JP2015174586A - vehicle control device - Google Patents

vehicle control device Download PDF

Info

Publication number
JP2015174586A
JP2015174586A JP2014053646A JP2014053646A JP2015174586A JP 2015174586 A JP2015174586 A JP 2015174586A JP 2014053646 A JP2014053646 A JP 2014053646A JP 2014053646 A JP2014053646 A JP 2014053646A JP 2015174586 A JP2015174586 A JP 2015174586A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
time
vehicle control
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014053646A
Other languages
Japanese (ja)
Other versions
JP6185412B2 (en
Inventor
広太朗 齊木
Kotaro Saiki
広太朗 齊木
竜路 岡村
Ryuji Okamura
竜路 岡村
悠 日栄
Yu Hiei
悠 日栄
真也 山王堂
Masaya Sannodo
真也 山王堂
航一郎 山内
Koichiro Yamauchi
航一郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2014053646A priority Critical patent/JP6185412B2/en
Publication of JP2015174586A publication Critical patent/JP2015174586A/en
Application granted granted Critical
Publication of JP6185412B2 publication Critical patent/JP6185412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device capable of improving the accuracy of vehicle control at the time of leaving a garage.SOLUTION: A vehicle control device 1 includes: a laser sensor 20, a disturbance deceleration estimation unit 41 and a relative gradient value estimation unit 42 for acquiring road surface information on a road surface of a route for a vehicle V; a memory 45 for storing the road surface information acquired at the time of entering a garage; and a request driving force generation unit 44 and a power manager ECU3 for performing drive force control for the vehicle V at the time of leaving the garage, based on the road surface information stored in the memory 45 at the time of entering the garage. Since the vehicle V takes almost the same route at the time of entering and leaving the garage, the vehicle control device 1, which records the road surface information at the time of entering the garage, can perform vehicle control with high accuracy at the time of leaving the garage immediately after the start of the control by performing the drive force control at the time of leaving the garage based on the stored road surface information.

Description

本発明の一側面は、車両制御装置に関する。   One aspect of the present invention relates to a vehicle control device.

従来の車両制御装置に関する技術として、例えば下記特許文献1に記載された車両走行制御装置が知られている。特許文献1に記載された車両走行制御装置では、発進時において車両の制動装置の制御量を検出し、この発進時の制動装置の制御量に基づいて路面勾配を推定し、推定した路面勾配に応じて車両制御を実施する。   As a technique related to a conventional vehicle control device, for example, a vehicle travel control device described in Patent Document 1 below is known. In the vehicle travel control device described in Patent Document 1, the control amount of the braking device of the vehicle is detected at the time of start, the road surface gradient is estimated based on the control amount of the braking device at the time of start, and the estimated road surface gradient is obtained. In response, vehicle control is performed.

特開2004−352117号公報JP 2004-352117 A

上記従来技術では、例えば出庫時において制動装置の制御量が検出されるまで、路面情報(路面勾配)を取得することできず、制御開始直後から路面勾配の取得が完了するまでの間、車両制御の精度が低下するおそれがある。   In the above prior art, for example, road surface information (road surface gradient) cannot be acquired until the control amount of the braking device is detected at the time of leaving the vehicle, and vehicle control is performed immediately after the start of control until the acquisition of the road surface gradient is completed. There is a risk that the accuracy of the lowering.

そこで、本発明の一側面は、出庫時における車両制御の精度を向上させることができる車両制御装置を提供することを課題とする。   Therefore, an object of one aspect of the present invention is to provide a vehicle control device capable of improving the accuracy of vehicle control at the time of delivery.

本発明の一側面に係る車両制御装置は、入庫時における車両の経路の路面に関する路面情報を取得する路面情報取得部と、路面情報取得部で取得した路面情報を記憶する記憶部と、経路を介する出庫時において、記憶部に記憶した入庫時の路面情報に基づいて、車両の駆動力制御を実施する駆動力制御部と、備える。   A vehicle control device according to one aspect of the present invention includes a road surface information acquisition unit that acquires road surface information related to a road surface of a vehicle route at the time of warehousing, a storage unit that stores road surface information acquired by the road surface information acquisition unit, and a route. And a driving force control unit that performs driving force control of the vehicle based on the road surface information at the time of entering stored in the storage unit.

この車両制御装置では、入庫時及び出庫時に車両は同じ経路を通ることから、入庫時に路面情報を記録しておき、この記憶した路面情報に基づき出庫時に駆動力制御を実施する。これにより、出庫時において、路面情報を取得する必要がなくなり、当該取得までの間に車両制御の精度が低下してしまうのを回避できる。従って、車両制御の精度を向上させることが可能となる。   In this vehicle control device, since the vehicle passes the same route at the time of warehousing and leaving, road surface information is recorded at the time of warehousing, and driving force control is performed at the time of warehousing based on the stored road surface information. Thereby, it is not necessary to acquire road surface information at the time of leaving, and it can be avoided that the accuracy of vehicle control decreases before the acquisition. Therefore, the accuracy of vehicle control can be improved.

