JP2015175731A - Radiation measurement device and radiation measurement method using the same - Google Patents

Radiation measurement device and radiation measurement method using the same Download PDF

Info

Publication number
JP2015175731A
JP2015175731A JP2014052552A JP2014052552A JP2015175731A JP 2015175731 A JP2015175731 A JP 2015175731A JP 2014052552 A JP2014052552 A JP 2014052552A JP 2014052552 A JP2014052552 A JP 2014052552A JP 2015175731 A JP2015175731 A JP 2015175731A
Authority
JP
Japan
Prior art keywords
measurement
radiation
waterproof container
sensor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014052552A
Other languages
Japanese (ja)
Other versions
JP6537094B2 (en
Inventor
吉永 育生
Ikuo Yoshinaga
育生 吉永
強治 高木
Kyoji Takagi
強治 高木
昌彦 島崎
Masahiko Shimazaki
昌彦 島崎
富次郎 久保田
Tomijiro Kubota
富次郎 久保田
周平 吉本
Shuhei Yoshimoto
周平 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2014052552A priority Critical patent/JP6537094B2/en
Publication of JP2015175731A publication Critical patent/JP2015175731A/en
Application granted granted Critical
Publication of JP6537094B2 publication Critical patent/JP6537094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and accurately measure the radiation dose of the bottom material of a water area.SOLUTION: A radiation measurement device 2 comprises a gamma-ray measurement sensor 4, a measurement data collection terminal unit 5A which controls measurement of the sensor 4 and records measurement data, a control terminal unit 5B which is operated by an operator M and controls the gamma-ray measurement sensor 4 through the measurement data collection terminal unit 5A, and a waterproof container 3 which stores machines 4, 5A and is put into the water. The waterproof container 3 is attached with a spindle 20 and a string 15 having a float 14 on the tip. The gamma-ray measurement sensor 4 secures an air space S with the inner surface of the waterproof container 3. In a first step S1, the waterproof container 3 is carried to the measurement spot of a water area W by a vessel. In a second step S2, after starting the measurement by the control terminal unit 5B, the waterproof container 3 is put into the water, and data is stored after measurement time elapses. In a third step S3, the waterproof container 3 is pulled up.

Description

本発明は、水中の底質における放射線を計測する放射線計測装置とその装置を用いた放射線計測方法に関する。   The present invention relates to a radiation measuring apparatus for measuring radiation in underwater sediment and a radiation measuring method using the apparatus.

一般に水中の底質の放射線量を測定するには、底質を採取して持ち帰り、それを測定するようにしている。このため、測定作業に時間がかかるという問題がある。このため、従来、水底の放射線量を把握するため、防水構造の放射線測定装置と水中ビデオカメラとを搭載した水中移動体を、調査船で曳航するようにした放射能測定システムが知られている(例えば、特許文献1参照)。この特許文献1のものは、調査船に、前記水中ビデオカメラからの映像を表示するビデオモニターと、現在位置を計測する位置計測装置と、放射線測定装置からの測定データに基づき水中又は水底の放射線の線量を表示又は記録する放射能表示/記録装置とを搭載し、水底等の状況を調査船上で確認しつつ放射線の線量を把握できるようにしている。   In general, in order to measure the radiation dose of bottom sediment in water, the bottom sediment is collected and taken home and measured. For this reason, there exists a problem that measurement work takes time. For this reason, conventionally, in order to grasp the radiation dose at the bottom of the water, a radioactivity measurement system is known in which an underwater mobile body equipped with a waterproof radiation measurement device and an underwater video camera is towed by a research ship. (For example, refer to Patent Document 1). According to the technique disclosed in Patent Document 1, a video monitor that displays an image from the underwater video camera on a research ship, a position measurement device that measures a current position, and radiation in the water or bottom based on measurement data from the radiation measurement device. It is equipped with a radioactivity display / recording device that displays or records the radiation dose, so that the radiation dose can be grasped while checking the condition of the bottom of the water on the survey ship.

実用新案登録第3181739号公報Utility Model Registration No. 3181739

しかしながら、上記従来の水中の底質における放射線を計測する放射線の計測システムでは、計測作業の前に一度、計測ルートを移動して水深の測定を行い、その上で、曳船ケーブルの長さと曳船速度を決定した後、計測を始めなければならない。また、計測時、船上に作業員を配置しなければならず、しかも、曳航ルートに応じた計測しか行うことができない。このため、作業効率が悪いという問題がある。また、水底に堆積した放射性セシウム等の放射線は水底と放射線測定装置が収納された水中移動体と間が水で遮蔽されるため、水中移動体が底質から離れるほど放射線の係数が低下し、正確な線量を計測できないという問題がある(図8参照)。   However, in the conventional radiation measurement system for measuring radiation in the bottom sediment in water, the measurement route is moved once before the measurement work to measure the water depth, and then the length of the dredger cable and the dredger speed After deciding, measurement must be started. Also, at the time of measurement, a worker must be placed on the ship, and only measurement according to the towing route can be performed. For this reason, there exists a problem that work efficiency is bad. In addition, radiation such as radioactive cesium deposited on the bottom of the water is shielded with water between the bottom of the water and the underwater mobile body in which the radiation measurement device is housed, so the coefficient of radiation decreases as the underwater mobile body moves away from the sediment. There is a problem that an accurate dose cannot be measured (see FIG. 8).

本発明は、上記課題を解決するためになされたもので、水域の底質の放射線量の測定を効率良くかつ正確に行うことができる放射線計測装置およびその装置を用いた放射線計測方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a radiation measurement apparatus and a radiation measurement method using the apparatus that can efficiently and accurately measure the radiation dose of the sediment in the water area. For the purpose.

本発明の請求項1に係る放射線計測装置は、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けたことを特徴としている。   A radiation measurement apparatus according to claim 1 of the present invention includes a radiation measurement sensor, a control unit that controls the operation of the sensor and stores measurement data measured by the sensor in a storage unit, and the sensor and the control unit. A waterproof container that can be stored in the water and seated on the bottom of the bottom of the water, a weight that is detachably attached to the waterproof container and allows the waterproof container to descend in the water, and one end connected to the waterproof container and the other end And a string that can be adjusted in length, and the radiation measurement sensor is attached while securing an air space between the inner surface of the waterproof container.

本発明の請求項1に係る放射線計測装置では、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けたことにより、運搬手段により放射線計測装置を水域の所望の場所に運び込み、放射線計測装置の防水容器に放射線計測センサと制御手段とを収納して密封し、この防水容器に錘を取り付け、紐の長さを水深より長尺に調整し、制御手段により放射線計測センサを動作させてこの密封された防水容器を水中に投入すると、防水容器は錘により水中を沈降し、防水容器底面が水底に着地する。このとき、一端が防水容器に連結された紐の他端側の浮きは水面に浮き上がる。放射線計測センサにより放射線の計測が行われると計測データは制御手段に送出されて、制御手段は計測データを記憶手段に記憶する。計測時間経過後、作業者は運搬手段により浮きを探し出して投入された放射線計測装置を紐を介して引き上げる。このため、所望の計測場所への放射線計測装置の投入と計測時間経過後の引き上げだけで計測作業を効率的に行うことができる。また、放射線計測センサは、防水容器内で水底とエア空間により隔てられて配置されているので、計測時、水底の放射線は水による遮蔽をうけにくく、多くの放射線がセンサに到達することで、より正確な計測ができる。   In the radiation measurement apparatus according to claim 1 of the present invention, the radiation measurement sensor, the control means for controlling the operation of the sensor and storing the measurement data measured by the sensor in the storage means, and the sensor and the control means are provided. A waterproof container that can be stored in the water and seated on the bottom of the bottom of the water, a weight that is detachably attached to the waterproof container and allows the waterproof container to descend in the water, and one end connected to the waterproof container and the other end And a string that can be adjusted in length, and the radiation measurement sensor is attached with an air space between the waterproof container and the inner surface of the waterproof container. Bring it to a place, store the radiation measurement sensor and control means in a waterproof container of the radiation measurement device, seal it, attach a weight to this waterproof container, adjust the length of the string to be longer than the water depth, and When the radiation measurement sensor is operated to put the sealed waterproof container in water by the waterproof container is sedimented water by weight, waterproof container bottom lands on the sea bed. At this time, the float on the other end side of the string whose one end is connected to the waterproof container floats on the water surface. When radiation is measured by the radiation measurement sensor, the measurement data is sent to the control means, and the control means stores the measurement data in the storage means. After the measurement time elapses, the operator searches the float by the transportation means and pulls up the radiation measurement apparatus that has been thrown in through the string. For this reason, measurement work can be efficiently performed only by putting the radiation measurement device into a desired measurement place and pulling it up after the measurement time has elapsed. In addition, since the radiation measurement sensor is arranged in the waterproof container separated by the water bottom and the air space, at the time of measurement, the radiation on the bottom of the water is not easily shielded by water, and a lot of radiation reaches the sensor. More accurate measurement is possible.

本発明の請求項2に係る放射線計測装置は、防水容器には、位置情報を記録するGPS装置が収納され、防水容器の水中への投入時または回収時、水上での計測位置が記録されることを特徴としている。   In the radiation measuring apparatus according to claim 2 of the present invention, a GPS device for recording position information is housed in the waterproof container, and the measurement position on the water is recorded when the waterproof container is put into water or collected. It is characterized by that.

本発明の請求項2に係る放射線計測装置では、防水容器には、位置情報を記録するGPS装置が収納され、防水容器の水中への投入時または回収時、水上での計測位置が記録されることにより、計測結果を計測位置と関連付けして正確な計測地図を作成することができる。   In the radiation measuring apparatus according to claim 2 of the present invention, the waterproof container stores a GPS device for recording position information, and the measurement position on the water is recorded when the waterproof container is thrown into or recovered. Thus, an accurate measurement map can be created by associating the measurement result with the measurement position.

本発明の請求項3に係る放射線計測装置は、錘は、水域の底質が軟弱な場合、水域に投入される防水容器の比重を底質の比重と同等または底質の比重に近づけて沈降速度を低下させ、防水容器の着底時、防水容器が底質に沈み込むのを阻止する重量に設定されることを特徴としている。   In the radiation measuring apparatus according to claim 3 of the present invention, when the weight of the bottom of the water area is weak, the weight settles with the specific gravity of the waterproof container put into the water area equal to or close to the specific gravity of the bottom material. The speed is reduced, and the weight is set so as to prevent the waterproof container from sinking into the bottom when the waterproof container is settled.

本発明の請求項3に係る放射線計測装置では錘は、水域の底質が軟弱な場合、水域に投入される防水容器の比重を底質の比重と同等または底質の比重に近づけて沈降速度を低下させ、防水容器の着底時、防水容器が底質に沈み込むのを阻止する重量に設定されるようにしたことにより、水域の計測対象場所の底質が軟弱であったりヘドロ状であっても、防水容器は鉛直下向きに降下し、防水容器の着底時、泥を巻き上げにくくすることができ、防水容器への泥の付着を抑制することができ、より正確な測定を行うことができる。   In the radiation measuring apparatus according to claim 3 of the present invention, when the bottom sediment of the water area is soft, the weight is set so that the specific gravity of the waterproof container put into the water area is equal to or close to the specific gravity of the bottom sediment. When the waterproof container is bottomed, the weight is set so as to prevent the waterproof container from sinking into the bottom material. Even if there is, the waterproof container descends vertically downward, it is possible to make it difficult to wind up mud when the waterproof container is bottomed, it is possible to suppress mud adhesion to the waterproof container, and perform more accurate measurement Can do.

本発明の請求項4に係る放射線計測装置は、制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成されることを特徴としている。   The radiation measurement apparatus according to claim 4 of the present invention is a portable measurement data in which the control means includes a central processing unit, a memory, and a communication unit, and is housed in a waterproof container and electrically connected to the radiation measurement sensor. A portable control device comprising a collection terminal device, a central processing unit, and a communication unit, operated by an operator outside the waterproof container and controlling the measurement data collection terminal device through communication to operate the radiation measurement sensor It is characterized by comprising a terminal device.

本発明の請求項4に係る放射線計測装置では、制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成されることにより、計測場所で測定後、防水容器が引き上げられる度に、制御用端末装置は、計測データ収集用端末装置を制御することができる。また、携帯可能な端末装置を用いることにより装置全体の小型化を図ることができる。さらに、計測後、計測結果をメモリに保存するだけでなく、通信を通じて外部にも送信することができる。   In the radiation measurement apparatus according to claim 4 of the present invention, the control means includes a central processing unit, a memory, and a communication unit, and is portable measurement data that is housed in a waterproof container and electrically connected to the radiation measurement sensor. A portable control device comprising a collection terminal device, a central processing unit, and a communication unit, operated by an operator outside the waterproof container and controlling the measurement data collection terminal device through communication to operate the radiation measurement sensor By comprising the terminal device, the control terminal device can control the measurement data collection terminal device every time the waterproof container is pulled up after measurement at the measurement location. In addition, the use of a portable terminal device can reduce the size of the entire device. Furthermore, after measurement, the measurement result can be transmitted not only to the memory but also to the outside through communication.

本発明の請求項5に係る放射線計測方法は、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けた放射線計測装置を用いて放射線を計測する放射線計測方法であって、運搬手段により放射線計測装置を水域の所望の計測場所に運び込む第1のステップと、放射線計測センサを制御手段により動作させ放射線計測装置を水中に投入し、放射線計測センサにより計測された計測データを制御手段に保存する第2のステップと、計測時間経過後、投入された放射線計測装置を引き上げ、次の計測場所に運び込む第3のステップとを有することを特徴としている。   According to a fifth aspect of the present invention, there is provided a radiation measurement method comprising: a radiation measurement sensor; a control means for controlling the operation of the sensor; and storing measurement data measured by the sensor in a storage means; and the sensor and the control means. A waterproof container that can be stored in the water and seated on the bottom of the bottom of the water, a weight that is detachably attached to the waterproof container and allows the waterproof container to descend in the water, and one end connected to the waterproof container and the other end A radiation measurement method that measures radiation using a radiation measurement device that is equipped with a string that can be adjusted in length and that has a float attached to it, and a radiation measurement sensor that is installed with an air space secured between the inner surface of the waterproof container. A first step of carrying the radiation measuring device to a desired measurement location in the water area by means of transport, and operating the radiation measuring sensor by the control means to put the radiation measuring device into the water; A second step of storing the measurement data measured by the ray measurement sensor in the control means; and a third step of lifting the input radiation measurement device after the measurement time has elapsed and bringing it into the next measurement location. It is a feature.

本発明の請求項5に係る放射線計測方法では、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けた放射線計測装置を用いて放射線を計測する放射線計測方法であって、運搬手段により放射線計測装置を水域の所望の計測場所に運び込む第1のステップと、放射線計測センサを制御手段により動作させ放射線計測装置を水中に投入し、放射線計測センサにより計測された計測データを制御手段に保存する第2のステップと、計測時間経過後、投入された放射線計測装置を引き上げ、次の計測場所に運び込む第3のステップとを有することにより、第1のステップで、運搬手段により放射線計測装置を水域の所望の場所に運び込み、第2のステップで、放射線計測装置の防水容器に放射線計測センサと制御手段とを収納して錘を取り付け、紐の長さを水深より長尺に調整し、放射線計測センサを制御手段により動作させ防水容器を水中に投入すると、防水容器は錘により水中を沈降し、防水容器底面が水底に着地する。このとき、一端が防水容器に連結された紐の他端側の浮きは水面に浮き上がる。放射線計測センサにより放射線の計測が行われ、計測された計測データは制御手段に保存される。第3のステップで、計測時間経過後、浮きを探し出して投入された防水容器を紐を介して引き上げ、引き上げられた防水容器を次の計測場所に運び込む。このため、所望の計測場所への放射線計測装置の投入と所定時間経過後の引き上げだけで計測作業を効率的に行うことができる。また、放射線計測センサは、防水容器内で水底とエア空間により隔てられて配置されているので、計測時、水底の放射線は水による遮蔽をうけにくく、多くの放射線がセンサに到達することで、より正確な計測ができる。   In the radiation measurement method according to claim 5 of the present invention, the radiation measurement sensor, the control means for controlling the operation of the sensor and storing the measurement data measured by the sensor in the storage means, and the sensor and the control means are internally provided. A waterproof container that can be stored in the water and seated on the bottom of the bottom of the water, a weight that is detachably attached to the waterproof container and allows the waterproof container to descend in the water, and one end connected to the waterproof container and the other end A radiation measurement method that measures radiation using a radiation measurement device that is equipped with a string that can be adjusted in length and that has a float attached to it, and a radiation measurement sensor that is installed with an air space secured between the inner surface of the waterproof container. A first step of bringing the radiation measuring device to a desired measurement location in the water area by means of transporting means, and operating the radiation measuring sensor by means of the control means to put the radiation measuring device into the water. By having a second step of storing the measurement data measured by the radiation measurement sensor in the control means, and a third step of lifting the input radiation measurement device after the measurement time has passed and carrying it to the next measurement location In the first step, the radiation measuring device is carried to a desired location in the water area by the transport means, and in the second step, the radiation measuring sensor and the control means are accommodated in the waterproof container of the radiation measuring device, and the weight is attached. When the length of the string is adjusted to be longer than the water depth, the radiation measurement sensor is operated by the control means, and the waterproof container is put into the water, the waterproof container sinks in the water by the weight, and the bottom surface of the waterproof container lands on the bottom of the water. At this time, the float on the other end side of the string whose one end is connected to the waterproof container floats on the water surface. Radiation is measured by the radiation measurement sensor, and the measured measurement data is stored in the control means. In the third step, after the measurement time elapses, the floated waterproof container is found out through a string, and the lifted waterproof container is carried to the next measurement location. For this reason, measurement work can be efficiently performed only by putting the radiation measurement device into a desired measurement place and pulling it up after a predetermined time. In addition, since the radiation measurement sensor is arranged in the waterproof container separated by the water bottom and the air space, at the time of measurement, the radiation on the bottom of the water is not easily shielded by water, and a lot of radiation reaches the sensor. More accurate measurement is possible.

本発明の請求項6に係る放射線計測方法は、制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成され、第2のステップで、計測データ収集用端末装置を防水容器に収容して放射線計測センサと電気的に接続し、作業者により制御用端末装置を通じて防水容器内の計測データ収集用端末装置を制御して放射線計測センサを動作させることを特徴としている。   In the radiation measurement method according to claim 6 of the present invention, the control means includes a central processing unit, a memory, and a communication unit, and is portable measurement data stored in a waterproof container and electrically connected to the radiation measurement sensor. A portable control device comprising a collection terminal device, a central processing unit, and a communication unit, operated by an operator outside the waterproof container and controlling the measurement data collection terminal device through communication to operate the radiation measurement sensor In the second step, the measurement data collection terminal device is accommodated in the waterproof container and electrically connected to the radiation measurement sensor, and the operator places the measurement data collection terminal device in the waterproof container through the control terminal device. The radiation data sensor is operated by controlling the measurement data collection terminal device.

本発明の請求項6に係る放射線計測方法では、制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成され、第2のステップで、計測データ収集用端末装置を防水容器に収容して放射線計測センサと電気的に接続し、作業者により制御用端末装置を通じて防水容器内の計測データ収集用端末装置を制御して放射線計測センサを動作させることにより、防水容器引き上げ時に、防水容器を開いて計測データ収集用端末装置を取り出す必要がないため、計測作業が効率化される。   In the radiation measurement method according to claim 6 of the present invention, the control means includes a central processing unit, a memory, and a communication unit, and is portable measurement data stored in a waterproof container and electrically connected to the radiation measurement sensor. A portable control device comprising a collection terminal device, a central processing unit, and a communication unit, operated by an operator outside the waterproof container and controlling the measurement data collection terminal device through communication to operate the radiation measurement sensor In the second step, the measurement data collection terminal device is accommodated in the waterproof container and electrically connected to the radiation measurement sensor, and the operator places the measurement data collection terminal device in the waterproof container through the control terminal device. By controlling the measurement data collection terminal device and operating the radiation measurement sensor, it is necessary to open the waterproof container and take out the measurement data collection terminal device when pulling up the waterproof container Because no measuring operation is efficient.

本発明の請求項7に係る放射線計測方法は、水中から引き上げられた放射線計測装置を水域の他の計測場所に運搬しては、第2のステップと第3のステップとを繰り返すことを特徴としている。   The radiation measurement method according to claim 7 of the present invention is characterized in that the radiation measurement device pulled up from the water is transported to another measurement location in the water area, and the second step and the third step are repeated. Yes.

本発明の請求項7に係る放射線計測方法では、水中から引き上げられた放射線計測装置を水域の他の計測場所に運搬しては、第2のステップと第3のステップとを繰り返すことにより、計測範囲を線状にも面状にも自在に設定できる。   In the radiation measurement method according to claim 7 of the present invention, the radiation measurement device pulled up from the water is transported to another measurement location in the water area, and the measurement is performed by repeating the second step and the third step. The range can be freely set to be linear or planar.

本発明の請求項8に係る放射線計測方法は、防水容器には、位置情報を記録するGPS装置が収納され、防水容器の水中への投入時または回収時、水上での計測位置が記録されることを特徴としている。   In the radiation measurement method according to claim 8 of the present invention, a GPS device for recording position information is stored in the waterproof container, and the measurement position on the water is recorded when the waterproof container is put into water or collected. It is characterized by that.

本発明の請求項8に係る放射線計測方法では、防水容器には、位置情報を記録するGPS装置が収納され、防水容器の水中への投入時または回収時、水上での計測位置が記録されることにより、計測結果を計測位置と関連付けして正確な計測地図を作成することができる。   In the radiation measuring method according to claim 8 of the present invention, the GPS device for recording position information is stored in the waterproof container, and the measurement position on the water is recorded when the waterproof container is thrown into or recovered. Thus, an accurate measurement map can be created by associating the measurement result with the measurement position.

本発明の請求項1に係る放射線計測装置は、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けたので、多くの放射線がセンサに到達することで、より正確な計測ができ、水中の底質の放射線量の測定を効率良くかつ正確に行うことができる。   A radiation measurement apparatus according to claim 1 of the present invention includes a radiation measurement sensor, a control unit that controls the operation of the sensor and stores measurement data measured by the sensor in a storage unit, and the sensor and the control unit. A waterproof container that can be stored in the water and seated on the bottom of the bottom of the water, a weight that is detachably attached to the waterproof container and allows the waterproof container to descend in the water, and one end connected to the waterproof container and the other end And a string with adjustable length, and a radiation measurement sensor attached with an air space between the inner surface of the waterproof container, so that more radiation reaches the sensor, Accurate measurement is possible, and the radiation dose of the sediment in the water can be measured efficiently and accurately.

本発明の請求項5に係る放射線計測方法は、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けた放射線計測装置を用いて放射線を計測する放射線計測方法であって、運搬手段により放射線計測装置を水域の所望の計測場所に運び込む第1のステップと、放射線計測センサを制御手段により動作させ放射線計測装置を水中に投入し、放射線計測センサにより計測された計測データを制御手段に保存する第2のステップと、計測時間経過後、投入された放射線計測装置を引き上げ、次の計測場所に運び込む第3のステップとを有するようにしたので、防水容器の計測場所への投入と引き上げを繰り返すだけで計測対象エリアの計測を行うことができ、計測が効率化される。しかも、多くの放射線がセンサに到達することで、短時間でより正確な計測ができ、水中の底質の放射線量の測定を効率良くかつ正確に行うことができる。   According to a fifth aspect of the present invention, there is provided a radiation measurement method comprising: a radiation measurement sensor; a control means for controlling the operation of the sensor; and storing measurement data measured by the sensor in a storage means; and the sensor and the control means. A waterproof container that can be stored in the water and seated on the bottom of the bottom of the water, a weight that is detachably attached to the waterproof container and allows the waterproof container to descend in the water, and one end connected to the waterproof container and the other end A radiation measurement method that measures radiation using a radiation measurement device that is equipped with a string that can be adjusted in length and that has a float attached to it, and a radiation measurement sensor that is installed with an air space secured between the inner surface of the waterproof container. A first step of carrying the radiation measuring device to a desired measurement location in the water area by means of transport, and operating the radiation measuring sensor by the control means to put the radiation measuring device into the water; A second step of storing the measurement data measured by the ray measurement sensor in the control means, and a third step of lifting the input radiation measurement device after the measurement time has elapsed and bringing it into the next measurement location. Therefore, it is possible to measure the measurement target area simply by repeatedly putting the waterproof container into the measurement place and repeatedly raising it, thereby improving the measurement efficiency. Moreover, since a lot of radiation reaches the sensor, more accurate measurement can be performed in a short time, and the radiation dose of the sediment in the water can be measured efficiently and accurately.

図1は本発明の一実施例に係る放射線計測装置を示す全体斜視図である。(実施例1)FIG. 1 is an overall perspective view showing a radiation measuring apparatus according to an embodiment of the present invention. (Example 1) 図2は図1の放射線計測装置の一部破断断面図である。FIG. 2 is a partially broken sectional view of the radiation measuring apparatus of FIG. 図3は図1の放射線計測装置の平面図である。FIG. 3 is a plan view of the radiation measuring apparatus of FIG. 図4の(A)、(B)はそれぞれ、従来のようにガンマ線計測センサのみを防水してガンマ線計測センサの周囲にエア空間を設けない場合のガンマ線の到達イメージを示す説明図および本実施例の構成に基づきガンマ線計測センサの周囲にエア空間を設けた場合のガンマ線の到達イメージを示す説明図である。4 (A) and 4 (B) are explanatory views showing an arrival image of gamma rays when the gamma ray measurement sensor is waterproofed and no air space is provided around the gamma ray measurement sensor as in the prior art, and this embodiment, respectively. It is explanatory drawing which shows the arrival image of a gamma ray at the time of providing an air space around a gamma ray measurement sensor based on the structure. 図5は底質から所定の高さに設置するガンマ線計測センサ(検出器)を示す説明図である。FIG. 5 is an explanatory view showing a gamma ray measurement sensor (detector) installed at a predetermined height from the bottom sediment. 図6はガンマ線の放射にかかる理論から導かれた防水容器の半径とガンマ線計測センサ(検出器)に到達する放射線の比との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the radius of the waterproof container and the ratio of the radiation reaching the gamma ray measurement sensor (detector) derived from the theory concerning the radiation of gamma rays. 図7は図1の放射線計測装置によりため池の各計測場所で計測を行った例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example in which measurement is performed at each measurement location of the pond by the radiation measurement apparatus of FIG. 図8は水底と水底から異なる高さで計測した放射線の計数とガンマ線エネルギーとの関係を示すグラフで、水の遮蔽性を説明するグラフであるFIG. 8 is a graph illustrating the relationship between the gamma ray energy and the radiation count measured at different heights from the bottom of the water, and is a graph illustrating the water shielding properties.

水域の底質の放射線量の測定を効率良くかつ正確に行うという目的を、放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けた放射線計測装置を用いて放射線を計測する放射線計測方法であって、運搬手段により放射線計測装置を水域の所望の計測場所に運び込む第1のステップと、放射線計測センサを制御手段により動作させ放射線計測装置を水中に投入し、放射線計測センサにより計測された計測データを制御手段に保存する第2のステップと、計測時間経過後、投入された放射線計測装置を引き上げ、次の計測場所に運び込む第3のステップとを有するとともに、制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成され、第2のステップで、計測データ収集用端末装置を防水容器に収容して放射線計測センサと電気的に接続し、作業者により制御用端末装置を通じて防水容器内の計測データ収集用端末装置を制御して放射線計測センサを動作させ、水中から引き上げられた放射線計測装置を水域の他の計測場所に運搬しては、第2のステップと第3のステップとを繰り返すようにしたことにより実現した。   For the purpose of efficiently and accurately measuring the radiation dose of the sediment in the water area, a radiation measurement sensor, a control means for controlling the operation of this sensor and storing the measurement data measured by this sensor in the storage means, A waterproof container in which the sensor and the control means are housed and placed in the water and the bottom surface can be seated on the bottom of the water, a weight that is detachably attached to the waterproof container and lowers the waterproof container in water, and one end is Radiation using a radiation measuring device that is connected to a waterproof container and has a string that can be adjusted in length with a float attached to the other end and that has a radiation measurement sensor attached with an air space between the inner surface of the waterproof container A radiation measurement method for measuring a radiation, wherein a radiation measurement device is carried to a desired measurement location in a water area by a transport means, and a radiation measurement sensor is operated by a control means to perform radiation. A second step of throwing the measuring device into the water and storing the measurement data measured by the radiation measuring sensor in the control means; and after the measurement time has elapsed, the charged radiation measuring device is pulled up and carried to the next measurement location. And a control means comprising a central processing unit, a memory, and a communication unit, and a portable measurement data collection terminal device housed in a waterproof container and electrically connected to the radiation measurement sensor; A central processing unit and a communication unit, and a portable control terminal device that operates the radiation measurement sensor by controlling the measurement data collection terminal device through communication that is operated by an operator outside the waterproof container. In the second step, the measurement data collection terminal device is housed in a waterproof container and electrically connected to the radiation measurement sensor. Then, the measurement data collection terminal device in the waterproof container is controlled to operate the radiation measurement sensor, and the radiation measurement device pulled up from the water is transported to other measurement locations in the water area. This was realized by repeating step 3 above.

以下、図面に示す実施例により本発明を説明する。図1および図2はそれぞれ、本発明の一実施例に係る放射線計測装置を示す全体斜視図および一部破断断面図である。本実施例に係る放射線計測装置2は、ガンマ線計測センサ(放射線計測センサ)4と、このガンマ線計測センサ4と電気的に接続されガンマ線計測センサ4をオンオフ制御するとともに、ガンマ線計測センサ4で計測された放射線の計測データを記憶部(記憶手段、図示せず)に保存して記憶する携帯可能な計測データ収集用端末装置(制御手段)5Aと、作業者Mにより操作され通信(例えば、ブルートゥース(登録商標)、無線LAN等)を通じて計測データ収集用端末装置5Aとデータや指令信号を遣り取り可能に構成される制御用端末装置(制御手段)5Bと、位置情報を記録するGPSロガー(GPS装置)6と、これら機材4、5A、6を所定の配置位置に保持して収容し、外部からの衝撃を緩和するブロック状のスペーサ7と、これら機材4、5A、6が収容されたスペーサ7を内部に密封して収納する防水容器3とを備えて構成される。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings. 1 and 2 are an overall perspective view and a partially broken sectional view showing a radiation measuring apparatus according to an embodiment of the present invention, respectively. The radiation measuring apparatus 2 according to this embodiment includes a gamma ray measurement sensor (radiation measurement sensor) 4 and an on / off control of the gamma ray measurement sensor 4 that is electrically connected to the gamma ray measurement sensor 4 and is measured by the gamma ray measurement sensor 4. And a portable measurement data collection terminal device (control means) 5A that stores and stores the radiation measurement data in a storage unit (storage means, not shown) and communicates (for example, Bluetooth ( A registered terminal (registered trademark), a wireless LAN, etc.) and a control terminal device (control means) 5B configured to exchange data and command signals with the measurement data collection terminal device 5A, and a GPS logger (GPS device) that records position information. 6 and a block-shaped spacer 7 for holding these equipments 4, 5A, 6 while holding them in a predetermined arrangement position, and for mitigating external impacts, These gear 4, 5A, constructed and a waterproof container 3 for housing to seal the spacer 7 6 is accommodated therein.

計測データ収集用端末装置5Aは、ガンマ線計測センサ4から出力され記憶部に一時保存された計測データを計測時刻毎に時刻でファイル名が付けられたファイルに保存するようになっている。制御用端末装置5Bは防水容器の外で作業者Mにより操作され、通信を通じて防水容器3に密封されて収容された計測データ収集用端末装置5Aを制御するようになっている。すなわち、制御用端末装置5Bは、通信を通じて防水容器3内の計測データ収集用端末装置5Aを制御してガンマ線計測センサ4をオンオフ動作させたり、計測データ収集用端末装置5Aに記憶された計測データのデータファイルを外部に転送させたりすることができるようになっている。端末装置5A、5Bはいずれも、中央演算処理装置(CPU、制御部)とメモリ(記憶手段、記憶部)と通信部とを備えた携帯型の端末装置で、モバイル端末や携帯用ノート型パソコンが用いられる。ガンマ線計測センサ4は、水中の底質の真上に一定時間静止させて配置し、底泥の放射線量を、すなわち、水底の放射性セシウム(Cs−134、Cs−137)を含む放射性物質から放射されるガンマ線の値を測定するようになっている。このガンマ線計測センサ4は計測データ収集用端末装置5Aからの指令信号により計測動作がオンオフされ、計測したデータを計測データ収集用端末装置5Aに出力するようになっている。   The measurement data collection terminal device 5A stores the measurement data output from the gamma ray measurement sensor 4 and temporarily stored in the storage unit in a file with a file name at each measurement time. The control terminal device 5B is operated by the operator M outside the waterproof container, and controls the measurement data collection terminal device 5A that is sealed and accommodated in the waterproof container 3 through communication. That is, the control terminal device 5B controls the measurement data collection terminal device 5A in the waterproof container 3 through communication to turn on and off the gamma ray measurement sensor 4, or the measurement data stored in the measurement data collection terminal device 5A. The data file can be transferred to the outside. Each of the terminal devices 5A and 5B is a portable terminal device including a central processing unit (CPU, control unit), a memory (storage means, storage unit), and a communication unit, and is a mobile terminal or a portable notebook personal computer. Is used. The gamma ray measurement sensor 4 is placed at a position immediately above the sediment in the water for a certain period of time, and emits radiation from the bottom mud, that is, from radioactive materials including radioactive cesium (Cs-134, Cs-137) in the bottom. It is designed to measure the value of gamma rays. The gamma ray measurement sensor 4 is turned on and off by a command signal from the measurement data collection terminal device 5A, and outputs the measured data to the measurement data collection terminal device 5A.

つまり、より具体的には、(1)制御用端末装置5Bを使用して、防水容器3内の計測データ収集用端末装置5Aを制御し、計測ソフトをスタートし、(2)防水容器3を計測場所の水中に投下し(このときは計測中)、(3)計測時間(本実施例では4分間)が終了するまで待機し、その後、データの保存が完了する。(4)防水容器3を引き上げる。   That is, more specifically, (1) the control terminal device 5B is used to control the measurement data collection terminal device 5A in the waterproof container 3, the measurement software is started, and (2) the waterproof container 3 is It is dropped into the water at the measurement location (measurement is in progress at this time), and (3) waits until the measurement time (4 minutes in the present embodiment) ends, and then the data storage is completed. (4) Pull up the waterproof container 3.

GPSロガー6は、一定時間ごとにGPS(全地球測位システム)で現在位置を計測、記録して、後から移動経路を知ることができるようになっている。GPSロガー6は、地上で現在位置を計測して記録できるものの、水中では計測不能となるので、防水容器3が水中に投入される直前のデータまたは水中から回収された回収直後のデータが、水上での計測位置のデータとなっている。すなわち、ガンマ線計測センサ4により計測された時間の前後の時間とGPSロガー6の記録時間とを対応させると、計測位置が判明するようになっている。このように、放射線の計測データを計測位置と関連付けして正確な計測地図を作成することができる。   The GPS logger 6 can measure and record the current position with GPS (Global Positioning System) at regular intervals, and can know the movement route later. Although the GPS logger 6 can measure and record the current position on the ground, it cannot be measured underwater. Therefore, the data immediately before the waterproof container 3 is put into the water or the data just collected after being collected from the water is It is the data of the measurement position at. That is, when the time before and after the time measured by the gamma ray measurement sensor 4 is associated with the recording time of the GPS logger 6, the measurement position is determined. Thus, an accurate measurement map can be created by associating radiation measurement data with a measurement position.

防水容器3は有底円筒状の透明なアクリル板から構成される容器本体8とこの容器本体8の上部開口に蓋着され、内部を密封する蓋体9とを備えて構成される。蓋体9は、外周縁が容器本体8の上端開口に外側に突出して形成された上端鍔部8Aに環状パッキン10を介して載置され、周方向に等間隔で螺装される締結具11(本実施例では4箇所)により密封されるようになっている。容器本体8の内部には、機材4、5A、6が収容されたブロック状スペーサ7の長手方向両端部が容器本体8の内面に接触して収容される。防水容器3は、各機材4、5A、6が配置されたスペーサ7が容器本体8内部に収容され、蓋体9が容器本体8に密着されて密封されると、水中に投入され、底面が水中の底質に着座するようになっている。スペーサ7は上部が開口したポケットが機材4、5A、6の配置に応じて形成され、これら各ポケットに機材4、5A、6が上方から出し入れ可能に収容される。スペーサ7は作業者Mにより容器本体8に出し入れされるようになっている。   The waterproof container 3 includes a container body 8 made of a transparent acrylic plate having a cylindrical shape with a bottom, and a lid body 9 that is covered with an upper opening of the container body 8 and seals the inside. The lid body 9 is mounted on an upper end flange 8A formed with an outer peripheral edge projecting outward from the upper end opening of the container body 8 via an annular packing 10, and is fastened with a fastener 11 that is screwed at equal intervals in the circumferential direction. (4 places in this embodiment) are sealed. Inside the container body 8, both longitudinal ends of the block spacer 7 in which the equipments 4, 5 </ b> A, and 6 are housed are accommodated in contact with the inner surface of the container body 8. When the waterproof container 3 has the spacer 7 in which the respective equipments 4, 5 </ b> A, and 6 are disposed accommodated in the container body 8 and the lid body 9 is in close contact with the container body 8 and sealed, the waterproof container 3 is poured into water and the bottom surface is It is designed to sit on the underwater sediment. The spacer 7 is formed with a pocket having an upper opening corresponding to the arrangement of the equipments 4, 5 A and 6, and the equipments 4, 5 A and 6 are accommodated in these pockets so that they can be taken in and out from above. The spacer 7 is inserted into and removed from the container body 8 by the operator M.

ガンマ線計測センサ4は、円筒状容器本体8の軸心C上に所定の高さhで配置される。図6に示す理論から導かれるグラフから、本実施例では、実験に使用した容器本体8の半径rを10cmとし、ガンマ線計測センサ4の高さh=5cmとしているが、ガンマ線計測センサの高さhは高い方が好ましい。つまり、装置が極端に巨大化しない範囲で、設置高さhを高くするのが好ましい。このように、本実施例では、容器本体8の壁面から均等な位置(軸心C上)でしかも底面から所定の高さhを確保し、ガンマ線計測センサ4の回りには周方向と下方にエア空間Sを確保し、正確な測定精度が短時間で出せるように構成している。エア空間Sを確保したことにより、底質の広い範囲からガンマ線が到達するため(図4の(B)参照)ガンマ線の計測時間を短くすることができる。図4の(A)は、従来のようにガンマ線計測センサ104のみを防水してガンマ線計測センサ104の周囲にエア空間を設けないで、底質とガンマ線計測センサ104との間が水で満たされている場合のガンマ線の到達イメージを示す説明図である。この図4の(A)からわかるように、ガンマ線計測センサ104のみを防水して底質との間に水がある場合、ガンマ線計測センサ104周囲の水に底質の放射線は遮られるため、より正確な測定精度を得るには長時間計測する必要がある。これに対し、図4の(B)に示すように、本実施例に係るガンマ線計測センサ4は、防水容器3内に収容され、しかも、ガンマ線計測センサ4の回りには周方向と下方にエア空間Sを確保しているので、放射線を遮蔽するものが排除されている。このため、計測時間を短くすることができるようになっている。ガンマ線計測センサ4には、上端部に図示しない紐が接続され、スペーサ7に収納された後、スペーサ7から取り出す際に用いられるようになっている。   The gamma ray measurement sensor 4 is disposed on the axis C of the cylindrical container body 8 at a predetermined height h. From the graph derived from the theory shown in FIG. 6, in this embodiment, the radius r of the container body 8 used in the experiment is 10 cm and the height h of the gamma ray measurement sensor 4 is 5 cm. Higher h is preferable. That is, it is preferable to increase the installation height h within a range where the device does not become extremely large. Thus, in this embodiment, a predetermined height h is secured from the wall surface of the container main body 8 at a uniform position (on the axis C) and from the bottom surface, and around the gamma ray measurement sensor 4 in the circumferential direction and downward. The air space S is secured so that accurate measurement accuracy can be obtained in a short time. By securing the air space S, gamma rays reach from a wide range of sediment (see (B) in FIG. 4), so that the gamma ray measurement time can be shortened. In FIG. 4A, the gap between the bottom sediment and the gamma ray measurement sensor 104 is filled with water without waterproofing the gamma ray measurement sensor 104 and providing an air space around the gamma ray measurement sensor 104 as in the prior art. It is explanatory drawing which shows the arrival image of the gamma ray in the case of being. As can be seen from FIG. 4A, when only the gamma ray measurement sensor 104 is waterproof and there is water between the bottom sediment, the radiation around the gamma ray measurement sensor 104 is blocked by the bottom sediment radiation. To obtain accurate measurement accuracy, it is necessary to measure for a long time. On the other hand, as shown in FIG. 4B, the gamma ray measurement sensor 4 according to the present embodiment is housed in the waterproof container 3, and the air around the gamma ray measurement sensor 4 is in the circumferential direction and downward. Since the space S is secured, those that shield radiation are excluded. For this reason, measurement time can be shortened. A string (not shown) is connected to the upper end of the gamma ray measurement sensor 4 and is used when the gamma ray measurement sensor 4 is taken out from the spacer 7 after being stored in the spacer 7.

本実施例では、容器本体8へのガンマ線計測センサ4の配置は、理論的な解釈により求めた。
まず、地表面に均一に放射性物質が存在する場合、図5に示すように、高さhの地点に到達する放射線は、次式(数1)で表され、放射線のエネルギーが0.5MeV付近の場合、減衰係数μは物質の密度に比例し、おおよそ空気で0.01、水で8.55となる。
In this embodiment, the arrangement of the gamma ray measurement sensor 4 on the container body 8 was obtained by theoretical interpretation.
First, when the radioactive material exists uniformly on the ground surface, as shown in FIG. 5, the radiation that reaches the point of height h is expressed by the following formula (Equation 1), and the energy of the radiation is around 0.5 MeV. In this case, the attenuation coefficient μ is proportional to the density of the substance, and is approximately 0.01 for air and 8.55 for water.

円柱状の防水容器3によって検出器(ガンマ線計測センサ4)の周囲にエア空間Sを設けた場合、検出器(ガンマ線計測センサ4)に到達する放射線量の比(空気/水)は、上式(数1)から図6のグラフのように求められる。例えば、半径10cmの円筒状防水容器3によりエア空間Sを設け、下から高さ5cmでかつ軸心C上に検出器(ガンマ線計測センサ4)を設置すると、約1.9倍の放射線が到達し、計測効率が向上する。   When the air space S is provided around the detector (gamma ray measurement sensor 4) by the cylindrical waterproof container 3, the ratio of the amount of radiation (air / water) reaching the detector (gamma ray measurement sensor 4) is expressed by the above formula. It is obtained from (Equation 1) as shown in the graph of FIG. For example, when an air space S is provided by a cylindrical waterproof container 3 having a radius of 10 cm and a detector (gamma ray measurement sensor 4) is installed on the axis C at a height of 5 cm from below, about 1.9 times as much radiation arrives. Measurement efficiency is improved.

防水容器3の蓋体9には、締結具11間に取手13が設けられる。取手13には、先端に浮き14が接続された紐15が連結される。紐15は、水域の水深に応じて長さが調整可能になっている。紐15は、防水容器3が水中に着底し、浮き14が水面に浮いている状態で、浮き14側を持って引っ張ると、水中から防水容器3を引き上げることができるようになっている。   A handle 13 is provided between the fasteners 11 on the lid 9 of the waterproof container 3. A string 15 having a float 14 connected to the tip is coupled to the handle 13. The length of the string 15 can be adjusted according to the depth of the water area. The string 15 can be pulled up from the water when the waterproof container 3 is bottomed in the water and the float 14 is floated on the surface of the water and is pulled while holding the float 14 side.

防水容器3には、錘20が着脱自在に取り付けられる。錘20は、複数の錘片20Aとこの錘片20Aに形成された挿通孔に帯体21を通して構成される。錘20は、所望の数の錘片20Aに挿通孔を介して挿通された帯体21を容器本体8の外周に巻き付け、錘片20Aを容器本体8の下端外周に突出して形成された下端鍔部8Bに載置して容器本体3に取り付けられる。錘20は、錘片20Aの数に応じて、内部に機材が収納されて密封された防水容器3の比重に応じて錘片20Aの数を調整し、錘20としての重量を調整可能に取り付けられる。すなわち、錘20は、水域の底質に応じて防水容器3が着地する際に、着地時の衝撃を緩和するように防水容器3の比重を底質と同等か、あるいは底質の比重に近づけるようになっている。つまり、軟弱な底質の場合、防水容器3をより低速で沈降させるように構成される。本実施例の場合、軟質な底質を考慮し、錘20を装着した防水容器3の比重が1.1〜1.2程度になるよう設定している。なお、錘20がない場合、密封された防水容器3には気室が形成されるので水中に沈むことはない。このため、水域の計測対象場所の底質が軟弱であったりヘドロ状であっても、防水容器3は鉛直下向きに降下し、防水容器3の着底時、泥を巻き上げにくくすることができ、防水容器3への泥の付着を抑制し、より正確な測定を行うことができるようになっている。   A weight 20 is detachably attached to the waterproof container 3. The weight 20 is constituted by a plurality of weight pieces 20A and a band body 21 through an insertion hole formed in the weight piece 20A. The weight 20 is formed by winding a belt body 21 inserted around a desired number of weight pieces 20A through insertion holes around the outer periphery of the container body 8 and projecting the weight piece 20A to the outer periphery of the lower end of the container body 8. It is placed on the part 8B and attached to the container body 3. According to the number of weight pieces 20A, the weight 20 is attached so that the weight of the weight 20 can be adjusted by adjusting the number of weight pieces 20A according to the specific gravity of the sealed waterproof container 3 in which equipment is housed. It is done. That is, when the waterproof container 3 lands according to the bottom sediment of the water area, the weight 20 makes the specific gravity of the waterproof container 3 equal to or close to the specific gravity of the bottom sediment so as to reduce the impact at the time of landing. It is like that. That is, in the case of a soft bottom, the waterproof container 3 is configured to settle at a lower speed. In the case of the present embodiment, in consideration of the soft bottom, the specific gravity of the waterproof container 3 equipped with the weight 20 is set to be about 1.1 to 1.2. In addition, when there is no weight 20, since the air chamber is formed in the sealed waterproofing container 3, it does not sink in water. For this reason, even if the bottom sediment of the measurement target place in the water area is soft or slender, the waterproof container 3 descends vertically downward, and it is possible to make it difficult to wind up mud when the waterproof container 3 reaches the bottom, The adhesion of mud to the waterproof container 3 is suppressed, and more accurate measurement can be performed.

上記実施例に係る放射線計測装置2は、例えば、図7に示す池のような水域Wで底質の放射線量を計測する際、図示しない船(運搬手段)によりこの水域Wの所望の計測位置に機材4、5A、6、スペーサ7、容器本体8、蓋体9を運び込み、GPSロガー6を動作させて位置と時間を確認する。そして、作業者Mがガンマ線計測センサ4と計測データ収集用端末装置5Aとのスイッチを入れて通信用ソフトを起動し、これら機材4、5A、6をスペーサ7に収め、このスペーサ7を容器本体8に収容し、蓋体9で防水容器3を密封するようになっている。次に、作業者Mは制御用端末装置5Bを動作させ、無線LANやブルートゥース(登録商標)の通信手段により計測データ収集用端末装置5Aを制御する。制御用端末装置5Bは計測データ収集用端末装置5Aを通じて、計測ソフトのオンオフ、計測データファイルの保存を行うようになっている。計測ソフトはタイマー計測可能になっており、「スタート後t秒間計測」するよう設定される。つまり、ガンマ線計測センサ4を動作開始後、所望の時間t秒計測動作させるよう設定される。ガンマ線計測センサ4は計測されたデータの自動保存機能は有していないので、計測された計測データは計測データ収集用端末装置5Aに出力され、計測データ収集用端末装置5Aのメモリに計測時刻毎のファイル名が付けられたファイルとして保存されるようになっている。つまり、密閉された防水容器3が計測場所の水中に投入され、ガンマ線計測センサ4が指定された計測時間計測し(本実施例では4分間)、計測データを計測データ収集用端末装置5Aに送信すると、計測データ収集用端末装置5Aはガンマ線計測センサ4から受け取った計測データをメモリ(図示せず)のファイルに保存するようになっている。このファイルは計測時刻毎に作成される。水中の防水容器3を回収する際には、図示しない船で浮き14を探し、紐15を引っ張って、船上に回収するようになっている。   The radiation measuring apparatus 2 according to the above embodiment, for example, when measuring the radiation dose of the sediment in the water area W such as a pond shown in FIG. The equipment 4, 5A, 6, the spacer 7, the container main body 8, and the lid body 9 are carried in, and the GPS logger 6 is operated to check the position and time. Then, the operator M switches on the gamma ray measurement sensor 4 and the measurement data collection terminal device 5A to start communication software, and the equipments 4, 5A and 6 are accommodated in the spacer 7, and the spacer 7 is stored in the container body. 8 and the waterproof container 3 is sealed with a lid 9. Next, the worker M operates the control terminal device 5B, and controls the measurement data collection terminal device 5A by wireless LAN or Bluetooth (registered trademark) communication means. The control terminal device 5B is configured to turn on / off the measurement software and store the measurement data file through the measurement data collection terminal device 5A. The measurement software is capable of timer measurement and is set to “measure for t seconds after start”. That is, the gamma-ray measurement sensor 4 is set to perform a measurement operation for a desired time t seconds after the operation is started. Since the gamma ray measurement sensor 4 does not have an automatic storage function for the measured data, the measured measurement data is output to the measurement data collection terminal device 5A and stored in the memory of the measurement data collection terminal device 5A for each measurement time. Is saved as a file with the file name. That is, the sealed waterproof container 3 is put into the water of the measurement location, the gamma ray measurement sensor 4 measures the specified measurement time (4 minutes in this embodiment), and the measurement data is transmitted to the measurement data collection terminal device 5A. Then, the measurement data collection terminal device 5A stores the measurement data received from the gamma ray measurement sensor 4 in a file of a memory (not shown). This file is created for each measurement time. When the underwater waterproof container 3 is collected, the float 14 is searched for by a ship (not shown), and the string 15 is pulled to collect it on the ship.

次に、上記実施例に係る放射線計測装置2を用いた放射線計測方法について、放射線計測装置2の動作に基づいて説明する。本実施例に係る放射線計測装置2を用いた放射線計測方法は、まず、第1のステップS1で、作業者Mは、船(運搬手段、図示せず)により水域Wの所望の計測位置(最初の計測位置)に放射線計測装置2を運び込む。   Next, a radiation measurement method using the radiation measurement apparatus 2 according to the above embodiment will be described based on the operation of the radiation measurement apparatus 2. In the radiation measurement method using the radiation measurement apparatus 2 according to the present embodiment, first, in a first step S1, the worker M uses a ship (transport means, not shown) to measure a desired measurement position (initially) in the water area W. The measurement device 2 is brought into the radiation measurement device 2.

次に、第2のステップS2で、作業者Mは、ガンマ線計測センサ4と計測データ収集用端末装置5Aと無線LANルーター(図示せず)とGPSロガー6のスイッチを入れて動作状態とし、通信用ソフトを起動させる。ガンマ線計測センサ4と計測データ収集用端末装置5AとGPSロガー6とをスペーサ7を通じて容器本体8に収め、蓋体9で防水容器3を密封する。そして、作業者Mは制御用端末装置5Bにより計測データ収集用端末装置5Aを動作させ計測ソフトを通じてガンマ線計測センサ4の計測を開始する。このとき、着底時間を考慮して所定の時間経過後、計測を開始するようにしてもよい。その後、防水容器3を図示しない船から水中に投入する。水中に投入された防水容器3は、下側に錘20が取り付けられ、しかも、錘20の重量を調整し、水域の底質が軟弱な場合、水域Wに投入される防水容器3の比重を底質の比重と同等または底質の比重に近づける(本実施例では、防水容器3の比重を1.1〜1.2に設定)ようにしているので、防水容器3は低速で沈降する。このため、防水容器3の着底時、防水容器3が底質に沈み込むのが阻止される。このため、防水容器3は底面を下方に向けた状態でゆっくりと沈降し、たとえ、底質が軟弱であっても、泥を巻き上げることなく緩やかに着底する。ガンマ線計測センサ4は、指定された計測時間(本実施例では4分間)の間、計測した計測データを計測データ収集用端末装置5Aに送信する。計測データ収集用端末装置5Aはガンマ線計測センサ4から受け取った計測データをメモリ(図示せず)に一時的に記憶し、ファイルに保存する。このとき、GPSロガー6は、地上で現在位置を計測して記録できるものの、水中では計測不能となるので、防水容器3が水中に投入される直前のデータまたは水中から回収された回収直後の水上のデータが、計測位置のデータとなる。計測時間(本実施例では4分間)の間、作業者Mは船上で待機する。この所定の計測時間が経過すると、計測ソフトが計測を終了する。終了すると計測データが保存されたファイルが計測場所(計測時刻)のファイルとして保存される。   Next, in the second step S2, the worker M switches on the gamma ray measurement sensor 4, the measurement data collection terminal device 5A, the wireless LAN router (not shown), and the GPS logger 6 to be in an operating state, and performs communication. Start the software. The gamma ray measurement sensor 4, the measurement data collection terminal device 5 </ b> A, and the GPS logger 6 are housed in the container body 8 through the spacer 7, and the waterproof container 3 is sealed with the lid 9. Then, the worker M operates the measurement data collection terminal device 5A by the control terminal device 5B and starts measurement of the gamma ray measurement sensor 4 through the measurement software. At this time, the measurement may be started after a predetermined time has elapsed in consideration of the bottoming time. Thereafter, the waterproof container 3 is put into water from a ship (not shown). The waterproof container 3 thrown into the water has a weight 20 attached to the lower side, and when the weight of the weight 20 is adjusted and the bottom of the water area is weak, the specific gravity of the waterproof container 3 thrown into the water area W is Since the specific gravity of the bottom material is equal to or close to the specific gravity of the bottom material (in this embodiment, the specific gravity of the waterproof container 3 is set to 1.1 to 1.2), the waterproof container 3 sinks at a low speed. For this reason, when the waterproof container 3 is settled, the waterproof container 3 is prevented from sinking into the bottom material. For this reason, the waterproof container 3 slowly settles with the bottom face directed downward, and even if the bottom material is soft, the waterproof container 3 settles gently without rolling up mud. The gamma ray measurement sensor 4 transmits the measured measurement data to the measurement data collection terminal device 5A for the designated measurement time (4 minutes in the present embodiment). The measurement data collection terminal device 5A temporarily stores measurement data received from the gamma ray measurement sensor 4 in a memory (not shown) and saves it in a file. At this time, although the GPS logger 6 can measure and record the current position on the ground, it cannot be measured underwater. Therefore, the data immediately before the waterproof container 3 is put into the water or the water just after the collection recovered from the water. This data becomes the measurement position data. During the measurement time (4 minutes in this embodiment), the worker M stands by on the ship. When this predetermined measurement time elapses, the measurement software ends the measurement. When finished, the file in which the measurement data is saved is saved as a file at the measurement location (measurement time).

次に、第3のステップS3で、ガンマ線計測センサ4の計測時間に相当する時間、図示しない船で待機した後、浮き14を探し、紐15を引っ張って、防止容器3を船上に回収する。そして、作業者Mは、船で次の計測場所に移動し、再び、制御用端末装置5Bにより密封された防水容器3の計測データ収集用端末装置5Aを制御して、計測作業をセットし、当該計測場所で防水容器3を水中に投入する。このように、防水容器3を船に引き上げた際、蓋体9を開くことなく、密封状態の防水容器3の計測データ収集用端末装置5Aを制御して計測を行うことができる。このため、次の測定地点に速やかに移動することができる。一地点で計測を完了する場合、この第3のステップS3で工程を完了する。複数の計測箇所で計測を行う場合、第2のステップS2と第3のステップS3とを繰り返し、船で次の計測地点に向かい、引き上げられた放射線計測装置を水域の他の計測場所に運搬しては、放射線計測センサを動作させて防水容器を水中に投入する投入工程と、計測時間経過後、防水容器の引き上げを行う引き上げ工程とを繰り返して、計測場所毎の計測データを収集するようになっている。このように、水域Wにおける計測地点毎に密封された防水容器3の投入と回収を繰り返して計測を行ので、計測範囲を線状にも面状にも自在に設定できる。ガンマ線計測センサ4により計測された各測定位置ごとの放射線の計測データをGPSロガー6の位置情報とこの位置情報の記録時間とを対応させると、放射線の計測データを計測位置と関連付けして正確な計測地図を作成することができるようになっている。このように、本実施例に係る放射線計測装置2を用いた放射線計測方法では、所望の計測場所での防水容器3の投入と所定の計測時間経過後の引き上げだけで計測作業を効率的に行うことができる。また、ガンマ線計測センサ4は、防水容器3内で水底とエア空間Sにより隔てられて配置されているので、計測時、水底の放射線は水による遮蔽をうけにくく、放射線が正確にセンサに到達しやすい。このため、計測のための投入と計測データの回収とを時間をずらして行うことができ、水中の底質の放射線量の測定を効率良くかつ正確に行うことができる。   Next, in a third step S3, after waiting on a ship (not shown) for a time corresponding to the measurement time of the gamma ray measurement sensor 4, the float 14 is searched for, the string 15 is pulled, and the prevention container 3 is collected on the ship. Then, the worker M moves to the next measurement place on the ship, and again controls the measurement data collection terminal device 5A of the waterproof container 3 sealed by the control terminal device 5B, sets the measurement work, The waterproof container 3 is thrown into water at the measurement location. Thus, when the waterproof container 3 is pulled up to the ship, the measurement data collecting terminal device 5A of the sealed waterproof container 3 can be controlled and measured without opening the lid 9. For this reason, it can move to the next measurement point quickly. When the measurement is completed at one point, the process is completed in the third step S3. When measuring at a plurality of measurement points, the second step S2 and the third step S3 are repeated, the ship goes to the next measurement point, and the raised radiation measurement device is transported to another measurement point in the water area. The measurement process for each measurement location is collected by repeating the charging process of operating the radiation measurement sensor to put the waterproof container into the water and the lifting process of lifting the waterproof container after the measurement time has elapsed. It has become. As described above, since the measurement is performed by repeatedly inserting and collecting the waterproof container 3 sealed for each measurement point in the water area W, the measurement range can be freely set to be linear or planar. If the measurement data of the radiation at each measurement position measured by the gamma-ray measurement sensor 4 is associated with the position information of the GPS logger 6 and the recording time of this position information, the radiation measurement data is associated with the measurement position and is accurate. A measurement map can be created. Thus, in the radiation measurement method using the radiation measurement apparatus 2 according to the present embodiment, the measurement work is efficiently performed only by inserting the waterproof container 3 at a desired measurement location and pulling up after a predetermined measurement time has elapsed. be able to. Further, since the gamma ray measurement sensor 4 is arranged in the waterproof container 3 so as to be separated from the bottom of the water and the air space S, the radiation of the bottom of the water is not easily shielded by water during measurement, and the radiation reaches the sensor accurately. Cheap. For this reason, the input for measurement and the collection | recovery of measurement data can be performed shifting time, and the measurement of the radiation dose of the bottom sediment in water can be performed efficiently and correctly.

なお、上記実施例では、GPSロガー6を防水容器3に収容するようにしているがこれに限られるものではなく、防水容器3ではなく作業者MがGPSロガー6を携帯し、防水容器3投入時の位置データを作業者Mが記録し、後で放射線計測データと付き合わせて集計するようにしてもよい。また、上記実施例では、計測データ収集用端末装置と制御用端末装置とを用いて計測データを集計するようにしているがこれに限られるものではなく、計測データ収集用端末装置に表示部を設け、透明なアクリル容器を通じて表示部に表示された計測データを作業者が書き取るようにしてもよいし、計測データ収集用端末装置を外部のセンターサーバと通信を通じて遣り取り可能にし、計測データをセンターサーバに送信するようにしてもよい。また、防水容器に開閉自在な窓を形成し、水中から防水容器を引き上げた際、この窓を開いて計測データ収集用端末装置の通信部を通じて計測データを外部のセンターサーバに送信するようにしてもよい。さらに、引き上げ時、窓を開いては計測データ収集用端末装置を操作して、計測するようにしてもよい。この場合、端末装置一台のみで計測を行うことができる。また、制御用端末装置をブルートゥース(登録商標)キーボードとしてもよい。   In the above embodiment, the GPS logger 6 is accommodated in the waterproof container 3, but the invention is not limited to this. The worker M, not the waterproof container 3, carries the GPS logger 6 and inserts the waterproof container 3. The position data at the time may be recorded by the worker M, and later added together with the radiation measurement data. In the above embodiment, the measurement data is collected using the measurement data collection terminal device and the control terminal device. However, the present invention is not limited to this, and the display unit is provided in the measurement data collection terminal device. The measurement data displayed on the display unit through a transparent acrylic container may be written by the operator, or the measurement data collection terminal device can be exchanged through communication with an external center server. You may make it transmit to. Also, a window that can be opened and closed is formed in the waterproof container, and when the waterproof container is lifted from the water, the window is opened and measurement data is transmitted to the external center server through the communication unit of the measurement data collection terminal device. Also good. Further, at the time of pulling up, measurement may be performed by opening the window and operating the measurement data collection terminal device. In this case, measurement can be performed with only one terminal device. The control terminal device may be a Bluetooth (registered trademark) keyboard.

2 放射線計測装置
3 防水容器
4 ガンマ線計測センサ(放射線計測センサ)
5A 計測データ収集用端末装置(制御手段)
5B 制御用端末装置(制御手段)
14 浮き
15 紐
20 錘
S エア空間
2 Radiation measurement device 3 Waterproof container 4 Gamma ray measurement sensor (radiation measurement sensor)
5A Measurement data collection terminal device (control means)
5B Control terminal device (control means)
14 Floating 15 String 20 Weight S Air space

Claims (8)

