JP2015175603A - Calibration method for reference mirror surface shape of interferometer - Google Patents

Calibration method for reference mirror surface shape of interferometer Download PDF

Info

Publication number
JP2015175603A
JP2015175603A JP2014049540A JP2014049540A JP2015175603A JP 2015175603 A JP2015175603 A JP 2015175603A JP 2014049540 A JP2014049540 A JP 2014049540A JP 2014049540 A JP2014049540 A JP 2014049540A JP 2015175603 A JP2015175603 A JP 2015175603A
Authority
JP
Japan
Prior art keywords
surface shape
reference mirror
measurement
interferometer
unknown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049540A
Other languages
Japanese (ja)
Other versions
JP6293528B2 (en
Inventor
康弘 ▲高▼▲濱▼
康弘 ▲高▼▲濱▼
Yasuhiro Takahama
浅野 秀光
Hidemitsu Asano
秀光 浅野
宮倉 常太
Jota Miyakura
常太 宮倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2014049540A priority Critical patent/JP6293528B2/en
Publication of JP2015175603A publication Critical patent/JP2015175603A/en
Application granted granted Critical
Publication of JP6293528B2 publication Critical patent/JP6293528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a calibration method for calibrating a geometrical error of a surface shape of a reference mirror using a reference device whose geometrical error of the surface shape is unknown.SOLUTION: The interferometer comprises a reference mirror 33 whose geometrical error of the surface shape is unknown and which is for generating interference light between the measurement object surface and it. A reference device WO whose geometrical error of the surface shape is unknown is disposed at a position of the measurement object. While parts of the measurement regions are overlapped, the reference mirror 33 is moved to scan so as to measure the surface shapes of a plurality of regions in each of a plurality of directions. With respect to each measurement region, the geometrical error of the surface shape of the reference mirror 33, the geometrical error of the surface shape of the reference device (center portion WOC), and the equation established between surface shape measurement values are solved to obtain the geometrical error of the surface shape of the reference mirror 33.

Description

本発明は、干渉計における参照ミラー表面形状の校正方法に係り、特に、白色光干渉計搭載型画像測定機等の光干渉を利用した形状測定装置に用いるのに好適な、表面形状の幾何誤差が未知の基準器を用いて、参照ミラーの表面形状の幾何誤差を校正することが可能な、干渉計における参照ミラー表面形状の校正方法に関する。   The present invention relates to a method of calibrating a reference mirror surface shape in an interferometer, and in particular, a geometric error of a surface shape suitable for use in a shape measuring apparatus using light interference such as a white light interferometer-mounted image measuring machine. The present invention relates to a method for calibrating the shape of a reference mirror surface in an interferometer, which can calibrate the geometric error of the surface shape of the reference mirror using an unknown standard.

従来、光の干渉によって生じる干渉縞の輝度情報を用いて、例えば測定対象物の三次元形状を精密に測定する三次元形状測定装置などの光干渉を利用した形状測定装置(以下、単に光干渉測定装置とも称する)が知られている。   Conventionally, a shape measuring device using optical interference (hereinafter simply referred to as optical interference) such as a three-dimensional shape measuring device that accurately measures the three-dimensional shape of an object to be measured using luminance information of interference fringes caused by light interference. Also known as a measuring device).

このような光干渉測定装置においては、参照光路と測定光路の光路長が一致するピント位置では各波長の干渉縞のピークが重なり合い、合成される干渉縞の輝度が大きくなる。従って、光干渉測定装置では、参照光路又は測定光路の光路長を変化させながら干渉光強度の二次元の分布を示す干渉画像をCCDカメラ等の撮像素子により撮影し、撮映視野内の各測定位置で干渉光の強度がピークとなるピント位置を検出することで、各測定位置における測定対象面の高さを測定し、測定対象物の三次元形状などを測定することができる(例えば、特許文献1参照)。   In such an optical interference measurement apparatus, the interference fringe peaks of the respective wavelengths overlap at the focus position where the optical path lengths of the reference optical path and the measurement optical path coincide with each other, and the luminance of the combined interference fringe increases. Therefore, in the optical interference measurement apparatus, an interference image showing a two-dimensional distribution of the interference light intensity is photographed by an imaging device such as a CCD camera while changing the optical path length of the reference optical path or the measurement optical path, and each measurement within the imaging field is performed. By detecting the focus position where the intensity of the interference light reaches the peak at the position, the height of the measurement target surface at each measurement position can be measured, and the three-dimensional shape of the measurement target can be measured (for example, patents) Reference 1).

又、前記のような光干渉測定装置を含む干渉計における参照ミラーの形状は、測定精度に直接影響するため、高い幾何精度(平面ミラーであれば平面度)が求められる。特に高精度な干渉計測においては、参照ミラーの幾何誤差を補正することで、測定精度への影響を低減する手法が用いられている。   Moreover, since the shape of the reference mirror in the interferometer including the optical interference measuring apparatus as described above directly affects the measurement accuracy, high geometric accuracy (flatness in the case of a plane mirror) is required. In particular, in high-accuracy interference measurement, a technique for reducing the influence on the measurement accuracy by correcting the geometric error of the reference mirror is used.

参照ミラーの幾何誤差の校正方法として、参照ミラーよりも幾何誤差が十分に小さい基準器を干渉計測し、基準器からの誤差分布を補正テーブルとする方法がある(特許文献2参照)。   As a method for calibrating the geometric error of the reference mirror, there is a method in which a reference device having a sufficiently smaller geometric error than the reference mirror is subjected to interference measurement, and an error distribution from the reference device is used as a correction table (see Patent Document 2).

特開2011−191185号公報JP 2011-191185 A 特開2006−226918号公報JP 2006-226918 A

しかしながら、幾何誤差が十分小さい基準器を用意することが困難であるという問題があった。   However, there is a problem that it is difficult to prepare a reference device having a sufficiently small geometric error.

本発明は、前記従来の問題点を解決するべくなされたもので、表面形状の幾何誤差が未知の基準器を用いて、参照ミラーの表面形状の幾何誤差を校正できるようにすることを課題とする。   The present invention has been made to solve the above-described conventional problems, and it is an object of the present invention to be able to calibrate the geometric error of the surface shape of the reference mirror using a standard device whose geometric error of the surface shape is unknown. To do.

本発明は、測定対象表面との間で干渉光を発生させるための、表面形状の幾何誤差が未知の参照ミラーを備えた干渉計において、表面形状の幾何誤差が未知の基準器を測定対象の位置に配置して、一部の測定領域をオーバーラップさせながら、参照ミラーを移動走査して、複数の方向について、各方向で複数領域の表面形状を測定し、各測定領域で、参照ミラーの表面形状の幾何誤差、基準器の表面形状の幾何誤差、及び、表面形状測定値間に成立する方程式を解くことにより、参照ミラーの表面形状の幾何誤差を求めるようにして、前記課題を解決したものである。   The present invention relates to an interferometer having a reference mirror with an unknown surface shape geometric error for generating interference light with the surface to be measured. The reference mirror is moved and scanned while being overlapped with a part of the measurement area, and the surface shape of the plurality of areas in each direction is measured in a plurality of directions. By solving the geometric error of the surface shape, the geometric error of the surface shape of the reference unit, and the equation that holds between the surface shape measurement values, the geometric error of the surface shape of the reference mirror is obtained, thereby solving the above problem. Is.

ここで、前記基準器の表面形状の幾何誤差の和が既知の場合は、この関係も利用して、演算精度を高めたり、測定箇所を減らすことができる。   Here, when the sum of geometric errors of the surface shape of the reference device is known, this relationship can also be used to increase the calculation accuracy and reduce the number of measurement points.

本発明によれば、干渉計により基準器を複数箇所測定することで、基準器の幾何誤差と参照ミラーの幾何誤差を分離し、基準器の幾何誤差を排除した高精度な参照ミラーの校正が可能となる。   According to the present invention, by measuring a plurality of standard units with an interferometer, the geometric error of the standard unit and the geometric error of the reference mirror are separated, and a highly accurate reference mirror calibration that eliminates the geometric error of the standard unit is possible. It becomes possible.

本発明が適用される光干渉測定装置の一例の構成を示す、一部ブロック図を含む断面図Sectional drawing including a partial block diagram which shows the structure of an example of the optical interference measuring apparatus with which this invention is applied 同じく対物レンズ部の詳細構成を示す断面図Sectional drawing which similarly shows the detailed structure of an objective lens part 同じく測定手順を示す流れ図Flow chart showing the same measurement procedure 同じく基準器、参照ミラー、及び1視野の測定領域を示す平面図Similarly, a plan view showing a standard device, a reference mirror, and a measurement area of one field of view. 同じく(a)参照ミラーの表面形状(幾何誤差)及び(b)基準器中央部分の表面形状(幾何誤差)を示す平面図Similarly, (a) the surface shape (geometric error) of the reference mirror and (b) the plan view showing the surface shape (geometric error) of the central portion of the reference unit 同じく前半の測定領域1〜4における参照ミラーと基準器中央部分の関係を示す平面図Similarly, the top view which shows the relationship between the reference mirror in the measurement areas 1-4 of the first half, and the center part of a standard device 同じく後半の測定領域5〜9における参照ミラーと基準器中央部分の関係を示す平面図The top view which similarly shows the relationship between the reference mirror in the latter measurement area 5-9, and a reference | standard standard part.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, the constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

まず、本発明が適用される光干渉測定装置の一例である形状測定装置について説明する。なお、ここではマイケルソン型の干渉計を示すが、ミロー型等、他の等光路干渉計を用いることもできる。   First, a shape measuring apparatus which is an example of an optical interference measuring apparatus to which the present invention is applied will be described. Although a Michelson type interferometer is shown here, other iso-optical path interferometers such as a Millo type can also be used.

形状測定装置1は、図1に示すように、光出射部10と、光学ヘッド部20と、対物レンズ部30と、撮像部40と、結像レンズ41と、画像メモリ50と、演算処理部60と、入力部70と、出力部80と、表示部90と、測定対象物(以下、「ワーク」という)Wを載置するためのステージSと、を備える。   As shown in FIG. 1, the shape measuring apparatus 1 includes a light emitting unit 10, an optical head unit 20, an objective lens unit 30, an imaging unit 40, an imaging lens 41, an image memory 50, and an arithmetic processing unit. 60, an input unit 70, an output unit 80, a display unit 90, and a stage S on which a measurement object (hereinafter referred to as “work”) W is placed.

光出射部10は、例えば広帯域に亘る多数の波長成分を有しコヒーレンシーの低い広帯域光を出力する光源を備え、例えば、ハロゲンやLED(Light Emitting Diode)などの白色光源が用いられる。可干渉性の少ない白色光を使用することで、干渉縞の発生する範囲を狭くすることができる。なお、光出射部10から出射される光は特定波長(単波長)のものでも良い。   The light emitting unit 10 includes a light source that outputs a wide band light having a large number of wavelength components over a wide band and low coherency, for example, and a white light source such as a halogen or an LED (Light Emitting Diode) is used. By using white light with less coherence, the range in which interference fringes are generated can be narrowed. The light emitted from the light emitting unit 10 may have a specific wavelength (single wavelength).

光学ヘッド部20は、ビームスプリッタ21と、コリメータレンズ22とを備えている。光出射部10から出射した光は、対物レンズ部30の光軸と直角の方向から、コリメータレンズ22を介してビームスプリッタ21に平行に照射され、ビームスプリッタ21からは光軸に沿った光が出射されて、対物レンズ部30に対して上方から平行ビームが照射される。   The optical head unit 20 includes a beam splitter 21 and a collimator lens 22. The light emitted from the light emitting unit 10 is irradiated in parallel to the beam splitter 21 via the collimator lens 22 from a direction perpendicular to the optical axis of the objective lens unit 30, and light along the optical axis is emitted from the beam splitter 21. It is emitted and a parallel beam is irradiated onto the objective lens unit 30 from above.

対物レンズ部30は、図2に示すように、対物レンズ31、プリズム32、参照ミラー33等を備えた構成とされる。対物レンズ部30においては、上方から平行ビームが対物レンズ31に入射した場合、入射光は対物レンズ31で収束光となり、プリズム32の内部の反射面321に入射する。ここで、入射光は、参照ミラー33を有する参照光路(図中破線)を進む反射光(参照光)と、ワークWを配置した測定光路(図中実線)を進む透過光(測定光)とに分岐する。反射光は、収束して参照ミラー33で反射され、更にプリズム32の反射面321により反射される。一方、透過光は、集束してワークWで反射され、プリズム32の反射面321を透過する。参照ミラー33からの反射光と測定対象物(ワーク)Wからの反射光とはプリズム32の反射面321により合波されて合成波となる。参照ミラー33は、演算処理部60による制御の下、ピエゾ素子のような駆動手段34によって光軸方向に移動走査される。参照ミラー33の走査位置はエンコーダ35で測定され、演算処理部60に入力される。参照光路(光路1+光路2)と、測定光路(光路3+光路4)の光路長が等しいときに、合成波に干渉縞が発生する。   As shown in FIG. 2, the objective lens unit 30 includes an objective lens 31, a prism 32, a reference mirror 33, and the like. In the objective lens unit 30, when a parallel beam enters the objective lens 31 from above, the incident light becomes convergent light by the objective lens 31 and enters the reflecting surface 321 inside the prism 32. Here, incident light includes reflected light (reference light) that travels along a reference optical path (broken line in the figure) having the reference mirror 33, and transmitted light (measurement light) that travels along a measurement optical path (solid line in the figure) where the workpiece W is disposed. Branch to. The reflected light is converged and reflected by the reference mirror 33, and further reflected by the reflecting surface 321 of the prism 32. On the other hand, the transmitted light is focused and reflected by the workpiece W, and passes through the reflecting surface 321 of the prism 32. The reflected light from the reference mirror 33 and the reflected light from the measurement object (work) W are combined by the reflecting surface 321 of the prism 32 to become a combined wave. The reference mirror 33 is moved and scanned in the optical axis direction by a driving unit 34 such as a piezo element under the control of the arithmetic processing unit 60. The scanning position of the reference mirror 33 is measured by the encoder 35 and input to the arithmetic processing unit 60. When the optical path lengths of the reference optical path (optical path 1 + optical path 2) and the measurement optical path (optical path 3 + optical path 4) are equal, interference fringes are generated in the combined wave.

プリズム32の反射面321より合成された合成波は、対物レンズ31で平行ビームになり上方へ進み、結像レンズ41に入射する(図1中一点鎖線)。結像レンズ41は合成波を収束させ撮像部40上に干渉画像を結像させる。   The synthesized wave synthesized from the reflecting surface 321 of the prism 32 becomes a parallel beam by the objective lens 31, travels upward, and enters the imaging lens 41 (a chain line in FIG. 1). The imaging lens 41 converges the combined wave and forms an interference image on the imaging unit 40.

撮像部40は、2次元状に配列された複数個の画素を有する撮像素子からなるCCD力メラ等であり、合成波の干渉画像を撮像する。干渉画像は、参照ミラー33を移動走査しながら複数回撮像される。撮像部40が撮像した干渉画像の画像データは、画像メモリ50に記憶される。   The imaging unit 40 is a CCD power mellar or the like made of an imaging element having a plurality of pixels arranged in a two-dimensional shape, and captures an interference image of a composite wave. The interference image is captured a plurality of times while moving and scanning the reference mirror 33. The image data of the interference image captured by the imaging unit 40 is stored in the image memory 50.

演算処理部60は、ワークWの測定面の各位置での干渉光の強度とエンコーダ35から入力される参照ミラー33の走査位置とに基づいて、ワークWの測定面の形状測定データを求める。入力部70は、計測に必要なデータを演算処理部60に入力する。出力部80は、演算処理部60で求められた測定結果を出力する。表示部90は、入力操作に必要な情報及び測定結果を表示する。   The arithmetic processing unit 60 obtains shape measurement data of the measurement surface of the workpiece W based on the intensity of the interference light at each position on the measurement surface of the workpiece W and the scanning position of the reference mirror 33 input from the encoder 35. The input unit 70 inputs data necessary for measurement to the arithmetic processing unit 60. The output unit 80 outputs the measurement result obtained by the arithmetic processing unit 60. The display unit 90 displays information necessary for input operation and measurement results.

図3は、形状測定方法を示すフローチャートである。   FIG. 3 is a flowchart showing the shape measuring method.

形状測定を開始すると、参照ミラー33を光軸方向に所定量移動し(S1)、測定面の干渉光強度の二次元の分布を示す干渉画像を画像メモリ50に記憶する(S2)。これを所定サンプリング数だけ繰り返し(S3)、所定枚の干渉画像が画像メモリ50に蓄積されると、演算処理部60が測定面の各測定位置における光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列のピーク位置を検出する(S4)。そして、検出した各測定位置のピーク位置を測定点における高さとして表示、出力する(S5)。   When shape measurement is started, the reference mirror 33 is moved by a predetermined amount in the optical axis direction (S1), and an interference image indicating a two-dimensional distribution of interference light intensity on the measurement surface is stored in the image memory 50 (S2). This is repeated for a predetermined number of samplings (S3), and when a predetermined number of interference images are accumulated in the image memory 50, the arithmetic processing unit 60 changes the interference light intensity according to the change in the optical path length difference at each measurement position on the measurement surface. Is detected (S4). Then, the detected peak position of each measurement position is displayed and output as the height at the measurement point (S5).

このような形状測定装置1においては、参照ミラー33の表面形状の幾何誤差(以下単に表面形状とも称する)が正確に分かっている必要があるが、ワークWのところに基準器WOを置いて比較測定しても、基準器WOの表面形状の幾何誤差が十分に小さくないと、参照ミラー33の表面形状を高精度で校正することができない。   In such a shape measuring apparatus 1, it is necessary to accurately know the geometric error of the surface shape of the reference mirror 33 (hereinafter also simply referred to as a surface shape). Even if the measurement is performed, the surface shape of the reference mirror 33 cannot be calibrated with high accuracy unless the geometric error of the surface shape of the standard device WO is sufficiently small.

そこで本発明では、図4に示す如く、表面形状の幾何誤差が未知の基準器WOを測定対象物Wの位置に配置して、一部の測定領域をオーバーラップさせながら、参照ミラー33を図4中に矢印で例示する如く、複数の方向(図では左右のX方向と上下のY方向)で複数領域(図では1〜9の9領域)の表面形状を測定し、各測定領域1〜9で、図5(a)に示すような参照ミラー33の表面形状の幾何誤差Ma〜Md、図5(b)に示すような基準器WOの中央部分WOCの表面形状の幾何誤差Ra〜Rd、及び、表面形状測定値H1〜H16間に成立する方程式を解くことにより、参照ミラー33の表面形状の幾何誤差Ma〜Mdを求めるようにしている。   Therefore, in the present invention, as shown in FIG. 4, the reference mirror 33 whose geometric error of the surface shape is unknown is arranged at the position of the measurement object W, and the reference mirror 33 is illustrated while overlapping some measurement regions. 4, the surface shape of a plurality of regions (9 regions 1 to 9 in the drawing) is measured in a plurality of directions (left and right X directions and up and down Y directions in the drawing) as illustrated by arrows in FIG. 9, the geometrical errors Ma to Md of the surface shape of the reference mirror 33 as shown in FIG. 5A, and the geometrical errors Ra to Rd of the surface shape of the central portion WOC of the reference device WO as shown in FIG. The geometrical errors Ma to Md of the surface shape of the reference mirror 33 are obtained by solving an equation that holds between the surface shape measurement values H1 to H16.

即ち、各測定領域1〜9では、参照ミラー33の表面形状の幾何誤差Ma〜Mdと、基準器WOの中央部分WOCの表面形状の幾何誤差Ra〜Rdの間に、それぞれ図6A〜図6Bの(a)〜(i)に示すような関係が成立する。なお、図6A、図6Bでは、理解を容易とするため、参照ミラー33と基準器中央部分WOCを少しずらしてあるが、実際は一致している。   That is, in each measurement region 1-9, between the geometric errors Ma to Md of the surface shape of the reference mirror 33 and the geometric errors Ra to Rd of the surface shape of the central portion WOC of the reference device WO, FIGS. (A) to (i) are established. In FIG. 6A and FIG. 6B, the reference mirror 33 and the reference unit central portion WOC are slightly shifted for easy understanding, but they actually coincide.

例えば、図6A(a)に例示するスタート地点の測定領域1の参照ミラー33と基準器中央部分WOCが重なった位置の測定値H1は、次式に示す如く、参照ミラー33の右下部分の幾何誤差Mdと基準器中央部分WOCの左上部分の幾何誤差Raの和となる。
H1=Md+Ra ・・・(1)
For example, the measured value H1 at the position where the reference mirror 33 in the measurement region 1 at the start point illustrated in FIG. 6A and the reference unit central portion WOC overlap is shown in the lower right portion of the reference mirror 33 as shown in the following equation. This is the sum of the geometric error Md and the geometric error Ra of the upper left portion of the reference unit central portion WOC.
H1 = Md + Ra (1)

又、測定領域1の状態から参照ミラー33を図の右方向に1ブロックずらした測定領域2の状態では、図6A(b)に示す如く、参照ミラー33の下半分と基準器中央部分WOCの上半分が重なり、その左側の測定値H2と右側の測定値H3では、それぞれ次の(2)式、(3)式の関係が成立する。
H2=Mc+Ra ・・・(2)
H3=Md+Rb ・・・(3)
Further, in the state of the measurement region 2 in which the reference mirror 33 is shifted by one block in the right direction in the drawing from the state of the measurement region 1, as shown in FIG. 6A (b), the lower half of the reference mirror 33 and the reference unit central portion WOC The upper half overlaps, and the relationship between the following equation (2) and equation (3) is established between the measurement value H2 on the left side and the measurement value H3 on the right side.
H2 = Mc + Ra (2)
H3 = Md + Rb (3)

又、参照ミラー33を更に図の右方向にもう1ブロックずらした測定領域3の状態では、図6A(c)に示す如く、参照ミラー33と基準器中央部分WOCが重なった位置の測定値H4について、次の(4)式の関係が成立する。
H4=Mc+Rb ・・・(4)
Further, in the state of the measurement region 3 in which the reference mirror 33 is further shifted by one block to the right in the drawing, as shown in FIG. 6A (c), the measured value H4 at the position where the reference mirror 33 and the reference unit central portion WOC overlap. The relationship of the following formula (4) is established.
H4 = Mc + Rb (4)

