JP2015175616A5 - - Google Patents

Download PDF

Info

Publication number
JP2015175616A5
JP2015175616A5 JP2014049816A JP2014049816A JP2015175616A5 JP 2015175616 A5 JP2015175616 A5 JP 2015175616A5 JP 2014049816 A JP2014049816 A JP 2014049816A JP 2014049816 A JP2014049816 A JP 2014049816A JP 2015175616 A5 JP2015175616 A5 JP 2015175616A5
Authority
JP
Japan
Prior art keywords
biosensor
electrode
electrode system
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049816A
Other languages
Japanese (ja)
Other versions
JP2015175616A (en
JP6476561B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014049816A priority Critical patent/JP6476561B2/en
Priority claimed from JP2014049816A external-priority patent/JP6476561B2/en
Publication of JP2015175616A publication Critical patent/JP2015175616A/en
Publication of JP2015175616A5 publication Critical patent/JP2015175616A5/ja
Application granted granted Critical
Publication of JP6476561B2 publication Critical patent/JP6476561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

実施例1、2、4〜6、参考例3
容積500mlのジルコニア製容器にCNT1gと、CNT1gに対して表1に記載した比率になるように導電性粒子を添加後、溶媒であるテルピネオール(片山化学工業(株)製)を30g加えた。0.3μmφのジルコニアビーズ(東レ(株)製トレセラム(商品名))をそこに加え、遊星式ボールミル(フリッチュ・ジャパン(株)製遊星型ボールミルP−5)にて350rpmで予備分散した。次に、ジルコニアビーズを取り除いた混合物にバインダーを0.5g加え、ハイブリットミキサーにて分散し、CNT組成物を得た。CNT組成物はCNTの沈降はなく、12時間後も沈降は確認されなかった。
Examples 1 , 2, 4 to 6 , Reference Example 3
After adding CNT 1g to a zirconia container having a volume of 500 ml and the conductive particles so as to have the ratio described in Table 1 with respect to 1 g of CNT, 30 g of terpineol (manufactured by Katayama Chemical Co., Ltd.) as a solvent was added. 0.3 μmφ zirconia beads (Traceram (trade name) manufactured by Toray Industries, Inc.) were added thereto and predispersed at 350 rpm in a planetary ball mill (planet type ball mill P-5 manufactured by Fritsch Japan Co., Ltd.). Next, 0.5 g of a binder was added to the mixture from which the zirconia beads were removed, and the mixture was dispersed with a hybrid mixer to obtain a CNT composition. The CNT composition had no CNT sedimentation, and no sedimentation was observed after 12 hours.

Figure 2015175616
Figure 2015175616

Claims (5)

絶縁性基板と、少なくとも作用極と対極を有する電極系と、前記電極系と電気的に接続する配線部と、前記電極系と接触する反応部とを備えるバイオセンサーであって、前記作用極および/または前記対極が炭素材料および導電性粒子を含み、前記導電性粒子の平均粒径が0.01μm以上、1μm以下であることを特徴とするバイオセンサー。 A biosensor comprising an insulating substrate, an electrode system having at least a working electrode and a counter electrode, a wiring part electrically connected to the electrode system, and a reaction part in contact with the electrode system, the working electrode and / or the counter electrode viewed contains a carbon material and conductive particles, biosensor, wherein the average particle diameter of the conductive particles is more than 0.01 [mu] m, is 1μm or less. 前記炭素材料がカーボンナノチューブである請求項1記載のバイオセンサー。 The biosensor according to claim 1, wherein the carbon material is a carbon nanotube. 前記導電性粒子が導電性酸化物を含む粒子、あるいは酸化物表面の一部または全部に導電性材料がコーティングされた粒子である請求項1または2のいずれかに記載のバイオセンサー。 The biosensor according to claim 1 or 2 , wherein the conductive particles are particles containing a conductive oxide, or particles in which a conductive material is coated on a part or all of the oxide surface. 前記電極系と前記配線部が同一の材料から構成される請求項1からのいずれかに記載のバイオセンサー。 The biosensor according to any one of claims 1 to 3 , wherein the electrode system and the wiring portion are made of the same material. 請求項1〜のいずれかに記載のバイオセンサーの製造方法であって、炭素材料および導電性粒子を含む組成物を前記絶縁性基板上に塗布して、前記電極系を形成する工程を含むことを特徴とするバイオセンサーの製造方法。 The biosensor manufacturing method according to any one of claims 1 to 4 , comprising a step of applying a composition containing a carbon material and conductive particles on the insulating substrate to form the electrode system. A method for producing a biosensor.
JP2014049816A 2014-03-13 2014-03-13 Biosensor and manufacturing method thereof Expired - Fee Related JP6476561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049816A JP6476561B2 (en) 2014-03-13 2014-03-13 Biosensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049816A JP6476561B2 (en) 2014-03-13 2014-03-13 Biosensor and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2015175616A JP2015175616A (en) 2015-10-05
JP2015175616A5 true JP2015175616A5 (en) 2017-03-30
JP6476561B2 JP6476561B2 (en) 2019-03-06

