JP2015171691A - Ceramic filter manufacturing method - Google Patents

Ceramic filter manufacturing method Download PDF

Info

Publication number
JP2015171691A
JP2015171691A JP2014048924A JP2014048924A JP2015171691A JP 2015171691 A JP2015171691 A JP 2015171691A JP 2014048924 A JP2014048924 A JP 2014048924A JP 2014048924 A JP2014048924 A JP 2014048924A JP 2015171691 A JP2015171691 A JP 2015171691A
Authority
JP
Japan
Prior art keywords
base material
elastic member
film
ceramic
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014048924A
Other languages
Japanese (ja)
Other versions
JP6219753B2 (en
Inventor
小泉 洋
Hiroshi Koizumi
洋 小泉
洋一郎 水谷
Yoichiro Mizutani
洋一郎 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014048924A priority Critical patent/JP6219753B2/en
Publication of JP2015171691A publication Critical patent/JP2015171691A/en
Application granted granted Critical
Publication of JP6219753B2 publication Critical patent/JP6219753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic filter manufacturing method capable of enhancing the film forming accuracy of a ceramic separation membrane.SOLUTION: A ceramic filter manufacturing method comprises: an elastic member arranging step of arranging an elastic member 4 having elasticity on the inner side of a substrate 2; a film precursor forming step of dipping the substrate 2 with the elastic member 4 arranged on the inner side thereof, in a raw material solution 5 containing a material for a ceramic separation membrane thereby to form a film precursor in a film forming region 211 in the outer circumference 21 of the substrate 2; and a film forming step of forming the ceramic separation membrane from the film precursor formed in the film forming region 211 of the outer circumference 21 of the substrate 2. In the elastic member arranging step, the elastic member 4 is arranged in an opposing region 221 of the inner circumference 22 of the substrate 2 opposing the film forming region 211 of the outer circumference 21 of the substrate 2.

Description

本発明は、固液分離、溶剤脱水等に用いられるセラミックフィルタの製造方法に関する。   The present invention relates to a method for producing a ceramic filter used for solid-liquid separation, solvent dehydration and the like.

従来、固液分離、溶剤脱水等に用いられるフィルタとして、例えば、多孔質筒状の基材の外周面にセラミック分離膜が形成されたセラミックフィルタが知られている。セラミック分離膜としては、例えば、ゼオライト膜やアルミナ等からなるセラミック多孔質膜等が用いられている。   Conventionally, as a filter used for solid-liquid separation, solvent dehydration, and the like, for example, a ceramic filter in which a ceramic separation membrane is formed on the outer peripheral surface of a porous cylindrical base material is known. As the ceramic separation membrane, for example, a ceramic porous membrane made of zeolite membrane or alumina is used.

セラミックフィルタの製造方法としては、例えば、両端を封止した多孔質筒状の基材を原料溶液に浸漬し、基材の外周面にセラミック分離膜の膜前駆体(ゼオライトの種結晶やアルミナ等のセラミック微粒子)をコーティングし、この膜前駆体からセラミック分離膜(ゼオライト膜やセラミック多孔質膜)を成膜する手法が開示されている(例えば、特許文献1等参照)。   As a method for producing a ceramic filter, for example, a porous cylindrical substrate with both ends sealed is immersed in a raw material solution, and a membrane precursor of a ceramic separation membrane (zeolite seed crystal, alumina, etc. A method of coating a ceramic separation membrane (zeolite membrane or ceramic porous membrane) from this membrane precursor is disclosed (for example, see Patent Document 1).

特開2007−90233号公報JP 2007-90233 A

しかしながら、従来の手法では、両端を封止した多孔質筒状の基材を原料溶液中に浸漬するが、このとき、基材が多孔質であるため、原料溶液が基材の外側(外周面側)から内側に浸透し、基材の内側に液溜まりを形成することがある。そのため、原料溶液から基材を引き上げる際に、基材の内側に浸入した原料溶液が基材の外側に逆流することで、基材の外周面にコーティングした膜前駆体の一部が押し上げられて浮いたり、基材内部に残留していた微小な気泡が膜前駆体に移動したりする。これらは、セラミック分離膜の浮き(剥離)・ただれやピンホールといった膜欠陥を引き起こす原因となっていた。   However, in the conventional method, a porous cylindrical base material sealed at both ends is immersed in the raw material solution. At this time, since the base material is porous, the raw material solution is outside of the base material (outer peripheral surface). From the side) to the inside, and a liquid pool may be formed inside the substrate. Therefore, when pulling up the base material from the raw material solution, a part of the film precursor coated on the outer peripheral surface of the base material is pushed up because the raw material solution that has entered inside the base material flows backward to the outside of the base material. It floats or minute bubbles remaining inside the substrate move to the film precursor. These were the causes of membrane defects such as floating (peeling), dripping and pinholes in the ceramic separation membrane.