本発明の一側面によれば、出庫時において制御開始直後から高い精度で車両制御を実施することが可能な車両制御装置を提供することができる。   According to one aspect of the present invention, it is possible to provide a vehicle control device capable of performing vehicle control with high accuracy immediately after the start of control at the time of delivery.

一実施形態に係る車両制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle control apparatus which concerns on one Embodiment. 車両傾きと相対勾配値との関係を説明する図である。It is a figure explaining the relationship between a vehicle inclination and a relative gradient value. 図1の車両制御装置を用いた入庫時の車両制御を示すフローチャートである。It is a flowchart which shows the vehicle control at the time of warehousing using the vehicle control apparatus of FIG. 図1の車両制御装置を用いた入庫時の車両制御を説明するための図である。It is a figure for demonstrating the vehicle control at the time of warehousing using the vehicle control apparatus of FIG. 図1の車両制御装置を用いた出庫時の車両制御を示すフローチャートである。It is a flowchart which shows the vehicle control at the time of leaving using the vehicle control apparatus of FIG.

以下、本発明の実施形態について図面を用いて詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are used for the same or corresponding elements, and duplicate descriptions are omitted.

図1は一実施形態に係る車両制御装置の構成を示すブロック図であり、図2は車両傾きと相対勾配値との関係を説明する図である。図1に示すように、本実施形態の車両制御装置1は、自動車等の車両Vに搭載され、例えば入庫時及び出庫時における車両Vの走行を制御する。車両制御装置1は、レーザセンサ20、車高センサ30及び車両制御ECU(Electronic Control Unit)40を備えている。   FIG. 1 is a block diagram illustrating a configuration of a vehicle control device according to an embodiment, and FIG. 2 is a diagram illustrating a relationship between a vehicle inclination and a relative gradient value. As shown in FIG. 1, the vehicle control device 1 of the present embodiment is mounted on a vehicle V such as an automobile, and controls the traveling of the vehicle V at the time of entering and leaving, for example. The vehicle control device 1 includes a laser sensor 20, a vehicle height sensor 30, and a vehicle control ECU (Electronic Control Unit) 40.

レーザセンサ20は、車両Vの経路の路面に関する路面情報を取得するための外界センサである。レーザセンサ20は、例えば、車両Vの進行方向前方(進行方向先)の路面に対してレーザ光を出射すると共に、その反射光を受光する。レーザセンサ20は、車両制御ECU40に接続されており、その検出値を車両制御ECU40へ出力する。車高センサ30は、車両Vの車高に関する車高情報を取得するものである。車高センサ30は、例えば車体とサスペンションアームとの上下変位量を車高変化量ΔHcとして検出する。車高センサ30は、車両制御ECU40に接続されており、その検出値を車両制御ECU40へ出力する。   The laser sensor 20 is an external sensor for acquiring road surface information regarding the road surface of the route of the vehicle V. For example, the laser sensor 20 emits laser light to the road surface in the traveling direction forward (traveling direction destination) of the vehicle V and receives the reflected light. The laser sensor 20 is connected to the vehicle control ECU 40 and outputs the detected value to the vehicle control ECU 40. The vehicle height sensor 30 acquires vehicle height information related to the vehicle height of the vehicle V. The vehicle height sensor 30 detects, for example, a vertical displacement amount between the vehicle body and the suspension arm as a vehicle height change amount ΔHc. The vehicle height sensor 30 is connected to the vehicle control ECU 40 and outputs the detected value to the vehicle control ECU 40.

車両制御ECU40は、例えばCPU(Central Processing Unit)及び各種メモリ等を含んで構成され、車両制御装置1による走行制御を実行する。車両制御ECU40は、外乱減速度推定部41、相対勾配値推定部42、車両重量推定部43、要求駆動力生成部44及びメモリ45を備えている。   The vehicle control ECU 40 includes, for example, a CPU (Central Processing Unit), various memories, and the like, and executes traveling control by the vehicle control device 1. The vehicle control ECU 40 includes a disturbance deceleration estimation unit 41, a relative gradient value estimation unit 42, a vehicle weight estimation unit 43, a required driving force generation unit 44, and a memory 45.

外乱減速度推定部41は、次に示すように外乱減速度Gextを演算し推定する。すなわち、車両制御ECU40内で生成され平坦路で且つ理想的な環境下での要求駆動力Gref、車両Vに実際に生じた実駆動力Greal、現在の車両傾き抵抗分の駆動力Gθ、機械抵抗を含むロード抵抗に関する駆動力GRL、及び、空気抵抗による駆動力Gvのそれぞれは、下式(1)で表される。なお、車両制御ECU40内で生成される上記要求駆動力Grefについては、車両制御おいて通常用いられる種々の手法で生成できる。
real=Gref−(Gθ+GRL+Gv) …(1)
The disturbance deceleration estimation unit 41 calculates and estimates the disturbance deceleration G ext as shown below. That is, the required driving force G ref generated in the vehicle control ECU 40 on a flat road in an ideal environment, the actual driving force G real actually generated in the vehicle V, and the driving force G θ corresponding to the current vehicle tilt resistance Each of the driving force G RL related to the load resistance including the mechanical resistance and the driving force Gv based on the air resistance is represented by the following expression (1). The required driving force G ref generated in the vehicle control ECU 40 can be generated by various methods normally used in vehicle control.
G real = G ref − (G θ + G RL + Gv) (1)

上式(1)においては、入庫時及び出庫時の車両Vの車速が極低車速領域のため、駆動力Gv≒0とできる。また、外乱減速度Gextを駆動力Gθ及び駆動力GRLの和(Gext=Gθ+GRL)とおくと、外乱減速度Gextは下式(2)で表される。車両CAN2から得られる車輪速パルスDpulseを用いて、下式(2)は下式(3)で表される。
ext=Gref−Greal …(2)
ext=Gref−d/dt(ΣDpulse) …(3)
In the above equation (1), since the vehicle speed of the vehicle V at the time of entering and leaving is extremely low, the driving force Gv can be set to approximately zero. When the disturbance deceleration G ext is the sum of the driving force G θ and the driving force G RL (G ext = G θ + G RL ), the disturbance deceleration G ext is expressed by the following equation (2). Using the wheel speed pulse Dpulse obtained from the vehicle CAN2, the following expression (2) is expressed by the following expression (3).
G ext = G ref −G real (2)
G ext = G ref −d 2 / dt 2 (ΣDpulse) (3)

上式(3)から得られる外乱減速度Gextは、駐車支援中の外部環境が変化しない限り一定値を有する。外乱減速度推定部41は、レーザセンサ20により進行方向前方の勾配相対角度である相対勾配値θ(図2参照)が認識されたとき、及び、入庫完了時に、外乱減速度Gextをメモリ45へ出力して保存する。なお、相対勾配値θの認識後にも上式(3)の演算を引き続き行い、外乱減速度Gextが一定値でないときには、路面材質等の外部環境が変化したと判断し、得られた外乱減速度Gextをメモリ45へ再度出力して保存し直してもよい。 The disturbance deceleration G ext obtained from the above equation (3) has a constant value unless the external environment during parking assistance changes. The disturbance deceleration estimation unit 41 stores the disturbance deceleration G ext when the laser sensor 20 recognizes the relative gradient value θ d (see FIG. 2), which is the gradient relative angle ahead of the traveling direction, and when the warehousing is completed. Output to 45 and save. After the relative gradient value θ d is recognized, the calculation of the above equation (3) is continued, and when the disturbance deceleration G ext is not a constant value, it is determined that the external environment such as the road surface material has changed, and the obtained disturbance The deceleration G ext may be output again to the memory 45 and stored again.

相対勾配値推定部42は、レーザセンサ20による検出値に基づいて、進行方向前方の相対勾配値θ及び現在位置に対する勾配開始位置Pを算出し推定する。相対勾配値推定部42は、算出した相対勾配値θ及び勾配開始位置Pを。メモリ45へ出力して保存する。 The relative gradient value estimation unit 42 calculates and estimates the relative gradient value θ d ahead of the traveling direction and the gradient start position P d with respect to the current position based on the detection value by the laser sensor 20. The relative gradient value estimation unit 42 uses the calculated relative gradient value θ d and the gradient start position P d . Output to the memory 45 and save.

車両重量推定部43は、入庫完了時において、車高センサ30で検出された車高高さΔHcに基づき車両重量Mpark-inを推定し、該車両重量Mpark-inをメモリ45へ出力して保存する。また、車両重量推定部43は、出庫開始時において、車高センサ30で検出された車高高さΔHcに基づき車両重量Mpark-outを推定し、該車両重量Mpark-outをメモリ45へ出力して保存する。なお、ここでの車両重量Mpark-in,Mpark-outは、車両総重量を意図する。 The vehicle weight estimation unit 43 estimates the vehicle weight M park-in based on the vehicle height height ΔHc detected by the vehicle height sensor 30 upon completion of warehousing, and outputs the vehicle weight M park-in to the memory 45. And save. Further, the vehicle weight estimation unit 43 estimates the vehicle weight M park-out based on the vehicle height height ΔHc detected by the vehicle height sensor 30 at the time of the start of shipping, and stores the vehicle weight M park-out to the memory 45. Output and save. The vehicle weights M park-in and M park-out here are intended to be the total vehicle weight.

要求駆動力生成部44は、入庫時において、次に示すように、パワマネECU3の制御入力として要求駆動力Goutを演算し生成する。すなわち、車両Vが勾配開始位置Pに到達したとき、若しくは、応答遅れを考慮した勾配開始位置Pの到達前に、メモリ45から外乱減速度Gext及び相対勾配値θを読み込む。そして、下式(4)により要求駆動力Goutを生成する。相対勾配値θが0の場合には、下式(5)により要求駆動力Goutを生成する。
out=Gref+Gext+Gθ …(4)
out=Gref+Gext …(5)
The required driving force generation unit 44 calculates and generates the required driving force Gout as a control input of the power management ECU 3 as shown below at the time of warehousing. That is, the disturbance deceleration G ext and the relative gradient value θ d are read from the memory 45 when the vehicle V reaches the gradient start position P d or before reaching the gradient start position P d considering the response delay. Then, the required driving force G out is generated by the following equation (4). When the relative gradient value θ d is 0, the required driving force G out is generated by the following equation (5).
G out = G ref + G ext + G θ (4)
G out = G ref + G ext (5)

また、要求駆動力生成部44は、出庫時において、次に示すように、パワマネECU3の制御入力として要求駆動力Goutを演算し生成する。すなわち、パワマネECU3からのエンジンオン信号の入力に応じて、外乱減速度Gext、相対勾配値θ、及び車両重量Mpark-in,Mpark-outをメモリ45から読み込む。そして、下式(6)により要求駆動力Goutを生成する。
out=Gref+(Gext+Gθ)×Mpark-out/Mpark-in …(6)
Further, the required driving force generation unit 44 calculates and generates the required driving force Gout as a control input of the power management ECU 3 as shown below at the time of delivery. That is, the disturbance deceleration Gext, the relative gradient value θ d , and the vehicle weights M park-in and M park-out are read from the memory 45 in response to the input of the engine-on signal from the power management ECU 3. Then, the required driving force G out is generated by the following equation (6).
G out = G ref + (G ext + G θ ) × M park-out / M park-in (6)

このような要求駆動力生成部44は、生成した要求駆動力GoutをパワマネECU3へ出力する。その結果、入庫時及び出庫時において、要求駆動力Goutに基づいて駆動力制御が実行される。なお、入庫時及び出庫時に、要求駆動力Goutに基づき制動力制御(制駆動力制御)及び操舵制御等が実行されてもよい。 Such a required driving force generation unit 44 outputs the generated required driving force G out to the power management ECU 3. As a result, driving force control is executed based on the required driving force Gout at the time of entering and leaving. Note that braking force control (braking / driving force control), steering control, and the like may be executed based on the required driving force Gout at the time of entering and leaving.

メモリ45は、外乱減速度推定部41で推定された外乱減速度Gext、相対勾配値推定部42で推定された相対勾配値θ、及び、車両重量推定部43で推定された車両重量Mpark-in,Mpark-outを格納し保存する。パワマネECU3は、車両Vを総合的に制御するパワーマネージメントコンピュータである。ここでのパワマネECU3は、例えばエンジンECUやモータECUへ要求駆動力Goutを出力指令信号として送信する。また、パワマネECU3は、エンジン始動時にエンジンオン信号を車両制御ECU40へ出力する。 The memory 45 stores the disturbance deceleration G ext estimated by the disturbance deceleration estimation unit 41, the relative gradient value θ d estimated by the relative gradient value estimation unit 42, and the vehicle weight M estimated by the vehicle weight estimation unit 43. Park-in and M park-out are stored and saved. The power management ECU 3 is a power management computer that comprehensively controls the vehicle V. The power management ECU 3 here transmits the required driving force Gout as an output command signal to, for example, the engine ECU or the motor ECU. Further, the power management ECU 3 outputs an engine-on signal to the vehicle control ECU 40 when the engine is started.

次に、車両制御装置1を用いた入庫時の車両制御(入庫支援)を説明する。図3は図1の車両制御装置を用いた入庫時の車両制御を示すフローチャートであり、図4は図1の車両制御装置を用いた入庫時の車両制御を説明するための図である。   Next, vehicle control (entrance support) at the time of warehousing using the vehicle control device 1 will be described. 3 is a flowchart showing vehicle control at the time of warehousing using the vehicle control device of FIG. 1, and FIG. 4 is a diagram for explaining vehicle control at the time of warehousing using the vehicle control device of FIG.

図3及び図4に示すように、車両制御装置1では、例えばドライバにより支援スイッチがONとされて装置作動中とされ、車両Vがマニュアル運転とされると共にレーザセンサ20が作動されている状態(図4中の車両V1〜V2の区間)において、車両制御ECU40により以下の処理を実行する。   As shown in FIGS. 3 and 4, in the vehicle control device 1, for example, a support switch is turned on by a driver and the device is in operation, the vehicle V is in manual operation, and the laser sensor 20 is in operation. In the section of the vehicles V1 to V2 in FIG. 4, the following processing is executed by the vehicle control ECU 40.

まず、外乱減速度推定部41により、上式(3)に基づき外乱減速度Gextを推定する(S1)。続いて、相対勾配値推定部42により相対勾配値θ及び勾配開始位置Pを推定する(S2)。そして、例えば相対勾配値θ又は勾配開始位置Pに基づいて、進行方向前方に勾配が有るか否かを判定する(S3)。勾配が有ると判定した場合、上記S1で推定した外乱減速度Gextと、上記S2で推定した相対勾配値θ及び勾配開始位置Pとをメモリ45へ保存する(S4) First, the disturbance deceleration estimation unit 41 estimates the disturbance deceleration G ext based on the above equation (3) (S1). Subsequently, the relative gradient value θ d and the gradient start position P d are estimated by the relative gradient value estimation unit 42 (S2). Then, for example, based on the relative gradient value θ d or the gradient start position P d , it is determined whether or not there is a gradient ahead in the traveling direction (S3). If it is determined that there is a gradient, the disturbance deceleration G ext estimated in S1 and the relative gradient value θ d and gradient start position P d estimated in S2 are stored in the memory 45 (S4).

続いて、例えばメモリ45に保存された勾配開始位置Pに基づいて、車両Vが勾配開始位置Pに到達したか否かを判定する(S5)。勾配開始位置Pに到達した場合、要求駆動力生成部44により外乱減速度Gext及び相対勾配値θをメモリ45から読み込こんだ後、自動運転を開始する(S5,S6,S9)。 Subsequently it determines, for example, based on the stored gradient start position P d in the memory 45, whether the vehicle V has reached the gradient start position P d (S5). When the gradient start position Pd is reached, the required driving force generator 44 reads the disturbance deceleration G ext and the relative gradient value θ d from the memory 45, and then starts automatic operation (S5, S6, S9). .

一方、上記S3にて進行方向前方に勾配が無いと判定した場合、上記S1で推定した外乱減速度Gextをメモリ45へ保存する(S7)。要求駆動力生成部44により外乱減速度Gextをメモリ45から読み込こんだ後、自動運転を開始する(S8,S9) On the other hand, when it is determined in S3 that there is no gradient ahead in the traveling direction, the disturbance deceleration G ext estimated in S1 is stored in the memory 45 (S7). After the disturbance deceleration G ext is read from the memory 45 by the requested driving force generator 44, automatic operation is started (S8, S9).

上記S9の後、要求駆動力生成部44により、上式(4)又は上式(5)に基づき要求駆動力Goutを生成してパワマネECU3へ出力する(S10)。その結果、要求駆動力Goutに基づいて、入庫に係る駆動力制御が少なくとも実行される。なお、ここでは、自動運転開始からの所定区間(図4中の車両V2〜V3の区間)で自動運転が実施され、その後の駐車場Pまでの区間(図4中の車両V3〜V4の区間)は、自動制御が実施される自動制御区間とされる。 After the above S9, the required driving force generator 44 generates the required driving force Gout based on the above equation (4) or the above equation (5) and outputs it to the power management ECU 3 (S10). As a result, at least the driving force control related to warehousing is executed based on the required driving force Gout . Here, automatic driving is performed in a predetermined section from the start of automatic driving (the section of vehicles V2 to V3 in FIG. 4), and the section to the subsequent parking lot P (the section of vehicles V3 to V4 in FIG. 4). ) Is an automatic control section in which automatic control is performed.

そして、車両Vが駐車場Pに到達したと判定した場合において、例えば車両Vの切返し又は駐車が完了したとき、入庫が完了したと判断し、車両重量推定部43により車両重量Mpark-inを推定する(S11,S12)。その後、車両重量推定部43から車両重量Mpark-inをメモリ45へ出力して保存し、処理を終了する(S13)。 When it is determined that the vehicle V has arrived at the parking lot P, for example, when the turnover or parking of the vehicle V is completed, it is determined that the warehousing is completed, and the vehicle weight estimation unit 43 determines the vehicle weight M park-in . Estimate (S11, S12). Thereafter, the vehicle weight M park-in is output from the vehicle weight estimation unit 43 to the memory 45 and stored, and the process ends (S13).

なお、上述したように、外乱減速度推定部41によって上記S1後にも上式(3)の演算を引き続き行って外乱減速度Gextを推定してもよい。また、相対勾配値推定部42によって上記S2後にも相対勾配値θを推定してもよい。これらの場合、上記S13においては、外乱減速度推定部41から外乱減速度Gextが、相対勾配値推定部42から相対勾配値θが、メモリ45へそれぞれ出力されて保存される。 As described above, the disturbance deceleration estimation unit 41 may continue the calculation of the above equation (3) after S1 to estimate the disturbance deceleration G ext . In addition, the relative gradient value θ d may be estimated by the relative gradient value estimation unit 42 after S2. In these cases, in S13, the disturbance deceleration estimation unit 41 outputs the disturbance deceleration G ext and the relative gradient value estimation unit 42 outputs the relative gradient value θ d to the memory 45 and stores them.

次に、車両制御装置1を用いた出庫時の車両制御(出庫支援)を説明する。図5は、図1の車両制御装置を用いた出庫時の車両制御を示すフローチャートである。図5に示すように、車両制御装置1では、パワマネECU3によりエンジンオン信号を車両制御ECU40へ入力し、この入力に応じて、車両重量推定部43により車両重量Mpark-outを推定してメモリ45に保存する(S21〜S23)。 Next, vehicle control (shipping support) at the time of shipping using the vehicle control device 1 will be described. FIG. 5 is a flowchart showing vehicle control at the time of delivery using the vehicle control device of FIG. As shown in FIG. 5, in the vehicle control device 1, an engine-on signal is input to the vehicle control ECU 40 by the power management ECU 3, and a vehicle weight M park-out is estimated by the vehicle weight estimation unit 43 in response to this input. 45 (S21 to S23).

そして、要求駆動力生成部44により、外乱減速度Gext、相対勾配値θ及び車両重量Mpark-in,Mpark-outをメモリ45から読み込み、上式(6)に基づき要求駆動力Goutを生成してパワマネECU3へ出力する(S24,S25)。その結果、要求駆動力Goutに基づいて、出庫に係る駆動力制御が少なくとも実行される。 Then, the required driving force generation unit 44 reads the disturbance deceleration G ext , the relative gradient value θ d, and the vehicle weights M park-in and M park-out from the memory 45, and the required driving force G based on the above equation (6). out is generated and output to the power management ECU 3 (S24, S25). As a result, based on the required driving force Gout , at least the driving force control related to unloading is executed.

以上、本実施形態の車両制御装置1では、前回の入庫時に、車両傾き抵抗分の駆動力Gθ及び機械抵抗を含むロード抵抗に関する駆動力GRLを含む外乱減速度Gextと、相対勾配値θと、を経路の路面情報としてメモリ45に記録する。そして、記憶した入庫時の路面情報に基づき、当該経路を介する出庫時に駆動力制御を実施する。これにより、入庫時及び出庫時に車両Vは同じ経路を通ることから、出庫時において、路面情報の取得までの間に車両制御の精度が低下してしまうことがなく、制御開始直後から高い精度で車両制御を実施できる。従って、車両制御の精度を向上させることが可能となる。また、車両制御装置1では、現在地又は駐車場Pの判定や画像認識手段が別途に必要とならず、コスト増加を抑制することもできる。 As described above, in the vehicle control device 1 of the present embodiment, the disturbance deceleration G ext including the driving force G θ for the vehicle inclination resistance and the driving force G RL related to the load resistance including the mechanical resistance, and the relative gradient value at the previous warehousing. θ d is recorded in the memory 45 as road surface information of the route. And based on the stored road surface information at the time of warehousing, driving force control is implemented at the time of warehousing via the said path | route. As a result, the vehicle V passes through the same route at the time of warehousing and at the time of warehousing, so the accuracy of the vehicle control does not deteriorate before the road surface information is obtained at the time of warehousing, and with high accuracy immediately after the start of control. Vehicle control can be implemented. Therefore, the accuracy of vehicle control can be improved. Moreover, in the vehicle control apparatus 1, determination of the present location or the parking lot P and an image recognition means are not separately required, and an increase in cost can be suppressed.

ところで、自動駐車における走行制御では、平坦路だけでなく勾配路においても、cmオーダーでの高い位置制御性能が求められる。また、勾配に差し掛かっている車両Vについて走行制御を作動させると、一般的な車両制御装置では、要求駆動力に不足が生じて車両Vがずり下がったり、勾配中の制駆動力に過不足が生じてずり下がりや急加速が生じたりする場合がある。これに対し、車両制御装置1では、現在の車両Vの傾きを精度よく算出でき、推定した相対勾配値θを考慮した適切な要求駆動力Goutを生成することができる。入庫時に目標停止位置で精度よく停止できると共に、出庫時のずり下がりを防止できる。 By the way, in the traveling control in automatic parking, high position control performance in the cm order is required not only on a flat road but also on a slope road. In addition, when the travel control is activated for the vehicle V that is approaching the slope, in a general vehicle control device, the required drive force is insufficient and the vehicle V is lowered, or the braking / driving force during the slope is excessive or insufficient. It may occur, causing a slip or sudden acceleration. In contrast, the vehicle control device 1, the inclination of the current vehicle V can be accurately calculated, the estimated relative slope value theta d can generate an appropriate request driving force G out in consideration. It is possible to stop at the target stop position with high accuracy at the time of warehousing and to prevent sliding down at the time of warehousing.

また、車両制御装置1では、路面勾配に対する車両Vの傾きを精度よく認識して適切な要求駆動力で制御する必要があるところ、図2に示すように、スロープ状の駐車場Pへの自動駐車において、車両Vに搭載されたレーザセンサ20を用いて、現在の車両Vの傾きθに対する進行方向前方にある相対勾配値θと勾配開始位置Pを推定する。ここで、車両Vの制駆動制御を行う上で、現在の車両Vの傾きθと相対勾配値θとの両者を加えた補償入力を生成する必要がある。 Further, in the vehicle control device 1, it is necessary to accurately recognize the inclination of the vehicle V with respect to the road surface gradient and control it with an appropriate required driving force. As shown in FIG. the parking, using a laser sensor 20 mounted on the vehicle V, to estimate the relative slope value theta d and slope start position P d in the direction of travel with respect to the inclination theta 0 current vehicle V. Here, in performing the braking / driving control of the vehicle V, it is necessary to generate a compensation input in which both the inclination θ 0 of the current vehicle V and the relative gradient value θ d are added.

この点、レーザセンサ20では、現在の車両Vの傾きθを推定することが難しい場合がある。勾配センサ等が車両Vに搭載される場合でも、1degレベルの推定精度を出すことも困難である。そこで、車両制御装置1では、要求駆動力Grefに対する実駆動力Grealの関係から、駆動力Gθ,GRLを算出する。換言すると、駐車支援環境下では下記条件1,2が成立することから、下記条件1,2を用いて駆動力Gθ,GRLを推定し、ひいては外乱減速度Gextを推定する(上記S1参照)。これを相対勾配値θの推定(上記S2)及び車両重量Mpark-in,Mpark-outの推定(上記S12,S25)と合わせて制駆動制御を実施する。これにより、車両制御装置1によれば、勾配での入庫及び出庫に適切な制駆動制御を実現可能となる。 In this regard, the laser sensor 20, it may be difficult to estimate the inclination theta 0 current vehicle V. Even when a gradient sensor or the like is mounted on the vehicle V, it is difficult to obtain an estimation accuracy of 1 deg level. Therefore, the vehicle control device 1 calculates the driving forces G θ and G RL from the relationship between the actual driving force G real and the required driving force G ref . In other words, since the following conditions 1 and 2 are satisfied in the parking assistance environment, the driving forces G θ and G RL are estimated using the following conditions 1 and 2, and consequently the disturbance deceleration G ext is estimated (S1 above) reference). This estimate of the relative slope value theta d (above S2) and the vehicle weight M park-in, performing the estimation (the S12, S25) and combined braking and driving control of the M park-out. Thereby, according to the vehicle control apparatus 1, it becomes possible to implement braking / driving control suitable for entering and exiting on a slope.

条件1: 1回の駐車支援中で路面材質が変化することは少ないため、駆動力GRLは一定と考えられる。少なくとも連続的に外部環境が変化することは考えられない。
条件2: 入庫及び出庫においては、車両Vは略同じ経路を走るため、駆動力Gθ,GRLは変化がないとみなされる。なお、入庫及び出庫では、乗員数変化による車両重量の変化が考えられる。
Condition 1: Since the road surface material rarely changes during one parking assist, the driving force GRL is considered to be constant. It is unlikely that the external environment will change at least continuously.
Condition 2: In entering and leaving, since the vehicle V runs on substantially the same route, the driving forces G θ and G RL are considered not to change. It should be noted that a change in vehicle weight due to a change in the number of occupants can be considered during entry and exit.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to the said embodiment, You may change in the range which does not change the summary described in the claim, or may apply to another thing .

例えば、上記実施形態では、路面情報は経路の路面勾配に関する情報を含んでおり、外乱減速度Gext及び相対勾配値θを路面情報としてメモリ45に記憶したが、路面情報は、特に限定されるものではなく、車両Vの経路の路面に関する情報であればよい。 For example, in the above embodiment, the road surface information includes information on the road surface gradient of the route, and the disturbance deceleration G ext and the relative gradient value θ d are stored in the memory 45 as the road surface information. However, the road surface information is particularly limited. What is necessary is just the information regarding the road surface of the path | route of the vehicle V instead of a thing.

上記において、レーザセンサ20と外乱減速度推定部41と相対勾配値推定部42とが路面情報取得部を構成し、メモリ45が記憶部を構成し、要求駆動力生成部44とパワマネECU3とが駆動力制御部を構成する。   In the above, the laser sensor 20, the disturbance deceleration estimation unit 41, and the relative gradient value estimation unit 42 constitute a road surface information acquisition unit, the memory 45 constitutes a storage unit, and the required driving force generation unit 44 and the power management ECU 3 include A driving force control unit is configured.

1…車両制御装置、3…パワマネECU(駆動力制御部)、20…レーザセンサ(路面情報取得部)、41…外乱減速度推定部(路面情報取得部)、42…相対勾配値推定部(路面情報取得部)、44…要求駆動力生成部(駆動力制御部)、45…メモリ(記憶部)、V,V1〜V4…車両。
DESCRIPTION OF SYMBOLS 1 ... Vehicle control apparatus, 3 ... Power management ECU (driving force control part), 20 ... Laser sensor (road surface information acquisition part), 41 ... Disturbance deceleration estimation part (road surface information acquisition part), 42 ... Relative gradient value estimation part ( (Road surface information acquisition unit), 44... Required driving force generation unit (driving force control unit), 45... Memory (storage unit), V, V1 to V4.

Claims (1)

入庫時における車両の経路の路面に関する路面情報を取得する路面情報取得部と、
前記路面情報取得部で取得した前記路面情報を記憶する記憶部と、
前記経路を介する出庫時において、前記記憶部に記憶した前記入庫時の前記路面情報に基づいて、前記車両の駆動力制御を実施する駆動力制御部と、備える車両制御装置。
A road surface information acquisition unit for acquiring road surface information related to the road surface of the vehicle at the time of warehousing;
A storage unit for storing the road surface information acquired by the road surface information acquisition unit;
A vehicle control apparatus comprising: a driving force control unit that performs driving force control of the vehicle based on the road surface information at the time of warehousing stored in the storage unit when leaving the vehicle via the route.
JP2014053646A 2014-03-17 2014-03-17 Vehicle control device Expired - Fee Related JP6185412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053646A JP6185412B2 (en) 2014-03-17 2014-03-17 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053646A JP6185412B2 (en) 2014-03-17 2014-03-17 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2015174586A true JP2015174586A (en) 2015-10-05
JP6185412B2 JP6185412B2 (en) 2017-08-23

Family

ID=54254143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053646A Expired - Fee Related JP6185412B2 (en) 2014-03-17 2014-03-17 Vehicle control device

Country Status (1)

Country Link
JP (1) JP6185412B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047222A1 (en) * 2016-09-06 2019-06-24 日産自動車株式会社 Delivery support method and device
WO2019202721A1 (en) * 2018-04-20 2019-10-24 三菱電機株式会社 Notification control device and notification control method
DE102021134227A1 (en) 2020-12-24 2022-06-30 Toyota Jidosha Kabushiki Kaisha parking assistance device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309256A (en) * 1999-02-24 2000-11-07 Toyota Autom Loom Works Ltd Parking brake device for industrial vehicle
JP2003063365A (en) * 2001-08-29 2003-03-05 Asmo Co Ltd Parking brake system
JP2004352117A (en) * 2003-05-29 2004-12-16 Toyota Motor Corp Vehicular traveling control device and parking support device
JP2006160239A (en) * 2004-11-10 2006-06-22 Nissan Motor Co Ltd Parking device of automatic transmission
JP2007062623A (en) * 2005-08-31 2007-03-15 Equos Research Co Ltd Controller and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309256A (en) * 1999-02-24 2000-11-07 Toyota Autom Loom Works Ltd Parking brake device for industrial vehicle
JP2003063365A (en) * 2001-08-29 2003-03-05 Asmo Co Ltd Parking brake system
JP2004352117A (en) * 2003-05-29 2004-12-16 Toyota Motor Corp Vehicular traveling control device and parking support device
JP2006160239A (en) * 2004-11-10 2006-06-22 Nissan Motor Co Ltd Parking device of automatic transmission
JP2007062623A (en) * 2005-08-31 2007-03-15 Equos Research Co Ltd Controller and vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047222A1 (en) * 2016-09-06 2019-06-24 日産自動車株式会社 Delivery support method and device
US11458958B2 (en) 2016-09-06 2022-10-04 Nissan Motor Co., Ltd. Dispatch support method and device
WO2019202721A1 (en) * 2018-04-20 2019-10-24 三菱電機株式会社 Notification control device and notification control method
JPWO2019202721A1 (en) * 2018-04-20 2020-10-22 三菱電機株式会社 Notification control device and notification control method
JP7170716B2 (en) 2018-04-20 2022-11-14 三菱電機株式会社 Notification control device and notification control method
DE102021134227A1 (en) 2020-12-24 2022-06-30 Toyota Jidosha Kabushiki Kaisha parking assistance device

Also Published As

Publication number Publication date
JP6185412B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
CN102975768B (en) The smooth system and method turning to override transition during automated lane centering
KR102485352B1 (en) Vehicle apparatus, system having the same and method for changing automatically operable range thereof
CN102267461B (en) For the parking system of vehicle
US9725117B2 (en) Parking assist system
JP6483264B2 (en) Parking assistance device for vehicles
JP6221569B2 (en) Driving assistance device
JP5336393B2 (en) Vehicle driving assistance device
US20130043989A1 (en) Method for Supporting the Driver of a Vehicle
JP2009096349A (en) Vehicle driving support device
WO2017169386A1 (en) Driving assistance device
JP4277907B2 (en) Driving control device for automobile
JP6185412B2 (en) Vehicle control device
JP2018203173A (en) Vehicle operation support device and method thereof
JP2018106479A (en) Parking control device, program, and recording medium
JP2013186724A (en) Travel control apparatus and travel control method
JP2016011060A (en) Lane keeping support system
JP2019156297A (en) Travel support system and control method of vehicle
US10906537B2 (en) System and method of determining risk situation of collision of autonomous vehicle
JP2021115975A (en) Vehicle control system
JP6730166B2 (en) Parking assistance method and parking assistance device
JP6882400B2 (en) Automatic operation control device and automatic operation control method
JP5413264B2 (en) Vehicle control device
JP2013129284A (en) Pitching angle processing apparatus
KR101550608B1 (en) System and method for weight measurement of hybrid vehicle
US11124183B2 (en) Method for manoeuvring a motor vehicle comprising determination of a distance to go for brake actuation, control unit, driver assistance system, and motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R151 Written notification of patent or utility model registration

Ref document number: 6185412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees