JP2015172025A - Method of preparing pharmaceutical by continuous flow multi-stage reaction - Google Patents

Method of preparing pharmaceutical by continuous flow multi-stage reaction Download PDF

Info

Publication number
JP2015172025A
JP2015172025A JP2014066958A JP2014066958A JP2015172025A JP 2015172025 A JP2015172025 A JP 2015172025A JP 2014066958 A JP2014066958 A JP 2014066958A JP 2014066958 A JP2014066958 A JP 2014066958A JP 2015172025 A JP2015172025 A JP 2015172025A
Authority
JP
Japan
Prior art keywords
column
flow
synthesis
reaction
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014066958A
Other languages
Japanese (ja)
Inventor
小林 修
Osamu Kobayashi
修 小林
哲 坪郷
Satoru Tsubosato
哲 坪郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Chemical Industries Co Ltd
Original Assignee
Tokyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Kogyo Co Ltd filed Critical Tokyo Kasei Kogyo Co Ltd
Priority to JP2014066958A priority Critical patent/JP2015172025A/en
Publication of JP2015172025A publication Critical patent/JP2015172025A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain optic active compounds efficiently by incorporating, into a multi-stage flow synthesis system, a column provided with a solid-phase synthesis device necessary for synthesizing optic active compounds to become pharmaceuticals or synthetic intermediate thereof and a column provided with a solid-phase synthesis device necessary for a functional group conversion.SOLUTION: In a multi-stage flow synthesis device as shown in the following figure, the above problem is solved by using a multi-stage synthesis device in which two kinds of flow synthesis columns such as a column A filled with chiral ligand and metal salt for obtaining an optic active compound, and a column B, which is necessary for a functional group conversion, filled with a solid-phase catalyst for performing hydrogenation reaction are connected in series according to the number of necessary processes to pass through reaction substrate.

Description

この発明は、直列に接続した連続的フロー合成装置を複数接続し、原料から一度に多段階の反応を行うことで医薬品あるいはその合成中間体となる光学活性化合物を入手する方法であり、医薬品およびその中間体を非常に単純かつ簡便に提供する方法を供するものである。  The present invention is a method for obtaining a pharmaceutical product or an optically active compound as a synthesis intermediate thereof by connecting a plurality of continuous flow synthesizers connected in series and performing a multi-stage reaction from raw materials at once. It provides a method for providing the intermediate very simply and conveniently.

有機合成的手法を用いて合成医薬品、研究用生理活性物質などを製造する基盤技術として、液相中でバッチ反応を行う手法が広く用いられている。これら有機合成に求められる条件として、工業スケールレベルでの反応の制御と、プロセスを重視した製法の構築が挙げられる。特に反応釜を用いた製造では、小スケール時の結果がスケールアップ時に再現されないことがしばしば起こる。また小スケールでは無視できた廃棄物も、スケールアップ時には処理の対応が必要となる場合もある。  As a basic technology for producing synthetic pharmaceuticals, bioactive substances for research, etc. using an organic synthetic method, a method of performing a batch reaction in a liquid phase is widely used. Conditions required for these organic syntheses include control of the reaction on an industrial scale level and construction of a manufacturing method with an emphasis on the process. In particular, in the production using a reaction kettle, it often happens that the results at the small scale are not reproduced at the scale-up. Also, waste that could not be ignored on a small scale may need to be dealt with when the scale is scaled up.

廃棄物の問題は近年の触媒化学の発展により、TONやTOFの高い触媒が開発、活用されることで削減効果は著しく向上している。また、環境調和型の研究の発展により、ほとんど廃棄物が出ない反応システムも開発されている。これら技術を支える触媒は、触媒の活性向上はもちろんだが、触媒を担持する基盤の研究の発展が大きい。水に対して疎水性と親和性を示す基質を基盤とし、そこに触媒を担持させることで水中でも反応可能な固体触媒の開発が進んでいる(非特許文献1−2)。  As for the problem of waste, the reduction effect is remarkably improved by the development and utilization of catalysts with high TON and TOF due to the recent development of catalytic chemistry. In addition, reaction systems that generate almost no waste have been developed with the development of environmentally conscious research. Catalysts that support these technologies not only improve the activity of the catalyst, but also have a great deal of research on the foundation for supporting the catalyst. Development of solid catalysts that can react even in water by using a substrate that exhibits hydrophobicity and affinity for water as a base and supporting the catalyst on the substrate is proceeding (Non-Patent Document 1-2).

固体触媒を用いる合成手法として、固相に触媒を固定させ、マイクロリアクターにより接触的かつ連続的に反応させる方法が注目されている。マイクロリアクターでは流路を工夫することで、多数の反応基質を順次反応させるハイスループットなスクリーニングシステムが可能になる(非特許文献3−5)。このようにフロー型の合成システムは、大スケールにおけるバッチ合成の欠点を解決する手法として、近年着目されている合成プロセスの1つである。  As a synthesis method using a solid catalyst, a method in which a catalyst is fixed to a solid phase and reacted in a catalytic and continuous manner by a microreactor has attracted attention. By devising the flow path in the microreactor, a high-throughput screening system that sequentially reacts a large number of reaction substrates becomes possible (Non-patent Documents 3-5). As described above, the flow-type synthesis system is one of synthesis processes that have recently attracted attention as a technique for solving the drawbacks of batch synthesis on a large scale.

フロー合成システムは送液ライン上に反応場を設けることで、送液中の試料を少しずつ反応させるものである。そのため反応の温度制御がバッチ反応に比べ容易であることから、精密有機合成を行う上で非常に有効な手段となっている。また反応場のみ温度コントロールすれば良いので、バッチ合成に比べてエネルギー消費が少なくなる傾向がある。さらにバッチ合成では、反応スケールに応じた温度コントロールと攪拌効率などが求められる。これら要素は反応スケールが大きくなるに従い、局部的なムラが生じやすくなるため無視できなくなる。そのため小スケールで得られた実験結果を大スケールでも再現性よく反映させることは、精密な反応になればなるほど困難になる。  In the flow synthesis system, a reaction field is provided on the liquid feed line, and the sample in the liquid feed is reacted little by little. Therefore, reaction temperature control is easier than batch reaction, which is a very effective means for carrying out precise organic synthesis. Moreover, since it is sufficient to control the temperature only in the reaction field, energy consumption tends to be reduced compared to batch synthesis. Furthermore, in batch synthesis, temperature control and stirring efficiency according to the reaction scale are required. These elements cannot be ignored because the local unevenness tends to occur as the reaction scale increases. Therefore, it becomes more difficult to reflect the experimental results obtained on a small scale with good reproducibility even on a large scale.

一方、フロー合成システムでは、反応スケールが変化しても送液量と反応場が一定に保てるため、反応に寄与する部分では同一条件が維持される。そのため、バッチ合成で懸念される諸問題はほとんど解決される。さらに、反応触媒を固定化させるので、反応後の触媒除去操作が不要であり、触媒を除去するためにトラップ剤などを用いる必要はなくなる。これら数多くのメリットがあるにも関わらず、フロー合成システムを活用した報告例は非常に少ない。  On the other hand, in the flow synthesis system, even if the reaction scale changes, the liquid feed amount and the reaction field can be kept constant, so that the same conditions are maintained in the part contributing to the reaction. For this reason, most of the problems concerned in batch synthesis are solved. Furthermore, since the reaction catalyst is immobilized, the catalyst removal operation after the reaction is unnecessary, and it is not necessary to use a trapping agent or the like to remove the catalyst. Despite these many advantages, there are very few reports using the flow synthesis system.

近年、フロー合成やバッチ反応に利用可能な固体触媒が多く開発されており、特に天然物や合成キラル化合物が配位した金属触媒、または酵素を固相担体に担持することで不斉合成に利用されている(非特許文献1−2、非特許文献6)。特に平面性キラル配位子であるBoxやPyboxは化学的に安定であり、金属との錯体を触媒として用いると優れた不斉誘導を示すことから、シリカゲルやポリスチレンなどの担体に導入されている(非特許文献6)。  In recent years, many solid catalysts that can be used for flow synthesis and batch reactions have been developed. Especially, metal catalysts coordinated with natural products or synthetic chiral compounds, or enzymes are supported on a solid support for use in asymmetric synthesis. (Non-patent literature 1-2, Non-patent literature 6). In particular, the planar chiral ligands such as Box and Pybox are chemically stable, and show excellent asymmetric induction when a complex with a metal is used as a catalyst. Therefore, they have been introduced into carriers such as silica gel and polystyrene. (Non-patent document 6).

本発明者はポリスチレン樹脂に導入したPS−Pyboxカルシウム錯体を発明しており、これを用いたバッチ反応による不斉合成に利用している(特許文献1)。この発明では中心金属がカルシウム塩であるので環境負荷が少ない上、カルシウム塩が各種有機溶媒に不溶であるため金属の溶出を回避することができる。さらに本発明者はPS−Pyboxカルシウム錯体を固定化し、フロー合成システムに用いて不斉合成を行わせることで、光学活性物質を効率よく得る方法を開発している(特許文献2)。  The inventor has invented a PS-Pybox calcium complex introduced into a polystyrene resin, and uses it for asymmetric synthesis by a batch reaction using the same (Patent Document 1). In this invention, since the central metal is a calcium salt, the environmental load is small, and the calcium salt is insoluble in various organic solvents, so that elution of the metal can be avoided. Furthermore, the present inventor has developed a method for efficiently obtaining an optically active substance by immobilizing a PS-Pybox calcium complex and using it in a flow synthesis system to perform asymmetric synthesis (Patent Document 2).

本発明者はポリ(メチルフェニル)シラン担持パラジウム/アルミナハイブリッド触媒[=Pd/(PSi−Al)]を発明しており、この触媒をカラムに組み込んだ連続フローリアクターを用いて,水素気流下での炭素−炭素二重結合や三重結合の還元を可能としている(非特許文献7−8)。この反応装置はニトロベンゼンのアミノ基への還元、Cbz基の脱保護も可能であり、水を溶媒とする還元反応にも適応することができる。The present inventor has invented a palladium / alumina hybrid catalyst [= Pd / (PSi-Al 2 O 3 )] supported on poly (methylphenyl) silane, and using a continuous flow reactor incorporating this catalyst in a column, Reduction of carbon-carbon double bonds and triple bonds under airflow is possible (Non-patent Documents 7-8). This reaction apparatus can reduce nitrobenzene to an amino group and deprotect a Cbz group, and can be applied to a reduction reaction using water as a solvent.

光学活性な化合物を化学合成する際、大きく分けて2つの合成方法を適切に用いることで、より複雑な骨格を持つ化合物を構築することが可能になる。ひとつは高い立体依選択性をもつ合成的手法を用いて、炭素−炭素結合を構築する方法であり、もうひとつは位置選択的および官能基選択的に官能基変換を可能にする手法である。この2つの手法を組み合わせることで、より複雑な構造を持つ光学活性化合物の合成は達成されるが、バッチ反応で行う手法が一般的であり、固相合成ではDNAやペプチド合成に限られる。フロー合成システムを用いた手法では不斉合成を含まない、シンプルな構造を持つ化合物の合成方法に用いた例に過ぎない。特に、不斉合成を達成させながら連続的に官能基変換を行い、多段階合成を達成させる手法は報告されていない(非特許文献9)。  When chemically synthesizing an optically active compound, it is possible to construct a compound having a more complex skeleton by appropriately using two synthesis methods. One is a method for constructing a carbon-carbon bond using a synthetic method having high stereoselectivity, and the other is a method for enabling functional group conversion in a regioselective and functional group selective manner. By combining these two methods, synthesis of an optically active compound having a more complicated structure can be achieved. However, a batch reaction method is generally used, and solid-phase synthesis is limited to DNA or peptide synthesis. The method using the flow synthesis system is merely an example used for the synthesis method of a compound having a simple structure that does not include asymmetric synthesis. In particular, there has been no report on a technique for continuously performing functional group conversion while achieving asymmetric synthesis to achieve multistage synthesis (Non-patent Document 9).

本発明者はPS−Pyboxカルシウム錯体を固定化したフロー合成システムによる、光学活性物質を効率よく得る方法を開発しており(特許文献2)、さらに水素気流下、Pd/(PSi−Al)を固定化したフロー合成システムを用いることで、炭素−炭素二重結合や三重結合の還元ならびにニトロベンゼンのアミノ基への還元、Cbz基を脱保護する方法を開発している(非特許文献7−8)。この2つのフロー合成装置を適切な位置に直列で接続することで、光学活性な複雑化合物の合成を一度で達成することが可能と考え、多段階フロー合成システムの発明に至った。The present inventor has developed a method for efficiently obtaining an optically active substance by a flow synthesis system in which a PS-Pybox calcium complex is immobilized (Patent Document 2), and further, Pd / (PSi—Al 2 O under a hydrogen stream. 3 ) Development of methods for reducing carbon-carbon double bonds and triple bonds, reducing nitrobenzene to amino groups, and deprotecting Cbz groups by using a flow synthesis system with immobilized ( 3 ) 7-8). By connecting these two flow synthesizers in series at appropriate positions, it was thought that synthesis of optically active complex compounds could be achieved at once, leading to the invention of a multi-stage flow synthesis system.

特開2013−185150.JP, 2013-185150, A. 特開2013−184973.JP2013-184973A.

R.Akiyama,S.Kobayashi,Chem.Rev.2009,109,594−642.R. Akiyama, S .; Kobayashi, Chem. Rev. 2009, 109, 594-642. S.Kobayashi,H.Miyamura,the Chemical Record,2010,10,271−290.S. Kobayashi, H .; Miyamura, the Chemical Record, 2010, 10, 271-290. B.P.Mason,K.E.Price,J.L.Steinbacher,A.R.Bogdan,D.T.McQuade.Chem.Rev.2007,107,2300−2318.B. P. Mason, K .; E. Price, J.M. L. Steinbacher, A.M. R. Bogdan, D.M. T. T. et al. McQuade. Chem. Rev. 2007, 107, 2300-2318. C.Wiles,P.Watts,Eur.J.Org.Chem.2008,1655−1671.C. Willes, P.M. Watts, Eur. J. et al. Org. Chem. 2008, 1655-1671. T.Fukuyama,Md.T.Rahman,M.Sato,I.Ryu.Synlett 2008,151−163.T. T. et al. Fukuyama, Md. T. T. et al. Rahman, M .; Sato, I. et al. Ryu. Synlett 2008, 151-163. X.Y.Mak,P.Laurino,P.H.Seeberger.Bejlstein J.Org.Chem,2009,5,No.19.X. Y. Mak, P .; Laurino, P.A. H. Seeberger. Bejlstein J.M. Org. Chem, 2009, 5, No. 19. H.Oyamada,R.Akiyama,H.Hagio,T.Naito,S.Kobayashi,Chem.Commun.2006,4297−4299.H. Oyamada, R.A. Akiyama, H .; Hagio, T .; Naito, S .; Kobayashi, Chem. Commun. 2006, 4297-4299. H.Oyamada,T.Naito,S.Kobayashi,Beilstein J.Org.Chem.2011,7,735−739.H. Oyamada, T .; Naito, S .; Kobayashi, Beilstein J. et al. Org. Chem. 2011, 7, 735-739. T.Tsubogo,T.Ishiwata,S.Kobayashi,Angew.Chem.Int.Ed.2013,52,6590−6604.T. T. et al. Tsubogo, T .; Ishiwata, S .; Kobayashi, Angew. Chem. Int. Ed. 2013, 52, 6590-6604.

本発明が解決しようとする課題は、医薬品およびその中間体の合成に必要な固相不斉合成装置を持つフロー合成システムと、官能基変換に必要な固相合成装置を持つフロー合成システムを適切な位置に直列で接続し、連続的に不斉合成および官能基変換を行わせることで、医薬品を効率よく得ることである。  The problem to be solved by the present invention is to appropriately adopt a flow synthesis system having a solid phase asymmetric synthesizer necessary for the synthesis of pharmaceuticals and intermediates thereof, and a flow synthesis system having a solid phase synthesizer necessary for functional group conversion. It is to obtain a pharmaceutical product efficiently by connecting in series to various positions and continuously performing asymmetric synthesis and functional group conversion.

課題解決のため、発明者らは、不斉合成に不可欠なPS−Pyboxカルシウム錯体を固定化したフロー合成システム、官能基変換に必要なPd/(PSi−Al)を固定化したフロー合成システムをそれぞれ発明し、合成する化合物の合成ステップに応じて、2種類のフロー合成装置を、必要とする工程数に応じて直列に接続した。この連続的多段階合成装置に対し、合成に必要とされる反応基質を通過せしめることで上記課題を達成した。In order to solve the problems, the inventors have developed a flow synthesis system in which a PS-Pybox calcium complex essential for asymmetric synthesis is immobilized, a flow in which Pd / (PSi-Al 2 O 3 ) necessary for functional group transformation is immobilized. Each of the synthesis systems was invented, and two types of flow synthesizers were connected in series according to the number of steps required according to the synthesis step of the compound to be synthesized. This problem was achieved by allowing the reaction substrate required for synthesis to pass through this continuous multi-stage synthesizer.

以上をもって、本課題である連続的フロー多段階反応による、医薬品の製造方法に関する発明がなされたものとする。すなわち上記課題を解決する手段となるフロー合成システムの構成は、図(1)で示される2つのタイプのフロー合成システムから構成される。  With the above, the invention relating to the method for producing a pharmaceutical by the continuous flow multi-stage reaction which is the subject has been made. That is, the configuration of the flow synthesis system serving as a means for solving the above-described problems is composed of two types of flow synthesis systems shown in FIG.

上記(0017)において限定されるわけではないが、図(2)に示すような固相酸触媒、あるいは固相塩基触媒を担持させたカラムCを、図(1)に示したフロー合成装置の流路内に導入することも可能である。なお、カラムCの導入位置は流路内の特定の位置に限定されず、所望する合成計画に従い任意の位置で接続することが可能である。また1本のカラムでは反応が十分に進行しない場合には、複数のカラムを連続して接続しても良い。  Although not limited in the above (0017), the column C supporting the solid acid catalyst or the solid base catalyst as shown in FIG. (2) is connected to the flow synthesizer shown in FIG. (1). It is also possible to introduce into the flow path. In addition, the introduction position of the column C is not limited to a specific position in the flow path, and can be connected at an arbitrary position according to a desired synthesis plan. If the reaction does not proceed sufficiently with one column, a plurality of columns may be connected in succession.

上記(0017)、(0018)で説明されるフロー合成装置において、溶媒に含まれる水を取り除く必要がある場合、図(3)に示すような乾燥カラムを導入することが可能である。  In the flow synthesizer described in the above (0017) and (0018), when it is necessary to remove water contained in the solvent, it is possible to introduce a drying column as shown in FIG.

上記(0017)、(0018)、(0019)で説明されるフロー合成装置において、カラムAにはPyBox配位子をはじめとする、固相担体として適用可能なキラル不斉配位子が用いられる。またこれら触媒と組み合わせる金属種として、パラジウム、カルシウム、スカンジウム、バリウム、銅から選択され、また相当する水和物を用いても良い。好ましくはPS−Pybox配位子が選択されるのが良く、組み合わせるカルシウム塩類は、CaCl、CaF、CaBr、CaI、Ca(OTf)、CaCOのいずれかのカルシウム塩、またはそれらの水和体から選択され、好ましくはCaClあるいはその2水和物が挙げられる。In the flow synthesizer described in the above (0017), (0018), and (0019), a chiral asymmetric ligand applicable to a solid phase carrier such as a PyBox ligand is used for column A. . The metal species to be combined with these catalysts may be selected from palladium, calcium, scandium, barium, and copper, and the corresponding hydrate may be used. Preferably well being selected PS-Pybox ligand, calcium salts to be combined, CaCl 2, CaF 2, CaBr 2, CaI 2, Ca (OTf) 2, or calcium salt of CaCO 3 or their, And preferably CaCl 2 or its dihydrate.

上記(0017)〜(0019)で説明されるフロー合成装置において、カラムBには官能基変換に必要な固相担体として適用可能な固相触媒が用いられる。例えばパラジウム、ルテニウム、白金、ロジウムを固相上に担持した触媒が挙げられ、好ましくはパラジウム/アルミナハイブリッド触媒[=Pd/(PSi−Al)]が適している。In the flow synthesizer described in the above (0017) to (0019), the column B uses a solid phase catalyst applicable as a solid phase carrier necessary for functional group conversion. For example, a catalyst in which palladium, ruthenium, platinum, or rhodium is supported on a solid phase can be mentioned, and a palladium / alumina hybrid catalyst [= Pd / (PSi—Al 2 O 3 )] is preferable.

上記(0017)〜(0019)で説明されるフロー合成装置において、カラムCには固相酸触媒、あるいは固相塩基触媒が用いられる。例えばアンバーライトなどのイオン樹脂が選択可能であり、シリカゲルやアルミナゲル等のシリカゲル類、塩化カルシウムや炭酸カリウム等の無機塩が挙げられる。  In the flow synthesizer described in (0017) to (0019) above, a solid phase acid catalyst or a solid phase base catalyst is used for column C. For example, an ion resin such as amberlite can be selected, and examples thereof include silica gels such as silica gel and alumina gel, and inorganic salts such as calcium chloride and potassium carbonate.

上記(0017)〜(0019)で説明されるフロー合成装置において、乾燥カラムの充填剤は溶媒に含まれる水分を除去する作用がある化合物が用いられる。例えば塩化カルシウムや、モレキュラーシーブス、シリカゲルやアルミナゲル等のシリカゲル類が挙げられる。  In the flow synthesizer described in the above (0017) to (0019), a compound having an action of removing moisture contained in the solvent is used as the filler of the drying column. Examples include calcium chloride, molecular sieves, silica gels such as silica gel and alumina gel.

上記(0017)〜(0019)で説明されるフロー合成システムにおいて、有機溶媒を用いることができる。限定するものではないが一例としてトルエンを使うことができる。無水である必要はないが、必要に応じて(0019)、(0023)で説明される乾燥カラムを使用するのが望ましい。  In the flow synthesis system described in the above (0017) to (0019), an organic solvent can be used. As an example, but not limited to toluene can be used. It is not necessary to be anhydrous, but it is desirable to use a drying column as described in (0019), (0023) if necessary.

上記(0017)〜(0019)で説明されるフロー合成システムにおいて、反応は−20℃から150℃の間から適宜選択され、恒温槽で温度調整ができるシステムの使用が望ましい。また、用いる反応カラムの数に応じて、任意の温度設定が可能であり、それぞれの反応カラムに応じて適切な温度設定が適宜選択される。  In the flow synthesis system described in the above (0017) to (0019), it is desirable to use a system in which the reaction is appropriately selected from −20 ° C. to 150 ° C. and the temperature can be adjusted in a thermostatic bath. Further, any temperature can be set according to the number of reaction columns to be used, and an appropriate temperature setting is appropriately selected according to each reaction column.

上記(0017)〜(0019)で説明されるフロー合成システムにおいて、時間あたりの送液量は効率よく反応を進行させる限りにおいて限定されない。流路内に組み込むカラムの内径、セライトなどの量や粒径により異なり、適宜選択される。  In the flow synthesis system described in the above (0017) to (0019), the amount of liquid fed per hour is not limited as long as the reaction proceeds efficiently. It depends on the inner diameter of the column incorporated in the flow path, the amount of celite, etc., and the particle size, and is appropriately selected.

上記(0017)〜(0026)で説明されるフロー合成システムにおいて、システムを安定化させるため、(0024)で説明される溶媒系を、(0026)で説明される送液量にて安定するまで行う。安定化を判断する基準は特にないが、圧力が一定になることが1つの目安である。  In the flow synthesis system described in the above (0017) to (0026), in order to stabilize the system, until the solvent system described in (0024) is stabilized at the liquid feeding amount described in (0026). Do. There is no standard for judging stabilization, but one standard is that the pressure is constant.

具体的な例として、医薬品骨格として多く見られるγ−アミノ酸誘導体を立体選択的に得る方法として、図(4)に示した多段階フロー合成システムを設計した。その結果、一連の連続反応により光学活性なγ−アミノ酸誘導体が得られることを確認した。  As a specific example, the multi-stage flow synthesis system shown in FIG. (4) was designed as a method for stereoselectively obtaining a γ-amino acid derivative often found as a pharmaceutical skeleton. As a result, it was confirmed that an optically active γ-amino acid derivative was obtained by a series of continuous reactions.

連続的フロー多段階合成装置 カラムAはキラル化合物の合成に必要な固相担体を充填したカラム、カラムBは官能基変換に必要な固相担体を充填したカラムであり、必要に応じてガス溶液を混入させながら通すことも可能である。なお、装置のカラムの結合順は図1に限定されず、逆の順番で結合させてもよい。また1本のカラムでは反応が不十分な場合には、複数のカラムを直列に接続しても良い。Continuous flow multi-stage synthesizer Column A is a column packed with a solid phase carrier necessary for the synthesis of chiral compounds, column B is a column packed with a solid phase carrier necessary for functional group conversion, and if necessary a gas solution It is also possible to pass while mixing. In addition, the coupling | bonding order of the column of an apparatus is not limited to FIG. 1, You may couple | bond in the reverse order. Further, when the reaction is insufficient with one column, a plurality of columns may be connected in series. 酸・塩基触媒フロー反応装置 カラムCに用いられる各種固相担体は、酸あるいは塩基により触媒される縮合反応、加水分解反応、環化反応等に用いられるが、これら反応例に限定されるわけではなく、酸あるいは塩基により進行する有機合成反応に対して用いることができる。Acid / base catalyst flow reactor Various solid phase carriers used in column C are used for condensation reactions, hydrolysis reactions, cyclization reactions, etc. catalyzed by acids or bases, but are not limited to these reaction examples. And can be used for organic synthesis reactions that proceed with acids or bases. フロー合成乾燥カラム装置 乾燥カラムの導入位置は流路内の特定の位置に限定されず、所望する反応計画に従い任意の位置に接続することが可能である。また1本のカラムでは乾燥が十分でない場合には、複数の乾燥カラムを連続して接続しても良い。Flow synthesis drying column apparatus The position of introduction of the drying column is not limited to a specific position in the flow path, and can be connected to an arbitrary position according to a desired reaction plan. In addition, when drying with one column is not sufficient, a plurality of drying columns may be connected in succession. フロー多段階反応による光学活性γ−アミノ酸誘導体合成概略図 Flow1ではアミノ基を担持したシリカゲルと塩化カルシウムを詰めたカラムによるニトロアルドール反応、Flow2ではPS−Pyboxカルシウム錯体を固相触媒とする触媒的不斉Michael反応、Flow3ではパラジウム/アルミナハイブリッド触媒[=Pd/(PSi−Al)]をカラムに詰めた水素添加還元反応、および環化反応を経るγ−アミノ酸誘導体の合成を行う。Schematic diagram of optically active γ-amino acid derivative synthesis by flow multi-step reaction. Flow1 is a nitroaldol reaction using a column packed with amino group-supported silica gel and calcium chloride. In the case of simultaneous Michael reaction and Flow3, a palladium / alumina hybrid catalyst [= Pd / (PSi-Al 2 O 3 )] is packed in a column, and a γ-amino acid derivative is synthesized through a cyclization reaction. ニトロアルカン合成フロー反応装置 両端にガラスフィルターを付したガラス製のカラム(φ1.0cm x 30cm)に、(450mg、0.7mmol/g)のシリカ−アミン触媒(フジシリシア製Chromatorex DM1020)と、粉末状に砕いた無水塩化カルシウム(和光純薬製>95%)1.35gをよく混ぜ合わせから充填する(Column1とする)。これにトルエンを1.0mL/minの流速で送液してスラリー状に触媒を調製する。Nitroalkane Synthesis Flow Reactor A glass column (φ1.0 cm × 30 cm) with a glass filter at both ends, (450 mg, 0.7 mmol / g) silica-amine catalyst (Fuji Silysia Chromatorex DM1020), and powder form 1.35 g of crushed anhydrous calcium chloride (> 95% made by Wako Pure Chemical Industries, Ltd.) is thoroughly mixed and filled (referred to as Column 1). Toluene is sent to this at a flow rate of 1.0 mL / min to prepare a catalyst in a slurry state. 不斉1,4−付加反応フロー反応装置 ガラス製のカラム(φ1.0cm x 10cm)を2本用意し、セライト(1.4g)、無水塩化カルシウム(375mg)とポリマー担持Pybox(0.85mmol/g、750mg)を混ぜたものを2本のカラム管に充填する(それぞれColumn3、Column4とする)。乾燥用のカラム(φ0.5cm x 5cm)には活性化したモレキュラーシーブス4Aを(500mg)充填する(Column2とする)。これをValve1とColumn3の間に接続する。Column4はColumn3と直列で接続し、Valve2に接続する。Asymmetric 1,4-addition reaction flow reactor Two glass columns (φ1.0 cm x 10 cm) were prepared. Celite (1.4 g), anhydrous calcium chloride (375 mg) and polymer-supported Pybox (0.85 mmol / g, 750 mg) is filled in two column tubes (referred to as Column 3 and Column 4 respectively). A column for drying (φ0.5 cm × 5 cm) is packed with activated molecular sieves 4A (500 mg) (referred to as Column 2). This is connected between Valve1 and Column3. Column 4 is connected in series with Column 3 and connected to Valve 2. 接触還元フロー反応装置 SUS製のカラム(φ1.0cm x 10cm)を用い、セライト(1.2g)、Pd/(PMPSi−C)(4.8g)を充填する(Column6とする)。またセライト(423mg)を(φ1.0cm x 10cm)のカラム管に充填したカラムを用意する(Column5とする)。Column5をValve2とColumn6の間に接続する。A catalytic reduction flow reactor SUS column (φ1.0 cm × 10 cm) is used, and Celite (1.2 g) and Pd / (PMPSi-C) (4.8 g) are packed (referred to as Column 6). In addition, a column in which Celite (423 mg) is packed in a (φ1.0 cm × 10 cm) column tube is prepared (referred to as Column 5). Column5 is connected between Valve2 and Column6. 光学活性γ−アミノ酸誘導体合成フロー多段階反応装置 図(5)〜(7)の各装置を接続して図(8)に示すような装置を組み立てる。受け器1(Reserver1)にベンズアルデヒド(60mmol)とニトロメタン(50mmol)とトルエン(<200mL)を混ぜた溶液を用意する。受け器2(Reserver2)にはマロン酸エチル(0.22M)とトリエチルアミン(0.016M)のトルエン溶液を用意する。受け器3(Reserver3)にはエタノールを用意する。Optically active γ-amino acid derivative synthesis flow multi-stage reaction apparatus The apparatuses shown in FIG. 8 are assembled by connecting the apparatuses shown in FIGS. A solution in which benzaldehyde (60 mmol), nitromethane (50 mmol), and toluene (<200 mL) are mixed is prepared in a receiver 1 (Reserver 1). A receiver 2 (Reserver 2) is prepared with a toluene solution of ethyl malonate (0.22M) and triethylamine (0.016M). Ethanol is prepared in the receiver 3 (Reserver 3). フロー合成的脱炭酸装置 Chromatorex ACD(COOH)9gをSUSカラム(φ10mm x 200mm)に充填する(Column8とする)。二液を混合するミキサーとしてCelite(ca.350mg)が詰まったガラスカラム(φ5mm x 50mm)を接続する(Column7とする)。Flow synthetic decarboxylation device 9 g of Chromatorex ACD (COOH) is packed into a SUS column (φ10 mm × 200 mm) (referred to as Column 8). As a mixer for mixing the two liquids, a glass column (φ5 mm × 50 mm) packed with Celite (ca. 350 mg) is connected (referred to as Column 7). (S)−Rolipram合成連続的フロー多段階反応装置 図(8)を参考にFlow1〜Flow3までの装置を組みあげ、Flow3の流路の先にはValve3を接続し、さらに図(9)で示されるFlow4装置を、Valve3に接続する。(S) -Rolipram synthesis continuous flow multi-stage reaction apparatus The apparatus from Flow 1 to Flow 3 is assembled with reference to FIG. (8), and Valve 3 is connected to the end of the Flow 3 flow path, and further shown in FIG. (9). Connect the Flow4 device to Valve3.

以下に実施例を用いて本発明を明らかにするが、本発明はこの実施例に限定されるものではない。  Hereinafter, the present invention will be clarified using examples, but the present invention is not limited to these examples.

芳香族アルデヒドとニトロメタンを出発物質とする、連続的フロー多段階反応装置を用いた光学活性γ−アミノ酸誘導体の合成

Figure 2015172025
式(1)に示した反応(Ar=Ph)について、連続的フロー多段階反応を行うため、図(8)で説明される連続的フロー多段階反応装置の組み以下の操作により反応を行う。50℃に加温したColumn1に受け器1(Reserver1)より0.05mL/minの流速で送液を開始する。はじめの12時間は流路Aで送液を行い、その後、Valve1を流路Bに切り替え、Column2への送液を開始する。同時に受け器2(Reserver2)からもColumn2に0.05mL/minの流速で送液を開始する。Column3と4は0〜10℃の温度範囲になるよう調整しておいた状態で送液する。この時、Column2〜4の間の流速は0.1mL/minにする。Valve2を流路Cにした状態で1時間送液を行った後、Valve2を流路Dに切り替えて、Column5への送液を開始する。同時に受け器3(Reserver3)から流速0.10mL/minでエタノールをColumn5へ送液して混合させ、流速0.2mL/minとする。80℃に加熱させたColumn6に、水素ガスと共に導入して反応させる。送液開始から18時間後、表(1)に示すように、いくつかのフラクションに分けながら回収を行い、溶媒を除去した後、NMR分析とpTLCによる精製を行うことで、(3R,4S)−ethyl 4−(phenyl)−2−oxopyrrolidine−3−carboxylateが光学純度94%eeで得られるH NMR(CDCl,600MHz)δ:7.32−7.18(m,5H),4.19(q,2H,J=7.1Hz),4.05(q,1H,J=8.7Hz),3.77(t,1H,J=8.9),3.51(d,1H,J=9.6Hz),3.38(dd,1H,J=9.6,8.3Hz),1.23(t,3H,J=6,9Hz).13C NMR(CDCl,124.51MHz)δ:172.9,169.2,139.9,128.9,127.5,126.9,61.7,55.3,47.7,44.3,14.1.HPLC Daicel Chiralcel AD3 x 2,hexane/PrOH=9/1,flow rate=0.35mL/min,Detection wavelength=220nm:t=83.9min(minor),t=94.1min(major).
Figure 2015172025
Synthesis of optically active γ-amino acid derivatives using a continuous flow multistage reactor starting from aromatic aldehydes and nitromethane
Figure 2015172025
For the reaction (Ar = Ph) represented by the formula (1), in order to perform a continuous flow multistage reaction, the reaction is performed by the following operations of the continuous flow multistage reaction apparatus illustrated in FIG. Liquid supply is started at a flow rate of 0.05 mL / min from the receiver 1 (Reserver 1) to Column 1 heated to 50 ° C. For the first 12 hours, liquid feeding is performed in the flow path A, and then Valve 1 is switched to the flow path B, and liquid feeding to Column 2 is started. At the same time, liquid feeding from the receiver 2 (Reserver 2) to the Column 2 is started at a flow rate of 0.05 mL / min. Columns 3 and 4 are fed in a state adjusted to be in the temperature range of 0 to 10 ° C. At this time, the flow rate between Columns 2 to 4 is 0.1 mL / min. After performing the liquid feeding for 1 hour in a state where the Valve 2 is set to the flow path C, the Valve 2 is switched to the flow path D, and the liquid feeding to the Column 5 is started. At the same time, ethanol is fed from the receiver 3 (Reserver 3) to the Column 5 at a flow rate of 0.10 mL / min and mixed to obtain a flow rate of 0.2 mL / min. It introduce | transduces and reacts with Column 6 heated to 80 degreeC with hydrogen gas. 18 hours after the start of liquid feeding, as shown in Table (1), recovery was performed while dividing into several fractions, and after removing the solvent, purification by NMR analysis and pTLC was performed (3R, 4S). 1- H NMR (CDCl 3 , 600 MHz) δ: 7.32-7.18 (m, 5H), wherein 4-ethyl-4-oxypyrrolidin-3-carboxylate is obtained with an optical purity of 94% ee. 19 (q, 2H, J = 7.1 Hz), 4.05 (q, 1H, J = 8.7 Hz), 3.77 (t, 1H, J = 8.9), 3.51 (d, 1H) , J = 9.6 Hz), 3.38 (dd, 1H, J = 9.6, 8.3 Hz), 1.23 (t, 3H, J = 6, 9 Hz). 13 C NMR (CDCl 3 , 124.51 MHz) δ: 172.9, 169.2, 139.9, 128.9, 127.5, 126.9, 61.7, 55.3, 47.7, 44 .3, 14.1. HPLC Daicel Chiralcel AD3 x 2, hexane / i PrOH = 9/1, flow rate = 0.35 mL / min, Detection wavelength = 220 nm: t R = 83.9 min (minor), t R = 94.1 min (major).
Figure 2015172025

連続的フロー多段階反応装置を用いる(S)−Rolipram前駆体の合成

Figure 2015172025
上記(実施例1)の方法に従い、3−(cyclopentyloxy)−4−methoxybenzaldehydeとmethyl malonateを用いて、図(8)に示すFlow1〜Flow3まで計18時間、連続的にフロー多段階反応を行った後、送液を回収すると(3R,4S)−methyl4−[3−(cyclopentyloxy)−4−methoxyphenyl]−2−oxopyrrolidine−3−carboxylateが得られる。HPLC Daicel Chiralcel OJ3 + Chiralpac AD3,hexane/EtOH=9/1,flow rate=0.5mL/min,25℃,Detection wavelength=210nm:t=82.7min(R),t=93.9min(S).H NMR(CDCl,500MHz)δ:6.80(d,1H,J=8.5Hz),6.75−6.74(m,2H),6.58(bs,1H),4.75−4.1(m,1H),4.03(q,1H,J=8.7Hz),3.81(s,3H),3.78−3.75(m,4H),3.52(d,1H,J=9.6Hz),3.38(t,1H,J=9.1Hz),1.94−1.77(m,6H),1.63−1.55(m,2H).13C NMR(CDCl,125MHz)δ:172.3,169.7,149.5,147.9,132.0,118.9,113.9,112.2,80.5,56.1,55.3,52.9,47.7,44.0,32.8,24.0.Synthesis of (S) -Rolipram precursor using a continuous flow multi-stage reactor
Figure 2015172025
According to the method of the above (Example 1), the flow multistage reaction was continuously performed for 18 hours from Flow 1 to Flow 3 shown in FIG. 8 using 3- (cyclopropylene) -4-methylbenzaldehyde and methyl malonate. Thereafter, when the liquid feeding is recovered, (3R, 4S) -methyl4- [3- (cyclopropylene) -4-methylphenyl] -2-oxopyrrolidin-3-carboxylate is obtained. HPLC Daicel Chiralcel OJ3 + Chiralpac AD3, hexane / EtOH = 9/1, flow rate = 0.5 mL / min, 25 ° C., detection wavelength = 210 nm: t R = 82.7 min (R), t R = 93.9 min ( S). 1 H NMR (CDCl 3 , 500 MHz) δ: 6.80 (d, 1H, J = 8.5 Hz), 6.75-6.74 (m, 2H), 6.58 (bs, 1H), 4. 75-4.1 (m, 1H), 4.03 (q, 1H, J = 8.7 Hz), 3.81 (s, 3H), 3.78-3.75 (m, 4H), 3. 52 (d, 1H, J = 9.6 Hz), 3.38 (t, 1H, J = 9.1 Hz), 1.94-1.77 (m, 6H), 1.63-1.55 (m , 2H). 13 C NMR (CDCl 3 , 125 MHz) δ: 172.3, 169.7, 149.5, 147.9, 132.0, 118.9, 113.9, 112.2, 80.5, 56.1 , 55.3, 52.9, 47.7, 44.0, 32.8, 24.0.

バッチ処理による(S)−Rolipramの合成

Figure 2015172025
20mLフラスコに(3R,4S)−methyl4−[3−(cyclopentyloxy)−4−methoxyphenyl]−2−oxopyrrolidine−3−carboxylate(66.7mg、0.2mmol)とCromatorex ACD(SOH、loading 0.4mmol/g、50mg、フジシリシア製)を入れる。その後、o−キシレン(2mL)と水(0.2mL)を入れ120℃にて24時間撹拌する。反応溶液を室温に戻した後、エタノールにて希釈し、Celiteと無水硫酸ナトリウムのパットにてろ過後、減圧下溶媒を留去する。pTLC(展開溶媒:酢酸エチル)にて単離精製を行うことで(S)−Rolipramが77%で得られる。エナンチオ選択性は、HPLCにて決定する。HPLC Daicel Chiralpac AD3,hexane/EtOH=9/1,flow rate=1.0mL/min,25℃,Detection wavelength=220nm:t=15.2min(R),t=21.2min(S).H NMR(CDCl,500MHz)δ:6.80(d,1H,J=7.9Hz),6.76−6.73(m,2H),6.46(bs,1H),4.76−4.72(m,1H),3.80(s,3H),3.73(t,1H,J=8.8Hz),3.63−3.56(m,1H),3.36(dd,1H,J=9.4,7.7Hz),2.68(q,1H,J=8.5Hz),2.45(q,1H,J=8.5Hz),1.92−1.77(m,6H),1.61−1.56(m,2H).13C NMR(CDCl,125MHz)δ:177.7,149.1,147.9,134.5,118.8,113.8,112.1,80.6,56.1,49.7,40.0,38.0,32.8,24.0.Synthesis of (S) -Rolipram by batch processing
Figure 2015172025
In a 20 mL flask, (3R, 4S) -methyl4- [3- (cyclopropylene) -4-methylphenyl] -2-oxopyrrolidin-3-carboxylate (66.7 mg, 0.2 mmol) and Cromatorex ACD (SO 3 H, loading 0. 0). 4 mmol / g, 50 mg, manufactured by Fuji Silysia). Thereafter, o-xylene (2 mL) and water (0.2 mL) are added and stirred at 120 ° C. for 24 hours. The reaction solution is returned to room temperature, diluted with ethanol, filtered through a pad of Celite and anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure. By performing isolation and purification with pTLC (developing solvent: ethyl acetate), (S) -Rolipram is obtained at 77%. Enantioselectivity is determined by HPLC. HPLC Daicel Chiralpac AD3, hexane / EtOH = 9/1, flow rate = 1.0 mL / min, 25 ° C., detection wavelength = 220 nm: t R = 15.2 min (R), t R = 21.2 min (S). 1 H NMR (CDCl 3 , 500 MHz) δ: 6.80 (d, 1H, J = 7.9 Hz), 6.76-6.73 (m, 2H), 6.46 (bs, 1H), 4. 76-4.72 (m, 1H), 3.80 (s, 3H), 3.73 (t, 1H, J = 8.8 Hz), 3.63-3.56 (m, 1H), 3. 36 (dd, 1H, J = 9.4, 7.7 Hz), 2.68 (q, 1H, J = 8.5 Hz), 2.45 (q, 1H, J = 8.5 Hz), 1.92 -1.77 (m, 6H), 1.61-1.56 (m, 2H). 13 C NMR (CDCl 3 , 125 MHz) δ: 177.7, 149.1, 147.9, 134.5, 118.8, 113.8, 112.1, 80.6, 56.1, 49.7 , 40.0, 38.0, 32.8, 24.0.

フロー合成システムを用いる(S)−Rolipramの合成
図(9)に従い、基質の入ったo−キシレン溶液は、200μL/minで、水は、15μL/minにてHPLCポンプを用いて送液する。二液を混合するためColumn7の下部より二液を導入し上部より溶出させる。その後、Column8の上部より溶液を導入し下部より反応溶液を採取する。基質(0.05M、8mL)を40分かけて導入後、o−キシレンおよび水にて24時間、反応用カラムを洗浄する。反応用カラムは、132.5℃に保つ。その後、水を分液にて取り除き、溶媒を留去しpTLC(展開溶媒:酢酸エチル)にて単離精製を行うことで(S)−Rolipramが62%で得られる。
Synthesis of (S) -Rolipram Using Flow Synthesis System According to FIG. 9, the o-xylene solution containing the substrate is sent at 200 μL / min and water is sent at 15 μL / min using an HPLC pump. In order to mix the two liquids, the two liquids are introduced from the bottom of Column 7 and eluted from the top. Thereafter, the solution is introduced from the top of Column 8 and the reaction solution is collected from the bottom. Substrate (0.05 M, 8 mL) is introduced over 40 minutes, and then the reaction column is washed with o-xylene and water for 24 hours. The reaction column is kept at 132.5 ° C. Thereafter, water is removed by liquid separation, the solvent is distilled off, and isolation and purification is performed with pTLC (developing solvent: ethyl acetate), whereby (S) -Rolipram is obtained at 62%.

連続的フロー多段階反応装置を用いる(S)−Rolipramの合成
上記(実施例2)を参考に、図(10)で説明される連続的フロー多段階反応を用いて反応を行う。(実施例2)の方法に従い、3−(cyclopentyloxy)−4−methoxybenzaldehydeをFlow1〜Flow3まで計18時間、連続的にフロー多段階反応を行った後、送液を回収すると(3R,4S)−methyl4−[3−(cyclopentyloxy)−4−methoxyphenyl]−2−oxopyrrolidine−3−Carboxylateが得られる(Receiver4で回収する)。これを(実施例4)の方法に従い、Flow4装置に送液し132.5℃に加熱したColumn8にて反応させた後、回収、精製することで(S)−Rolipramが得られる。
Synthesis of (S) -Rolipram Using Continuous Flow Multistage Reactor Referring to the above (Example 2), the reaction is performed using the continuous flow multistage reaction illustrated in FIG. According to the method of (Example 2), 3- (cyclopentyloxy) -4-methoxybenzaldehyde is subjected to flow multi-stage reaction continuously from Flow 1 to Flow 3 for a total of 18 hours, and then the solution is recovered (3R, 4S)- methyl 4- [3- (cyclopropylene) -4-methylphenyl] -2-oxopyrrolidin-3-Carboxylate is obtained (recovered at Receiver 4). According to the method of (Example 4), this is sent to a Flow 4 apparatus, reacted with Column 8 heated to 132.5 ° C., and then recovered and purified to obtain (S) -Rolipram.

以上のように本発明は、連続的にフロー多段階合成システムを用いた医薬品あるいはその合成中間体となる光学活性化合物の入手方法に関するもので、医薬品合成において求められている効率的な合成システムを供するものである。複雑な立体を持つ医薬品の製造への利用が期待される。  As described above, the present invention relates to a method for obtaining an optically active compound as a pharmaceutical or a synthetic intermediate thereof using a continuous flow multi-step synthesis system, and provides an efficient synthesis system required in pharmaceutical synthesis. It is something to offer. It is expected to be used for the manufacture of pharmaceuticals with complex solids.

Claims (4)

図(1)に示した流路内部に不斉合成あるいは官能基変換に用いられるカラムを複数直列に設け、これに二成分以上の基質を通過せしめるフロー合成に用いることで、不斉合成反応および官能基変換反応等の複数の反応を多段階連続的に行うことで、医薬品あるいはその中間体となる光学活性化合物を入手する方法。
[図1]
(但しカラムAはキラル化合物の合成に必要な固相担体を充填したカラム、カラムBは官能基変換に必要な固相担体を充填したカラムであり、必要に応じてガス溶液を混入させながら通すことも可能であり、それぞれのカラムの結合順は図(1)に限定されず、逆の順番で結合させてもよく、また1本のカラムでは反応が不十分な場合には、複数のカラムを直列に接続しても良い。)
A plurality of columns used for asymmetric synthesis or functional group conversion are provided in series in the flow path shown in Fig. (1), and this is used for flow synthesis in which a substrate of two or more components is allowed to pass through. A method of obtaining a pharmaceutical product or an optically active compound as an intermediate thereof by continuously performing a plurality of reactions such as a functional group conversion reaction in multiple stages.
[Figure 1]
(However, column A is a column packed with a solid phase carrier necessary for the synthesis of a chiral compound, and column B is a column packed with a solid phase carrier necessary for functional group conversion, and is passed while mixing a gas solution if necessary. The binding order of each column is not limited to that shown in FIG. (1), and the columns may be combined in the reverse order. May be connected in series.)
複数以上の工程を含むフロー合成において、必要な数の不斉合成カラム、および必要な数の官能基変換カラムを複数、適切な位置に接続された多段階フロー合成装置を用いる請求項1記載の方法。  In the flow synthesis including a plurality of steps, a multistage flow synthesizer in which a necessary number of asymmetric synthesis columns and a plurality of necessary number of functional group conversion columns are connected at appropriate positions are used. Method. 複数以上の工程を含むフロー合成において、下記図(2)に示した酸触媒あるいは塩基触媒カラム、もしくは両方のカラムを、適宜必要とする反応工程に応じて適切な位置に接続された、多段階フロー合成装置を用いる請求項1あるいは2記載の方法。
[図2]
(但し、カラムCに用いられる各種固相担体は、酸あるいは塩基により触媒される縮合反応、加水分解反応、環化反応等に用いられるが、これら反応例に限定されるわけではなく、酸あるいは塩基により進行する有機合成反応に対して用いることができ、1本のカラムでは反応が不十分な場合には、複数のカラムを直列に接続しても良い。)
In the flow synthesis including a plurality of processes, the acid catalyst or the base catalyst column shown in the following figure (2), or both columns are connected at appropriate positions according to the required reaction process. The method according to claim 1 or 2, wherein a flow synthesizer is used.
[Figure 2]
(However, various solid phase carriers used in column C are used in condensation reactions, hydrolysis reactions, cyclization reactions and the like catalyzed by acids or bases, but are not limited to these reaction examples. It can be used for organic synthesis reactions that proceed with a base, and if the reaction is insufficient with one column, a plurality of columns may be connected in series.)
複数以上の工程を含むフロー合成において、脱水条件が必要な工程に応じて下記図(3)に示した乾燥カラムを、適宜必要とする反応工程に応じて適切な位置に接続された、多段階フロー合成装置を用いる請求項1〜3記載の方法。
[図3]
(但し、1本の乾燥カラムでは溶媒の水分除去が不十分な場合には、複数の脱水カラムを直列に接続しても良い。)
In the flow synthesis including a plurality of steps, a multi-stage in which the drying column shown in the following figure (3) is connected to an appropriate position according to a reaction step that is necessary according to a step that requires dehydration conditions. The method of Claims 1-3 using a flow synthesizer.
[Fig. 3]
(However, when water removal from the solvent is insufficient with one drying column, a plurality of dehydration columns may be connected in series.)
JP2014066958A 2014-03-11 2014-03-11 Method of preparing pharmaceutical by continuous flow multi-stage reaction Pending JP2015172025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066958A JP2015172025A (en) 2014-03-11 2014-03-11 Method of preparing pharmaceutical by continuous flow multi-stage reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066958A JP2015172025A (en) 2014-03-11 2014-03-11 Method of preparing pharmaceutical by continuous flow multi-stage reaction

Publications (1)

Publication Number Publication Date
JP2015172025A true JP2015172025A (en) 2015-10-01

Family

ID=54259603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066958A Pending JP2015172025A (en) 2014-03-11 2014-03-11 Method of preparing pharmaceutical by continuous flow multi-stage reaction

Country Status (1)

Country Link
JP (1) JP2015172025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000458A (en) * 2016-05-23 2016-10-12 北京化工大学 Efficient multi-phase acid-base double-functional catalyst and preparation method thereof
WO2018025547A1 (en) * 2016-08-03 2018-02-08 株式会社島津製作所 Fluid processing device and processing liquid recovery method
WO2021002108A1 (en) * 2019-07-03 2021-01-07 富士フイルム株式会社 Optimization support device, method, and program
WO2021224980A1 (en) * 2020-05-08 2021-11-11 日本碍子株式会社 Column for flow synthesis and flow synthesis method
WO2022138586A1 (en) * 2020-12-23 2022-06-30 協和ファーマケミカル株式会社 Method for separating geometrical isomer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 52, JPN6017032425, 2013, pages 6590-6604 *
J. AM. CHEM. SOC., vol. 123, JPN6017032422, 2001, pages 10853-10859 *
ORGANIC LETTERS, vol. 2(25), JPN6017032423, 2000, pages 3963-3965 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000458A (en) * 2016-05-23 2016-10-12 北京化工大学 Efficient multi-phase acid-base double-functional catalyst and preparation method thereof
WO2018025547A1 (en) * 2016-08-03 2018-02-08 株式会社島津製作所 Fluid processing device and processing liquid recovery method
CN109477818A (en) * 2016-08-03 2019-03-15 株式会社岛津制作所 Fluid treating device and treatment fluid recovery method
JPWO2018025547A1 (en) * 2016-08-03 2019-04-04 株式会社島津製作所 Fluid processing apparatus and processing liquid recovery method
WO2021002108A1 (en) * 2019-07-03 2021-01-07 富士フイルム株式会社 Optimization support device, method, and program
JPWO2021002108A1 (en) * 2019-07-03 2021-01-07
CN113994281A (en) * 2019-07-03 2022-01-28 富士胶片株式会社 Optimization support device, method, and program
WO2021224980A1 (en) * 2020-05-08 2021-11-11 日本碍子株式会社 Column for flow synthesis and flow synthesis method
WO2022138586A1 (en) * 2020-12-23 2022-06-30 協和ファーマケミカル株式会社 Method for separating geometrical isomer

Similar Documents

Publication Publication Date Title
Mak et al. Asymmetric reactions in continuous flow
CN108409747B (en) Synthetic method of 2-aminoquinoline dihydrofuran compound
Liu et al. AgAsF6/Sm (OTf) 3 Promoted Reversal of Enantioselectivity for the Asymmetric Friedel− Crafts Alkylations of Indoles with β, γ-Unsaturated α-Ketoesters
JP2015172025A (en) Method of preparing pharmaceutical by continuous flow multi-stage reaction
CN109734600B (en) Synthesis method of chiral beta-hydroxy acid ester compound
Bayda et al. Synthesis and characterization of new chiral P, O ferrocenyl ligands and catalytic application to asymmetric Suzuki–Miyaura coupling
JP4815604B2 (en) Method for producing biaryl compound
CN112174842B (en) Method for preparing (S) -3-amino-2-benzyl propionic acid
CN110272403B (en) Method for synthesizing carbamate containing dihydrobenzofuran ring and trifluoromethyl
TWI607803B (en) Catalyst, and method for producing optically active anti-1,2-nitroalkanol compound
CN107445894B (en) Preparation method of chiral cyclopropyl amino acid
JP6676146B2 (en) Novel production method of chromanol derivative
CN104860911B (en) Synthesis method of chiral 3,4-dihydrocoumarin derivative compound
CN104926671B (en) The method that D-phenylalanine is prepared in the asymmetric conversion of a kind of L-phenylalanine
CN113444040A (en) Method for synthesizing chiral alpha-unnatural amino acid derivative under drive of visible light
Rodríguez et al. Flow chemistry in fine chemical production
Palao et al. Organometallic chemistry in flow in the pharmaceutical industry
CN108440378B (en) Preparation method of iodine-hydrogen peroxide promoted 3-amino-2-indolone derivative at room temperature
WO2011062109A1 (en) Palladium catalyst and process for production of bisaryl compound using same
JPH11514290A (en) Chiral solid catalysts for obtaining substantially enantiomerically pure products, their preparation and their use
Farkas et al. Asymmetric Hydrogenation in Continuous‐Flow Conditions
JP4308155B2 (en) Process for producing δ-iminomalonic acid derivative and catalyst therefor
CN111410656B (en) Preparation method of isoquinolone derivative
CN114524777B (en) Synthesis method of dihydro-oxazole compound
JP2013184973A (en) Method for obtaining optically-active compound by flow synthesis system using catalyst of polystyrene-supported pyridine bisoxazoline derivative-calcium complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403