%であることを特徴とする鉄基焼結合金製バルブシート。   3. The iron-based sintered alloy valve seat according to claim 1, wherein an area ratio of the hard particles and the diffusion phase in the sliding surface is 50 to 90%. Valve seat made. 請求項1〜3のいずれかに記載の鉄基焼結合金製バルブシートにおいて、前記摺動面の表面部がCr酸化物皮膜を含むことを特徴とする鉄基焼結合金製バルブシート。   4. The iron-based sintered alloy valve seat according to claim 1, wherein the surface portion of the sliding surface includes a Cr oxide film. 請求項1〜4のいずれかに記載の鉄基焼結合金製バルブシートにおいて、前記基地相がマルテンサイト相又はソルバイト相を含むことを特徴とする鉄基焼結合金製バルブシート。   5. The iron-based sintered alloy valve seat according to claim 1, wherein the matrix phase includes a martensite phase or a sorbite phase. 請求項1〜5のいずれかに記載の鉄基焼結合金製バルブシートにおいて、前記基地相が、Cr、Mo、V、Nb及びFeの1種又は2種以上の二次炭化物を含むことを特徴とする鉄基焼結合金製バルブシート。   The valve seat made of an iron-based sintered alloy according to any one of claims 1 to 5, wherein the matrix phase contains one or more secondary carbides of Cr, Mo, V, Nb and Fe. Featuring an iron-based sintered alloy valve seat. 請求項1〜6のいずれかに記載の鉄基焼結合金製バルブシートにおいて、さらにMnS粒子が、質量%で、0.5〜3%分散していることを特徴とする鉄基焼結合金製バルブシート。   The iron-based sintered alloy valve seat according to any one of claims 1 to 6, wherein MnS particles are dispersed in an amount of 0.5 to 3% by mass. Sheet. 請求項1〜7のいずれかに記載の鉄基焼結合金製バルブシートを製造する方法であって、原料粉末に、質量%で、Cr:0.5〜2.0%、Mo:0.5〜4.0%、V:0.5〜5%、Nb:0.2〜1.0%、Si:2.0%以下、C:0.8%以下、残部Fe及び不可避的不純物からなるプレアロイ粉末を使用することを特徴とする鉄基焼結合金製バルブシートの製造方法。   A method for producing a valve seat made of an iron-based sintered alloy according to any one of claims 1 to 7, wherein the raw material powder is, in mass%, Cr: 0.5-2.0%, Mo: 0.5-4.0%, V : 0.5-5%, Nb: 0.2-1.0%, Si: 2.0% or less, C: 0.8% or less, Fe-alloy sintered alloy valve characterized by using pre-alloy powder consisting of remaining Fe and inevitable impurities Sheet manufacturing method. 請求項1〜7のいずれかに記載の鉄基焼結合金製バルブシートを製造する方法であって、原料粉末に、前記硬質粒子を15〜25質量%混合することを特徴とする鉄基焼結合金製バルブシートの製造方法。   A method for producing the iron-based sintered alloy valve seat according to any one of claims 1 to 7, wherein the hard particles are mixed in a raw material powder in an amount of 15 to 25% by mass. A method of manufacturing a bonded gold valve seat. 請求項1〜7のいずれかに記載の鉄基焼結合金製バルブシートを製造する方法であって、原料粉末の成形体を、非酸化性雰囲気中1100〜1200℃の温度で焼結し、非酸化性雰囲気中500〜700℃の温度で焼戻処理することを特徴とする鉄基焼結合金製バルブシートの製造方法。   A method for producing a valve seat made of an iron-based sintered alloy according to any one of claims 1 to 7, wherein the compact of the raw material powder is sintered at a temperature of 1100 to 1200 ° C in a non-oxidizing atmosphere, A method for producing a ferrous sintered alloy valve seat, characterized by tempering at a temperature of 500 to 700 ° C in a non-oxidizing atmosphere.
JP2014055985A 2014-03-19 2014-03-19 Ferrous sintered alloy valve seat Expired - Fee Related JP6392530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055985A JP6392530B2 (en) 2014-03-19 2014-03-19 Ferrous sintered alloy valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055985A JP6392530B2 (en) 2014-03-19 2014-03-19 Ferrous sintered alloy valve seat