同様にして、参照ミラー33を図の下方向に1ブロック下げると共に左方向に2ブロック戻した位置とした測定領域4の状態では、図6A(d)に示す如く、次の(5)式、(6)式の関係が成立する。
H5=Mb+Ra ・・・(5)
H6=Md+Rc ・・・(6)
Similarly, in the state of the measurement region 4 in which the reference mirror 33 is moved downward by one block in the downward direction and returned to the left by two blocks, as shown in FIG. 6A (d), The relationship of equation (6) is established.
H5 = Mb + Ra (5)
H6 = Md + Rc (6)

又、測定領域4の状態から参照ミラー33を図の右方向に1ブロックずらした測定領域5の状態、即ち参照ミラー33と基準器中央部分WOCが完全に重なった測定領域5の状態では、図6B(e)に示す如く、次の4つの(7)〜(10)式の関係が成立する。
H7=Ma+Ra ・・・(7)
H8=Mb+Rb ・・・(8)
H9=Mc+Rc ・・・(9)
H10=Md+Rd ・・・(10)
Further, in the state of the measurement region 5 in which the reference mirror 33 is shifted by one block in the right direction in the drawing from the state of the measurement region 4, that is, in the state of the measurement region 5 where the reference mirror 33 and the reference unit central portion WOC completely overlap, As shown in 6B (e), the following four expressions (7) to (10) are established.
H7 = Ma + Ra (7)
H8 = Mb + Rb (8)
H9 = Mc + Rc (9)
H10 = Md + Rd (10)

同様にして、参照ミラー33を更に図の右方向に1ブロックずらした測定領域6の状態では、図6B(f)に示す如く、次の(11)式、(12)式の関係が成立する。
H11=Ma+Rb ・・・(11)
H12=Mc+Rd ・・・(12)
Similarly, in the state of the measurement region 6 in which the reference mirror 33 is further shifted by one block in the right direction in the drawing, the relationship of the following equations (11) and (12) is established as shown in FIG. 6B (f). .
H11 = Ma + Rb (11)
H12 = Mc + Rd (12)

又、参照ミラー33を図の下方向に1ブロック下げると共に、左方向に2ブロック戻した次の測定領域7の状態では、図6B(g)に示す如く、次の(13)式の関係が成立する。
H13=Mb+Rc ・・・(13)
Further, in the state of the next measurement area 7 in which the reference mirror 33 is lowered by one block in the downward direction of the figure and returned by two blocks in the left direction, the relationship of the following equation (13) is obtained as shown in FIG. 6B (g). To establish.
H13 = Mb + Rc (13)

又、参照ミラー33を図の右方向に1ブロックずらした次の測定領域8の状態では、図6B(h)に示す如く、次の(14)式、(15)式の関係が成立する。
H14=Ma+Rc ・・・(14)
H15=Mb+Rd ・・・(15)
Further, in the state of the next measurement region 8 in which the reference mirror 33 is shifted by one block in the right direction in the figure, the relationship of the following expressions (14) and (15) is established as shown in FIG. 6B (h).
H14 = Ma + Rc (14)
H15 = Mb + Rd (15)

又、参照ミラー33を図の右方向にもう1ブロックずらした最後の測定領域9の状態では、図6B(i)に示す如く、次の(16)式の関係が成立する。
H16=Ma+Rd ・・・(16)
Further, in the state of the last measurement region 9 in which the reference mirror 33 is shifted by one block to the right in the drawing, the relationship of the following equation (16) is established as shown in FIG. 6B (i).
H16 = Ma + Rd (16)

これらをまとめると、(17)式に示すような行列式が成立している。

Figure 2015175603
When these are put together, a determinant as shown in Expression (17) is established.
Figure 2015175603

ここで、未知数はMa〜MdとRa〜Rdの8個であるのに対して式は16式あるので、未知数Ma〜MdとRa〜Rdを、例えば最小二乗法に用いて算出することで、参照ミラー33の表面形状の幾何誤差Ma〜Mdを高精度に求めることができる。求められた幾何誤差Ma〜Mdは従来と同様に補正テーブルに格納され、測定時の補正に利用される。   Here, since there are 16 unknown expressions, while there are 16 unknown expressions Ma to Md and Ra to Rd, the unknown quantities Ma to Md and Ra to Rd are calculated using, for example, the least square method. The geometrical errors Ma to Md of the surface shape of the reference mirror 33 can be obtained with high accuracy. The obtained geometric errors Ma to Md are stored in the correction table as in the conventional case and used for correction at the time of measurement.

なお、次の(18)式に示すように、例えば基準器WOの幾何誤差Ra〜Rdの和が0である場合には、次の(19)式に示すように、この条件を行列式に含めて、精度を高めるか、あるいは、測定箇所を減らすことができる。
Ra+Rb+Rc+Rd=0 ・・・(18)

Figure 2015175603
As shown in the following equation (18), for example, when the sum of geometric errors Ra to Rd of the reference device WO is 0, this condition is converted into a determinant as shown in the following equation (19). In addition, the accuracy can be increased or the number of measurement points can be reduced.
Ra + Rb + Rc + Rd = 0 (18)
Figure 2015175603

なお、前記実施形態においては、図5に示した如く、参照ミラー33と基準器中央部分WOCの区画数がX方向に2区画、Y方向に2区画の計4区画とされていたが、区画数はこれに限定されず、例えばX方向に2区画、Y方向に3区画、あるいはX方向に3区画、Y方向に2区画としたり、X方向、Y方向共に3区画とすることも可能であり、X方向m区画、Y方向n区画(m、nはいずれも2以上)とすることができる。走査方向や走査順も前記実施形態に限定されず、例えば上下のY方向に先に走査していくこともできる。   In the above embodiment, as shown in FIG. 5, the number of sections of the reference mirror 33 and the standard unit central portion WOC is two sections in the X direction and two sections in the Y direction. The number is not limited to this. For example, it is possible to have two sections in the X direction, three sections in the Y direction, three sections in the X direction, two sections in the Y direction, or three sections in both the X direction and the Y direction. Yes, it can be divided into X sections in the X direction and n sections in the Y direction (m and n are both 2 or more). The scanning direction and the scanning order are not limited to those in the above embodiment, and for example, scanning can be performed first in the vertical Y direction.

又、本発明の適用対象は、白色光干渉計搭載型画像測定機等の光干渉測定装置に限定されず、測定対象表面との間で干渉光を発生させるための、表面形状の幾何誤差が未知の参照ミラーを備えた干渉計一般に同様に適用できる。参照ミラーの位置も対物レンズ部の側方に限定されず、対物レンズ部の下方でワークWとの間にあっても良い。   The application object of the present invention is not limited to an optical interference measuring device such as a white light interferometer-mounted image measuring machine, but there is a geometric error in the surface shape for generating interference light with the surface to be measured. The same applies to interferometers with unknown reference mirrors in general. The position of the reference mirror is not limited to the side of the objective lens unit, and may be between the workpiece W and below the objective lens unit.

1…形状測定装置
10…光出射部
20…光学ヘッド部
30…対物レンズ部
33…参照ミラー
40…撮像部
41…結像レンズ
50…画像メモリ
60…演算処理部
70…入力部
80…出力部
90…表示部
S…ステージ
W…測定対象物(ワーク)
WO…基準器
WOC…基準器中央部分
DESCRIPTION OF SYMBOLS 1 ... Shape measuring apparatus 10 ... Light emission part 20 ... Optical head part 30 ... Objective lens part 33 ... Reference mirror 40 ... Imaging part 41 ... Imaging lens 50 ... Image memory 60 ... Arithmetic processing part 70 ... Input part 80 ... Output part 90 ... Display section S ... Stage W ... Measurement object (workpiece)
WO ... Reference device WOC ... Central portion of reference device

Claims (2)

測定対象表面との間で干渉光を発生させるための、表面形状の幾何誤差が未知の参照ミラーを備えた干渉計において、
表面形状の幾何誤差が未知の基準器を測定対象の位置に配置して、
一部の測定領域をオーバーラップさせながら、参照ミラーを移動走査して、複数の方向について、各方向で複数領域の表面形状を測定し、
各測定領域で、参照ミラーの表面形状の幾何誤差、基準器の表面形状の幾何誤差、及び、表面形状測定値間に成立する方程式を解くことにより、参照ミラーの表面形状の幾何誤差を求めることを特徴とする、干渉計における参照ミラー表面形状の校正方法。
In an interferometer with a reference mirror whose surface shape geometric error is unknown to generate interference light with the surface to be measured,
Place a reference device whose geometric error of the surface shape is unknown at the position to be measured,
While overlapping some measurement areas, move and scan the reference mirror to measure the surface shape of multiple areas in each direction for multiple directions,
In each measurement area, obtain the geometric error of the reference mirror surface shape, the standard surface geometry error, and the equation that holds between the surface shape measurement values by solving the equation. A method for calibrating the reference mirror surface shape in an interferometer.
前記基準器の表面形状の幾何誤差の和が既知の場合は、この関係も利用することを特徴とする、請求項1に記載の干渉計における参照ミラー表面形状の校正方法。   2. The reference mirror surface shape calibration method for an interferometer according to claim 1, wherein the relationship is also used when the sum of geometric errors of the surface shape of the standard is known.
JP2014049540A 2014-03-12 2014-03-12 Calibration method of reference mirror surface shape in interferometer Active JP6293528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049540A JP6293528B2 (en) 2014-03-12 2014-03-12 Calibration method of reference mirror surface shape in interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049540A JP6293528B2 (en) 2014-03-12 2014-03-12 Calibration method of reference mirror surface shape in interferometer

Publications (2)

Publication Number Publication Date
JP2015175603A true JP2015175603A (en) 2015-10-05
JP6293528B2 JP6293528B2 (en) 2018-03-14

Family

ID=54254945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049540A Active JP6293528B2 (en) 2014-03-12 2014-03-12 Calibration method of reference mirror surface shape in interferometer

Country Status (1)

Country Link
JP (1) JP6293528B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607061A (en) * 2017-09-07 2018-01-19 中国科学院西安光学精密机械研究所 A kind of High-precision angle measuring system and method that face is leaned on for vignette axle and structure
CN108020244A (en) * 2018-02-05 2018-05-11 北京国电高科科技有限公司 A kind of caliberating device and method of star sensor benchmark prism square installation error
EP3591335A1 (en) * 2018-07-02 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Flatness calibration method and flatness calibration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090395A (en) * 2015-11-17 2017-05-25 株式会社ミツトヨ Interference objective lens and reference surface unit set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332350A (en) * 1997-05-30 1998-12-18 Nikon Corp Shape measuring method using interferometer
US5982490A (en) * 1997-02-04 1999-11-09 Nikon Corporation Apparatus and method for wavefront absolute calibration and method of synthesizing wavefronts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982490A (en) * 1997-02-04 1999-11-09 Nikon Corporation Apparatus and method for wavefront absolute calibration and method of synthesizing wavefronts
JPH10332350A (en) * 1997-05-30 1998-12-18 Nikon Corp Shape measuring method using interferometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
清野 慧 他: "干渉計による平面形状の絶対測定法の理論的研究", 精密工学会誌, vol. Vol.64, No.8, JPN6017045702, 1998, pages pp.1137−1142 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607061A (en) * 2017-09-07 2018-01-19 中国科学院西安光学精密机械研究所 A kind of High-precision angle measuring system and method that face is leaned on for vignette axle and structure
CN107607061B (en) * 2017-09-07 2024-04-05 中国科学院西安光学精密机械研究所 High-precision angle measurement method for virtual optical axis and structural leaning surface
CN108020244A (en) * 2018-02-05 2018-05-11 北京国电高科科技有限公司 A kind of caliberating device and method of star sensor benchmark prism square installation error
CN108020244B (en) * 2018-02-05 2024-01-02 北京国电高科科技有限公司 Calibration device and method for star sensor reference cube mirror installation error
EP3591335A1 (en) * 2018-07-02 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Flatness calibration method and flatness calibration device

Also Published As

Publication number Publication date
JP6293528B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
US11950981B2 (en) Scanning system and calibration thereof
JP6604769B2 (en) How to measure a high accuracy height map of a test surface
TWI484139B (en) Chromatic confocal scanning apparatus
JP6293528B2 (en) Calibration method of reference mirror surface shape in interferometer
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP2015175642A (en) Measurement device and method for manufacturing article
JP6037254B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP6273109B2 (en) Optical interference measurement device
JP5649926B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2009293925A (en) Error correction apparatus of optical inspection apparatus
JP6899236B2 (en) Relationship identification method, relationship identification device, relationship identification program, correction method, correction device, and correction program
JP2009145068A (en) Surface profile measuring method and interferometer
JP6880396B2 (en) Shape measuring device and shape measuring method
JP2016118464A (en) Planar spectroscopic interferometer
JP2014132252A (en) Measurement method, measurement device and article fabrication method
JP2020197444A (en) Interference device and control method therefor
JP2020153992A (en) Shape measurement device by white interferometer
KR20210031310A (en) High precision 3D measurement device and method thereof
KR20130022134A (en) Three dimensional shape measuring device and method, measurement data adjusting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6293528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250