JP2015175700A - 位置推定装置、位置推定方法およびプログラム - Google Patents

位置推定装置、位置推定方法およびプログラム Download PDF

Info

Publication number
JP2015175700A
JP2015175700A JP2014051663A JP2014051663A JP2015175700A JP 2015175700 A JP2015175700 A JP 2015175700A JP 2014051663 A JP2014051663 A JP 2014051663A JP 2014051663 A JP2014051663 A JP 2014051663A JP 2015175700 A JP2015175700 A JP 2015175700A
Authority
JP
Japan
Prior art keywords
sensors
distance
reflected wave
azimuth
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014051663A
Other languages
English (en)
Inventor
素子 加賀谷
Motoko Kagaya
素子 加賀谷
前野 蔵人
Kurato Maeno
蔵人 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2014051663A priority Critical patent/JP2015175700A/ja
Publication of JP2015175700A publication Critical patent/JP2015175700A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】より簡易にセンシング対象物体の位置を推定することが可能な位置推定装置、位置推定方法およびプログラムを提供することにある。【解決手段】送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部と、前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成する生成部と、前記生成部により生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定する距離推定部と、複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定する方位推定部と、を備える位置推定装置。【選択図】図1

Description

本発明は、位置推定装置、位置推定方法およびプログラムに関する。
近年、様々なセンサを用いて、人間や車その他の動体の動作を検知する技術が開発されている。
例えば、下記非特許文献1では、非接触で対象物体の動きを計測可能なドップラーセンサに関する技術が開示されている。例えばマイクロ波のドップラーセンサは、対象物体にマイクロ波を照射し、反射波のドップラーシフトからセンサに対する対象物体の速度を計測する。ドップラーセンサは、センサと対象物体との距離をセンサの出力信号の位相変化として計測するため、数ミリから数メートルまでの広い範囲の距離変化を計測することができる。
久保 肇,森 武俊,佐藤 知正,"マイクロ波ドップラーセンサによる移動・呼吸信号検出," 日本生体医工学会誌,Vol. 48, No.6, pp.595−603, 2010. 笹原 俊彦,"24GHz帯マルチモード・センサ・モジュールNJR4232Dの概要と実力," RFワールド:無線と高周波の技術解説マガジン (24), 96−110,6, 2013−11. 四分一 浩二,江馬 浩一,槇 敏夫,"拡大するミリ波技術の応用," 島田理化技報 No.21, 2011.
しかし、ドップラーセンサのような、センサと対象物体との間の1次元の距離変化を計測するセンサでは、ひとつのセンサで対象物体の位置を計測することは困難である。また、複数個のセンサを用いる場合、例えばセンサを部屋の4隅に設置する等の、1次元の距離変化の計測結果を組み合わせて2次元の位置推定を行うための仕組みが必要であった。また、ドップラーセンサは測距に電波強度を利用するものであるが、電波強度による測距は誤差が大きく、精度を向上させることが困難であった。
他方、対象物体の位置を推定する技術に関して、アレイ信号処理によりセンサから見た対象物体の方位を計算する方法があるものの、高い処理コストを要していた。また、上記非特許文献2、3に係る技術は、ひとつのドップラーセンサで一定時間ごとに僅かに異なる2種類の周波数を交互に送信して、ビート信号の位相差に基づいてセンサと対象物体との間の直線距離を測定可能であるが、方位を求めることはできなかった。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、より簡易にセンシング対象物体の位置を推定することが可能な、新規かつ改良された位置推定装置、位置推定方法およびプログラムを提供することにある。
上記課題を解決するために、本発明のある観点によれば、送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部と、前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成する生成部と、前記生成部により生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定する距離推定部と、複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定する方位推定部と、を備える位置推定装置が提供される。
前記距離推定部は、任意の2つの前記センサの前記送信波の周波数差、および当該2つの前記センサについて前記生成部により生成されたビート信号の位相差に基づいて、前記距離を推定してもよい。
前記距離推定部は、前記周波数差が大きい2つの前記センサを用いて推定した距離、および前記周波数差が小さい2つの前記センサを用いて推定した距離を組み合わせることで、前記距離を特定してもよい。
前記方位推定部は、前記センサにより受信された前記反射波のパワーの観測値と、前記方位を変数とする前記反射波のパワーのモデルを用いて予測した予測値とを、前記センサごとに比較することにより前記方位を推定してもよい。
前記方位推定部は、前記観測値と前記予測値とを、対数表現を用いて比較してもよい。
前記モデルは、ガウス関数であり、前記反射波のパワーの最大値を規定するパワー項を変数として含んでもよい。
前記方位推定部は、前記方位および前記パワー項の組み合わせをパーティクルとするパーティクルフィルタを用いて前記方位を推定してもよい。
前記方位推定部は、前記予測値の複数の前記センサにおける最大値、および複数の前記センサによる観測値の最大値に基づいて、前記パワー項を推定してもよい。
前記センサ部は、ひとつの筐体に設けられた複数の前記センサから成り、前記指向性が向く方向は、前記複数の前記センサの取り付け方向に対応してもよい。
また、上記課題を解決するために、本発明の別の観点によれば、送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部、を備える情報処理装置を用いた位置推定方法であって、前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成するステップと、生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定するステップと、複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定するステップと、を含む位置推定方法が提供される。
また、上記課題を解決するために、本発明の別の観点によれば、送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部、を備える情報処理装置を制御するコンピュータを、前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成する生成部と、前記生成部により生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定する距離推定部と、複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定する方位推定部と、として機能させるためのプログラムが提供される。
以上説明したように本発明によれば、より簡易にセンシング対象物体の位置を推定することが可能である。
本実施形態に係る位置推定装置の構成例を示すブロック図である。 本実施形態に係るセンサの設置例を説明するための図である。 本実施形態に係る位置推定装置において実行される位置推定処理の流れの一例を示すフローチャートである。 センサ間の設置角度差の設定例を説明するための図である。 各センサのパワーのlog特性モデルを示す図である。 本実施形態に係る位置推定装置において実行される方位推定処理の流れの一例を示すフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<1.第1の実施形態>
[1−1.構成例]
まず、図1〜図2を参照して、第1の実施形態に係る位置推定装置(情報処理装置)の構成例を説明する。
図1は、本実施形態に係る位置推定装置の構成例を示すブロック図である。図1に示すように、位置推定装置1は、センサ部2、生成部3、および位置推定部4を有する。
(センサ部2)
センサ部2は、送信波を送信して対象物体からの反射波を受信するセンサを複数有する。センサは、電波型、超音波、音波、又はマイクロ波、ミリ波、および光などを含む電磁波を、送信波として送信して反射波を受信し得る。センシングの対象となる対象物体としては、例えば人間、車などの多様な動体が考えられる。
本実施形態に係るセンサ部2は、各センサの送信波の周波数および反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて、略同一の設置位置に複数のセンサを設ける。略同一の設置位置に設置されるとは、例えば複数のセンサが隣接して設置されることを意味する。センサ同士の距離が短いほど望ましいが、分解能との兼ね合いでセンサ同士が離間していても良い場合がある。例えば、センサ同士が1メートル離れている場合は、測距時にこの1メートルが誤差として計測される。このため、誤差が許容される分の距離だけ、センサ同士は離間して設置されてもよい。他の観点から言えば、対象物との距離が遠いほど、センサ同士の距離が離れていてもよい。ここで、図2を参照して、センサ部2におけるセンサの設置例を説明する。
図2は、本実施形態に係るセンサの設置例を説明するための図である。図2に示すように、センサ部2は、それぞれ異なる周波数の送信波を出力するセンサ20a、20b、20cが、それぞれ異なる方向を向いて筐体21に設けられた構成を有する。図2に示すように、センサ20a、20b、20cは互いに離間しているが、同じ筐体21に設けられている点で、略同一の設置位置に設けられている。なお、本明細書において、センサ20a、20b、および20cを互いに区別する必要がない場合には、符号の末尾のアルファベットを省略することにより、これらをセンサ20と総称する。他の構成要素についても同様とする。
センサ部2は、ひとつの筐体21に設けられた複数のセンサ20から成り、反射波の受信パワー特性の指向性が向く方向は、複数のセンサ20a、20b、20cの取り付け方向に対応する。具体的には、図2に示すように、センサ20a、20b、20cは、取り付け方向に応じてそれぞれ前方に向かって指向性を持たせた送信波を送信して、反射波を受信する。なお、図2では、送信波の指向性を略三角形型のハッチングを掛けた領域として表現しているが、当該領域の外側にも送信波が送信されていてもよいし、例えば送信波が全方位に向けて送信されていてもよい。また、図2では、隣り合う2つのセンサ20の送信波の指向性が重なるよう設置された例が示されているが、任意の3つ以上のセンサ20の送信波の指向性が重なっていてもよい。
また、センサ部2は、想定される対象物体との距離に応じて、各センサ20の送信波の周波数を相違させる。周波数差が小さい場合は計測可能な距離が長く、周波数差が大きい場合は計測可能な距離が短い。例えば、24GHz帯では、周波数差を約1MHzにすると半径100mの範囲が距離計測可能な範囲となり、また、周波数差を約5MHz〜10MHz程度とすると半径10mの範囲が距離計測可能な範囲となる。周波数差と計測可能な距離との関係は、上記非特許文献2に例示されているので、ここでは他の例の記載を省略する。なお、本明細書では、想定される対象物体との距離に応じた周波数差を設けることを、周波数を僅かに相違させる、とも称する。
(生成部3)
生成部3は、センサ部2により観測されたセンサ20ごとの送信波および反射波に基づいて、複数のビート信号を生成する機能を有する。生成部3は、各センサ20についての送信波および反射波に基づいて、それぞれビート信号を生成する。生成部3は、生成したビート信号を位置推定部4に出力する。
(位置推定部4)
位置推定部4は、生成部3により生成された複数のビート信号に基づいて、対象物体の位置を推定する機能を有する。図2に示すように、位置推定部4は、距離推定部41、および方位推定部42として機能する。位置推定部4は、距離推定部41により推定された距離、および方位推定部42により推定された方位によって、対象物体の位置を特定する。
(距離推定部41)
距離推定部41は、複数の前記ビート信号に基づいて、センサ20の設置位置から対象物体までの距離を推定する機能を有する。より詳しくは、距離推定部41は、任意の2つのセンサ20の送信波の周波数差、および当該2つのセンサ20について生成部3により生成されたビート信号の位相差に基づいて、距離を推定する。上記説明したように、センサ部2には、互いに指向性が重なるように複数のセンサ20が設けられている。距離推定部41は、この指向性の重なる領域に対象物体が存在するセンサ20のペアを抽出して、送信波の周波数差およびビート信号の位相差に基づいて距離を推定する。なお、センサ20の設置位置とは、例えば各センサ20の中心位置であってもよいし、いずれかのセンサ20の位置であってもよい。
(方位推定部42)
方位推定部42は、複数のセンサ20の指向性の特性、複数のセンサ20間の指向性が向く方向の角度差、および複数のセンサ20により受信された反射波のパワーに基づいて、センサ20の設置位置からみた対象物体の方位を推定する機能を有する。具体的には、まず、方位推定部42は、反射波のパワーに関する予測値のモデルを定義する。このモデルは、センサ20間の設置角度差を含み、対象物体の方位を変数とするモデルである。そして、方位推定部42は、センサ20により受信された反射波のパワーに関する観測値と予測値とを、予測値のモデルの変数である方位を更新しながら比較することにより、対象物体の方位を推定する。
以上、本実施形態に係る位置推定装置1の構成例を説明した。続いて、図3〜図5を参照して、本実施形態に係る位置推定装置1の動作処理を説明する。
[1−2.動作処理]
図3は、本実施形態に係る位置推定装置1において実行される位置推定処理の流れの一例を示すフローチャートである。
(S102:センシング)
まず、ステップS102で、センサ部2は、センシングを行う。上述したように、距離推定部41は、2つのセンサ20を用いて対象物体までの距離を推定する。そこで、ここでは、任意の2つのセンサ20によるセンシング処理を説明する。
2つのセンサ20は、それぞれ僅かに相違させた周波数の送信波を送信し、対象物体に反射された反射波を受信する。2つのセンサ20の送信波の周波数を、それぞれfおよびfとして、送信波をそれぞれ下記の数式1、数式2に示す。
Figure 2015175700
Figure 2015175700
続いて、これらの送信波に対する対象物体からの反射波を、それぞれ下記の数式3、数式4に示す。
Figure 2015175700
Figure 2015175700
ここで、cは光速、Lはセンサ20から対象物体までの位置、vはターゲットのセンサ設置場所からみた移動速度を示す。A、Bは振幅であり、φ、φは信号の初期位相である。なお、2つのセンサ20は近い位置に設置するため、L、vは各センサ20から見て同一であるものとする。
(S104:ビート信号を生成)
次に、ステップS104で、生成部3は、ビート信号を生成する。生成部3は、上記数式1に示した送信波と上記数式3に示した反射波、および上記数式2に示した送信波と上記数式4に示した反射波をそれぞれミキシングすることで、各センサ20についてのビート信号をそれぞれ生成する。生成部3が生成するビート信号を、それぞれ下記の数式5、数式6に示す。
Figure 2015175700
Figure 2015175700
(S106:距離推定処理)
次いで、ステップS106で、距離推定部41は、センサ20の設置位置から対象物体までの距離を推定する。具体的には、距離推定部41は、上記数式5、数式6を用いて、対象物体の速度vおよび距離Lを、下記の数式7、数式8で求める。
Figure 2015175700
Figure 2015175700
ここで、fとfの差が僅かであることから、両ビート信号におけるドップラ周波数は等しいと捉えることができる。ドップラ周波数をfとすると、距離推定部41は、両ビート信号をフーリエ変換してドップラ周波数fを検出し、次いで同周波数におけるスペクトルの位相差θ−θを抽出することで、上記数式8に示した距離Lを求める。ただし、数式8において距離アンビギュイティを回避するために、θ−θ<2πを満たす必要がある。
センサ部2が3つ以上のセンサ20を有する場合、距離推定部41は、複数のペアを抽出して、各ペアを用いてそれぞれ距離を推定して、例えば平均値など基本統計量を用いることで推定精度を高めてもよい。また、距離推定部41は、S/Nの悪い位置関係のセンサ20を、ペアの抽出対象から除外する等して、推定精度を高めてもよい。
また、上記説明したように、センサ20間の周波数差によって、距離計測可能な範囲が異なる。そこで、距離推定部41は、周波数差が大きいペアについて推定した距離、および周波数差が小さいペアを用いて推定した距離を組み合わせることで、対象物との距離を特定してもよい。上記数式8に示すように、周波数差が小さい場合は長い距離を推定可能となるが、距離分解能は低くなる。逆に、上記数式8に示すように、周波数差が大きい場合は距離分解能が高くなるものの、推定可能な距離は短くなる。このため、距離推定部41は、周波数差が小さいペアを用いた推定結果により長距離を推定可能にしつつ、周波数差が大きいペアを用いた推定結果により高い距離分解能を担保することが可能となる。
具体的な処理としては例えば、距離推定部41は、まず周波数差が小さいペアで大まかな(距離分解能が低い)距離を推定する。次いで、距離推定部41は、推定された大まかな距離を、周波数差が大きいペアによる推定結果を用いて詳細に特定していく。このとき、推定された大まかな距離が、周波数差が大きいペアで推定可能な距離の最大値を超える場合、距離推定部41は、距離アンビギュイティを回避するための条件を、推定された大まかな距離に応じて2jπ<θ−θ<4jπ(jは整数)に変更する。このようにして、距離推定部41は、周波数差が小さいペアと大きいペアとを組み合わせて、ひとつのペアを用いて推定する場合と比較して、より長距離をより高い分解能で推定することを可能にする。
