JP2015178553A - Aromatic polyester-based resin foam particle, method of producing aromatic polyester-based resin foam particle and molding - Google Patents

Aromatic polyester-based resin foam particle, method of producing aromatic polyester-based resin foam particle and molding Download PDF

Info

Publication number
JP2015178553A
JP2015178553A JP2014056197A JP2014056197A JP2015178553A JP 2015178553 A JP2015178553 A JP 2015178553A JP 2014056197 A JP2014056197 A JP 2014056197A JP 2014056197 A JP2014056197 A JP 2014056197A JP 2015178553 A JP2015178553 A JP 2015178553A
Authority
JP
Japan
Prior art keywords
aromatic polyester
particles
primary
expanded
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056197A
Other languages
Japanese (ja)
Other versions
JP6133807B2 (en
Inventor
春彦 松浦
Haruhiko Matsuura
春彦 松浦
裕一 権藤
Yuichi Gondo
裕一 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2014056197A priority Critical patent/JP6133807B2/en
Publication of JP2015178553A publication Critical patent/JP2015178553A/en
Application granted granted Critical
Publication of JP6133807B2 publication Critical patent/JP6133807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aromatic polyester resin foam particle which is light and has excellent moldability.SOLUTION: An aromatic polyester-based resin foam particle is obtained by impregnating primary foam particles of an aromatic polyester-based resin with a pressurized gas and heating the primary foam particles impregnated with the pressurized gas to foam again and has a bulk density of 0.0100-0.0199 g/cmand a sphericity of 0.7 or higher.

Description

本発明は、芳香族ポリエステル系樹脂を発泡させることにより得られる芳香族ポリエステル系樹脂発泡粒子、及び該芳香族ポリエステル系樹脂発泡粒子の製造方法に関する。また、本発明は、上記芳香族ポリエステル系樹脂発泡粒子を用いた成形体に関する。   The present invention relates to an aromatic polyester resin foamed particle obtained by foaming an aromatic polyester resin and a method for producing the aromatic polyester resin foam particle. Moreover, this invention relates to the molded object using the said aromatic polyester-type resin expanded particle.

芳香族ポリエステル系樹脂発泡粒子及びそれを用いた成形体は、耐熱性、断熱性及び緩衝性に優れている。このため、上記芳香族ポリエステル系樹脂発泡粒子を用いた成形体は、輸送用包装部材や自動車部材等に用いられている。近年、輸送用包装部材や自動車部材の分野では、省エネルギー化等の観点から、軽量化が進められている。芳香族ポリエステル系樹脂発泡粒子及びそれを用いた成形体でも、軽量化、即ち低密度化が求められている。   Aromatic polyester-based resin expanded particles and molded articles using the same are excellent in heat resistance, heat insulation and buffering properties. For this reason, the molded object using the said aromatic polyester-type resin expanded particle is used for the packaging member for transport, the motor vehicle member, etc. In recent years, weight reduction has been promoted in the fields of packaging materials for transportation and automobile members from the viewpoint of energy saving. There is also a demand for weight reduction, that is, density reduction, in the aromatic polyester-based resin expanded particles and the molded body using the same.

上記芳香族ポリエステル系樹脂発泡粒子の一例として、下記の特許文献1には、押出により得られる芳香族ポリエステル系樹脂発泡体を裁断することで得られ、嵩密度が0.01〜1.0g/cmである芳香族ポリエステル系樹脂発泡粒子が開示されている。 As an example of the above-mentioned aromatic polyester resin foamed particles, the following Patent Document 1 is obtained by cutting an aromatic polyester resin foam obtained by extrusion, and has a bulk density of 0.01 to 1.0 g / Aromatic polyester resin expanded particles having a cm 3 size are disclosed.

下記の特許文献2には、ストランド状に押し出すことで得られる芳香族ポリエステル系樹脂発泡体を裁断した芳香族ポリエステル系樹脂発泡粒子を用いて、該芳香族ポリエステル系樹脂発泡粒子に加圧気体を含浸させた後に、加圧気体が含浸された芳香族ポリエステル系樹脂発泡粒子を加熱し、再発泡させることで得られ、嵩密度が0.02〜0.06g/cmである芳香族ポリエステル系樹脂発泡粒子が開示されている。 Patent Document 2 below uses an aromatic polyester resin foamed particle obtained by cutting an aromatic polyester resin foam obtained by extruding into a strand shape, and applies a pressurized gas to the aromatic polyester resin foamed particle. After impregnating, the aromatic polyester resin foam particles impregnated with pressurized gas are heated and re-foamed, and the bulk density is 0.02 to 0.06 g / cm 3. Resin foam particles are disclosed.

特許第3619154号公報Japanese Patent No. 3619154 特許第3640596号公報Japanese Patent No. 3640596

特許文献1に記載の芳香族ポリエステル系樹脂発泡粒子は、押出により得られる発泡体を裁断して得られている。このため、裁断された発泡粒子は、角張った形状にならざるを得ず、例えば略円柱状、角状又はチップ状にならざるを得ない。成形時の充填性を高める観点からは、発泡粒子が角張った形状を有することは好ましくない。特許文献1に記載の発泡粒子は、その形状に問題があると言える。   The aromatic polyester resin expanded particles described in Patent Document 1 are obtained by cutting a foam obtained by extrusion. For this reason, the cut foamed particles must have an angular shape, for example, a substantially cylindrical shape, a square shape, or a chip shape. From the viewpoint of improving the filling property at the time of molding, it is not preferable that the foamed particles have an angular shape. It can be said that the foamed particles described in Patent Document 1 have a problem in shape.

また、特許文献2では、芳香族ポリエステル系樹脂を用いて得られ、略円柱状である一次発泡粒子を再発泡させることで、より丸みを帯びた形状としている。丸みを帯びた形状の発泡粒子とすることで、充填性を改善することができる。しかし、特許文献2では、得られる発泡粒子の嵩密度は小さくても0.02g/cmに留まる。特許文献2では、発泡粒子の嵩密度は0.02g/cmよりも小さくされておらず、そのような小さな嵩密度は達成されていない。特許文献2に記載の発泡粒子では、軽量性の観点からより低密度な発泡粒子が求められている現状に、充分に対応することができない。 Moreover, in patent document 2, it is set as the rounder shape by re-foaming the primary foaming particle which is obtained using aromatic polyester-type resin and is substantially columnar shape. Fillability can be improved by using rounded foam particles. However, in Patent Document 2, the foamed particles obtained have a bulk density of 0.02 g / cm 3 even if it is small. In Patent Document 2, the bulk density of the expanded particles is not smaller than 0.02 g / cm 3 , and such a small bulk density is not achieved. The foamed particles described in Patent Document 2 cannot sufficiently cope with the current situation where lower density foamed particles are required from the viewpoint of lightness.

本発明の目的は、軽量であり、かつ、成形性にも優れている芳香族ポリエステル系樹脂発泡粒子、及び該芳香族ポリエステル系樹脂発泡粒子の製造方法を提供することである。また、本発明の限定的な目的は、より丸みを帯びた芳香族ポリエステル系樹脂発泡粒子、及び該芳香族ポリエステル系樹脂発泡粒子の製造方法を提供することである。また、本発明は、上記芳香族ポリエステル系樹脂発泡粒子を用いた成形体を提供することも目的とする。   An object of the present invention is to provide an aromatic polyester resin expanded particle that is lightweight and excellent in moldability, and a method for producing the aromatic polyester resin expanded particle. Moreover, the limited objective of this invention is to provide the manufacturing method of the aromatic polyester-type resin expanded particle more rounded, and this aromatic polyester-type resin expanded particle. Another object of the present invention is to provide a molded article using the above-mentioned aromatic polyester resin expanded particles.

本発明の広い局面によれば、芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させた後、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させることにより得られ、嵩密度が0.0100g/cm以上、0.0199g/cm以下であり、真球度が0.7以上である、芳香族ポリエステル系樹脂発泡粒子が提供される。 According to a wide aspect of the present invention, the primary foamed particles of an aromatic polyester resin are impregnated with a pressurized gas, and then the primary foamed particles impregnated with the pressurized gas are heated and re-foamed. An aromatic polyester-based resin expanded particle having a bulk density of 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less and a sphericity of 0.7 or more is provided.

本発明の広い局面によれば、芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させる含浸工程と、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させて、嵩密度が0.0100g/cm以上、0.0199g/cm以下である芳香族ポリエステル系樹脂発泡粒子を得る再発泡工程とを備え、得られる芳香族ポリエステル系樹脂発泡粒子の真球度が0.7以上であるか、又は、前記再発泡工程において、再発泡前の前記一次発泡粒子よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子が丸みを帯びるように、前記加圧気体が含浸された一次発泡粒子を、加熱して再発泡させる、芳香族ポリエステル系樹脂発泡粒子の製造方法が提供される。 According to a wide aspect of the present invention, an impregnation step of impregnating a primary expanded particle of an aromatic polyester resin with a pressurized gas, and heating the primary expanded particle impregnated with the pressurized gas to re-foam, And a re-foaming step for obtaining foamed aromatic polyester resin particles having a density of 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less, and the obtained spherical polyester resin foam particles have a sphericity of 0. 7 or more, or in the re-foaming step, the pressurized gas is impregnated so that the aromatic polyester-based resin foam particles obtained after re-foaming are rounder than the primary foam particles before re-foaming. There is provided a method for producing aromatic polyester resin foamed particles, wherein the primary foamed particles thus heated are re-foamed by heating.

本発明に係る芳香族ポリエステル系樹脂発泡粒子の製造方法のある特定の局面では、真球度が0.7以上である芳香族ポリステル系樹脂発泡粒子を得る。本発明に係る芳香族ポリエステル系樹脂発泡粒子の製造方法の他の特定の局面では、前記再発泡工程において、芳香族ポリエステル系樹脂のガラス転移温度を超える温度に加熱することにより再発泡を行った後に、芳香族ポリエステル系樹脂のガラス転移温度以下まで冷却する際に、再発泡温度未満、ガラス転移温度以上の温度領域で60秒以上かけて冷却を行なう。   In a specific aspect of the method for producing the aromatic polyester resin expanded particle according to the present invention, an aromatic polyester resin expanded particle having a sphericity of 0.7 or more is obtained. In another specific aspect of the method for producing foamed aromatic polyester resin particles according to the present invention, in the refoaming step, refoaming was performed by heating to a temperature exceeding the glass transition temperature of the aromatic polyester resin. Later, when cooling to below the glass transition temperature of the aromatic polyester-based resin, cooling is performed over 60 seconds in a temperature range below the refoaming temperature and above the glass transition temperature.

本発明のある特定の局面では、前記一次発泡粒子の嵩密度が0.08g/cm以上、0.15g/cm以下である。本発明の他の特定の局面では、前記芳香族ポリエステル系樹脂の結晶化ピーク温度が130℃以上、180℃以下である。 In a specific aspect of the present invention, the primary expanded particles have a bulk density of 0.08 g / cm 3 or more and 0.15 g / cm 3 or less. In another specific aspect of the present invention, the aromatic polyester resin has a crystallization peak temperature of 130 ° C. or higher and 180 ° C. or lower.

本発明の広い局面によれば、上述した芳香族ポリエステル系樹脂発泡粒子を、雄型と雌型とで閉鎖されたキャビティ内に充填した状態で、前記芳香族ポリエステル系樹脂発泡粒子を型内成形することにより得られる、成形体が提供される。   According to a wide aspect of the present invention, the aromatic polyester resin foamed particles are filled in a cavity closed by a male mold and a female mold, and the aromatic polyester resin foam particles are molded in a mold. A molded article obtained by doing so is provided.

前記成形体は、輸送機用部材又は緩衝用部材として好適に用いられる。   The said molded object is used suitably as a member for transportation machines, or a member for buffering.

本発明に係る芳香族ポリエステル系樹脂発泡粒子は、芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させた後、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させることにより得られ、嵩密度が0.0100g/cm以上、0.0199g/cm以下であり、真球度が0.7以上であるので、軽量であり、かつ、成形性を高めることができる。 In the aromatic polyester resin foamed particles according to the present invention, the primary foamed particles of the aromatic polyester resin are impregnated with the pressurized gas, and then the primary foamed particles impregnated with the pressurized gas are heated and re-foamed. Since the bulk density is 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less and the sphericity is 0.7 or more, the weight is light and the moldability is improved. it can.

本発明に係る芳香族ポリエステル系樹脂発泡粒子の製造方法は、芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させる含浸工程と、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させて、嵩密度が0.0100g/cm以上、0.0199g/cm以下である芳香族ポリエステル系樹脂発泡粒子を得る再発泡工程とを備えており、更に得られる芳香族ポリエステル系樹脂発泡粒子の真球度が0.7以上であるか、又は、上記再発泡工程において、再発泡前の上記一次発泡粒子よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子が丸みを帯びるように、上記加圧気体が含浸された一次発泡粒子を加熱して、再発泡させるので、軽量であり、かつ、成形性にも優れている芳香族ポリエステル系樹脂発泡粒子を提供することができる。 The method for producing foamed aromatic polyester resin particles according to the present invention includes an impregnation step of impregnating primary expanded particles of an aromatic polyester resin with a pressurized gas, and heating the primary expanded particles impregnated with the pressurized gas. And a re-foaming step of obtaining foamed aromatic polyester resin particles having a bulk density of 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less by re-foaming, and further obtainable aromatic polyester The sphericity of the resin-based resin foamed particles is 0.7 or more, or in the re-foaming step, the aromatic polyester-based resin foamed particles obtained after re-foaming are rounder than the primary foamed particles before re-foaming. Since the primary foamed particles impregnated with the pressurized gas are heated and re-foamed so as to be tinged, the foamed aromatic polyester resin particles are lightweight and have excellent moldability It is possible to provide.

図1は、本発明の一実施形態に係る芳香族ポリエステル系樹脂発泡粒子の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of an aromatic polyester-based resin expanded particle according to an embodiment of the present invention. 図2は、図1に示す芳香族ポリエステル系樹脂発泡粒子を得るために用いられる一次発泡粒子の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of primary foam particles used to obtain the aromatic polyester resin foam particles shown in FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(芳香族ポリエステル系樹脂発泡粒子及びその製造方法)
本発明に係る芳香族ポリエステル系樹脂発泡粒子(以下、発泡粒子と略記することがある)では、芳香族ポリエステル系樹脂の一次発泡粒子を用いる。この一次発泡粒子は、芳香族ポリエステル系樹脂により形成されており、発泡している粒子である。この一次発泡粒子は、再発泡により得られる発泡粒子と区別するために、一次発泡粒子と呼ぶ。なお、再発泡により得られる発泡粒子は、再発泡粒子と呼ぶこともできる。
(Aromatic polyester resin foamed particles and method for producing the same)
In the aromatic polyester-based resin expanded particles (hereinafter sometimes abbreviated as expanded particles) according to the present invention, primary expanded particles of an aromatic polyester-based resin are used. The primary expanded particles are formed of an aromatic polyester resin and are expanded particles. The primary expanded particles are referred to as primary expanded particles in order to distinguish from the expanded particles obtained by re-expanding. In addition, the expanded particle obtained by re-expanding can also be called re-expanded particle.

本発明に係る発泡粒子は、芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させた後、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させることにより得られる。本発明に係る発泡粒子は、一次発泡粒子を再発泡させることにより得られるため、一次発泡粒子の嵩密度よりも低い嵩密度を有する。本発明に係る発泡粒子の嵩密度は0.0100g/cm以上、0.0199g/cm以下であり、比較的小さい。本発明に係る発泡粒子の真球度は、0.7以上であり、比較的高い。 The foamed particles according to the present invention can be obtained by impregnating the primary foamed particles of the aromatic polyester resin with a pressurized gas and then heating and re-foaming the primary foamed particles impregnated with the pressurized gas. Since the expanded particles according to the present invention are obtained by re-expanding the primary expanded particles, the expanded particles have a bulk density lower than that of the primary expanded particles. The bulk density of the expanded particles according to the present invention is 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less, which is relatively small. The sphericity of the expanded particles according to the present invention is 0.7 or more, which is relatively high.

本発明に係る芳香族ポリエステル系樹脂発泡粒子(発泡粒子)の製造方法では、上述した本発明に係る発泡粒子を得ることが可能である。本発明に係る発泡粒子の製造方法は、芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させる含浸工程と、加圧気体が含浸された一次発泡粒子を、加熱して再発泡させる再発泡工程とを備える。本発明に係る発泡粒子の製造方法では、嵩密度が0.0100g/cm以上、0.0199g/cm以下である発泡粒子を得る。本発明に係る発泡粒子の製造方法では、嵩密度が比較的低い発泡粒子を得る。 In the production method of the aromatic polyester resin expanded particles (expanded particles) according to the present invention, the expanded particles according to the present invention described above can be obtained. The method for producing expanded particles according to the present invention includes an impregnation step of impregnating primary expanded particles of an aromatic polyester resin with a pressurized gas, and re-expanding by heating the expanded primary particles impregnated with the pressurized gas. A foaming step. In the method for producing expanded particles according to the present invention, expanded particles having a bulk density of 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less are obtained. In the method for producing foamed particles according to the present invention, foamed particles having a relatively low bulk density are obtained.

また、本発明に係る発泡粒子の製造方法は、1)得られる芳香族ポリエステル系樹脂発泡粒子の真球度が0.7以上であるか、又は、2)上記再発泡工程において、再発泡前の上記一次発泡粒子よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子が丸みを帯びるように、上記加圧気体が含浸された一次発泡粒子を加熱して、再発泡させる。本発明に係る発泡粒子の製造方法では、上記1)の構成が備えられてもよく、上記2)の構成が備えられていてもよい。上記1)の構成と上記2)の構成との双方が備えられることが好ましい。   Moreover, the manufacturing method of the expanded particle which concerns on this invention is 1) the sphericity of the aromatic polyester-type resin expanded particle obtained is 0.7 or more, or 2) In the said re-foaming process, before re-foaming The primary foamed particles impregnated with the pressurized gas are heated and refoamed so that the aromatic polyester resin foamed particles obtained after refoaming are rounder than the primary foamed particles. In the manufacturing method of the expanded particle which concerns on this invention, the structure of said 1) may be provided, and the structure of said 2) may be provided. It is preferable that both the configuration of 1) and the configuration of 2) are provided.

本発明に係る発泡粒子及び本発明に係る発泡粒子の製造方法では、上述した構成が備えられているので、軽量であり、かつ成形性にも優れている発泡粒子を提供できる。本発明に係る発泡粒子及び本発明に係る発泡粒子の製造方法により得られる発泡粒子が、より丸みを帯びていたり、より高い真球度を有していたりすることで、成形性がより一層高くなる。   Since the foamed particles according to the present invention and the foamed particle production method according to the present invention have the above-described configuration, it is possible to provide foamed particles that are lightweight and have excellent moldability. The foamed particles according to the present invention and the foamed particles obtained by the method for producing foamed particles according to the present invention are more rounded or have a higher sphericity, so that the moldability is further enhanced. Become.

2)上記再発泡工程において、再発泡前の上記一次発泡粒子よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子が丸みを帯びるように、上記加圧気体が含浸された一次発泡粒子を加熱して、再発泡させる構成は、2’)上記再発泡工程において、再発泡前の上記一次発泡粒子よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子の真球度が高くなるように、上記加圧気体が含浸された一次発泡粒子を加熱して、再発泡させる構成であることが好ましい。   2) In the re-foaming step, the primary foam particles impregnated with the pressurized gas are heated so that the aromatic polyester resin foam particles obtained after re-foaming are rounder than the primary foam particles before re-foaming. In the re-foaming step, the re-foaming configuration is 2 ′) so that the sphericity of the aromatic polyester-based resin foam particles obtained after re-foaming is higher than the primary foam particles before re-foaming. The primary foamed particles impregnated with the pressurized gas are preferably heated and re-foamed.

図1は、本発明の一実施形態に係る芳香族ポリエステル系樹脂発泡粒子の一例を模式的に示す断面図である。図2は、図1に示す芳香族ポリエステル系樹脂発泡粒子を得るために用いられる一次発泡粒子の一例を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing an example of an aromatic polyester-based resin expanded particle according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an example of primary foam particles used to obtain the aromatic polyester resin foam particles shown in FIG.

図1に示す芳香族ポリエステル系樹脂発泡粒子1は、丸みを帯びており、真球度が高い。図1に示す芳香族ポリエステル系樹脂発泡粒子1は、図2に示す一次発泡粒子11を再発泡させることにより得ることができる。図1,2に示すように、再発泡前の一次発泡粒子11よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子1の方が、丸みを帯びている。再発泡前の一次発泡粒子11よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子1の方が、真球度が高い。   The aromatic polyester resin expanded particles 1 shown in FIG. 1 are rounded and have high sphericity. The aromatic polyester resin expanded particles 1 shown in FIG. 1 can be obtained by re-expanding the primary expanded particles 11 shown in FIG. As shown in FIGS. 1 and 2, the aromatic polyester resin foam particles 1 obtained after re-foaming are rounder than the primary foam particles 11 before re-foaming. The aromatic polyester resin foamed particles 1 obtained after refoaming have higher sphericity than the primary foamed particles 11 before refoaming.

以下、本発明に係る発泡粒子及び本発明に係る発泡粒子の製造方法をより具体的に説明する。   Hereinafter, the foamed particles according to the present invention and the method for producing the foamed particles according to the present invention will be described more specifically.

[一次発泡粒子及びその製造方法]
本発明では、芳香族ポリエステル系樹脂の一次発泡粒子が用いられる。本発明に係る発泡粒子の製造方法では、予め用意された芳香族ポリエステル系樹脂の一次発泡粒子を用いてもよく、芳香族ポリエステル系樹脂を用いて、芳香族ポリエステル系樹脂の一次発泡粒子を得る一次発泡工程が行われてもよい。
[Primary expanded particles and production method thereof]
In the present invention, primary expanded particles of an aromatic polyester resin are used. In the method for producing foamed particles according to the present invention, primary foamed particles of an aromatic polyester resin prepared in advance may be used, and primary foamed particles of an aromatic polyester resin are obtained using the aromatic polyester resin. A primary foaming process may be performed.

芳香族ポリエステル系樹脂として、従来公知の種々の芳香族ポリエステル系樹脂がいずれも、使用可能である。ただし、芳香族ポリエステル系樹脂の中には、加熱により結晶化しやすい樹脂がある。結晶化しやすい芳香族ポリエステル系樹脂発泡粒子では、再発泡時に結晶化が進行し、再発泡が阻害され、十分に低密度な発泡粒子を得ることが困難になる可能性がある。従って、芳香族ポリエステル系樹脂として、結晶化速度が抑えられた樹脂、すなわち、下記結晶化ピーク温度を有する樹脂が好ましい。   Any of various conventionally known aromatic polyester resins can be used as the aromatic polyester resin. However, some aromatic polyester-based resins are easily crystallized by heating. In an aromatic polyester resin foamed particle that is easily crystallized, crystallization proceeds at the time of re-foaming, re-foaming is hindered, and it may be difficult to obtain sufficiently low-density foamed particles. Therefore, as the aromatic polyester-based resin, a resin having a suppressed crystallization rate, that is, a resin having the following crystallization peak temperature is preferable.

再発泡時の発泡性を一層高める観点からは、芳香族ポリエステル系樹脂及び一次発泡粒子の結晶化ピーク温度は好ましくは130℃以上、より好ましくは132℃以上、更に好ましくは135℃以上、好ましくは180℃以下、より好ましくは175℃以下、更に好ましくは170℃以下である。   From the viewpoint of further improving the foamability at the time of re-foaming, the crystallization peak temperature of the aromatic polyester resin and the primary foamed particles is preferably 130 ° C or higher, more preferably 132 ° C or higher, still more preferably 135 ° C or higher, preferably 180 ° C. or lower, more preferably 175 ° C. or lower, and further preferably 170 ° C. or lower.

芳香族ポリエステル系樹脂を構成するジカルボン酸、及びジオール(ジオール化合物)の組成を変更して、樹脂の分子構造を制御することにより、上記結晶化ピーク温度を上記下限以上及び上記上限以下とすることが容易である。   By changing the composition of the dicarboxylic acid and diol (diol compound) constituting the aromatic polyester-based resin and controlling the molecular structure of the resin, the crystallization peak temperature is set to the above lower limit and below the upper limit. Is easy.

結晶化ピーク温度を好適な範囲に制御することが容易であるジカルボン酸及びジオールとしては、イソフタル酸、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールA、及びビスフェノールAのエチレンオキサイド付加物等が挙げられる。   Examples of the dicarboxylic acid and diol that can easily control the crystallization peak temperature within a suitable range include isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A, and an ethylene oxide adduct of bisphenol A. Is mentioned.

例えば、ジカルボン酸としてイソフタル酸を用いたり、ジオールとして1,4−シクロヘキサンジメタノールを用いたりする場合には、イソフタル酸から誘導されるユニット(IPAユニット)又は1,4−シクロヘキサンジメタノールから誘導されるユニット(CHDMユニット)の、芳香族ポリエステル系樹脂中での含有割合は、好ましくは0.5重量%以上、好ましくは10重量%以下である。例えば、ジカルボン酸としてイソフタル酸を用いかつジオールとして1,4−シクロヘキサンジメタノールを用いる場合には、IPAユニットとCHDMユニットとの、芳香族ポリエステル系樹脂中での合計の含有割合は、好ましくは0.5重量%以上、好ましくは10重量%以下である。   For example, when isophthalic acid is used as the dicarboxylic acid or 1,4-cyclohexanedimethanol is used as the diol, it is derived from a unit derived from isophthalic acid (IPA unit) or 1,4-cyclohexanedimethanol. The content ratio of the unit (CHDM unit) in the aromatic polyester resin is preferably 0.5% by weight or more, and preferably 10% by weight or less. For example, when isophthalic acid is used as the dicarboxylic acid and 1,4-cyclohexanedimethanol is used as the diol, the total content of the IPA unit and the CHDM unit in the aromatic polyester resin is preferably 0. .5% by weight or more, preferably 10% by weight or less.

イソフタル酸、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールA、又はビスフェノールAのエチレンオキサイド付加物等と共に芳香族ポリエステル系樹脂を構成する他の成分のうち、ジカルボン酸としては、例えばテレフタル酸及びフタル酸等が挙げられる。   Among the other components constituting the aromatic polyester resin together with isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A, or ethylene oxide adduct of bisphenol A, as dicarboxylic acid, for example, terephthalic acid And phthalic acid.

ジオールとしては、例えばエチレングリコール、α−ブチレングリコール(1,2−ブタンジオール)、β−ブチレングリコール(1,3−ブタンジオール)、テトラメチレングリコール(1,4−ブタンジオール)、2,3−ブチレングリコール(2,3−ブタンジオール)、及びネオペンチルグリコール等が挙げられる。   Examples of the diol include ethylene glycol, α-butylene glycol (1,2-butanediol), β-butylene glycol (1,3-butanediol), tetramethylene glycol (1,4-butanediol), 2,3- Examples include butylene glycol (2,3-butanediol) and neopentyl glycol.

芳香族ポリエステル系樹脂の原料として、上記の各成分に加え、例えば酸成分として、三価以上の多価カルボン酸やその無水物を用いたり、アルコール成分として三価以上の多価アルコールを用いたりしてもよい。これらの成分は、芳香族ポリエステル系樹脂の結晶性や結晶化速度などに影響を及ぼさない範囲で少量含有させてもよい。三価以上の多価カルボン酸としては、トリメット酸などのトリカルボン酸、及びピロメリット酸などのテトラカルボン酸等が挙げられる。三価以上の多価アルコールとしては、グリセリンなどのトリオール(トリオール化合物)、及びペンタエリスリトールなどのテトラオール(テトラオール化合物)等が挙げられる。   In addition to each of the above components as a raw material for the aromatic polyester resin, for example, a trivalent or higher polyvalent carboxylic acid or its anhydride is used as an acid component, or a trivalent or higher polyhydric alcohol is used as an alcohol component. May be. These components may be contained in a small amount as long as they do not affect the crystallinity and crystallization speed of the aromatic polyester resin. Examples of the trivalent or higher polyvalent carboxylic acid include tricarboxylic acid such as trimet acid, and tetracarboxylic acid such as pyromellitic acid. Examples of the trihydric or higher polyhydric alcohol include triols (triol compounds) such as glycerin and tetraols (tetraol compounds) such as pentaerythritol.

芳香族ポリエステル系樹脂は、再生樹脂(リサイクル樹脂)であってもよい。使用済みのペットボトルから回収、再生した芳香族ポリエステル系樹脂を用いてもよい。再資源化した芳香族ポリエステル系樹脂の使用は、資源を有効に活用し、ごみを減らして環境負荷を低減し、かつ、発泡粒子及び成形体のコストを低くすることに寄与する。   The aromatic polyester resin may be a recycled resin (recycled resin). You may use the aromatic polyester-type resin collect | recovered and recycled from the used PET bottle. The use of the recycled aromatic polyester resin contributes to the effective use of resources, the reduction of dust and the environmental load, and the reduction of the cost of expanded particles and molded products.

芳香族ポリエステル系樹脂を高圧溶融下、発泡剤と混合して、発泡させることにより、一次発泡粒子を得ることができる。一次発泡粒子を製造する方法は、押出機を用いた押出発泡法が好ましい。押出機は特に限定されず、単独押出機及び二軸押出機等が使用可能である。押出機は、複数の押出機を連結したタンデム型であってもよい。十分な溶融及び混合能力を有する押出機が好ましい。押出機の口金として、ノズル金型を用いることが好ましく、特に複数のノズルが配置されたマルチノズル口金を用いることが好ましい。押出発泡させて得られた発泡体の冷却方法としては、空冷方法、水冷方法、並びに温度調整された冷却装置に接触させる方法等が挙げられる。これら以外の冷却方法を用いてもよい。押出機を用いて製造されたストランド形状の発泡体を、ペレタイザーなどを用いて粒子の形状に切断することで、一次発泡粒子が得られる。   Primary foamed particles can be obtained by mixing and foaming an aromatic polyester resin with a foaming agent under high pressure melting. The method for producing primary expanded particles is preferably an extrusion foaming method using an extruder. An extruder is not specifically limited, A single extruder, a twin screw extruder, etc. can be used. The extruder may be a tandem type in which a plurality of extruders are connected. An extruder with sufficient melting and mixing capability is preferred. As the die of the extruder, it is preferable to use a nozzle die, and it is particularly preferable to use a multi-nozzle die in which a plurality of nozzles are arranged. Examples of the method for cooling the foam obtained by extrusion foaming include an air cooling method, a water cooling method, and a method of contacting a temperature-controlled cooling device. Other cooling methods may be used. A primary foamed particle can be obtained by cutting a strand-shaped foam produced using an extruder into a particle shape using a pelletizer or the like.

一次発泡粒子の嵩密度は、好ましくは0.08g/cm以上、好ましくは0.15g/cm以下である。一次発泡粒子の嵩密度が上記下限以上及び上記上限以下であると、再発泡性がより一層良好になり、再発泡が効率的に進行し、かつ再発泡後の発泡粒子の嵩密度をより一層低くすることが容易である。再発泡性のよい一次発泡粒子を用いれば、より丸みを帯びた発泡粒子、及び真球度がより一層高い発泡粒子を得ることが容易である。 The bulk density of the primary expanded particles is preferably 0.08 g / cm 3 or more, and preferably 0.15 g / cm 3 or less. When the bulk density of the primary foamed particles is not less than the above lower limit and not more than the above upper limit, the refoaming property is further improved, the refoaming proceeds efficiently, and the bulk density of the foamed particles after refoaming is further increased. It is easy to lower. If primary expanded particles having good re-expandability are used, it is easy to obtain expanded particles having a more rounded shape and expanded particles having a higher sphericity.

芳香族ポリエステル系樹脂を高圧溶融下、発泡剤と混合して、発泡させて、一次発泡粒子を製造する際等には、溶融張力改質剤を用いてもよい。溶融張力改質剤としては、グリシジルフタレートなどのエポキシ化合物、ピロメリット酸二無水物などの酸無水物、炭酸ナトリウムなどの1a族又は2a族の金属化合物、並びに炭酸エステル化合物等が挙げられる。溶融張力改質剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   When an aromatic polyester resin is mixed with a foaming agent under high pressure melting and foamed to produce primary foamed particles, a melt tension modifier may be used. Examples of the melt tension modifier include epoxy compounds such as glycidyl phthalate, acid anhydrides such as pyromellitic dianhydride, Group 1a or Group 2a metal compounds such as sodium carbonate, and carbonate compounds. As for a melt tension modifier, only 1 type may be used and 2 or more types may be used together.

溶融張力改質剤の使用量は、溶融張力改質剤の種類などにより適宜調整することができる。芳香族ポリエステル系樹脂100重量部に対して、溶融張力改質剤の使用量は好ましくは0.05重量部以上、より好ましくは0.06重量部以上、好ましくは1.0重量部以下、より好ましくは0.5重量部以下である。溶融張力改質剤の使用量が上記下限以上及び上記上限以下であると、一次発泡粒子の嵩密度を良好な範囲に制御することが容易である。   The amount of the melt tension modifier used can be appropriately adjusted depending on the type of the melt tension modifier. The amount of the melt tension modifier used is preferably 0.05 parts by weight or more, more preferably 0.06 parts by weight or more, preferably 1.0 parts by weight or less, based on 100 parts by weight of the aromatic polyester resin. Preferably it is 0.5 weight part or less. When the amount of the melt tension modifier used is not less than the above lower limit and not more than the above upper limit, it is easy to control the bulk density of the primary expanded particles within a favorable range.

芳香族ポリエステル系樹脂と溶融張力改質剤とは、これらを所定の割合で溶融及び混錬して用いてもよく、これらの混合原料を押出機に投入してもよい。また、一次発泡粒子の製造状況を確認しながら、その溶融張力を微調整できることから、芳香族ポリエステル系樹脂と溶融張力改質剤とを溶融及び混錬せずに、これらの原料を別々に押出機に投入してもよい。   The aromatic polyester resin and the melt tension modifier may be used by melting and kneading them at a predetermined ratio, and these mixed raw materials may be fed into an extruder. In addition, since the melt tension can be fine-tuned while confirming the production status of the primary expanded particles, these raw materials are extruded separately without melting and kneading the aromatic polyester resin and the melt tension modifier. You may throw it into the machine.

押出発泡する際に、様々な添加剤を添加することができる。添加剤としては、発泡剤、気泡調整剤、難燃剤、帯電防止剤及び着色剤等が挙げられる。気泡調整剤としては、タルクやポリテトラフロオロエチレンが好適である。   Various additives can be added during extrusion foaming. Examples of the additive include a foaming agent, a bubble adjusting agent, a flame retardant, an antistatic agent, and a colorant. As the bubble adjusting agent, talc and polytetrafluoroethylene are suitable.

発泡剤としては、大別すると、芳香族ポリエステル系樹脂の軟化点以上の温度で分解してガスを発生する化学発泡剤、物理発泡剤、及び不活性気体等が挙げられる。   Broadly speaking, the foaming agent includes a chemical foaming agent, a physical foaming agent, an inert gas, and the like that decompose and generate gas at a temperature equal to or higher than the softening point of the aromatic polyester resin.

化学発泡剤としては、例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾルジカルボンアミド、及び重炭酸ナトリウム等が挙げられる。物理発泡剤としては、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、シクロペンタン及びヘキサンなどの飽和脂肪族炭化水素、塩化メチル及びフレオン(登録商標)などのハロゲン化炭化水素、並びにジメチルエーテル及びメチル−tert−ブチルエーテルなどのエーテル化合物等が挙げられる。不活性気体としては、例えば二酸化炭素及び窒素等が挙げられる。押出発泡時の発泡性、環境への影響、取り扱い性等を考慮すると、飽和脂肪族炭化水素、芳香族炭化水素又は二酸化炭素が好ましい。   Examples of the chemical foaming agent include azodicarbonamide, dinitrosopentamethylenetetramine, hydrazole dicarbonamide, and sodium bicarbonate. Examples of the physical blowing agent include saturated aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane and hexane, halogenated hydrocarbons such as methyl chloride and Freon (registered trademark), and And ether compounds such as dimethyl ether and methyl-tert-butyl ether. Examples of the inert gas include carbon dioxide and nitrogen. In view of foamability at the time of extrusion foaming, influence on the environment, handleability, etc., saturated aliphatic hydrocarbons, aromatic hydrocarbons or carbon dioxide are preferable.

一次発泡粒子に使用する芳香族ポリエステル系樹脂に、芳香族ポリエステル系樹脂の結晶性や結晶化速度に大きな影響を与えない範囲で、例えばポリプロピレン系樹脂などのポリオレフィン系樹脂、ポリエステル系などの芳香族エラストマー、ポリカーボネート、又はアイオノマーなどを添加してもよい。   The aromatic polyester resin used for the primary foamed particles does not significantly affect the crystallinity and crystallization speed of the aromatic polyester resin, for example, a polyolefin resin such as a polypropylene resin, and an aromatic polyester such as a polyester resin. Elastomers, polycarbonates, or ionomers may be added.

[発泡粒子及びその製造方法の他の詳細]
上記の一次発泡粒子に加圧気体を含浸させる(含浸工程)。含浸工程の後、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させる(再発泡工程)。この含浸工程及び再発泡工程を経て、発泡粒子が得られる。
[Other details of expanded particles and method for producing the same]
The primary expanded particles are impregnated with a pressurized gas (impregnation step). After the impregnation step, the primary expanded particles impregnated with the pressurized gas are heated and re-expanded (re-expanded step). Expanded particles are obtained through the impregnation step and the re-foaming step.

上記含浸工程では、一次発泡粒子を密閉容器内に入れ、炭酸ガス、窒素又はヘリウム等の常温常圧において気体である無機ガスの少なくとも1種を用いて、加圧して、一次発泡粒子にガスを含浸させることが好ましい。密閉容器内のガスは、一次発泡粒子の製造に影響のない範囲で、極少量の有機ガスを含んでもよい。   In the impregnation step, the primary foamed particles are put in a sealed container, pressurized using at least one kind of inorganic gas which is a gas at normal temperature and normal pressure, such as carbon dioxide, nitrogen or helium, and gas is supplied to the primary foamed particles. It is preferable to impregnate. The gas in the sealed container may contain a very small amount of organic gas as long as it does not affect the production of the primary expanded particles.

含浸させる際の圧力は、ゲージ圧で、好ましくは0.1MPa以上、好ましくは10MPa以下である。圧力が0.1MPa以上であると、ガスの含浸が短時間で進行し、加圧気体が含浸された一次発泡粒子の製造効率がより一層高くなる。圧力が10MPaを超えると、含浸促進効果がさほど向上しにくくなると共に、一次発泡粒に皺が発生するようになる。   The pressure at the time of impregnation is a gauge pressure, preferably 0.1 MPa or more, preferably 10 MPa or less. When the pressure is 0.1 MPa or more, the gas impregnation proceeds in a short time, and the production efficiency of the primary expanded particles impregnated with the pressurized gas is further increased. When the pressure exceeds 10 MPa, the impregnation promoting effect is hardly improved, and wrinkles are generated in the primary foam particles.

含浸させる際の圧力は、ゲージ圧で、より好ましくは0.2MPa以上、より好ましくは7MPa以下、更に好ましくは1MPa以下である。圧力が上記下限以上及び上記上限以下であると、ガスを一次発泡粒子により一層効率的かつ良好に含浸させることができる。また、圧力が1MPa以下であると、比較的簡易な構造の含浸設備を用いることができるため、含浸設備を安価で量産可能な設備とすることができる。   The pressure at the time of impregnation is a gauge pressure, More preferably, it is 0.2 MPa or more, More preferably, it is 7 MPa or less, More preferably, it is 1 MPa or less. When the pressure is not less than the above lower limit and not more than the above upper limit, the gas can be more efficiently and satisfactorily impregnated with the primary expanded particles. Moreover, since the impregnation equipment of a comparatively simple structure can be used as a pressure is 1 Mpa or less, an impregnation equipment can be made into the equipment which can be mass-produced cheaply.

含浸時間は、ガスの種類により適宜調整することができる。含浸時間は、好ましくは15分以上、より好ましくは30分以上、更に好ましくは1時間以上、好ましくは48時間以下、より好ましくは24時間以下、更に好ましくは12時間以下である。含浸時間が上記下限以上であると、一次発泡粒子に十分な再発泡性が付与される。含浸時間が上記上限以下であると、生産効率がより一層高くなる。   The impregnation time can be appropriately adjusted depending on the type of gas. The impregnation time is preferably 15 minutes or longer, more preferably 30 minutes or longer, still more preferably 1 hour or longer, preferably 48 hours or shorter, more preferably 24 hours or shorter, still more preferably 12 hours or shorter. When the impregnation time is not less than the above lower limit, sufficient re-foaming property is imparted to the primary expanded particles. When the impregnation time is not more than the above upper limit, the production efficiency is further increased.

上記再発泡工程では、加圧気体が含浸された一次発泡粒子を再発泡させる。再発泡時の加熱温度は、好ましくは55℃以上、好ましくは170℃以下である。加熱温度が上記下限未満であると、再発泡の速度が遅く、発泡粒子が好ましい嵩密度に到達する前に含浸されたガスが散逸しやすくなる。結果的に、目的とする発泡倍数を有する発泡粒子を得ることが困難になる傾向がある。加熱温度が上記上限を超えると、再発泡の速度が速く、発泡粒子の気泡が破れ、発泡粒子の収縮を引き起こしやすくなる。結果的に、目的とする発泡倍数を有する発泡粒子を得ることが困難になる傾向がある。加熱温度の好ましい範囲は上記の通りであるが、70℃を超える温度で加熱を行う場合には、発泡粒子同士の合着を防ぐことができるので、加圧気体が含浸された一次発泡粒子に合着防止剤を塗布することが望ましい。   In the re-foaming step, the primary foam particles impregnated with the pressurized gas are re-foamed. The heating temperature at the time of refoaming is preferably 55 ° C. or higher, preferably 170 ° C. or lower. When the heating temperature is less than the above lower limit, the re-foaming speed is slow, and the gas impregnated before the foamed particles reach a preferred bulk density is likely to dissipate. As a result, it tends to be difficult to obtain expanded particles having the desired expansion ratio. When the heating temperature exceeds the above upper limit, the re-foaming speed is high, the foam particles are broken, and the foam particles are likely to contract. As a result, it tends to be difficult to obtain expanded particles having the desired expansion ratio. Although the preferable range of the heating temperature is as described above, when heating is performed at a temperature exceeding 70 ° C., it is possible to prevent the coalescence of the foamed particles, so that the primary foamed particles impregnated with the pressurized gas can be prevented. It is desirable to apply an anti-fusing agent.

再発泡を行う設備として、例えば再発泡槽を備えたバッチ式の設備を使用する場合には、再発泡槽の高さの50%より下の位置で、再発泡工程における温度計測を行うことが好ましい。   As a facility for performing re-foaming, for example, when using a batch-type facility equipped with a re-foaming tank, temperature measurement in the re-foaming process may be performed at a position below 50% of the height of the re-foaming tank. preferable.

加熱時間は好ましくは12分以下である。加熱時間が12分以下であると、加圧気体が含浸された一次発泡粒子の表面のセル破壊及び表面の荒れ等が発生しにくい。   The heating time is preferably 12 minutes or less. When the heating time is 12 minutes or less, cell destruction of the surface of the primary expanded particles impregnated with the pressurized gas, surface roughness, and the like are unlikely to occur.

再発泡時の加熱媒体としては、熱風、温水、水蒸気、加熱オイル及び加熱ガス等が挙げられる。加熱及び再発泡後の取り扱い性を高め、再発泡をより一層効率的に進行させる観点からは、水蒸気、又は乾燥熱風を含む加熱媒体が好ましい。   Examples of the heating medium at the time of refoaming include hot air, hot water, water vapor, heated oil, and heated gas. From the viewpoint of improving the handleability after heating and re-foaming and allowing re-foaming to proceed more efficiently, a heating medium containing water vapor or dry hot air is preferred.

再発泡工程において、再発泡した発泡粒子を取り出す前に、発泡粒子は冷却される。再発泡工程において、芳香族ポリエステル系樹脂のガラス転移温度を超える温度に加熱することにより再発泡を行った後に、芳香族ポリエステル系樹脂のガラス転移温度以下まで冷却することが好ましい。本発明では、この冷却工程も、再発泡工程の一部とする。   In the re-foaming step, the foamed particles are cooled before taking out the re-foamed foam particles. In the re-foaming step, it is preferable that after re-foaming by heating to a temperature exceeding the glass transition temperature of the aromatic polyester-based resin, cooling to the glass transition temperature of the aromatic polyester-based resin or less. In the present invention, this cooling step is also part of the refoaming step.

本発明における冷却工程は、一定の割合でガラス転移温度以下まで温度低下させてもよいし、必ずしも一定の割合でガラス転移温度以下まで温度低下させなくてもよい。後者の場合には、例えば、再発泡温度未満、ガラス転移温度以上の温度領域で温度を低下させるように、冷却を行ってもよい。この場合、再発泡温度未満、ガラス転移温度以上の温度領域にて60秒以上かけて冷却を行うことが好ましい。冷却時に、再発泡温度未満、ガラス転移温度以上の温度領域で、60秒以上保持されることが好ましい。こうすることで、再発泡直後の気泡内圧力の低下を緩和することができ、冷却速度を調節した場合と同様に発泡粒子の収縮が防止され、より一層丸みを帯び、発泡粒子の真球度がより一層高く、嵩密度の低い発泡粒子を得ることができる。冷却は、段階的に行ってもよく、連続的に行ってもよい。   In the cooling step in the present invention, the temperature may be lowered to a glass transition temperature or less at a constant rate, or the temperature may not necessarily be lowered to a glass transition temperature or less at a constant rate. In the latter case, for example, the cooling may be performed so that the temperature is lowered in a temperature range below the refoaming temperature and above the glass transition temperature. In this case, it is preferable to perform cooling for 60 seconds or more in a temperature range below the refoaming temperature and above the glass transition temperature. During cooling, it is preferably maintained for 60 seconds or more in a temperature range below the refoaming temperature and above the glass transition temperature. In this way, the pressure drop in the bubble immediately after re-foaming can be reduced, and the shrinkage of the foam particles is prevented in the same manner as when the cooling rate is adjusted, and the roundness of the foam particles is further rounded. It is possible to obtain expanded particles having a higher bulk density and a lower bulk density. Cooling may be performed stepwise or continuously.

本発明における冷却工程において、一定の割合でガラス転移温度以下まで温度低下させる場合、芳香族ポリエステル系樹脂のガラス転移温度以下まで冷却する際の冷却速度は、好ましくは1.0℃/秒以下、より好ましくは0.1℃/秒以下である。このような低速度で冷却を行うことが好ましい。一般に、空冷すると、冷却速度はこのような低速度にはならない。空冷よりも冷却速度が遅くなるように、冷却速度を制御することが好ましい。このような低速度で冷却を行うと、気泡内圧力の急低下に伴う収縮が生じ難くなり、発泡粒子がより一層丸みを帯び、発泡粒子の真球度がより一層高くなり、発泡粒子の嵩密度が効果的に低くなる。冷却速度の下限は特に限定されない。発泡粒子の製造効率を高める観点からは、冷却速度は、好ましくは0.01℃/秒以上である。   In the cooling step of the present invention, when the temperature is lowered to a glass transition temperature or lower at a certain rate, the cooling rate when cooling to the glass transition temperature or lower of the aromatic polyester resin is preferably 1.0 ° C./second or lower, More preferably, it is 0.1 ° C./second or less. It is preferable to perform cooling at such a low speed. Generally, when air-cooled, the cooling rate does not become such a low speed. It is preferable to control the cooling rate so that the cooling rate is slower than air cooling. When the cooling is performed at such a low speed, the shrinkage due to the sudden drop in the pressure inside the bubbles is less likely to occur, the foamed particles are more rounded, the sphericity of the foamed particles is further increased, and the volume of the foamed particles is increased. The density is effectively reduced. The lower limit of the cooling rate is not particularly limited. From the viewpoint of increasing the production efficiency of the expanded particles, the cooling rate is preferably 0.01 ° C./second or more.

本発明では、含浸工程及び再発泡工程はそれぞれ、複数回繰返し行ってもよく、3回以上繰返し行ってもよい。例えば、一次発泡粒子を用いて発泡粒子を得るために、第1の含浸工程、第1の再発泡工程、第2の含浸工程、及び第2の再発泡工程を行ってもよい。目的とする発泡粒子の嵩密度、成形体の発泡倍数、並びに発泡粒子及び成形体の品質などによって、含浸工程及び再発泡工程の回数を適宜選択することができる。   In the present invention, each of the impregnation step and the refoaming step may be repeated a plurality of times, or may be repeated three or more times. For example, in order to obtain expanded particles using primary expanded particles, a first impregnation step, a first re-foaming step, a second impregnation step, and a second re-foaming step may be performed. The number of impregnation steps and re-foaming steps can be appropriately selected according to the bulk density of the target expanded particles, the expanded multiple of the molded product, and the quality of the expanded particles and the molded product.

発泡粒子の嵩密度は0.0100g/cm以上、0.0199g/cm以下である。より一層軽量になることから、発泡粒子の嵩密度は好ましくは0.0184g/cm以下である。成形体の強度がより一層高くなることから、発泡粒子の嵩密度は好ましくは0.0115g/cm以上である。 The bulk density of the expanded particles is 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less. The bulk density of the foamed particles is preferably 0.0184 g / cm 3 or less because it becomes lighter. Since the strength of the molded body is further increased, the bulk density of the expanded particles is preferably 0.0115 g / cm 3 or more.

発泡粒子の真球度は好ましくは0.70以上、より好ましくは0.72以上、更に好ましくは0.75以上である。成形性をより一層高める観点からは、真球度は高いほどよい。   The sphericity of the expanded particles is preferably 0.70 or more, more preferably 0.72 or more, and further preferably 0.75 or more. From the viewpoint of further improving the moldability, the higher the sphericity, the better.

(成形体)
上記発泡粒子を成形することにより、成形体を得ることができる。この成形体は、発泡成形体である。この成形体は、型内発泡成形体であることが好ましい。
(Molded body)
A molded body can be obtained by molding the foamed particles. This molded body is a foam molded body. This molded body is preferably an in-mold foam molded body.

上記発泡粒子を用いて成形体(発泡成形体)を製造する方法としては、発泡粒子を、雄型と雌型とで閉鎖されたキャビティ内に充填した状態で、上記芳香族ポリエステル系樹脂発泡粒子を型内成形する方法が挙げられる。雄型と雌型とを閉鎖して形成されたキャビティに発泡粒子を充填し、さらに加熱媒体としてスチームを導入して型内発泡成形する方法が好ましい。加熱媒体としては、熱風又はオイル等を用いてもよい。効率的に成形を行なう観点からは、スチームが最も有効である。   As a method for producing a molded body (foamed molded body) using the foamed particles, the aromatic polyester resin foamed particles are filled with the foamed particles in a cavity closed by a male mold and a female mold. Is a method of molding in a mold. A method in which foamed particles are filled in a cavity formed by closing the male mold and the female mold, and steam is introduced as a heating medium to perform in-mold foam molding. Hot air or oil may be used as the heating medium. From the viewpoint of efficient molding, steam is the most effective.

成形した型内発泡成形体は、金型内で冷却した後に取り出すことが好ましい。スチームで型内発泡成形する場合には、発泡粒子を金型内へ充填した後、まず低圧(例えば0.01MPa程度:ゲージ圧)で一定時間、スチームを内へ吹き込んで、粒子間のエアーを外部へ排出する。ついで、吹き込むスチームの圧を昇圧(例えば0.02MPa程度:ゲージ圧)して、発泡粒子を型内発泡させると共に、粒子同士を融着、又は圧着させて成形体を得ることができる。   The molded in-mold foam molded article is preferably taken out after cooling in the mold. In the case of in-mold foam molding with steam, after filling the foamed particles into the mold, steam is first blown in for a certain time at a low pressure (for example, about 0.01 MPa: gauge pressure), and the air between the particles is blown. Discharge outside. Subsequently, the pressure of the steam to be blown is increased (for example, about 0.02 MPa: gauge pressure) to foam the foamed particles in the mold, and the particles are fused or pressed together to obtain a molded body.

発泡粒子を密閉容器に入れ、炭酸ガス、窒素又はヘリウム等の不活性ガスを圧入した後、発泡成形に使用する直前まで、圧入したガスの雰囲気下を保持することで、発泡粒子の金型内での型内発泡成形時の膨張力をより一層大きくして、良好な発泡成形体を得てもよい。   The foam particles are placed in a closed container, and after injecting an inert gas such as carbon dioxide, nitrogen, or helium, the atmosphere of the infused gas is maintained until immediately before use for foam molding. Further, the expansion force at the time of in-mold foam molding may be further increased to obtain a good foam molded article.

丸みを帯びていたり、真球度が高かったりする発泡粒子を用いることで、型内発泡成形機への充填性が高くなる。この結果、充填不良による外観不良の発生頻度が低くなり、効率的に型内成形体を得ることができる。特に、表面にへこみが少ない成形体が得られる。   By using foamed particles that are rounded or have a high sphericity, the filling property into the in-mold foam molding machine is enhanced. As a result, the frequency of appearance defects due to poor filling is reduced, and an in-mold molded product can be obtained efficiently. In particular, a molded product with less dent on the surface can be obtained.

成形体を用途に応じた大きさに切断し、不要となった成形体部分を回収した後、回収物を切断又は粉砕することによって、発泡粒子として再利用することができる。また、使用済の成形体も同様に再利用することができる。成形体を再利用することにより、ゴミの減量化に貢献できると共に、成形体のコストを低くすることができる。   The molded body can be reused as expanded particles by cutting the molded body into a size corresponding to the intended use, collecting the unnecessary molded body part, and then cutting or crushing the recovered material. Moreover, the used molded object can be reused similarly. By reusing the molded body, it is possible to contribute to the reduction of dust and to reduce the cost of the molded body.

成形体は、車両用バンパーの芯材、ドア内装緩衝材等の車両用緩衝材、電子部品、各種工業資材、食品等の搬送容器等の各種用途に用いることができる。特に、成形体は、輸送機用部材又は緩衝用部材として好適に用いられ、車輛用緩衝材としてより好適に用いられる。   The molded body can be used for various purposes such as a vehicle bumper core material, a vehicle cushioning material such as a door interior cushioning material, electronic parts, various industrial materials, food containers and the like. In particular, the molded body is preferably used as a transporting member or a buffering member, and more preferably used as a vehicle cushioning material.

以下に実施例を掲げて、本発明を更に詳しく説明する。本発明は、以下の実施例のみに限定されない。   The present invention will be described in more detail with reference to the following examples. The present invention is not limited only to the following examples.

(実施例1)
(1)一次発泡粒子の作製
芳香族ポリエステル系樹脂を含む混合原料として、ポリエチレンテレフタレート(三井化学社製「SA−135」)75重量部とユニチカ社製「MA−1344」25重量部とに対し、ポリエチレンテレフタレートにタルクを含有させてなるマスターバッチ(ポリエチレンテレフタレート含有量60重量%、タルク含有量40重量%、ポリエチレンテレフタレートの固有粘度:0.88)1.5重量部を混合した混合原料を用意した。
Example 1
(1) Production of primary expanded particles As a mixed raw material containing an aromatic polyester resin, 75 parts by weight of polyethylene terephthalate (“SA-135” manufactured by Mitsui Chemicals) and 25 parts by weight of “MA-1344” manufactured by Unitika A mixed raw material prepared by mixing 1.5 parts by weight of a master batch (polyethylene terephthalate content 60% by weight, talc content 40% by weight, intrinsic viscosity of polyethylene terephthalate: 0.88) made of polyethylene terephthalate containing talc did.

上記芳香族ポリエステル系樹脂を含む混合原料100重量部に対し、無水ピロメリット酸0.30重量部を混合した混合物を押出機(口径:65mm、L/D比:35)に投入し、スクリュー回転数26rpm及びバレル温度270〜290℃の条件で溶融、混錬し、バレルの途中から、発泡剤であるブタン(n−ブタン/イソブタン=7/3)を混合物100重量部に対して、1.0重量部の割合で圧入した。   A mixture obtained by mixing 0.30 part by weight of pyromellitic anhydride with 100 parts by weight of the mixed raw material containing the aromatic polyester resin is put into an extruder (caliber: 65 mm, L / D ratio: 35), and screw rotation Melting and kneading under the conditions of several 26 rpm and a barrel temperature of 270 to 290 ° C. From the middle of the barrel, butane (n-butane / isobutane = 7/3) as a blowing agent is added to 100 parts by weight of the mixture. It was press-fitted at a rate of 0 part by weight.

次に、バレルの先端に接続したマルチノズル金型(直線状に、孔径0.7mmのノズルが21個配列)の各ノズルを通して、溶融状態の混合物を押し出し、発泡させた後、ペレタイザーの引き取り装置により引き取り、冷却水槽で冷却した。   Next, the molten mixture is extruded and foamed through each nozzle of a multi-nozzle mold (linearly arranged with 21 nozzles having a hole diameter of 0.7 mm) connected to the tip of the barrel. Was taken out by the cooling water bath and cooled in a cooling water bath.

冷却されたストランド状発泡体を十分に水切りした。その後、ペレタイザーを用いて、ストランド状発泡体を略円柱状の粒子に切断して、芳香族ポリエステル系樹脂の一次発泡粒子を作製した。得られた一次発泡粒子の嵩密度は0.13g/cm、真球度は0.65、結晶化ピーク温度は137℃、ガラス転移温度は76℃であった(評価方法は後に記載)。 The cooled strand foam was sufficiently drained. Thereafter, using a pelletizer, the strand-like foam was cut into substantially cylindrical particles to produce primary foamed particles of an aromatic polyester resin. The resulting primary expanded particles had a bulk density of 0.13 g / cm 3 , a sphericity of 0.65, a crystallization peak temperature of 137 ° C., and a glass transition temperature of 76 ° C. (the evaluation method will be described later).

(2)発泡粒子の作製
得られた一次発泡粒子を耐圧密閉容器に入れ、窒素ガスを1.0MPaの圧力で圧入して24時間保持した。その後、密閉容器から粒子を取り出し、合着防止剤である炭酸カルシウムを一次発泡粒子100重量部に対し1重量部添加した。次に、攪拌羽根のついた再発泡装置中で、水蒸気を加熱媒体として装置内温度140℃及び加熱時間10秒の条件で加熱を行った。加熱完了後に、0.1℃/秒の速度で140℃からガラス転移温度まで冷却を行い(冷却時間:640秒)、引き続き室温まで同速度で冷却を行い、発泡粒子を得た。得られた発泡粒子の密度は0.0150g/cm、真球度は0.72であった(評価方法は後に記載)。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。
(2) Production of expanded particles The obtained primary expanded particles were put into a pressure-resistant airtight container, and nitrogen gas was injected under a pressure of 1.0 MPa and held for 24 hours. Thereafter, the particles were taken out from the sealed container, and 1 part by weight of calcium carbonate as an anti-fusing agent was added to 100 parts by weight of the primary foamed particles. Next, heating was performed in a re-foaming apparatus equipped with stirring blades using steam as a heating medium under conditions of an apparatus internal temperature of 140 ° C. and a heating time of 10 seconds. After completion of the heating, cooling was performed from 140 ° C. to the glass transition temperature at a rate of 0.1 ° C./second (cooling time: 640 seconds), followed by cooling to room temperature at the same rate to obtain expanded particles. The density of the obtained expanded particles was 0.0150 g / cm 3 and the sphericity was 0.72 (the evaluation method will be described later). The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher.

(3)成形体の作製
得られた発泡粒子を1MPaの窒素雰囲気下で24時間静置した後、速やかに雄型と雌型とを閉鎖して形成されたキャビティ(内法寸法300mm×400mm×30mm)内に充填した。その後、雌型からキャビティ内に、ゲージ圧0.01MPaのスチームを5秒、雄型キャビティ内にゲージ圧0.01MPaのスチームを5秒、次いで両金型からキャビティ内にゲージ圧0.02MPaのスチームを5秒導入して、型内成形を行った。冷却後に、成形体を取り出した。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
(3) Production of molded body After the obtained expanded particles were allowed to stand for 24 hours under a nitrogen atmosphere of 1 MPa, the male mold and the female mold were quickly closed (internal dimensions 300 mm × 400 mm × 30 mm). Then, steam with a gauge pressure of 0.01 MPa is put into the cavity from the female mold for 5 seconds, steam with a gauge pressure of 0.01 MPa is put into the male mold for 5 seconds, and then the gauge pressure of 0.02 MPa is put into the cavity from both molds. Steam was introduced for 5 seconds to perform in-mold molding. After cooling, the molded body was taken out. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(実施例2)
再発泡時の加熱時間を15秒に変更したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。得られた発泡粒子の嵩密度は0.0100g/cm、真球度は0.75であった。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
(Example 2)
Primary foamed particles, foamed particles, and a molded product were produced in the same manner as in Example 1 except that the heating time during re-foaming was changed to 15 seconds. The resulting expanded particles had a bulk density of 0.0100 g / cm 3 and a sphericity of 0.75. The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(実施例3)
再発泡時の加熱時間を5秒に変更した以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。得られた発泡粒子の嵩密度は0.0199g/cm、真球度は0.70であった。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
(Example 3)
Primary foamed particles, foamed particles, and a molded product were produced in the same manner as in Example 1 except that the heating time during re-foaming was changed to 5 seconds. The resulting expanded particles had a bulk density of 0.0199 g / cm 3 and a sphericity of 0.70. The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(実施例4)
再発泡時の冷却速度を0.5℃/秒に変更したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。得られた発泡粒子の嵩密度は0.0180g/cm、真球度は0.71であった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
Example 4
Primary foamed particles, foamed particles, and a molded article were produced in the same manner as in Example 1 except that the cooling rate during refoaming was changed to 0.5 ° C./second. The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher. The resulting expanded particles had a bulk density of 0.0180 g / cm 3 and a sphericity of 0.71. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(実施例5)
再発泡時の冷却速度を1.0℃/秒に変更したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。得られた発泡粒子の嵩密度は0.0199g/cm、真球度は0.70であった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
(Example 5)
Primary foamed particles, foamed particles, and a molded article were produced in the same manner as in Example 1 except that the cooling rate during refoaming was changed to 1.0 ° C./second. The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher. The resulting expanded particles had a bulk density of 0.0199 g / cm 3 and a sphericity of 0.70. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(実施例6)
再発泡工程での140℃加熱完了後、100℃にて640秒(冷却時間)保熱した後に、系を開放することにより略時間をかけることなく(1秒以下)ガラス転移温度以下に冷却したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。得られた発泡粒子の嵩密度は0.0150g/cm、真球度は0.72であった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
(Example 6)
After completion of heating at 140 ° C. in the re-foaming step, after keeping the heat at 100 ° C. for 640 seconds (cooling time), the system was opened to cool to below the glass transition temperature without taking much time (1 second or less). Except that, primary foamed particles, foamed particles and a molded product were produced in the same manner as in Example 1. The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher. The resulting expanded particles had a bulk density of 0.0150 g / cm 3 and a sphericity of 0.72. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(実施例7)
再発泡工程での140℃加熱完了後、100℃にて60秒(冷却時間)保熱した後に、系を開放することにより略時間をかけることなく(1秒以下)ガラス転移温度以下に冷却したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。再発泡前の一次発泡粒子よりも再発泡後に得られた発泡粒子は、丸みを帯びており、真球度が高くなっていた。得られた発泡粒子の嵩密度は0.0199g/cm、真球度は0.70であった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみは見られなかった。
(Example 7)
After completion of heating at 140 ° C. in the re-foaming step, after keeping the heat at 100 ° C. for 60 seconds (cooling time), the system was opened to cool to below the glass transition temperature without taking much time (1 second or less). Except that, primary foamed particles, foamed particles and a molded product were produced in the same manner as in Example 1. The foamed particles obtained after re-foaming were rounder than the primary foamed particles before re-foaming, and the sphericity was higher. The resulting expanded particles had a bulk density of 0.0199 g / cm 3 and a sphericity of 0.70. In the obtained molded product, no dents on the surface due to poor filling of the expanded particles were observed.

(比較例1)
発泡剤であるブタン(n−ブタン/イソブタン=7/3)を混合物100重量部に対して、5重量部用いたこと以外は実施例1と同様にして、一次発泡粒子を製造した。得られた一次発泡粒子の嵩密度は0.0100g/cm、真球度は0.65であった。比較例1では、再発泡を行わなかった。このため、得られた一次発泡粒子が、成形体を得るために用いる発泡粒子に相当する。再発泡は特に実施せず、一次発泡粒子を用いて実施例1と同様にして、成形体を作製した。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみが3つ見られた。
(Comparative Example 1)
Primary expanded particles were produced in the same manner as in Example 1 except that 5 parts by weight of butane (n-butane / isobutane = 7/3) as a foaming agent was used with respect to 100 parts by weight of the mixture. The resulting primary expanded particles had a bulk density of 0.0100 g / cm 3 and a sphericity of 0.65. In Comparative Example 1, no re-foaming was performed. For this reason, the obtained primary expanded particles correspond to expanded particles used for obtaining a molded article. Re-foaming was not particularly performed, and a molded body was produced in the same manner as in Example 1 using primary foamed particles. In the obtained molded body, three dents on the surface due to poor filling of the expanded particles were observed.

(比較例2)
再発泡時の冷却速度を5.0℃/秒に変更したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。得られた発泡粒子には収縮の発生が見られた。得られた発泡粒子の嵩密度は0.0250g/cm、真球度は0.40であった。比較例2では、発泡粒子の嵩密度が充分に低くならなかった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみが3つ見られた。
(Comparative Example 2)
Primary foamed particles, foamed particles, and a molded product were produced in the same manner as in Example 1 except that the cooling rate during re-foaming was changed to 5.0 ° C./second. Shrinkage was observed in the obtained expanded particles. The resulting expanded particles had a bulk density of 0.0250 g / cm 3 and a sphericity of 0.40. In Comparative Example 2, the bulk density of the expanded particles was not sufficiently low. In the obtained molded body, three dents on the surface due to poor filling of the expanded particles were observed.

(比較例3)
再発泡時の冷却速度を2.0℃/秒に変更したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。得られた発泡粒子には収縮の発生が見られ、嵩密度は0.0240g/cm、真球度は0.50であった。比較例3では、発泡粒子の嵩密度が充分に低くならなかった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみが3つ見られた。
(Comparative Example 3)
Primary foamed particles, foamed particles, and a molded product were produced in the same manner as in Example 1 except that the cooling rate during re-foaming was changed to 2.0 ° C./second. Shrinkage was observed in the obtained expanded particles, the bulk density was 0.0240 g / cm 3 , and the sphericity was 0.50. In Comparative Example 3, the bulk density of the expanded particles was not sufficiently low. In the obtained molded body, three dents on the surface due to poor filling of the expanded particles were observed.

(比較例4)
再発泡工程での140℃加熱完了後、100℃にて30秒(冷却時間)保熱した後にガラス転移温度以下に冷却したこと以外は実施例1と同様にして、一次発泡粒子、発泡粒子及び成形体を作製した。得られた発泡粒子には収縮の発生が見られ、嵩密度は0.0240g/cm、真球度は0.50であった。比較例4では、発泡粒子の嵩密度が充分に低くならなかった。得られた成形体では、発泡粒子の充填不良に起因する表面のへこみが3つ見られた。
(Comparative Example 4)
After completion of heating at 140 ° C. in the re-foaming step, primary foamed particles, foamed particles, and the like, as in Example 1, except that the heat was kept at 100 ° C. for 30 seconds (cooling time) and then cooled below the glass transition temperature. A molded body was produced. Shrinkage was observed in the obtained expanded particles, the bulk density was 0.0240 g / cm 3 , and the sphericity was 0.50. In Comparative Example 4, the bulk density of the expanded particles was not sufficiently low. In the obtained molded body, three dents on the surface due to poor filling of the expanded particles were observed.

(評価)
(1)結晶化ピーク温度、ガラス転移温度
JIS K7121:1987「プラスチックの転移温度測定方法」に記載されている方法に基づいて測定を行った。但し、サンプリング方法・温度条件に関しては、以下のように実施した。示差走査熱量計装置 DSC6220型(エスアイアイナノテクノロジー社製)を用い、アルミニウム製測定容器の底にすきまのないよう試料を約6mg充填した。窒素ガス流量20mL/minのもと30℃で2分間保持し、速度10℃/minで30℃から290℃まで昇温した時のDSC曲線を得た。その時の基準物質として、アルミナを用いた。本発明において、結晶化ピーク温度とは、装置付属の解析ソフトを用いて、昇温過程にみられる結晶化ピーク(発熱ピーク)のトップの温度を読みとった値である。また、ガラス転移温度は、得られたDSC曲線より、装置付属の解析ソフトを用いて、中間点ガラス転移温度を算出した値である。この中間点ガラス転移温度は該規格(9.3「ガラス転移温度の求め方」)より求めた。
(Evaluation)
(1) Crystallization peak temperature, glass transition temperature Measurement was performed based on the method described in JIS K7121: 1987 "Method for measuring plastic transition temperature". However, the sampling method and temperature conditions were as follows. Using a differential scanning calorimeter device DSC 6220 (manufactured by SII Nano Technology), about 6 mg of the sample was filled so that there was no gap at the bottom of the aluminum measurement container. A DSC curve was obtained when the temperature was maintained at 30 ° C. for 2 minutes under a nitrogen gas flow rate of 20 mL / min and the temperature was raised from 30 ° C. to 290 ° C. at a rate of 10 ° C./min. Alumina was used as a reference material at that time. In the present invention, the crystallization peak temperature is a value obtained by reading the temperature at the top of the crystallization peak (exothermic peak) seen in the temperature rising process using analysis software attached to the apparatus. Further, the glass transition temperature is a value obtained by calculating the midpoint glass transition temperature from the obtained DSC curve using analysis software attached to the apparatus. The midpoint glass transition temperature was determined from the standard (9.3 “How to determine the glass transition temperature”).

(2)一次発泡粒子及び発泡粒子の嵩密度
一次発泡粒子及び発泡粒子の嵩倍密度は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」に準拠して測定した。具体的には、見かけ密度測定器を用いて一次発泡粒子又は発泡粒子をメスシリンダー内に自然落下させ、粒子の重量を測定した。嵩密度を下記の式により算出した。
(2) Bulk density of primary foamed particles and foamed particles The bulk density of primary foamed particles and foamed particles was measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. Specifically, primary foamed particles or foamed particles were naturally dropped into a graduated cylinder using an apparent density measuring device, and the weight of the particles was measured. The bulk density was calculated by the following formula.

嵩密度(g/cm)=重量(g)/メスシリンダー内の粒子容積(cmBulk density (g / cm 3 ) = weight (g) / particle volume in graduated cylinder (cm 3 )

(3)一次発泡粒子及び発泡粒子の真球度
一次発泡粒子及び発泡粒子の各50個を任意に抽出し、一次発泡粒子又は発泡粒子において、最大長さ寸法と最小長さ寸法を測定した。測定値を用いて、下記式に基づいて、一次発泡粒子及び発泡粒子の各真球度を算出した。
(3) Primary foam particles and sphericity of foam particles 50 primary foam particles and 50 foam particles were arbitrarily extracted, and the maximum length dimension and the minimum length dimension of the primary foam particles or foam particles were measured. Using the measured values, the sphericity of the primary expanded particles and the expanded particles was calculated based on the following formula.

真球度=(最小長さの寸法)/(最大長さの寸法)   Sphericality = (minimum length dimension) / (maximum length dimension)

そして、一次発泡粒子及び発泡粒子の各50個の真球度の相加平均値を、一次発泡粒子及び発泡粒子の真球度とした。   And the arithmetic mean value of 50 sphericity degree of each of primary foamed particle and foamed particle was made into the sphericity degree of primary foamed particle and foamed particle.

(4)成形性(成形体の評価)
得られた成形体の表面のへこみの状態を目視で観察して、成形性を下記の基準で判定した。
(4) Formability (evaluation of molded product)
The state of dents on the surface of the obtained molded product was visually observed, and the moldability was determined according to the following criteria.

[成形体外観の判定基準]
○:成形体の表面に、へこみがない
△:成形体の表面に、発泡粒子の充填不良に起因するへこみが1つ又は2つある
×:成形体の表面に、発泡粒子の充填不良に起因するへこみが3つ以上ある
[Judgment criteria for molded body appearance]
○: There is no dent on the surface of the molded body. △: There is one or two dents on the surface of the molded body due to poor filling of the foam particles. ×: Due to poor filling of the foamed particles on the surface of the molded body. There are 3 or more dents

詳細及び結果を下記の表1に示す。   Details and results are shown in Table 1 below.

Figure 2015178553
Figure 2015178553

1…芳香族ポリエステル系樹脂発泡粒子
11…一次発泡粒子
DESCRIPTION OF SYMBOLS 1 ... Aromatic polyester resin expanded particle 11 ... Primary expanded particle

Claims (11)

芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させた後、加圧気体が含浸された一次発泡粒子を加熱して、再発泡させることにより得られ、
嵩密度が0.0100g/cm以上、0.0199g/cm以下であり、
真球度が0.7以上である、芳香族ポリエステル系樹脂発泡粒子。
After impregnating the primary expanded particles of the aromatic polyester resin with the pressurized gas, the primary expanded particles impregnated with the pressurized gas are heated and re-expanded,
The bulk density is 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less,
Aromatic polyester resin expanded particles having a sphericity of 0.7 or more.
前記一次発泡粒子の嵩密度が0.08g/cm以上、0.15g/cm以下である、請求項1に記載の芳香族ポリエステル系樹脂発泡粒子。 The aromatic polyester resin foamed particles according to claim 1, wherein the primary foamed particles have a bulk density of 0.08 g / cm 3 or more and 0.15 g / cm 3 or less. 前記芳香族ポリエステル系樹脂の結晶化ピーク温度が130℃以上、180℃以下である、請求項1又は2に記載の芳香族ポリエステル系樹脂発泡粒子。   The aromatic polyester resin foamed particles according to claim 1 or 2, wherein the crystallization peak temperature of the aromatic polyester resin is 130 ° C or higher and 180 ° C or lower. 芳香族ポリエステル系樹脂の一次発泡粒子に加圧気体を含浸させる含浸工程と、
加圧気体が含浸された一次発泡粒子を加熱して、再発泡させて、嵩密度が0.0100g/cm以上、0.0199g/cm以下である芳香族ポリエステル系樹脂発泡粒子を得る再発泡工程とを備え、
得られる芳香族ポリエステル系樹脂発泡粒子の真球度が0.7以上であるか、又は、前記再発泡工程において、再発泡前の前記一次発泡粒子よりも再発泡後に得られる芳香族ポリエステル系樹脂発泡粒子が丸みを帯びるように、前記加圧気体が含浸された一次発泡粒子を、加熱して再発泡させる、芳香族ポリエステル系樹脂発泡粒子の製造方法。
An impregnation step of impregnating the primary foamed particles of the aromatic polyester resin with a pressurized gas;
The primary expanded particles impregnated with the pressurized gas are heated and re-expanded to obtain aromatic polyester resin expanded particles having a bulk density of 0.0100 g / cm 3 or more and 0.0199 g / cm 3 or less. A foaming process,
The sphericity of the obtained aromatic polyester resin foamed particles is 0.7 or more, or in the refoaming step, the aromatic polyester resin obtained after refoaming than the primary foamed particles before refoaming A method for producing an aromatic polyester resin foamed particle, wherein the primary foamed particle impregnated with the pressurized gas is heated and re-foamed so that the foamed particle is rounded.
真球度が0.7以上である芳香族ポリステル系樹脂発泡粒子を得る、請求項4に記載の芳香族ポリエステル系樹脂発泡粒子の製造方法。   The manufacturing method of the aromatic polyester-type resin expanded particle of Claim 4 which obtains the aromatic polyester-type resin expanded particle whose sphericity is 0.7 or more. 前記一次発泡粒子の嵩密度が0.08g/cm以上、0.15g/cm以下である、請求項4又は5に記載の芳香族ポリエステル系樹脂発泡粒子の製造方法。 The manufacturing method of the aromatic polyester-type resin expanded particle of Claim 4 or 5 whose bulk density of the said primary expanded particle is 0.08 g / cm < 3 > or more and 0.15 g / cm < 3 > or less. 前記芳香族ポリエステル系樹脂の結晶化ピーク温度が130℃以上、180℃以下である、請求項4〜6のいずれか1項に記載の芳香族ポリエステル系樹脂発泡粒子の製造方法。   The manufacturing method of the aromatic polyester-type resin expanded particle of any one of Claims 4-6 whose crystallization peak temperature of the said aromatic polyester-type resin is 130 degreeC or more and 180 degrees C or less. 前記再発泡工程において、芳香族ポリエステル系樹脂のガラス転移温度を超える温度に加熱することにより再発泡を行った後に、芳香族ポリエステル系樹脂のガラス転移温度以下まで冷却する際に、再発泡温度未満、ガラス転移温度以上の温度領域で60秒以上かけて冷却を行う、請求項4〜7のいずれか1項に記載の芳香族ポリエステル系樹脂発泡粒子の製造方法。   In the re-foaming step, after re-foaming by heating to a temperature exceeding the glass transition temperature of the aromatic polyester-based resin, when cooling to below the glass transition temperature of the aromatic polyester-based resin, less than the re-foaming temperature The manufacturing method of the aromatic polyester-type resin expanded particle of any one of Claims 4-7 which cools over 60 second or more in the temperature range more than a glass transition temperature. 請求項1〜3のいずれか1項に記載の芳香族ポリエステル系樹脂発泡粒子を、雄型と雌型とで閉鎖されたキャビティ内に充填した状態で、前記芳香族ポリエステル系樹脂発泡粒子を型内成形することにより得られる、成形体。   The aromatic polyester-based resin foamed particles according to any one of claims 1 to 3 are filled in a cavity closed by a male mold and a female mold, and the aromatic polyester-based resin foamed particles are molded. A molded body obtained by internal molding. 請求項4〜8のいずれか1項に記載の芳香族ポリエステル系樹脂発泡粒子の製造方法により得られる芳香族ポリエステル系樹脂発泡粒子を、雄型と雌型とで閉鎖されたキャビティ内に充填した状態で、前記芳香族ポリエステル系樹脂発泡粒子を型内成形することにより得られる、成形体。   The aromatic polyester resin foam particles obtained by the method for producing the aromatic polyester resin foam particles according to any one of claims 4 to 8 are filled in a cavity closed by a male mold and a female mold. A molded product obtained by molding the aromatic polyester-based resin expanded particles in a mold in a state. 輸送機用部材又は緩衝用部材として用いられる、請求項9又は10に記載の成形体。   The molded body according to claim 9 or 10, which is used as a transporting member or a buffering member.
JP2014056197A 2014-03-19 2014-03-19 Aromatic polyester resin foamed particles, method for producing aromatic polyester resin foamed particles, and molded article Active JP6133807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056197A JP6133807B2 (en) 2014-03-19 2014-03-19 Aromatic polyester resin foamed particles, method for producing aromatic polyester resin foamed particles, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056197A JP6133807B2 (en) 2014-03-19 2014-03-19 Aromatic polyester resin foamed particles, method for producing aromatic polyester resin foamed particles, and molded article

Publications (2)

Publication Number Publication Date
JP2015178553A true JP2015178553A (en) 2015-10-08
JP6133807B2 JP6133807B2 (en) 2017-05-24

Family

ID=54262839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056197A Active JP6133807B2 (en) 2014-03-19 2014-03-19 Aromatic polyester resin foamed particles, method for producing aromatic polyester resin foamed particles, and molded article

Country Status (1)

Country Link
JP (1) JP6133807B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227202B1 (en) * 2016-07-13 2017-11-08 積水化成品工業株式会社 Ester elastomer foam molding, its use and ester elastomer foam particles
WO2019187947A1 (en) * 2018-03-27 2019-10-03 積水化成品工業株式会社 Foam particle, foam molded body, preparation method thereof and resin complex

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036000A1 (en) * 1998-12-11 2000-06-22 Sekisui Plastics Co., Ltd. Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
JP2001018247A (en) * 1999-07-12 2001-01-23 Sekisui Plastics Co Ltd Core material for bumper and bumper using core material
JP2001334605A (en) * 2000-05-26 2001-12-04 Sekisui Plastics Co Ltd Aromatic polyester resin laminate and method for manufacturing the same
JP2002121312A (en) * 2000-10-11 2002-04-23 Jsp Corp Polyester resin foamed particle and molded article thereof
JP2002293977A (en) * 2001-03-30 2002-10-09 Sekisui Plastics Co Ltd Method for producing preliminarily foamed particle of thermoplastic polyester-based resin
WO2013031769A1 (en) * 2011-08-29 2013-03-07 積水化成品工業株式会社 Aromatic polyester-based resin foam particles for in-mold foam molding, method for producing same, in-mold foam molded body, composite structural member, and member for automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036000A1 (en) * 1998-12-11 2000-06-22 Sekisui Plastics Co., Ltd. Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
JP2001018247A (en) * 1999-07-12 2001-01-23 Sekisui Plastics Co Ltd Core material for bumper and bumper using core material
JP2001334605A (en) * 2000-05-26 2001-12-04 Sekisui Plastics Co Ltd Aromatic polyester resin laminate and method for manufacturing the same
JP2002121312A (en) * 2000-10-11 2002-04-23 Jsp Corp Polyester resin foamed particle and molded article thereof
JP2002293977A (en) * 2001-03-30 2002-10-09 Sekisui Plastics Co Ltd Method for producing preliminarily foamed particle of thermoplastic polyester-based resin
WO2013031769A1 (en) * 2011-08-29 2013-03-07 積水化成品工業株式会社 Aromatic polyester-based resin foam particles for in-mold foam molding, method for producing same, in-mold foam molded body, composite structural member, and member for automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227202B1 (en) * 2016-07-13 2017-11-08 積水化成品工業株式会社 Ester elastomer foam molding, its use and ester elastomer foam particles
WO2019187947A1 (en) * 2018-03-27 2019-10-03 積水化成品工業株式会社 Foam particle, foam molded body, preparation method thereof and resin complex
JP2019172735A (en) * 2018-03-27 2019-10-10 積水化成品工業株式会社 Foam particle, foam molded body, manufacturing method therefor, and resin composite

Also Published As

Publication number Publication date
JP6133807B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5974010B2 (en) Aromatic polyester resin foamed particles for in-mold foam molding and method for producing the same, in-mold foam molded body, composite structure member, and automotive member
BR102012022780A2 (en) EXPANSION WITH EXTRUSION OF LOW MOLECULAR POLYALKYLENE TEREPHALATE FOR EXPANDED ACCOUNT PRODUCTION
JP6253839B1 (en) Ester elastomer foam molding, its use and ester elastomer foam particles
JP6227202B1 (en) Ester elastomer foam molding, its use and ester elastomer foam particles
WO2000035650A1 (en) Method for producing foamed-in-mold product of aromatic polyester based resin
WO2019187947A1 (en) Foam particle, foam molded body, preparation method thereof and resin complex
KR100482404B1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
JP6133807B2 (en) Aromatic polyester resin foamed particles, method for producing aromatic polyester resin foamed particles, and molded article
JP6131232B2 (en) Thermoplastic polyester resin foamed particles and method for producing the same, foam molded article and method for producing the same, and composite foam
JP3631943B2 (en) Method for producing pre-expanded particles of aromatic polyester resin
JP3722727B2 (en) In-mold foam molded article of thermoplastic polyester resin, its production method and its use
JP3631942B2 (en) Method for producing pre-expanded particles of aromatic polyester resin
JP3688179B2 (en) Thermoplastic polyester resin foamed particles for in-mold foam molding and method for producing in-mold foam molded article using the same
JP3640596B2 (en) Aromatic polyester resin pre-expanded particles for in-mold foam molding
JP2021054959A (en) Method for producing polycarbonate resin foamed particle
JP2001269960A (en) Method for manufacturing in-mold foam molding made from aromatic polyester-based resin
JP2002293977A (en) Method for producing preliminarily foamed particle of thermoplastic polyester-based resin
JP3631940B2 (en) Aromatic polyester resin pre-expanded particles and foamed moldings using the same
JP2001018247A (en) Core material for bumper and bumper using core material
KR20230141827A (en) Aromatic polyester resin foamed particles and manufacturing method thereof, foamed molded articles, and automobile members
JP2001329100A (en) Aromatic polyester resin prefoamed particle and foamed molded product using the same
JP3488400B2 (en) Insulation material for floor heating and floor heating device using it
JP2011153260A (en) Foamable thermoplastic resin particle, method of producing the same, thermoplastic resin prefoamed particle, and thermoplastic resin foam molding
JP2001019788A (en) Buffer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6133807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150