放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データをを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けたことを特徴とする放射線計測装置。   A radiation measurement sensor, a control unit that controls the operation of the sensor and stores measurement data measured by the sensor in a storage unit, and the sensor and the control unit are housed inside and put into water so that the bottom surface is underwater A waterproof container that can be seated on the bottom, a weight that is detachably attached to the waterproof container and that allows the waterproof container to descend in water, and a string whose one end is connected to the waterproof container and a float is attached to the other end, the length of which can be adjusted And a radiation measuring device, wherein the radiation measuring sensor is attached while securing an air space between the inner surface of the waterproof container. 防水容器には、位置情報を記録するGPS装置が収納され、防水容器の水中への投入時または回収時、水上での計測位置が記録されることを特徴とする請求項1に記載の放射線計測装置。   The radiation measurement according to claim 1, wherein a GPS device for recording position information is stored in the waterproof container, and a measurement position on the water is recorded when the waterproof container is put into water or collected. apparatus. 錘は、水域の底質が軟弱な場合、水域に投入される防水容器の比重を底質の比重と同等または底質の比重に近づけて沈降速度を低下させ、防水容器の着底時、防水容器が底質に沈み込むのを阻止する重量に設定されることを特徴とする請求項1または2に記載の放射線計測装置。   When the bottom sediment of the water area is soft, the weight reduces the sedimentation speed by making the specific gravity of the waterproof container thrown into the water area equal to or close to the specific gravity of the bottom sediment, The radiation measuring device according to claim 1, wherein the radiation measuring device is set to a weight that prevents the container from sinking into the bottom sediment. 制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成されることを特徴とする請求項1ないし3のうちいずれか1に記載の放射線計測装置。   The control means includes a central processing unit, a memory, and a communication unit, and is a portable measurement data collection terminal device housed in a waterproof container and electrically connected to the radiation measurement sensor, the central processing unit, and the communication unit And a portable control terminal device that is operated by an operator outside the waterproof container and controls the measurement data collection terminal device through communication to operate the radiation measurement sensor. The radiation measuring apparatus according to any one of claims 1 to 3. 放射線計測センサと、このセンサの動作を制御しこのセンサで計測された計測データを記憶手段に記憶する制御手段と、センサと制御手段とを内部に収納し水中に投入されて底面が水中の底質に着座可能な防水容器と、この防水容器に着脱自在に取り付けられ防水容器を水中で降下させる錘と、一端が防水容器に連結され他端に浮きが取り付けられ長さが調整可能な紐とを備えるとともに、放射線計測センサを防水容器内面との間にエア空間を確保して取り付けた放射線計測装置を用いて放射線を計測する放射線計測方法であって、
運搬手段により放射線計測装置を水域の所望の計測場所に運び込む第1のステップと、放射線計測センサを制御手段により動作させ放射線計測装置を水中に投入し、放射線計測センサにより計測された計測データを制御手段に保存する第2のステップと、計測時間経過後、投入された放射線計測装置を引き上げ、次の計測場所に運び込む第3のステップとを有することを特徴とする放射線計測方法。
A radiation measurement sensor, a control means for controlling the operation of the sensor and storing measurement data measured by the sensor in a storage means, and the sensor and the control means are housed inside and put into water so that the bottom surface is the bottom of the water A waterproof container that can be seated on the quality, a weight that is detachably attached to the waterproof container, and lowers the waterproof container in water; a string that has one end connected to the waterproof container and a float attached to the other end, the length of which can be adjusted; A radiation measurement method for measuring radiation using a radiation measurement device in which an air space is secured between the radiation measurement sensor and the inner surface of the waterproof container,
The first step of bringing the radiation measuring device to the desired measurement location in the water area by the transport means, the radiation measuring sensor is operated by the control means, the radiation measuring device is put into the water, and the measurement data measured by the radiation measuring sensor is controlled. A radiation measurement method comprising: a second step of storing in a means; and a third step of pulling up the input radiation measurement device and carrying it to the next measurement location after the measurement time has elapsed.
制御手段は、中央演算処理装置とメモリと通信部とを備え、防水容器に収容され放射線計測センサと電気的に接続される携帯可能な計測データ収集用端末装置と、中央演算処理装置と通信部とを備え、防水容器の外で作業者により操作され通信を通じて計測データ収集用端末装置を制御して放射線計測センサを動作させる携帯可能な制御用端末装置とを備えて構成され、第2のステップで、計測データ収集用端末装置を防水容器に収容して放射線計測センサと電気的に接続し、作業者により制御用端末装置を通じて防水容器内の計測データ収集用端末装置を制御して放射線計測センサを動作させることを特徴とする請求項5に記載の放射線計測方法。   The control means includes a central processing unit, a memory, and a communication unit, and is a portable measurement data collection terminal device housed in a waterproof container and electrically connected to the radiation measurement sensor, the central processing unit, and the communication unit And a portable control terminal device that is operated by an operator outside the waterproof container and controls the measurement data collection terminal device through communication to operate the radiation measurement sensor. The measurement data collection terminal device is accommodated in the waterproof container and electrically connected to the radiation measurement sensor, and the operator controls the measurement data collection terminal device in the waterproof container through the control terminal device, and the radiation measurement sensor. The radiation measuring method according to claim 5, wherein the radiation measuring method is operated. 水中から引き上げられた放射線計測装置を水域の他の計測場所に運搬しては、第2のステップと第3のステップとを繰り返すことを特徴とする請求項5または6に記載の放射線計測方法。   The radiation measurement method according to claim 5 or 6, wherein the radiation measurement device pulled up from the water is transported to another measurement location in the water area, and the second step and the third step are repeated. 防水容器には、位置情報を記録するGPS装置が収納され、防水容器の水中への投入時または回収時、水上での計測位置が記録されることを特徴とする請求項5ないし7のうちいずれか1に記載の放射線計測方法。   8. The waterproof container stores a GPS device for recording position information, and records the measurement position on the water when the waterproof container is put into water or collected. The radiation measuring method according to claim 1.
JP2014052552A 2014-03-14 2014-03-14 Radiation measurement apparatus and radiation measurement method using the apparatus Active JP6537094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014052552A JP6537094B2 (en) 2014-03-14 2014-03-14 Radiation measurement apparatus and radiation measurement method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014052552A JP6537094B2 (en) 2014-03-14 2014-03-14 Radiation measurement apparatus and radiation measurement method using the apparatus

Publications (2)

Publication Number Publication Date
JP2015175731A true JP2015175731A (en) 2015-10-05
JP6537094B2 JP6537094B2 (en) 2019-07-03

Family

ID=54255043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014052552A Active JP6537094B2 (en) 2014-03-14 2014-03-14 Radiation measurement apparatus and radiation measurement method using the apparatus

Country Status (1)

Country Link
JP (1) JP6537094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964919A (en) * 2021-03-22 2021-06-15 卞栋梁 Waterproof and antitheft structure for three-phase electric energy meter and use method of waterproof and antitheft structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495802A (en) * 1972-03-16 1974-01-19
JPH08271636A (en) * 1995-03-31 1996-10-18 Nitsusaku:Kk Method and container for measurement of spontaneous gamma ray dose at bottom of sea or lake
JP2008058113A (en) * 2006-08-30 2008-03-13 Central Res Inst Of Electric Power Ind Radiation sensing apparatus
JP2010018171A (en) * 2008-07-10 2010-01-28 Ihi Corp Submersible system
JP3181739U (en) * 2012-12-03 2013-02-21 いであ株式会社 Towed underwater radioactivity measurement system
US20130110320A1 (en) * 2009-02-13 2013-05-02 The Boeing Company Unmanned underwater vehicle integrated radiation detection system
JP2013242219A (en) * 2012-05-21 2013-12-05 Takeshi Hirata Radiation measuring apparatus, radiation measuring system, and radiation measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495802A (en) * 1972-03-16 1974-01-19
JPH08271636A (en) * 1995-03-31 1996-10-18 Nitsusaku:Kk Method and container for measurement of spontaneous gamma ray dose at bottom of sea or lake
JP2008058113A (en) * 2006-08-30 2008-03-13 Central Res Inst Of Electric Power Ind Radiation sensing apparatus
JP2010018171A (en) * 2008-07-10 2010-01-28 Ihi Corp Submersible system
US20130110320A1 (en) * 2009-02-13 2013-05-02 The Boeing Company Unmanned underwater vehicle integrated radiation detection system
JP2013242219A (en) * 2012-05-21 2013-12-05 Takeshi Hirata Radiation measuring apparatus, radiation measuring system, and radiation measuring method
JP3181739U (en) * 2012-12-03 2013-02-21 いであ株式会社 Towed underwater radioactivity measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964919A (en) * 2021-03-22 2021-06-15 卞栋梁 Waterproof and antitheft structure for three-phase electric energy meter and use method of waterproof and antitheft structure
CN112964919B (en) * 2021-03-22 2022-09-20 北京合众科创科技有限公司 Waterproof and anti-theft structure for three-phase electric energy meter and use method thereof

Also Published As

Publication number Publication date
JP6537094B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
KR101048528B1 (en) The apparatus and method for seabed exploration
CN111721575B (en) Seabed sand wave long-term observation device and method applied to internal wave development area
JP5836465B1 (en) Radiation measuring apparatus and radiation measuring method
JP5934029B2 (en) Measuring apparatus and measuring method for measuring radiation or radioactivity
JP6042627B2 (en) Radiation measurement system
JP2013242219A (en) Radiation measuring apparatus, radiation measuring system, and radiation measuring method
US9689992B2 (en) Method and device for determining the radiological activity deposited in a sea bed
CN104076398A (en) Ocean current preventing device of sea seismograph
JP6438284B2 (en) Underwater radiation measurement device and radiation observation system
JP6537094B2 (en) Radiation measurement apparatus and radiation measurement method using the apparatus
JP6346750B2 (en) Radioactive substance distribution measuring apparatus and radioactive substance distribution measuring method
JP5925009B2 (en) Radiation measurement system
CN102778469B (en) Deep sea combustible ice detecting instrument based on gamma ray Compton backscattering scanning technique
KR101321595B1 (en) Amending system of new measuring data with audio signal for numeric map
JPH08271636A (en) Method and container for measurement of spontaneous gamma ray dose at bottom of sea or lake
Krezoski Sediment reworking and transport in eastern Lake Superior: in situ rare earth element tracer studies
JP6782879B2 (en) Radioactivity measuring device and radioactivity measuring method
GB1563540A (en) Methods of and measuring devices for testing the support and/or covering of an oil or gas pipeline
CN209911582U (en) Seabed geophysical data acquisition device and system
Schläger et al. Radon exhalation of the uranium tailings dump Digmai, Tajikistan
Zangger et al. A redesigned kasten core barrel and sampling technique
US20110267925A1 (en) Bottom seismic station
Suzuki et al. A trial of in situ and static measurements of levels of radioactive cesium 137 on shallow rugged reefs lying close to the coastline of Fukushima
Caldwell Development and tests of a radioactive sediment density probe
CN215157092U (en) Core box for geological exploration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190530

R150 Certificate of patent or registration of utility model

Ref document number: 6537094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250