Family

ID=54254956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049816A Expired - Fee Related JP6476561B2 (en) 2014-03-13 2014-03-13 Biosensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6476561B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138204A1 (en) * 2016-02-10 2017-08-17 ソニー株式会社 Sample for measuring electrical characteristics, device for measuring electrical characteristics, and method for measuring electrical characteristics
KR101947639B1 (en) * 2017-08-08 2019-02-14 한국화학연구원 Glucose sensor for ex-vivo diagnosis comprising graphene-based electrode
CN112858436B (en) * 2021-02-05 2022-07-12 深圳大学 Biosensor electrode, preparation method thereof and glucose biosensor
CN114543649A (en) * 2022-01-11 2022-05-27 华南理工大学 Stretch sensor, stretch device and stretch manufacturing method for elastic rope fabric substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160541A (en) * 1979-05-31 1980-12-13 Tdk Electronics Co Ltd Silverrsilver chloride electrode
WO2005088288A1 (en) * 2004-03-10 2005-09-22 National Institute Of Advanced Industrial Science And Technology Carbon nanotube biosensor
JP4997583B2 (en) * 2005-03-17 2012-08-08 独立行政法人産業技術総合研究所 Sensor

Similar Documents

Publication Publication Date Title
Kim et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property
Navarro‐Suárez et al. 2D titanium carbide/reduced graphene oxide heterostructures for supercapacitor applications
Bhattacharjya et al. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries
Guo et al. A green approach to the synthesis of graphene nanosheets
TWI543931B (en) Preparation method of graphene and dispersed composition of graphene
JP2016025077A (en) Electrode composition for battery
JP2015175616A5 (en)
JP2014523066A5 (en)
JP2014007141A5 (en) Graphene oxide, method for producing positive electrode for non-aqueous secondary battery, and positive electrode for non-aqueous secondary battery
US9761346B2 (en) Method of preparing copper-based composite conductive powder
Romano et al. Flexible Graphene/Carbon Nanotube Electrochemical Double‐Layer Capacitors with Ultrahigh Areal Performance
JP2014139942A5 (en)
JP2010189597A5 (en)
CN104108700B (en) A kind of grapheme material powder and preparation method
CN104276566B (en) A kind of Graphene and preparation method thereof
TW201539849A (en) Conducting material composition, and slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
JP2018526801A (en) Lithium ion battery negative electrode material, method for producing the same, and lithium ion battery
Song et al. Preparation and electrochemical characterization of Pt-supported flake-like graphitic carbon nitride on reduced graphene oxide as fuel cell catalysts
CN108698831A (en) The stripping means of the composition of the carbon of type containing sp2, the composition and their manufacturing method and graphite of graphene-containing quantum dot
Park et al. Mitigating Pt loss in polymer electrolyte membrane fuel cell cathode catalysts using graphene nanoplatelet pickering emulsion processing
JP2015079681A5 (en)
TWI618290B (en) Method for producing metal nanoparticle, method for producing carrier on which metal nanoparticle is placed, and carrier for mounting metal nanoparticle
JP5326336B2 (en) Conductor and manufacturing method thereof
Hai et al. Converting stober silica and mediterranean sand to high surface area silicon by a reaction under autogenic pressure at elevated temperatures
JP6716725B2 (en) Method and reagent for selectively dispersing semiconducting carbon nanotubes to improve production rate