Publications (2)

Publication Number Publication Date
JP2015178649A true JP2015178649A (en) 2015-10-08
JP6392530B2 JP6392530B2 (en) 2018-09-19

Family

ID=54262899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055985A Expired - Fee Related JP6392530B2 (en) 2014-03-19 2014-03-19 Ferrous sintered alloy valve seat

Country Status (1)

Country Link
JP (1) JP6392530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441784A (en) * 2018-05-09 2018-08-24 徐州迈斯特机械科技有限公司 A kind of relief valve body production method
CN110760734A (en) * 2019-12-04 2020-02-07 海安县鹰球粉末冶金有限公司 High-density, high-wear-resistance and high-corrosion-resistance stainless steel material and production method thereof
WO2022124359A1 (en) * 2020-12-10 2022-06-16 山陽特殊製鋼株式会社 Shaped body formed of powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195014A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
JP2001040458A (en) * 1999-07-29 2001-02-13 Toyota Motor Corp Wear-resistant sintered alloy and manufacture therefor
JP2002129296A (en) * 2000-10-27 2002-05-09 Nippon Piston Ring Co Ltd Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
JP4299042B2 (en) * 2003-04-08 2009-07-22 株式会社リケン Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy, and method for producing iron-based sintered alloy
JP4368245B2 (en) * 2004-05-17 2009-11-18 株式会社リケン Hard particle dispersion type iron-based sintered alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195014A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
JP2001040458A (en) * 1999-07-29 2001-02-13 Toyota Motor Corp Wear-resistant sintered alloy and manufacture therefor
JP2002129296A (en) * 2000-10-27 2002-05-09 Nippon Piston Ring Co Ltd Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
JP4299042B2 (en) * 2003-04-08 2009-07-22 株式会社リケン Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy, and method for producing iron-based sintered alloy
JP4368245B2 (en) * 2004-05-17 2009-11-18 株式会社リケン Hard particle dispersion type iron-based sintered alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441784A (en) * 2018-05-09 2018-08-24 徐州迈斯特机械科技有限公司 A kind of relief valve body production method
CN110760734A (en) * 2019-12-04 2020-02-07 海安县鹰球粉末冶金有限公司 High-density, high-wear-resistance and high-corrosion-resistance stainless steel material and production method thereof
WO2022124359A1 (en) * 2020-12-10 2022-06-16 山陽特殊製鋼株式会社 Shaped body formed of powder
JP2022092524A (en) * 2020-12-10 2022-06-22 山陽特殊製鋼株式会社 Shaped body formed from powder
JP7277426B2 (en) 2020-12-10 2023-05-19 山陽特殊製鋼株式会社 Shaped body made from powder

Also Published As

Publication number Publication date
JP6392530B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5887374B2 (en) Ferrous sintered alloy valve seat
JP5462325B2 (en) Ferrous sintered alloy valve seat
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
JP3928782B2 (en) Method for producing sintered alloy for valve seat
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
JP4213060B2 (en) Ferrous sintered alloy material for valve seats
JP6305811B2 (en) Ferrous sintered alloy material for valve seat and method for producing the same
JPWO2009122985A1 (en) Ferrous sintered alloy for valve seat and valve seat for internal combustion engine
JP2009263722A (en) Production method for sintered machine component
JP2017115184A (en) Valve sheet for internal combustion engine excellent in abrasion resistance
JP6392530B2 (en) Ferrous sintered alloy valve seat
JP2012149584A (en) Iron-based sintered alloy valve seat
CN111788025B (en) Sintered valve guide and method for manufacturing same
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP6842345B2 (en) Abrasion-resistant iron-based sintered alloy manufacturing method
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2009035785A (en) Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
WO2022185758A1 (en) Valve seat made of iron-based sintered alloy
CN111771008A (en) Heat-resistant sintered alloy material
KR20120131790A (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2013173961A (en) Valve seat made from iron-based sintered alloy
JP2002220645A (en) Iron-based sintered alloy of hard-particle dispersion type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees