JP2015175708A - Raman spectroscopic analyzer and raman spectroscopic analysis method - Google Patents

Raman spectroscopic analyzer and raman spectroscopic analysis method Download PDF

Info

Publication number
JP2015175708A
JP2015175708A JP2014051944A JP2014051944A JP2015175708A JP 2015175708 A JP2015175708 A JP 2015175708A JP 2014051944 A JP2014051944 A JP 2014051944A JP 2014051944 A JP2014051944 A JP 2014051944A JP 2015175708 A JP2015175708 A JP 2015175708A
Authority
JP
Japan
Prior art keywords
sample chamber
sample
chamber window
measurement point
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014051944A
Other languages
Japanese (ja)
Inventor
寺本 晃
Akira Teramoto
晃 寺本
貴秀 畠堀
Takahide Hatakebori
貴秀 畠堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014051944A priority Critical patent/JP2015175708A/en
Publication of JP2015175708A publication Critical patent/JP2015175708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce noise of backscattering light in a Raman spectroscopic analyzer which irradiates a sample with excitation light via a sample chamber window to detect backscattering light from the sample.SOLUTION: A Raman spectroscopic analysis method includes: a step of reflecting an excitation luminous flux by a reflection mirror 104 and causing reflected light to perpendicularly pass a sample chamber window 107 and condensing the reflected light at a prescribed measurement point P in a sample chamber 106 to irradiate a sample at the measurement point P; and a step of causing Raman scattering light which is emitted backward from the sample and passes the sample chamber window 107 and is scattered around the reflection mirror 104, to impinge on a detection system 109 by a lens 108 with the measurement point P as a focus. Further, the Raman spectroscopic analysis method includes a step of reducing the amount of light from a mirror image point Q of the measurement point P with a surface of the sample chamber window 107 as a mirror surface, which impinges on the detection system 109.

Description

本発明は、ラマン散乱光を用いた成分分析装置及び成分分析方法に関する。特に、試料から後方に散乱される光を検出するラマン分光分析装置及びラマン分光分析方法に関する。   The present invention relates to a component analysis apparatus and a component analysis method using Raman scattered light. In particular, the present invention relates to a Raman spectroscopic analysis apparatus and a Raman spectroscopic analysis method for detecting light scattered backward from a sample.

ラマン分光測定を行うことによって試料に含まれる成分を分析する装置は、試料に照射する光(励起光)を発する光源、該励起光を集光して試料に照射するための入射光学系、試料中に含まれる物質との相互作用によりラマン散乱した光を集光し、分光する分光光学系、及び該分光光学系において波長分離された光を検出する検出系を備えている。   An apparatus for analyzing components contained in a sample by performing Raman spectroscopic measurement includes a light source that emits light (excitation light) that irradiates the sample, an incident optical system that collects the excitation light and irradiates the sample, and the sample A spectroscopic optical system that condenses and separates light scattered by Raman scattering by interaction with a substance contained therein, and a detection system that detects light separated in wavelength in the spectroscopic optical system.

横軸を波長、縦軸を強度として試料からの光の強度をプロットすると、励起光(レイリー散乱光)の波長を中心として、長波長側にストークス線、短波長側に反ストークス線を有するラマン散乱スペクトルが得られる。横軸を、励起光の波数を原点とする波数表記としてラマン散乱スペクトルを描くと、ストークス線の波数の値(ストークスシフト)は、励起光と相互作用した物質の固有振動のエネルギーに対応するため、ストークスシフトの値から、試料に含まれる物質を特定することができる。また、ストークス線のピーク強度やピーク面積から、該ストークス線に対応する物質を定量することができる。   Plotting the intensity of light from the sample with the horizontal axis representing the wavelength and the vertical axis representing the intensity, Raman having a Stokes line on the long wavelength side and an anti-Stokes line on the short wavelength side centered on the wavelength of the excitation light (Rayleigh scattered light) A scattering spectrum is obtained. When the Raman scattering spectrum is drawn with the horizontal axis representing the wave number of the excitation light as the origin, the value of the Stokes line wave number (Stokes shift) corresponds to the natural vibration energy of the substance interacting with the excitation light. The substance contained in the sample can be specified from the Stokes shift value. Further, the substance corresponding to the Stokes line can be quantified from the peak intensity or peak area of the Stokes line.

特許文献1及び特許文献2には、ラマン分光測定を行うことにより、石炭ガス化炉において生成されたガスに含まれる成分や各成分の濃度を測定するガス成分分析装置が記載されている。この装置の要部構成を図7に示す。このガス成分分析装置700では、レーザ光源701から発せられた励起光をレンズ702により集光し、ビームスプリッタ703及び試料室窓704を通過させて、試料室705内に導入した試料ガス中の所定箇所に照射する。このガスから励起光の照射側(後方)に散乱した光(後方散乱光)を試料室窓704から取り出し、ビームスプリッタ703で反射させ、レンズ706で集光して分光光学系を備えた検出系707に導入する。さらに、データ解析装置708を用いて、検出系707における後方散乱光の検出結果から試料ガスのラマン散乱スペクトルを作成し、試料ガスに含まれる成分を特定するとともに各成分の濃度を決定する。   Patent Document 1 and Patent Document 2 describe a gas component analyzer that measures components contained in a gas generated in a coal gasifier and the concentration of each component by performing Raman spectroscopic measurement. FIG. 7 shows the main configuration of this apparatus. In this gas component analyzer 700, excitation light emitted from a laser light source 701 is collected by a lens 702, passes through a beam splitter 703 and a sample chamber window 704, and is passed through a predetermined gas in the sample gas introduced into the sample chamber 705. Irradiate the spot. Light (scattered light) scattered from the gas to the irradiation side (backward) of the excitation light is extracted from the sample chamber window 704, reflected by the beam splitter 703, condensed by the lens 706, and a detection system provided with a spectroscopic optical system. 707. Furthermore, using the data analysis device 708, a Raman scattering spectrum of the sample gas is created from the detection result of the backscattered light in the detection system 707, the component contained in the sample gas is specified, and the concentration of each component is determined.

ビームスプリッタ703や試料室窓704には、励起光の波長において高い光透過率を有する材料が用いられ、その表面は反射を極力少なくするため、減反射コーティング処理(ARコートとも呼ぶ)が施されている。減反射コーティング処理を施すことで、試料室窓704における励起光の反射を1%程度にまで低減することができる。ビームスプリッタ703を透過し、試料室窓704で反射した励起光の一部は、ビームスプリッタ703においても更に約1%程度が反射され、レンズ706に向かう。このため、光源から発せられた励起光は、10-4倍程度にまで低減されてレンズ706に入射し、検出系707により検出されることとなる。 The beam splitter 703 and the sample chamber window 704 are made of a material having a high light transmittance at the wavelength of the excitation light, and the surface thereof is subjected to an anti-reflection coating process (also referred to as an AR coat) in order to minimize reflection. ing. By applying the anti-reflection coating process, the reflection of the excitation light in the sample chamber window 704 can be reduced to about 1%. About a 1% portion of the excitation light that has passed through the beam splitter 703 and reflected by the sample chamber window 704 is reflected by the beam splitter 703 and travels toward the lens 706. For this reason, the excitation light emitted from the light source is reduced to about 10 −4 times, enters the lens 706, and is detected by the detection system 707.

特開平11−173989号公報Japanese Patent Laid-Open No. 11-173989 特開2004−325458号公報JP 2004-325458 A

信号雑音比(S/N比)が大きい高感度なラマン分光装置の開発需要は大きい。特に、微量のガス成分を検出する場合には信号強度が小さくなるため、信号雑音比を大きくするためにノイズを低減することが求められる。上述のように、試料室窓704に減反射コーティング処理を施すことで、励起光の試料室窓704における反射によるノイズが低減されてきたが、それでもなおノイズが検出系により検出されている。   There is a great demand for the development of a high-sensitivity Raman spectrometer with a large signal-to-noise ratio (S / N ratio). In particular, when detecting a very small amount of gas component, the signal intensity decreases, and therefore it is required to reduce noise in order to increase the signal-to-noise ratio. As described above, by applying the anti-reflection coating to the sample chamber window 704, noise due to reflection of excitation light in the sample chamber window 704 has been reduced, but noise is still detected by the detection system.

本発明は上記の点に鑑みて成されたものであり、その目的とするところは、試料室窓を介して励起光を試料に照射し、試料からの後方散乱光を検出するラマン分光分析装置において、後方散乱光のノイズを低減することにある。   The present invention has been made in view of the above points, and its object is to irradiate a sample with excitation light through a sample chamber window and detect backscattered light from the sample. 1 is to reduce the noise of backscattered light.

発明者らは、試料室窓からの反射を減少させてもなおノイズが検出される原因を鋭意調査した結果、励起光の光路中の物質(ガス)が散乱光を放出しており、これがノイズとなっていることを見出した。すなわち、試料室窓の表面に関して励起光の集光点と鏡像対称位置にある鏡像点における光路中物質からの散乱光が試料室窓表面で反射され、集光レンズにより集光されて検出系に入射し、後方散乱光のノイズを構成していることを見出した。そこで、この鏡像点からの散乱光が検出系に検出される量を低減することにより、光路中物質に起因するノイズを低減することができることに想到して本発明を成すに至った。   As a result of intensive investigation of the cause of noise still being detected even when reflection from the sample chamber window is reduced, the inventors have released scattered light from the substance (gas) in the optical path of the excitation light. I found out that That is, the scattered light from the substance in the optical path at the mirror image point that is in a mirror image symmetry position with respect to the focal point of the excitation light with respect to the surface of the sample chamber window is reflected by the surface of the sample chamber window and condensed by the condensing lens to the detection system. The incident light was found to constitute noise of backscattered light. Thus, the present invention has been made on the assumption that noise caused by substances in the optical path can be reduced by reducing the amount of scattered light from the mirror image point detected by the detection system.

上記課題を解決するために成された本発明に係るラマン分光分析方法は、
a) 励起光束を、反射鏡により反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する工程と、
b) 前記測定点を焦点とするレンズにより、前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる工程と
を有するラマン分光分析方法において、
c) 前記試料室窓の表面を鏡面とした前記測定点の鏡像点からの光が前記検出系へ入射する量を低減する工程
を備えることを特徴とする。
The Raman spectroscopic analysis method according to the present invention made to solve the above problems is as follows:
a) reflecting the excitation light beam by a reflecting mirror, passing the sample chamber window vertically, condensing it at a predetermined measurement point in the sample chamber, and irradiating the sample at the measurement point;
b) a step of allowing Raman scattered light, which is emitted backward from the sample and passed through the sample chamber window and scattered around the reflecting mirror, to enter the detection system by the lens having the measurement point as a focus. Having a Raman spectroscopy method,
c) reducing the amount of light incident from the mirror image point of the measurement point with the surface of the sample chamber window as a mirror surface entering the detection system.

本発明に係るラマン分光分析方法で分析を行うことのできる試料は、試料室内に収容(又は流通)され得る流体であれば、ガスであってもよいし、液体であってもよい。   The sample that can be analyzed by the Raman spectroscopic analysis method according to the present invention may be a gas or a liquid as long as it is a fluid that can be accommodated (or distributed) in the sample chamber.

この、試料室窓の表面を鏡面とした測定点の鏡像点からの光が前記検出系へ入射する量を低減する工程は、次のような3つの方法で実現することができる。   This process of reducing the amount of light incident from the mirror image point of the measurement point with the surface of the sample chamber window as a mirror surface can be realized by the following three methods.

第1の方法は、前記鏡像点が前記反射鏡よりも先に存在するように、すなわち、鏡像点が試料室窓と反射鏡の間ではなく、反射鏡と励起光源の間に来るように、前記反射鏡と前記試料室窓の位置関係を設定する方法である。   The first method is such that the mirror image point exists before the reflector, i.e., the mirror image point is not between the sample chamber window and the reflector, but between the reflector and the excitation light source. In this method, the positional relationship between the reflecting mirror and the sample chamber window is set.

これにより、励起光により鏡像点に存在する気体で生成された散乱光は、鏡像点の位置が試料室窓と反射鏡の間にある場合に比べ、散乱光が試料室窓に入射する範囲が狭くなるため、試料室窓の表面で反射されて検出系に入射する散乱光の量が少なくなる。   As a result, the scattered light generated in the gas existing at the mirror image point by the excitation light has a range in which the scattered light is incident on the sample chamber window compared to the case where the position of the mirror image point is between the sample chamber window and the reflecting mirror. Since it becomes narrow, the amount of scattered light reflected by the surface of the sample chamber window and entering the detection system is reduced.

第2の方法は、前記反射鏡から前記試料室窓に向かう励起光束の光軸を囲う筒状の遮蔽物を設ける方法である。   The second method is a method of providing a cylindrical shield that surrounds the optical axis of the excitation light beam from the reflecting mirror toward the sample chamber window.

これにより、励起光により鏡像点に存在する気体で生成された散乱光は、試料室窓の表面で反射した後、反射鏡よりも広がる部分の光が筒状の遮蔽物で遮蔽されるため、検出系に入射することがなくなる。筒状の遮蔽物を前記光軸方向に通り抜けた散乱光は反射鏡で反射されるため、これも検出系に入射しない。   As a result, since the scattered light generated by the gas existing at the mirror image point by the excitation light is reflected by the surface of the sample chamber window, the portion of the light that spreads beyond the reflecting mirror is shielded by the cylindrical shield, It will not enter the detection system. Since the scattered light that has passed through the cylindrical shield in the optical axis direction is reflected by the reflecting mirror, it also does not enter the detection system.

第3の方法は、前記鏡像点に、ラマン散乱光を発生しないガス(例えばアルゴンAr等の不活性ガス)が存在するようにするか、鏡像点を真空にする方法である。   The third method is a method in which a gas that does not generate Raman scattered light (for example, an inert gas such as argon Ar) is present at the mirror image point, or the mirror image point is evacuated.

これにより、鏡像点においてそもそもラマン散乱光が発生しないため、そのようなノイズが検出系に入射することが防止される。   As a result, since no Raman scattered light is generated at the mirror image point, such noise is prevented from entering the detection system.

上記第1の方法に対応し、上記課題を解決するために成された本発明に係るラマン分光分析装置は、
a) 励起光束を反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する反射鏡と、
b) 前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる、前記測定点を焦点とするレンズと、
を備え、
前記反射鏡が、前記試料室窓の表面を鏡面とした前記測定点の鏡像点が前記試料室窓と前記反射鏡の間に形成されないような前記試料室窓からの距離に配置されていることを特徴とする。
Corresponding to the first method, the Raman spectroscopic analyzer according to the present invention made to solve the above problems,
a) a reflecting mirror that reflects the excitation light beam, passes vertically through the sample chamber window, condenses on a predetermined measurement point in the sample chamber, and irradiates the sample at the measurement point;
b) a lens having a focus on the measurement point, which emits Raman scattered light emitted backward from the sample, passed through the sample chamber window, and scattered around the reflector, into a detection system;
With
The reflecting mirror is arranged at a distance from the sample chamber window such that a mirror image point of the measurement point with the surface of the sample chamber window as a mirror surface is not formed between the sample chamber window and the reflecting mirror. It is characterized by.

上記第2の方法に対応し、上記課題を解決するために成された本発明に係るラマン分光分析装置は、
a) 励起光束を反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する反射鏡と、
b) 前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる、前記測定点を焦点とするレンズと、
c) 前記反射鏡から前記試料室窓に向かう前記励起光束の光軸を囲う筒状の遮蔽物と、
を備える。
Corresponding to the second method, the Raman spectroscopic analyzer according to the present invention made to solve the above problems,
a) a reflecting mirror that reflects the excitation light beam, passes vertically through the sample chamber window, condenses on a predetermined measurement point in the sample chamber, and irradiates the sample at the measurement point;
b) a lens having a focus on the measurement point, which emits Raman scattered light emitted backward from the sample, passed through the sample chamber window, and scattered around the reflector, into a detection system;
c) a cylindrical shield surrounding the optical axis of the excitation light beam from the reflecting mirror toward the sample chamber window;
Is provided.

上記第3の方法に対応し、上記課題を解決するために成された本発明に係るラマン分光分析装置は、
a) 励起光束を反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する反射鏡と、
b) 前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる、前記測定点を焦点とするレンズと、
c) 前記試料室窓の表面を鏡面とした前記測定点の鏡像点の位置における雰囲気を真空又は所定のガス雰囲気にする真空容器と、
を備える。
Corresponding to the third method, the Raman spectroscopic analyzer according to the present invention made to solve the above problems,
a) a reflecting mirror that reflects the excitation light beam, passes vertically through the sample chamber window, condenses on a predetermined measurement point in the sample chamber, and irradiates the sample at the measurement point;
b) a lens having a focus on the measurement point, which emits Raman scattered light emitted backward from the sample, passed through the sample chamber window, and scattered around the reflector, into a detection system;
c) a vacuum vessel in which the atmosphere at the position of the mirror image point of the measurement point with the surface of the sample chamber window as a mirror surface is vacuum or a predetermined gas atmosphere;
Is provided.

本発明に係るラマン分光分析方法及びラマン分光分析装置によれば、試料に照射される前の励起光により、鏡像点に存在する気体で生成された散乱光が、試料室窓の表面で反射して、検出系に入射することがなくなるか入射する量が低減される。このため、検出系に入射するノイズが低減され、試料に由来するラマン散乱光をより高感度で測定することができるようになる。   According to the Raman spectroscopic analysis method and the Raman spectroscopic analysis apparatus according to the present invention, the scattered light generated by the gas existing at the mirror image point is reflected by the surface of the sample chamber window by the excitation light before being irradiated onto the sample. As a result, it is no longer incident on the detection system or the amount of incident light is reduced. For this reason, noise incident on the detection system is reduced, and Raman scattered light derived from the sample can be measured with higher sensitivity.

本発明の実施例1に係るラマン分光分析装置の概略構成図。1 is a schematic configuration diagram of a Raman spectroscopic analyzer according to Embodiment 1 of the present invention. FIG. 実施例1に係るラマン分光分析装置の部分拡大図。1 is a partially enlarged view of a Raman spectroscopic analyzer according to Embodiment 1. FIG. 本発明の実施例2に係るラマン分光分析装置の概略構成図。The schematic block diagram of the Raman spectroscopic analyzer which concerns on Example 2 of this invention. 実施例2に係るラマン分光分析装置の部分拡大図。FIG. 4 is a partially enlarged view of a Raman spectroscopic analyzer according to Embodiment 2. 本発明の実施例3に係るラマン分光分析装置の概略構成図。The schematic block diagram of the Raman spectroscopy analyzer which concerns on Example 3 of this invention. 実施例1〜3で用いられる支持体に支えられた反射鏡の例を説明する図。The figure explaining the example of the reflective mirror supported by the support body used in Examples 1-3. 従来技術のガス成分分析装置の概略構成図。The schematic block diagram of the gas component analyzer of a prior art.

(実施例1)
図1は、本実施例に係るラマン分光分析装置の概略構成図であり、図2はその部分拡大図である。図1のラマン分光分析装置100は、光源101、照射集光部102、フィルター103、支持体105に支えられた反射鏡104、試料室窓107が設けられた試料室106、レンズ108、検出系109、及び遮蔽物112で構成される。
Example 1
FIG. 1 is a schematic configuration diagram of a Raman spectroscopic analyzer according to the present embodiment, and FIG. 2 is a partially enlarged view thereof. 1 includes a light source 101, an irradiation condensing unit 102, a filter 103, a reflecting mirror 104 supported by a support 105, a sample chamber 106 provided with a sample chamber window 107, a lens 108, and a detection system. 109 and a shield 112.

ラマン分光分析装置100は、気体又は液体の流体の試料を測定対象とできるが、気体試料に対して好適に用いることができる。また、試料室106がガスを流すガス配管である場合を説明する。   The Raman spectroscopic analyzer 100 can measure a gas or liquid fluid sample, but can be suitably used for a gas sample. Further, a case where the sample chamber 106 is a gas pipe for flowing gas will be described.

光源101として、可視光を射出するレーザ光源を用いることができ、YAGレーザやYVOレーザなどの固体レーザやArレーザなどの気体レーザを用いることができる。照射集光部102は、光源101が射出する可視光の波長に対して高い透過率を有する凸レンズ等の光学素子を用いることができる。 As the light source 101, a laser light source that emits visible light can be used, and a solid-state laser such as a YAG laser or a YVO 4 laser, or a gas laser such as an Ar laser can be used. The irradiation condensing unit 102 can use an optical element such as a convex lens having a high transmittance with respect to the wavelength of visible light emitted from the light source 101.

レーザ光源である光源101から射出された励起光束は、照射集光部102を構成する凸レンズによって集光され、試料室窓107を介して試料室106内の試料の測定点に集光する。試料室窓107には、例えば石英など、光束の波長において高い光透過率を有する材料が用いられる。照射集光部102を通過した励起光束は、フィルター103を通って、支持体105に支えられた反射鏡104の反射面に入射する。   The excitation light beam emitted from the light source 101, which is a laser light source, is collected by a convex lens that constitutes the irradiation condensing unit 102, and is condensed on the sample measurement point in the sample chamber 106 through the sample chamber window 107. For the sample chamber window 107, a material having a high light transmittance at the wavelength of the light beam, such as quartz, is used. The excitation light beam that has passed through the irradiation condensing unit 102 passes through the filter 103 and enters the reflecting surface of the reflecting mirror 104 supported by the support 105.

フィルター103は、光源101から射出された励起光束の主とする波長以外の光を除去する。   The filter 103 removes light other than the main wavelength of the excitation light beam emitted from the light source 101.

本実施例では、支持体105と反射鏡104は、図6(A)に示すように、それぞれ、円形のフレームと該フレーム内に設けられた筋交いで成る支持体105と、該筋交い上であって該円形のフレームの中心に設けられたミラーで成る反射鏡104で構成される。支持体105にはステンレス鋼(SUS304)など、レーザもしくはレイリー光等の散乱光が当たっても蛍光等、本計測では不要となる光を発しない材料が用いられる。反射鏡104には励起光を高い反射率で反射する材料が用いられる。本実施例では反射鏡104の反射面の形状が円形若しくは楕円形である場合を説明するが、反射面が光束を反射するのに十分な面積を有していさえすればよく、四角形や多角形など他の形状であってもよい。   In this embodiment, as shown in FIG. 6A, the support body 105 and the reflecting mirror 104 are respectively located on the brace and the support body 105 composed of a circular frame and braces provided in the frame. And a reflecting mirror 104 formed of a mirror provided at the center of the circular frame. The support 105 is made of a material such as stainless steel (SUS304) that does not emit light that is unnecessary in this measurement, such as fluorescence, even when scattered light such as laser or Rayleigh light hits it. A material that reflects excitation light with high reflectance is used for the reflecting mirror 104. In this embodiment, the case where the shape of the reflecting surface of the reflecting mirror 104 is a circle or an ellipse will be described. However, it is sufficient that the reflecting surface has a sufficient area for reflecting the light beam. Other shapes may be used.

反射鏡104の反射面に入射した励起光束は、反射面でその進行方向を曲げられ、試料室窓107に垂直に入射するように反射される。試料室窓107に垂直に入射した励起光束は、試料室106内の試料(ガス)に集光し、集光位置(測定点)の試料を励起する励起光となる。試料からは、励起光と同じ波長の光であるレイリー散乱光や、励起光とは異なる波長の光であるラマン散乱光などの散乱光が試料から様々な方向に放出される。   The excitation light beam incident on the reflecting surface of the reflecting mirror 104 is reflected by the reflecting surface so that its traveling direction is bent and enters the sample chamber window 107 perpendicularly. The excitation light beam vertically incident on the sample chamber window 107 is condensed on the sample (gas) in the sample chamber 106 and becomes excitation light for exciting the sample at the condensing position (measurement point). From the sample, scattered light such as Rayleigh scattered light, which is light having the same wavelength as the excitation light, and Raman scattered light, which is light having a wavelength different from that of the excitation light, is emitted from the sample in various directions.

これら散乱光のうち、試料に対して励起光が入射する方向と反対の方向に散乱される散乱光である後方散乱光は、試料室窓107を通過し、反射鏡104及び支持体105とこれらの周囲に散乱される。本実施例では、一部の後方散乱光は反射鏡104の反射面と支持体105の円形フレームと筋交いによって遮蔽されるが、大半の後方散乱光は支持体105の円形フレームと筋交いの間を通り、試料室106から反射鏡104及び支持体105よりも遠くに配置されたレンズ108で受光される。   Among these scattered light, backscattered light that is scattered in the direction opposite to the direction in which excitation light is incident on the sample passes through the sample chamber window 107, and reflects the reflecting mirror 104 and the support 105 with these. Scattered around. In this embodiment, some backscattered light is shielded by the reflective surface of the reflector 104 and the circular frame of the support 105, but most of the backscattered light passes between the circular frame and the brace of the support 105. As a result, the light is received from the sample chamber 106 by the lens 108 disposed farther than the reflecting mirror 104 and the support 105.

反射鏡104の直径をd、支持体105の直径をDとすると、d:D=1:10程度の比を有していることが好ましい。例えば、d=5mm、D=50mmのものを用いることができる。このような大きさとすることで、レンズ108による受光面積に対して反射鏡104による遮蔽面積を十分に小さくできる。これにより、反射鏡104の反射面で遮蔽される後方散乱光の信号ロスが無視できる程度となる。   When the diameter of the reflecting mirror 104 is d and the diameter of the support 105 is D, it is preferable to have a ratio of d: D = 1: 10. For example, d = 5 mm and D = 50 mm can be used. With such a size, the shielding area by the reflecting mirror 104 can be made sufficiently smaller than the light receiving area by the lens 108. Thereby, the signal loss of the backscattered light shielded by the reflecting surface of the reflecting mirror 104 is negligible.

レンズ108は励起光束を試料に集光させた集光位置(測定点)が焦点Pとなるように配置されており、レンズ108で受光された後方散乱光はレンズ108によってコリメートされる。コリメートされた後方散乱光は、分光光学系を含む検出系109に導入され、試料からの後方散乱光が検出系109において検出される。これにより、試料のラマン分光測定が行われる。   The lens 108 is arranged so that the condensing position (measurement point) where the excitation light beam is condensed on the sample is the focal point P, and the backscattered light received by the lens 108 is collimated by the lens 108. The collimated backscattered light is introduced into a detection system 109 including a spectroscopic optical system, and the backscattered light from the sample is detected by the detection system 109. Thereby, the Raman spectroscopic measurement of the sample is performed.

本実施例では、光源101から射出され、照射集光部102及びフィルター103を通った励起光束が、反射鏡104の反射面で進行方向を曲げられた後、反射鏡104から試料室窓107に向かう励起光束の光軸を囲う筒状の遮蔽物112が反射鏡104と試料室窓107の間に設けられている。筒状の遮蔽物112は、筒の長手方向に垂直な断面形状が円形のもの(円柱)や多角形状のもの(角柱)を用いることができ、筒の内側は空洞になっている。又、筒はテーパ形状等、ストレートでなくてもよい。筒状の遮蔽物112の一端は試料室窓107に接している、もしくは、わずかの隙間をもって配置されている。筒状の遮蔽物112の他方の一端は反射鏡104の手前であれば機能としては十分であるが、筒状の遮蔽物112を支えるために、反射鏡104を筒状の遮蔽物112の筒の内側の空洞に挿入し、筒状の遮蔽物112の他方の一端が支持体105に接するようにしてもよい。この場合、反射鏡104の反射面に励起光束を通すため、筒状の遮蔽物112には開口Sを設ける。   In the present embodiment, the excitation light beam emitted from the light source 101 and passing through the irradiation condensing unit 102 and the filter 103 is bent in the traveling direction by the reflecting surface of the reflecting mirror 104, and then from the reflecting mirror 104 to the sample chamber window 107. A cylindrical shield 112 that surrounds the optical axis of the excitation light beam traveling is provided between the reflecting mirror 104 and the sample chamber window 107. The cylindrical shield 112 can be a circular cross section perpendicular to the longitudinal direction of the cylinder (cylinder) or a polygonal (square pillar), and the inside of the cylinder is hollow. Further, the cylinder may not be straight, such as a tapered shape. One end of the cylindrical shield 112 is in contact with the sample chamber window 107 or is arranged with a slight gap. If the other end of the cylindrical shield 112 is in front of the reflecting mirror 104, the function is sufficient. However, in order to support the cylindrical shielding object 112, the reflecting mirror 104 is used as a cylinder of the cylindrical shielding object 112. The other end of the cylindrical shield 112 may be in contact with the support 105. In this case, an opening S is provided in the cylindrical shield 112 so that the excitation light beam passes through the reflecting surface of the reflecting mirror 104.

筒状の遮蔽物112の材料は、散乱光が当たっても、蛍光等の本計測で不要となる光を発しにくいもので選定される。   The material of the cylindrical shield 112 is selected so that it does not easily emit light that is unnecessary in the main measurement, such as fluorescence, even when scattered light strikes it.

励起光束は、照射集光部102によって試料室106内の試料に集光するようにされているため、励起光束は反射鏡104から試料室窓107に向かうにつれてその径が小さくなりつつ、筒状の遮蔽物112の筒の内側の空洞を通り抜ける。つまり、励起光束は、遮蔽物112による影響を何ら受けない。   Since the excitation light beam is condensed on the sample in the sample chamber 106 by the irradiation condensing unit 102, the diameter of the excitation light beam decreases from the reflecting mirror 104 toward the sample chamber window 107, and the tube shape is reduced. It passes through the cavity inside the cylinder of the shield 112. That is, the excitation light beam is not affected by the shield 112 at all.

一方、試料からの後方散乱光のうち遮蔽物112に遮蔽される一部の光は、遮蔽物112で反射され、この反射が筒状の遮蔽物112の筒の内側で生じた場合は、ときに反射を繰り返しつつ筒状の遮蔽物112の筒の内側の空洞を通り、反射鏡104の反射面で光源101が設けられた方向へ反射される。そのため、このような一部の後方散乱光は、レンズ108で受光されず、検出系109において検出されない。一方、大半の後方散乱光は遮蔽物112の外側を通り、レンズ108で受光及び検出系109で検出される。そのため、筒状の遮蔽物112による試料からの後方散乱光への影響は小さい。   On the other hand, some of the backscattered light from the sample that is shielded by the shield 112 is reflected by the shield 112, and if this reflection occurs inside the cylinder of the cylindrical shield 112, sometimes The light is reflected in the direction in which the light source 101 is provided by the reflecting surface of the reflecting mirror 104 through the hollow inside the tube of the cylindrical shield 112 while repeating the reflection. Therefore, some of such backscattered light is not received by the lens 108 and is not detected by the detection system 109. On the other hand, most of the backscattered light passes outside the shield 112 and is received by the lens 108 and detected by the detection system 109. Therefore, the influence of the cylindrical shield 112 on the backscattered light from the sample is small.

このような筒状の遮蔽物112は、励起光束の集光位置(測定点)の試料室窓107の表面を鏡面とした鏡像点Qを囲っていることでその効果を発揮する。鏡像点Qは励起光束の光路中に位置し、該励起光束が鏡像点Qに存在する物質(ガス)によって散乱されるため、鏡像点Qからは散乱光が放出される。筒状の遮蔽物112を設けない場合では、鏡像点Qからの光(散乱光)が試料室窓107の全ての領域に入射した後、試料室窓107の表面で反射した光がレンズ108で受光され、検出系109で検出されてしまう。一方、上述のように筒状の遮蔽物112を設けると、鏡像点Qからの光は、遮蔽物112によってその進行方向が筒の長手方向に制限され、ときに反射を繰り返しつつ筒状の遮蔽物112の筒の内側の空洞を通り、筒の端部に位置する試料室窓107又は反射鏡104に入射する。   Such a cylindrical shield 112 exhibits its effect by surrounding a mirror image point Q with the surface of the sample chamber window 107 at the condensing position (measurement point) of the excitation light beam as a mirror surface. The mirror image point Q is located in the optical path of the excitation light beam, and since the excitation light beam is scattered by the substance (gas) existing at the mirror image point Q, the scattered light is emitted from the mirror image point Q. In the case where the cylindrical shield 112 is not provided, the light (scattered light) from the mirror image point Q is incident on all regions of the sample chamber window 107, and then the light reflected by the surface of the sample chamber window 107 is reflected by the lens 108. The light is received and detected by the detection system 109. On the other hand, when the cylindrical shielding object 112 is provided as described above, the traveling direction of the light from the mirror image point Q is limited by the shielding object 112 in the longitudinal direction of the cylinder, and the cylindrical shielding object is sometimes repeatedly reflected. It passes through the cavity inside the cylinder of the object 112 and enters the sample chamber window 107 or the reflecting mirror 104 located at the end of the cylinder.

筒の一方の端部に位置する試料室窓107に入射した鏡像点Qからの光は、試料室窓107の表面で反射されるが、反射鏡104よりも広がる部分の光は筒状の遮蔽物112によって遮蔽され、筒の他方の端部に位置する反射鏡104へと導かれる。反射鏡104に入射した鏡像点Qからの光は、光源101が設けられた方向へ反射されるため、レンズ108で受光されず、検出系109において検出されない。したがって、鏡像点Qからの光は検出系109で検出されなくなり、試料からの後方散乱光のノイズを低減することができる。   The light from the mirror image point Q incident on the sample chamber window 107 located at one end of the cylinder is reflected on the surface of the sample chamber window 107, but the portion of the light that is wider than the reflector 104 is cylindrically shielded. The object 112 is shielded and guided to the reflecting mirror 104 located at the other end of the cylinder. Since the light from the mirror image point Q that has entered the reflecting mirror 104 is reflected in the direction in which the light source 101 is provided, it is not received by the lens 108 and is not detected by the detection system 109. Therefore, the light from the mirror image point Q is not detected by the detection system 109, and the noise of the backscattered light from the sample can be reduced.

(実施例2)
図3は、本実施例に係るラマン分光分析装置の概略構成図であり、図4はその部分拡大図である。図1と同じ構成要素については、同一の符号を付し、繰り返しとなる説明を省略する。本実施例に係るラマン分光分析装置200は、前記鏡像点が前記反射鏡よりも先(上流)に存在するように、すなわち、試料室窓107と反射鏡104の間に鏡像点が形成されないような試料室窓107からの距離に反射鏡104を配置したものである。換言すると、試料室窓107と反射鏡104との間の距離は、試料室窓107と励起光束の集光位置(測定点)との間の距離よりも短い。
(Example 2)
FIG. 3 is a schematic configuration diagram of the Raman spectroscopic analyzer according to the present embodiment, and FIG. 4 is a partially enlarged view thereof. The same components as those in FIG. 1 are denoted by the same reference numerals, and repeated description is omitted. The Raman spectroscopic analysis apparatus 200 according to the present embodiment is configured so that the mirror image point exists ahead (upstream) of the reflecting mirror, that is, no mirror image point is formed between the sample chamber window 107 and the reflecting mirror 104. The reflecting mirror 104 is arranged at a distance from the sample chamber window 107. In other words, the distance between the sample chamber window 107 and the reflecting mirror 104 is shorter than the distance between the sample chamber window 107 and the condensing position (measurement point) of the excitation light beam.

本実施例では、支持体105と反射鏡104は、図6(A)に示すように、それぞれ、円形のフレームと該フレーム内に設けられた筋交いで成る支持体105と、該筋交い上であって該円形のフレームの中心に設けられたミラーで成る反射鏡104で構成される。本実施例においても、鏡像点Qは励起光束の光路中に位置し、該励起光束が鏡像点Qに存在する物質(ガス)によって散乱されるため、鏡像点Qからは散乱光が放出される。   In this embodiment, as shown in FIG. 6A, the support body 105 and the reflecting mirror 104 are respectively located on the brace and the support body 105 composed of a circular frame and braces provided in the frame. And a reflecting mirror 104 formed of a mirror provided at the center of the circular frame. Also in the present embodiment, the mirror image point Q is located in the optical path of the excitation light beam, and the excitation light beam is scattered by the substance (gas) existing at the mirror image point Q, so that scattered light is emitted from the mirror image point Q. .

励起光束の集光位置(測定点)の試料室窓107の表面を鏡面とした鏡像点Qが試料室窓107と反射鏡104の間にある場合では、鏡像点Qからの散乱光が試料室窓107の表面の全ての領域で反射してレンズ108で受光され、検出系109で検出されてしまう。一方、試料室窓107と反射鏡104の間に鏡像点が形成されないような試料室窓107からの距離に反射鏡104を配置した本実施例の構成では、様々な方向に放出された鏡像点Qからの光の大半はレンズ108で受光されない。鏡像点Qからの光の一部の光は、直接支持体105を通過してレンズ108で受光されるが、レンズ108を通過してもコリメートされない。そのため、このような光は検出系109に正しく入射しないため検出されない。本実施例の構成では、鏡像点Qからの散乱光は、反射鏡104の反射面で反射された後、試料室窓107の一部の領域210に入射し、試料室窓107の表面で反射される。試料室窓107の表面で反射された鏡像点Qからの散乱光は、レンズ108で受光され、検出系109で検出される。ただし、鏡像点Qからの散乱光は、鏡像点Qの位置が試料室窓107と反射鏡104の間にある場合に比べ、散乱光が試料室窓107に入射する範囲が狭くなるため、試料室窓107の表面で反射されて検出系109に入射する散乱光の量が少なくなる。したがって、鏡像点Qからの光の検出系109における検出量が低減され、試料からの後方散乱光のノイズを低減することができる。   In the case where the mirror image point Q with the surface of the sample chamber window 107 at the condensing position (measurement point) of the excitation light beam as a mirror surface is between the sample chamber window 107 and the reflecting mirror 104, the scattered light from the mirror image point Q is scattered in the sample chamber. The light is reflected by the entire area of the surface of the window 107 and received by the lens 108 and detected by the detection system 109. On the other hand, in the configuration of this embodiment in which the reflecting mirror 104 is arranged at a distance from the sample chamber window 107 so that no mirror image point is formed between the sample chamber window 107 and the reflecting mirror 104, the mirror image points emitted in various directions are used. Most of the light from Q is not received by the lens 108. A part of the light from the mirror image point Q directly passes through the support 105 and is received by the lens 108, but is not collimated even though it passes through the lens 108. Therefore, such light is not detected because it does not enter the detection system 109 correctly. In the configuration of the present embodiment, the scattered light from the mirror image point Q is reflected by the reflecting surface of the reflecting mirror 104, then enters the partial region 210 of the sample chamber window 107, and is reflected by the surface of the sample chamber window 107. Is done. The scattered light from the mirror image point Q reflected by the surface of the sample chamber window 107 is received by the lens 108 and detected by the detection system 109. However, the scattered light from the mirror image point Q has a narrower range in which the scattered light is incident on the sample chamber window 107 as compared with the case where the mirror image point Q is positioned between the sample chamber window 107 and the reflecting mirror 104. The amount of scattered light that is reflected by the surface of the chamber window 107 and enters the detection system 109 is reduced. Therefore, the detection amount of the light from the mirror image point Q in the detection system 109 is reduced, and noise of backscattered light from the sample can be reduced.

(実施例3)
図5は、本実施例に係るラマン分光分析装置の概略構成図である。図1と同じ構成要素については、同一の符号を付し、繰り返しとなる説明を省略する。本実施例に係るラマン分光分析装置300は、鏡像点の位置における雰囲気を真空又は所定のガス雰囲気にするための真空容器310、ガス導入バルブ311、ガス排気バルブ312、真空ポンプ313、ガスボンベ314等を含むものである。所定のガス雰囲気としては、Ar等のラマン散乱光が発生しないか、発生してもその量が無視できる程度である不活性ガス雰囲気を用いる例を説明する。
(Example 3)
FIG. 5 is a schematic configuration diagram of the Raman spectroscopic analyzer according to the present embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and repeated description is omitted. The Raman spectroscopic analysis apparatus 300 according to this embodiment includes a vacuum container 310, a gas introduction valve 311, a gas exhaust valve 312, a vacuum pump 313, a gas cylinder 314, etc. for making the atmosphere at the mirror image point a vacuum or a predetermined gas atmosphere. Is included. As the predetermined gas atmosphere, an example is described in which an inert gas atmosphere is used in which Raman scattered light such as Ar is not generated, or even if generated, the amount is negligible.

真空容器310は、試料室106と接するように設けられ、真空容器310の側壁に試料室窓107、支持体105、及び集光部102が埋設されている。フィルター103及び反射鏡104は真空容器310の内部に設けられ、フィルター103は真空容器310内に図示しない支持体で支えられている。真空容器310にはガス導入バルブ311を介してガスボンベ314に繋がったガス導入口が設けられている。また、真空容器310にはガス排気バルブ312を介して真空ポンプ313に繋がったガス排出口が設けられている。真空ポンプ313にはロータリーポンプやターボ分子ポンプなど、所望の真空度にすることができるポンプを用いることができる。ガス導入バルブ311及びガス排気バルブ312では、バルブの位置を流れるガスの流量が制御できるようになっている。これら真空容器310、ガス導入バルブ311、ガス排気バルブ312、真空ポンプ313、ガスボンベ314が雰囲気制御部として機能し、真空容器310の内部を真空や不活性ガス雰囲気に制御する。   The vacuum vessel 310 is provided in contact with the sample chamber 106, and the sample chamber window 107, the support 105, and the light collecting unit 102 are embedded in the side wall of the vacuum vessel 310. The filter 103 and the reflecting mirror 104 are provided inside the vacuum vessel 310, and the filter 103 is supported in the vacuum vessel 310 by a support (not shown). The vacuum vessel 310 is provided with a gas introduction port connected to a gas cylinder 314 via a gas introduction valve 311. Further, the vacuum vessel 310 is provided with a gas discharge port connected to the vacuum pump 313 via a gas exhaust valve 312. As the vacuum pump 313, a pump capable of achieving a desired degree of vacuum such as a rotary pump or a turbo molecular pump can be used. The gas introduction valve 311 and the gas exhaust valve 312 can control the flow rate of the gas flowing through the valve positions. The vacuum vessel 310, the gas introduction valve 311, the gas exhaust valve 312, the vacuum pump 313, and the gas cylinder 314 function as an atmosphere control unit, and control the inside of the vacuum vessel 310 to a vacuum or an inert gas atmosphere.

鏡像点Qの位置における雰囲気が真空又は所定のガス雰囲気に設定されていない場合では、鏡像点Qの位置に酸素や窒素といった大気成分が存在し、これらに由来するラマン散乱光が発生する。一方、上述のように雰囲気制御部によって、前記鏡像点が形成される位置の雰囲気を真空又はラマン散乱に対して不活性なガスの雰囲気に設定すると、鏡像点Qの位置には酸素や窒素といった大気成分がほとんど存在せず、これらに由来するラマン散乱光が実質的に発生しない。したがって、試料からの後方散乱光のノイズを低減することができる。   When the atmosphere at the position of the mirror image point Q is not set to a vacuum or a predetermined gas atmosphere, atmospheric components such as oxygen and nitrogen exist at the position of the mirror image point Q, and Raman scattered light derived therefrom is generated. On the other hand, when the atmosphere at the position where the mirror image point is formed is set to a vacuum or an atmosphere of gas inert to Raman scattering by the atmosphere control unit as described above, oxygen or nitrogen is present at the position of the mirror image point Q. There are almost no atmospheric components, and substantially no Raman scattered light derived from them. Therefore, the noise of the backscattered light from the sample can be reduced.

上記実施例1〜3は、単独あるいは適宜に組み合わせて用いることができる。   The said Examples 1-3 can be used individually or in combination suitably.

(変形例)
実施例1〜3では、支持体105と反射鏡104が、それぞれ、図6(A)に示すように、円形のフレームと該フレーム内に設けられた筋交いで成る支持体105と、該筋交い上であって該円形のフレームの中心に設けられたミラーで成る反射鏡104で構成されていたが、変形例では、図6(B)に示すように、実施例1〜3で説明された支持体105と反射鏡104が、それぞれ、石英等の光を透過する材料で成る円形の支持体615とガラスにAlを蒸着して成る反射鏡614で構成されている。
(Modification)
In the first to third embodiments, as shown in FIG. 6A, the support body 105 and the reflecting mirror 104 are each formed of a circular frame and a support body 105 formed of braces provided in the frame, and However, in the modified example, as shown in FIG. 6B, the support described in the first to third embodiments is configured. Each of the body 105 and the reflecting mirror 104 includes a circular support 615 made of a material that transmits light, such as quartz, and a reflecting mirror 614 made by depositing Al on glass.

実施例1で述べた反射鏡104及び支持体105と同様の理由により、反射鏡614の直径をd’、支持体615の直径をD’とすると、d’:D’=1:10程度の比を有していることが好ましく、例えば、d’=5mm、D’=50mmのものを用いることができる。この場合、試料から放出された後方散乱光は、反射鏡614の反射面でその一部が遮蔽されるが、大半の後方散乱光は支持体615中を透過してレンズ108で受光される。   For the same reason as the reflecting mirror 104 and the support 105 described in the first embodiment, when the diameter of the reflecting mirror 614 is d ′ and the diameter of the support 615 is D ′, d ′: D ′ = 1: 10 or so. It is preferable to have a ratio, for example, d ′ = 5 mm and D ′ = 50 mm can be used. In this case, a part of the backscattered light emitted from the sample is shielded by the reflecting surface of the reflecting mirror 614, but most of the backscattered light passes through the support 615 and is received by the lens 108.

支持体105を用いる場合では、後方散乱光の一部が支持体105の円形フレームと筋交いによって遮蔽されていたが、支持体615を用いる場合では、後方散乱光が支持体615によって遮蔽されることはない。これにより、実施例1〜3の支持体105を用いる場合に比べ、より多くの後方散乱光を検出することができる。   In the case of using the support body 105, a part of the backscattered light is shielded by the brace and the circular frame of the support body 105, but in the case of using the support body 615, the backscattered light is shielded by the support body 615. There is no. Thereby, compared with the case where the support body 105 of Examples 1-3 is used, more backscattered light can be detected.

100、200、300、700…ラマン分光分析装置
101、701…光源
102…照射集光部
103…フィルター
104、614…反射鏡
105、615…支持体
106、705…試料室
107、704…試料室窓
108、702、706…レンズ
109、707…検出系
112…遮蔽物
310…真空容器
311、312…バルブ
313…真空ポンプ
314…ガスボンベ
703…ビームスプリッタ
708…データ解析装置
100, 200, 300, 700 ... Raman spectroscopic analyzer 101, 701 ... Light source 102 ... Irradiation condensing unit 103 ... Filter 104, 614 ... Reflector 105, 615 ... Support 106, 705 ... Sample chamber 107, 704 ... Sample chamber Window 108, 702, 706 ... Lens 109, 707 ... Detection system 112 ... Shielding object 310 ... Vacuum vessel 311, 312 ... Valve 313 ... Vacuum pump 314 ... Gas cylinder 703 ... Beam splitter 708 ... Data analysis device

Claims (4)

a) 励起光束を反射鏡により反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する工程と、
b) 前記測定点を焦点とするレンズにより、前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる工程と
を有するラマン分光分析方法において、
c) 前記試料室窓の表面を鏡面とした前記測定点の鏡像点からの光が前記検出系へ入射する量を低減する工程
を備えることを特徴とするラマン分光分析方法。
a) reflecting the excitation light beam by a reflecting mirror, passing the sample chamber window vertically, condensing it at a predetermined measurement point in the sample chamber, and irradiating the sample at the measurement point;
b) a step of allowing Raman scattered light, which is emitted backward from the sample and passed through the sample chamber window and scattered around the reflecting mirror, to enter the detection system by the lens having the measurement point as a focus. Having a Raman spectroscopy method,
c) A Raman spectroscopic analysis method comprising a step of reducing an amount of light from a mirror image point of the measurement point incident on the detection system with the surface of the sample chamber window as a mirror surface.
a) 励起光束を反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する反射鏡と、
b) 前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる、前記測定点を焦点とするレンズと、
を備え、
前記反射鏡が、前記試料室窓の表面を鏡面とした前記測定点の鏡像点が前記試料室窓と前記反射鏡の間に形成されないような前記試料室窓からの距離に配置されていることを特徴とするラマン分光分析装置。
a) a reflecting mirror that reflects the excitation light beam, passes vertically through the sample chamber window, condenses on a predetermined measurement point in the sample chamber, and irradiates the sample at the measurement point;
b) a lens having a focus on the measurement point, which emits Raman scattered light emitted backward from the sample, passed through the sample chamber window, and scattered around the reflector, into a detection system;
With
The reflecting mirror is arranged at a distance from the sample chamber window such that a mirror image point of the measurement point with the surface of the sample chamber window as a mirror surface is not formed between the sample chamber window and the reflecting mirror. A Raman spectroscopic analyzer characterized by this.
a) 励起光束を反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する反射鏡と、
b) 前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる、前記測定点を焦点とするレンズと、
c) 前記反射鏡から前記試料室窓に向かう前記励起光束の光軸を囲う筒状の遮蔽物と、
を備えるラマン分光分析装置。
a) a reflecting mirror that reflects the excitation light beam, passes vertically through the sample chamber window, condenses on a predetermined measurement point in the sample chamber, and irradiates the sample at the measurement point;
b) a lens having a focus on the measurement point, which emits Raman scattered light emitted backward from the sample, passed through the sample chamber window, and scattered around the reflector, into a detection system;
c) a cylindrical shield surrounding the optical axis of the excitation light beam from the reflecting mirror toward the sample chamber window;
Raman spectroscopy analyzer.
a) 励起光束を反射し、試料室窓を垂直に通過させて試料室内の所定の測定点に集光して該測定点の試料に照射する反射鏡と、
b) 前記試料から後方に放出され、前記試料室窓を通過して、前記反射鏡の周囲に散乱されたラマン散乱光を検出系に入射させる、前記測定点を焦点とするレンズと、
c) 前記試料室窓の表面を鏡面とした前記測定点の鏡像点の位置における雰囲気を真空又は所定のガス雰囲気にする真空容器と、
を備えるラマン分光分析装置。
a) a reflecting mirror that reflects the excitation light beam, passes vertically through the sample chamber window, condenses on a predetermined measurement point in the sample chamber, and irradiates the sample at the measurement point;
b) a lens having a focus on the measurement point, which emits Raman scattered light emitted backward from the sample, passed through the sample chamber window, and scattered around the reflector, into a detection system;
c) a vacuum vessel in which the atmosphere at the position of the mirror image point of the measurement point with the surface of the sample chamber window as a mirror surface is vacuum or a predetermined gas atmosphere;
Raman spectroscopy analyzer.
JP2014051944A 2014-03-14 2014-03-14 Raman spectroscopic analyzer and raman spectroscopic analysis method Pending JP2015175708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051944A JP2015175708A (en) 2014-03-14 2014-03-14 Raman spectroscopic analyzer and raman spectroscopic analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051944A JP2015175708A (en) 2014-03-14 2014-03-14 Raman spectroscopic analyzer and raman spectroscopic analysis method

Publications (1)

Publication Number Publication Date
JP2015175708A true JP2015175708A (en) 2015-10-05

Family

ID=54255025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051944A Pending JP2015175708A (en) 2014-03-14 2014-03-14 Raman spectroscopic analyzer and raman spectroscopic analysis method

Country Status (1)

Country Link
JP (1) JP2015175708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627494A (en) * 2018-05-09 2018-10-09 吉林大学 A kind of system for the imaging of fast two-dimensional Raman spectroscopy scans

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627494A (en) * 2018-05-09 2018-10-09 吉林大学 A kind of system for the imaging of fast two-dimensional Raman spectroscopy scans
CN108627494B (en) * 2018-05-09 2020-11-10 吉林大学 System for rapid two-dimensional Raman spectrum scanning imaging

Similar Documents

Publication Publication Date Title
JP2016224034A (en) Grain particle sensor device
WO2012161067A1 (en) Measuring unit and gas analyzer
TWI546533B (en) Measurement system of real-time spatial-resolved spectrum and time-resolved spectrum and measurement module thereof
US9001331B2 (en) Arrangement adapted for spectral analysis of high concentrations of gas
JP5975175B2 (en) Raman spectrometer
CN105651759A (en) Surface-enhanced type Raman spectrum testing system
KR20170052256A (en) Apparatus and method for measuring concentration of material
JP2011043332A (en) Fluorescence detector
JP2011174852A (en) Mercury atomic absorption spectrometer and mercury analyzing system
JP2008256585A (en) Elemental analyzer and elemental analysis method
JP7407160B2 (en) Flowing nanoparticle measuring device and method for determining nanoparticles using the same
CN108593631A (en) A kind of method of aerosol auxiliary laser probe in detecting molecular radical spectrum
JP2015175708A (en) Raman spectroscopic analyzer and raman spectroscopic analysis method
CN112213296A (en) Device and method for detecting uranium and plutonium content in tail gas of radioactive after-treatment plant
CN108885168B (en) Detection system and signal enhancement device
JP2017125747A (en) Probe-type elemental analysis device, and elemental analysis method
CN205449805U (en) Surface reinforcing raman spectroscopy test system
JPH0835926A (en) Sample cell
JP6176327B2 (en) Raman spectrometer
JP2006250725A (en) Flow cell unit, flow site meter and fluorescence detection method
JP2000329682A (en) Analyzer for simultaneous execution of raman spectroscopic analysis and particle size distribution measurement
JPH10115584A (en) Fluorescent flow cell
JP2010019626A (en) Element analyzer and element analysis method
JP2006242623A (en) Flow cytometer and fluorescence collecting method
CA2706787A1 (en) Laser multi-sensor system for the selective trace analysis of organic materials