(S108:方位推定処理)
そして、ステップS108で、方位推定部42は、センサ20の設置位置からみた対象物体の方位を推定する。方位推定部42は、複数のセンサ20間の設置角度差(指向性の向く方向の差)を用いて、対象物の方位を推定する。そこで、図4を参照して、以下に説明する推定処理に用いるセンサ20間の設置角度差の設定例を説明する。
図4は、センサ20間の設置角度差の設定例を説明するための図である。図4に示すように、中央のセンサ20aの指向性の中心方向を方位角0とし、90度ごとに異なるセンサ20b、20cの3つのセンサ20を用いて方位を推定するものとする。本明細書では、説明を簡単にするために、図4に示した設置例を用いるものとするが、設置の角度および個数はどのような形態でも取り得る。同様に、以降の説明では、説明を簡単にするために、3つのセンサ20が同一の指向性を持つものとするが、センサ20ごとに指向性が異なっていてもよい。
方位推定部42は、センサ20により受信された反射波のパワーの観測値と、方位θを変数とする反射波のパワーのモデルを用いて予測した予測値とを、センサ20ごとに比較することにより方位θを推定する。まず、方位θを変数とする反射波のパワーのモデル化について説明する。
方位推定部42は、各センサ20の指向性のパターンに基づいて、反射波のパワーのモデル化を行う。指向性のパターンは、メインロープとサイドロープから構成される。指向性のパターンを、より厳密に実際の各センサ20の特性に合わせた方が推定精度は高まるが、本明細書では、単純化のためにメインロープをガウス関数に当てはめた計算例を説明する。対象物体が方位θに位置した場合に、各センサ20が受信すると予測される反射波のパワーのlog特性モデルを、以下の数式9で定義する。なお、本明細書では、このlog特性モデルを予測値とする。
Figure 2015175700
上記モデルが含むkは、各センサ20のパワーや振幅を示す項であり、反射波のパワーの最大値を規定している。以下では、kをパワー項とも称する。センサ20毎にパワー差がある場合は異なる値としてよいが、ここでは単純化のため3つのセンサ20ですべて同一の値であるものと仮定する。異なる値とする場合、センサ20毎のパワー差の関係を、例えば、k=αkなどのようなセンサ特性として記述することで、より少ないパラメータで全センサ20の特性を表現することが、計算量削減の観点から望ましい。
また、図5に、上記数式9で示した各センサ20のパワーのlog特性モデルを図示した。図5に示すように本明細書では、各センサ20のパワーのlog特性モデルは同一の形状を有し、それぞれの中心軸が−π/2、0、π/2に位置している。以上、方位θを変数とする反射波のパワーのモデル化について説明した。
続いて、比較対象である、センサ20により受信される反射波のパワーの観測値について説明する。3つのセンサ20による受信時の反射波のパワーをaとし、この対数表現をb=logaとする。方位推定部42は、この対数表現bを観測値として、上記数式9に示した予測値との比較することにより、対象物体の方位θを推定する。具体的には、方位推定部42は、下記の数式10の関係を満たすkおよびθを探索することで、対象物体の方位θを推定する。
Figure 2015175700
なお、aは、単一の複素ビート信号の瞬時振幅又はその2乗値のほか、各種の統計量で代用されてもよい。例えば、一定時間での瞬時振幅(又はその2乗)の平均値、一定時間内のピークピーク値(Peak-to-peak value)、又はそれらの平均がaとして採用されてもよい。また、ビート信号の一定時間内の標準偏差、第1四文位点と第3四文位点との差、および最大値と最小値との差なども振幅と強い相関を示す情報であるため、これらの値又はその2乗がaとして採用されてもよい。瞬時振幅などの瞬時的な値はノイズに弱いため、これら統計量で代用することにより、推定精度を維持することが可能となる。
前記方位推定部は、前記観測値の対数と前記予測値の対数とを、前記センサごとに比較することにより前記方位を推定してもよい。また、上記数式10に示すように、方位推定部42は、反射波のパワーの観測結果とその予測とを単純に比較するのではなく、それぞれ対数をとった対数表現を用いて比較する。これは、反射波のパワーは、サイドロープになるにつれてノイズの影響が大きくなるものであるが、対数をとることによってノイズの影響を低減できるためである。このため、方位推定部42は、観測値と予測値とを対数表現により比較することで、ノイズの影響を排した、より精度の高い推定を行うことが可能となる。
しかし、実際には上記数式10は観測誤差および推定モデルの誤差を含むため、3つのセンサ20の関係を満たす条件を一般に得ることは困難である。そこで、方位推定部42は、下記の数式11で示す関係を想定して、誤差E=Σe を最小化する方位θを、対象物体の方位の推定結果として求める。
Figure 2015175700
ここで、あるkにおいて、誤差eは下記の数式12として表現される。
Figure 2015175700
また、全体の誤差をEとすると、誤差Eは下記の数式13で表現される。
Figure 2015175700
方位推定部42は、上記数式13に示した誤差Eを最小化する方位θおよびパワー項kを求める。誤差Eが単純な凹関数であると仮定すると、方位θおよびパワー項kの最適値で誤差Eが最小値をとって勾配0になる。よって、方位推定部42は、下記の数式14に示す連立方程式を解く。
Figure 2015175700
しかし、関数p(θ,k)は非線形であるため、最急降下法などを用いて解くことが現実的である。最急降下法とは、パラメータを更新しながら反復処理を繰り返すことで、初期値から徐々に解に近づけていく手法である。パラメータθおよびkの初期値をそれぞれθ、kとすると、方位推定部42は、下記の数式15に示す更新式によりパラメータを収束させる。
Figure 2015175700
ここで、0<ηθ<1,0<η<1である。方位推定部42は、上記数式15に示した更新式を反復して収束した方位項θ、パワー項kが、誤差Eを最小とするパラメータであると推定する。このようにして、方位推定部42は、対象物体の方位θを推定する。
以上説明したように、距離推定部41は、設置位置から対象物体までの距離を推定し、方位推定部42は、設置位置からみた対象物体の方位を推定する。位置推定装置1は、これらの推定結果により、対象物体の位置を特定することができる。
<2.第2の実施形態>
[2−1.概要]
本実施形態は、方位推定処理において、最急降下法に代えてパーティクルフィルタを適用する形態である。より具体的には、本実施形態に係る方位推定部42は、方位θおよびパワー項kの組み合わせをパーティクルとするパーティクルフィルタを用いて、方位θを推定する。
パーティクルフィルタは、例えば100〜10万個程度の任意のM個の状態ベクトルを逐次更新することで、最急降下法のように問題を解く手法である。より詳しくは、パーティクルフィルタは、M個の状態ベクトルについて個別に尤度を計算し、尤度に基づいて状態ベクトルの分布を再構築する処理を繰り返す手法である。この再構築の際に、パーティクルフィルタは、尤度が低い領域に対しても一定量の状態ベクトルを配置し、尤度の高まりと共に重みを増す(状態ベクトルを増やす)。このため、パーティクルフィルタは、ローカルミニマムに陥りにくく、尤度が最も高い(誤差が最も小さい)解を見つけやすいという特徴がある。
以上、本実施形態に係る位置推定装置1の概要を説明した。続いて、図6を参照して、本実施形態に係る位置推定装置1の動作処理を説明する。
[2−2.動作処理]
図6は、本実施形態に係る位置推定装置1において実行される方位推定処理の流れの一例を示すフローチャートである。なお、位置推定装置1による位置推定処理の全体的な流れは、図3を参照して上記説明した通りである。本実施形態に係る位置推定装置1は、方位推定処理(図3ステップS108)における最急降下法に代えて、以下に説明するパーティクルフィルタを用いた処理を行う。
(S202:状態ベクトルの初期化)
まず、ステップS202で、方位推定部42は、状態ベクトルの初期化を行う。初めに、方位推定部42が用いるM個の状態ベクトルを、以下の数式16で定義する。
Figure 2015175700
ここで、tは観測時刻または試行回数を示し、t=0は初期状態であることを示し、t=1は、観測開始後最初に得られた観測値に基づく状態ベクトルであることを示す。また、ひとつの状態ベクトルは、例えば下記の数式17で表現される。
Figure 2015175700
ここで、i=1,2,…,Mである。また、θ ,k はi番目の状態ベクトルの要素であり、それぞれ数式9のθ、kの推定量である。
方位推定部42は、例えば、取り得る値の範囲にほぼ一様に分布する疑似乱数値、または平均w、分散σのガウス分布に従う乱数などを与えることで、状態ベクトルの初期化を行う。
(S204:予測ステップ)
次いで、ステップS204で、方位推定部42は、状態ベクトルの予測を行う。詳しくは、方位推定部42は、時刻tにおける状態ベクトルの分布から、時刻t+1における状態ベクトルを予測する。予測された時刻t+1の状態ベクトルを、下記の数式19〜数式20で定義する。
Figure 2015175700
Figure 2015175700
Figure 2015175700
Figure 2015175700
(S206:尤度算出ステップ)
次に、ステップS206で、方位推定部42は、各状態ベクトルについて、センサ20による観測値であるaを用いて、下記の数式21に示す対数尤度L を求める。
Figure 2015175700
ただし、b=logaである。ここでは、尤度として、誤差Eの正負を反転させたものを用いている。最も尤度が大きい解が、誤差を最も小さくするためである。方位推定部42は、上記数式18に示した、予測した状態ベクトルPの各要素である(θ´ ,k´ )をそれぞれ用いて、上記数式21に示した尤度関数L (θ,k)を計算する。
(S208:推定ステップ)
次いで、ステップS208で、方位推定部42は、状態ベクトルの分布を推定する。詳しくは、方位推定部42は、i=1,…,Mの状態ベクトルP の分布確率Pd を、下記の数式22で求める。
Figure 2015175700
ここで、L minは、上記数式21で示した尤度関数L (θ,k)の最小値である。方位推定部42は、この分布確率に基づいて、{P i=1 から状態ベクトルを抽出して、次の時刻における状態確率モデル{Xt+1 i=1 を構成する。
例えば、方位推定部42は、分布確率Pd が閾値α(例えば、0.001や0.2など)以下の状態ベクトルP を消滅させて、{Xt+1 i=1 へは移動させない。一方で、方位推定部42は、分布確率Pd が閾値β(例えば、0.7や0.01など)以上の状態ベクトルP を、{Xt+1 i=1 がM個になるように、消滅させた状態ベクトルの数と同数だけ複製して増やし、{Xt+1 i=1 へ移動させる。方位推定部42は、閾値β以上の状態ベクトルが複数ある場合、消滅させた状態ベクトルの数を閾値β以上の状態ベクトルで等分割し、その分それぞれ複製して増やしてもよいし、尤度を重みとして、尤度が高いものをより多く複製して増やしてもよい。他方、方位推定部42は、分布確率Pd が閾値αより大きく閾値β未満の状態ベクトルを、そのまま{Xt+1 i=1 へ移動させてもよい。
方位推定部42は、このような処理により、尤度の高いところに状態ベクトルが密に配置され、尤度の低いところに疎に配置される密度分布が形成される、M個の状態ベクトルを構成することができる。
(S210:出力ステップ)
次に、ステップS210で、方位推定部42は、推定した方位θの出力を行う。具体的には、方位推定部42は、更新した状態確率モデル{Xt+1 i=1 に基づき、方位項θ、パワー項kを推定し出力する。
例えば、方位推定部42は、方位項θおよびパワー項kを、M個の状態ベクトルの平均値または中央値をとることにより求める。他にも、方位推定部42は、k−means法などを用いて、M個の状態ベクトル内にM個未満のクラスタを求め、もっとも多くの状態ベクトルが属するクラスタの平均値を、方位項θおよびパワー項kの推定値としてもよい。なお、k−means法については、「宮本定明,“クラスター分析入門 ファジィクラスタリングの理論と応用”,森北出版株式会社,1999年.」などに詳しく説明されているため、ここでの詳細な説明は省略する。方位推定部42は、これらのクラスタリングを、θおよびkそれぞれについて実施してもよいし、(θ,k)の2次元空間で重心をとって実施してもよい。
また、方位推定部42は、M個の状態ベクトルが十分に収束していない場合、計測無効という状態を出力してもよいし、他の方法で簡易に推定した値を出力してもよい。方位推定部42は、十分に収束していないという判断に、例えば尤度の最大値が閾値よりも小さいなどの指標を利用することができる。
(S212:終了判定)
次いで、ステップS212で、方位推定部42は、終了判定を行う。例えば、方位推定部42は、次の時刻t+1で新しい観測値aが得られた場合に、処理を継続すると判定し(S212/NO)、ステップS202からの処理を繰り返してもよい。もちろん、方位推定部42は、新たな観測値aが得られない場合であっても、例えば同一の観測値に対してステップS202からの処理を複数回繰り返してもよい。他方、方位推定部42は、例えばM個の状態ベクトルが十分に収束したと判定した場合に、処理を終了すると判定する(S212/YES)。
以上説明したように、本実施形態によれば、パーティクルフィルタを用いて対象物体の方位を推定することができる。位置推定装置1は、パーティクルフィルタを用いることにより、最急降下法と比較してローカルミニマムに陥るリスクを低減して、方位θおよびパワー項kを推定することができる。
<3.第3の実施形態>
本実施形態は、複数のセンサ20の指向性の重なり方に基づいてパワー項kを推定することにより、第1の実施形態、および第2の実施形態から、方位θの推定に係る計算量を削減する形態である。
具体的には、方位推定部42は、上記数式9に示した、反射波のパワーの予測値の複数のセンサ20における最大値、および複数のセンサ20による観測値の最大値に基づいて、パワー項を推定する。図5に示すように、方位−π/2<θ<π/2において、最もよく反応するセンサ20は、ピーク値の7割以上のパワーが得られている。従って、方位推定部42は、パワー項kを下記の数式23で推定する。
Figure 2015175700
図4に示したセンサ20間の設置角度差、および図5に示したログ特性モデルにおいては、αは0.7〜1.0の範囲の値をとる。もちろん、αの数値は、センサ20間の設置角度差(センサ20の指向性の重なり方)、および予測値のモデルに応じて異なる。方位推定部42は、上記数式23を用いてkを推定し、続いて下記の数式24を用いて方位θを推定する。具体的には、本実施形態に係る方位推定部42は、下記の数式24に、第1の実施形態において説明した最急降下法、または第2の実施形態において上記説明したパーティクルフィルタを適用することにより、方位θを推定する。
Figure 2015175700
方位推定部42は、数式23を用いてkを簡易に推定可能になるので、方位θの探索は上記の数式24に示すように1次元上での探索となり、探索コストを大幅に削減することができる。方位θを分解能1度単位(π/180(rad))で、水平方向までの角度しか探索できないとすると、θは高々180個のバリエーションでしかなく、総当たりで最小値を選択しても計算量はさほど問題とならない。また、方位推定部42は、段階的に分解能を高めながら最小値を探索することも可能であり、この手法によればより演算量を抑えて精度よく推定することができる。
<4.まとめ>
以上説明したように、各実施形態に係る位置推定装置1は、より簡易にセンシング対象物体の位置を推定することが可能である。具体的には、位置推定装置1は、略同一の設置位置に、送信周波数が異なる複数のセンサ20を設けることで、センシング結果に基づいて対象物体の位置を推定することが可能である。このため、位置推定装置1は、例えばセンサを部屋の4隅に設置する等の大掛かりな仕組みを要することなく、簡易に位置を推定することが可能となる。また、位置推定装置1は、対象物体までの距離の計測に、上記数式8に示したように位相差を用いるため、電波強度による測距のような大きな誤差は生じにくい。さらに、位置推定装置1は、周波数差の大きいペアと小さいペアとを組み合わせることで、より長距離をより高い分解能で推定することが可能となる。また、位置推定装置1は、アレイ信号処理で方位を計算する手法と比較して、リアルタイムで行う処理が少ないため、より少ない処理コストで方位を推定することが可能である。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、本明細書において説明した位置推定装置1は、単独の装置として構成されてもよく、一部または全部が別々の装置で構成されても良い。例えば、図1に示した位置推定装置1の機能構成例のうち、生成部3および位置推定部4が、センサ部2とネットワーク等で接続されたサーバ等の装置に備えられていても良い。生成部3および位置推定部4がサーバ等の装置に備えられる場合は、センサ部2からの情報がネットワーク等を通じて当該サーバ等の装置に送信され、生成部3がセンサ部2からの出力に基づいてビート信号を生成し、位置推定部4が対象物体の位置を推定する。
また、図5に記載した各センサのパワーのlog特性モデル(即ち、センサ毎の反射波の受信パワー特性)の指向性を相違させる方法としては、上記各実施形態で説明したような、送信波の送信と受信波の受信の指向性が略同一のセンサを異なる方向に向けて配置するような構成以外でも、実現可能である。例えば、送信波の送信あるいは受信波の受信のいずれか一方のみ指向性を有するセンサを、異なる方向に向けて配置する構成としても良い。あるいは、アレイ信号処理により、電子的・ソフト的に指向性を相違させる方法、またそれらの組み合わせでも実現可能である。なお、アレイ信号処理等を利用して本発明を実現する場合、距離推定部41での推定処理に用いられる各ビート信号を生成する構成が、上記実施形態で説明された、複数設けられたセンサの各々に対応することになる。
なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。
1 位置推定装置
2 センサ部
20 センサ
21 筐体
3 生成部
4 位置推定部
41 距離推定部
42 方位推定部

Claims (11)

  1. 送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部と、
    前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成する生成部と、
    前記生成部により生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定する距離推定部と、
    複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定する方位推定部と、
    を備える位置推定装置。
  2. 前記距離推定部は、任意の2つの前記センサの前記送信波の周波数差、および当該2つの前記センサについて前記生成部により生成されたビート信号の位相差に基づいて、前記距離を推定する、請求項1に記載の位置推定装置。
  3. 前記距離推定部は、前記周波数差が大きい2つの前記センサを用いて推定した距離、および前記周波数差が小さい2つの前記センサを用いて推定した距離を組み合わせることで、前記距離を特定する、請求項2に記載の位置推定装置。
  4. 前記方位推定部は、前記センサにより受信された前記反射波のパワーの観測値と、前記方位を変数とする前記反射波のパワーのモデルを用いて予測した予測値とを、前記センサごとに比較することにより前記方位を推定する、請求項1〜3のいずれか一項に記載の位置推定装置。
  5. 前記方位推定部は、前記観測値と前記予測値とを、対数表現を用いて比較する、請求項4に記載の位置推定装置。
  6. 前記モデルは、ガウス関数であり、前記反射波のパワーの最大値を規定するパワー項を変数として含む、請求項4または5に記載の位置推定装置。
  7. 前記方位推定部は、前記方位および前記パワー項の組み合わせをパーティクルとするパーティクルフィルタを用いて前記方位を推定する、請求項6に記載の位置推定装置。
  8. 前記方位推定部は、前記予測値の複数の前記センサにおける最大値、および複数の前記センサによる観測値の最大値に基づいて、前記パワー項を推定する、請求項6または7に記載の位置推定装置。
  9. 前記センサ部は、ひとつの筐体に設けられた複数の前記センサから成り、前記指向性が向く方向は、前記複数の前記センサの取り付け方向に対応する、請求項1〜8のいずれか一項に記載の位置推定装置。
  10. 送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部、を備える情報処理装置を用いた位置推定方法であって、
    前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成するステップと、
    生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定するステップと、
    複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定するステップと、
    を含む位置推定方法。
  11. 送信波を送信して対象物体からの反射波を受信するセンサを、前記送信波の周波数および前記反射波の受信パワー特性の指向性が向く方向をそれぞれ相違させて略同一の設置位置に複数設けるセンサ部、を備える情報処理装置を制御するコンピュータを、
    前記センサ部により観測された前記センサごとの前記送信波および前記反射波に基づいて、複数のビート信号を生成する生成部と、
    前記生成部により生成された複数の前記ビート信号に基づいて前記設置位置から前記対象物体までの距離を推定する距離推定部と、
    複数の前記センサの指向性の特性、複数の前記センサ間の指向性が向く方向の角度差、および複数の前記センサにより受信された前記反射波のパワーに基づいて、前記設置位置からみた前記対象物体の方位を推定する方位推定部と、
    として機能させるためのプログラム。
JP2014051663A 2014-03-14 2014-03-14 位置推定装置、位置推定方法およびプログラム Pending JP2015175700A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051663A JP2015175700A (ja) 2014-03-14 2014-03-14 位置推定装置、位置推定方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051663A JP2015175700A (ja) 2014-03-14 2014-03-14 位置推定装置、位置推定方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2015175700A true JP2015175700A (ja) 2015-10-05

Family

ID=54255018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051663A Pending JP2015175700A (ja) 2014-03-14 2014-03-14 位置推定装置、位置推定方法およびプログラム

Country Status (1)

Country Link
JP (1) JP2015175700A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166998A (ja) * 2016-03-16 2017-09-21 株式会社デンソー 物標検出装置
US10241187B2 (en) 2015-12-24 2019-03-26 Panasonic Intellectual Property Management Co., Ltd. Position sensor, direction estimation method, and system
US10914829B2 (en) 2017-01-27 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Positioning sensor, sensor, and method
WO2021049827A1 (ko) * 2019-09-10 2021-03-18 삼성전자 주식회사 외부 전자 장치의 위치를 결정하기 위한 전자 장치 및 그 방법
JP2022538783A (ja) * 2019-06-10 2022-09-06 蘇州博昇科技有限公司 空気連成超音波干渉法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10241187B2 (en) 2015-12-24 2019-03-26 Panasonic Intellectual Property Management Co., Ltd. Position sensor, direction estimation method, and system
JP2017166998A (ja) * 2016-03-16 2017-09-21 株式会社デンソー 物標検出装置
US11275172B2 (en) 2016-03-16 2022-03-15 Denso Corporation Target detection device
US10914829B2 (en) 2017-01-27 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Positioning sensor, sensor, and method
JP2022538783A (ja) * 2019-06-10 2022-09-06 蘇州博昇科技有限公司 空気連成超音波干渉法
JP7285029B2 (ja) 2019-06-10 2023-06-01 蘇州博昇科技有限公司 空気連成超音波干渉法
WO2021049827A1 (ko) * 2019-09-10 2021-03-18 삼성전자 주식회사 외부 전자 장치의 위치를 결정하기 위한 전자 장치 및 그 방법
US11982733B2 (en) 2019-09-10 2024-05-14 Samsung Electronics Co., Ltd Electronic device for determining position of external electronic device and method thereof

Similar Documents

Publication Publication Date Title
Hua et al. Matrix CFAR detectors based on symmetrized Kullback–Leibler and total Kullback–Leibler divergences
JP2015175700A (ja) 位置推定装置、位置推定方法およびプログラム
CN116106855B (zh) 摔倒检测方法及摔倒检测装置
CN112630771B (zh) 一种基于毫米波设备的多目标跟踪方法及系统
Vishwakarma et al. SimHumalator: An open-source end-to-end radar simulator for human activity recognition
Mao et al. DeepRange: Acoustic ranging via deep learning
Patra et al. mm-Wave radar based gesture recognition: Development and evaluation of a low-power, low-complexity system
Zhong et al. A distributed particle filtering approach for multiple acoustic source tracking using an acoustic vector sensor network
Guo et al. Dancing waltz with ghosts: Measuring sub-mm-level 2d rotor orbit with a single mmwave radar
Ram et al. Optimization of radar parameters for maximum detection probability under generalized discrete clutter conditions using stochastic geometry
CN112904295A (zh) 使用雷达传感器测量三维位置的方法和装置
Poursheikhali et al. Source localization in inhomogeneous underwater medium using sensor arrays: Received signal strength approach
Zhou et al. Simulation framework for activity recognition and benchmarking in different radar geometries
Zhou et al. Spatial information and angular resolution of sensor array
Kong et al. Gesture recognition system based on ultrasonic FMCW and ConvLSTM model
Riaz et al. Principle component analysis and fuzzy logic based through wall image enhancement
Vishwakarma et al. SimHumalator: An open source WiFi based passive radar human simulator for activity recognition
Sit et al. Characterizing evaporation ducts within the marine atmospheric boundary layer using artificial neural networks
Zhang et al. Application of support vector machines for estimating wall parameters in through‐wall radar imaging
Ram et al. Sparsity‐based autoencoders for denoising cluttered radar signatures
Lee et al. A novel location estimation based on pattern matching algorithm in underwater environments
Nguyen et al. Millimeter-wave received power prediction from time-series images using deep learning
JP6398689B2 (ja) 信号処理装置、信号処理方法及びプログラム
Wang et al. A real-time through-wall detection based on support vector machine
Pidanic et al. Advanced targets association based on GPU computation of PHD function