本発明は、かかる背景に鑑みてなされたものであり、セラミック分離膜の成膜精度を高めることができるセラミックフィルタの製造方法を提供しようとするものである。   The present invention has been made in view of such a background, and an object of the present invention is to provide a method for manufacturing a ceramic filter capable of increasing the film formation accuracy of a ceramic separation membrane.

本発明のセラミックフィルタの製造方法は、多孔質筒状の基材の外周面にセラミック分離膜を形成してなるセラミックフィルタの製造方法であって、前記基材の内側に、弾性を有する弾性部材を配置する弾性部材配置工程と、前記セラミック分離膜の原料を含む原料溶液に、前記弾性部材を内側に配置した前記基材を浸漬し、該基材の前記外周面における膜形成領域に膜前駆体を形成する膜前駆体形成工程と、前記基材の前記外周面の前記膜形成領域に形成された前記膜前駆体から前記セラミック分離膜を成膜する成膜工程とを有し、前記弾性部材配置工程では、少なくとも、前記基材の前記外周面の前記膜形成領域に対向する前記基材の内周面の対向領域に、前記弾性部材を配置することを特徴とする。   The method for producing a ceramic filter of the present invention is a method for producing a ceramic filter in which a ceramic separation membrane is formed on the outer peripheral surface of a porous cylindrical substrate, and an elastic member having elasticity inside the substrate. The base material with the elastic member disposed inside is immersed in a raw material solution containing the raw material of the ceramic separation membrane, and a film precursor is formed in the film forming region on the outer peripheral surface of the base material. A film precursor forming step of forming a body, and a film forming step of forming the ceramic separation film from the film precursor formed in the film forming region of the outer peripheral surface of the base material, and the elastic In the member disposing step, the elastic member is disposed at least in a region facing the inner peripheral surface of the base material facing the film forming region on the outer peripheral surface of the base material.

前記のセラミックフィルタの製造方法は、弾性部材配置工程において、基材の内側に弾性部材を配置する。このとき、少なくとも、基材の外周面の膜形成領域に対向する基材の内周面の対向領域に、弾性部材を接触させて配置する。そのため、原料溶液に基材を浸漬した際に、原料溶液が基材の内側に浸入することを弾性部材によって抑制できる。したがって、浸漬した基材を原料溶液から引き上げる際に、基材の内側に浸入した原料溶液が基材の内周面の対向領域(膜前駆体を形成する膜形成領域に対向する領域)から基材の外側に逆流することを弾性部材によって抑制できる。   In the method for producing a ceramic filter, the elastic member is arranged inside the base material in the elastic member arranging step. At this time, the elastic member is placed in contact with at least the facing region of the inner peripheral surface of the base material facing the film forming region of the outer peripheral surface of the base material. Therefore, when the base material is immersed in the raw material solution, the elastic member can suppress the raw material solution from entering the inside of the base material. Therefore, when the soaked substrate is pulled up from the raw material solution, the raw material solution that has entered the inside of the base material starts from the opposing region (region facing the film forming region for forming the film precursor) on the inner peripheral surface of the base material. Backflow to the outside of the material can be suppressed by the elastic member.

これにより、基材の引き上げ時に基材の内側から外側に向かって逆流する原料溶液によって、基材の外周面に形成した膜前駆体が押し上げられて浮いたり、基材内部に残留する微小な気泡が膜前駆体に移動したりすることを抑制できる。そして、膜前駆体に基づいて成膜するセラミック分離膜の浮き(剥離)・ただれやピンホールといった膜欠陥の発生を抑制することができる。その結果、基材の外周面にセラミック分離膜を精度良く成膜することができる。   As a result, the film precursor formed on the outer peripheral surface of the base material is pushed up by the raw material solution that flows backward from the inside to the outside of the base material when the base material is pulled up, and the fine bubbles remaining inside the base material Can be prevented from moving to the film precursor. And the generation | occurrence | production of the film | membrane defects, such as a float (peeling), dripping, and a pinhole, of the ceramic separation film formed into a film based on a film | membrane precursor can be suppressed. As a result, the ceramic separation membrane can be accurately formed on the outer peripheral surface of the substrate.

このように、本発明によれば、セラミック分離膜の成膜精度を高めることができるセラミックフィルタの製造方法を提供することができる。すなわち、膜欠陥の無い、高品質のセラミック分離膜を備えたセラミックフィルタを得ることができる。   Thus, according to this invention, the manufacturing method of the ceramic filter which can raise the film-forming precision of a ceramic separation membrane can be provided. That is, a ceramic filter provided with a high-quality ceramic separation membrane free of membrane defects can be obtained.

ここで、前記のセラミックフィルタの製造方法において、前記弾性部材配置工程では、前記基材の前記内周面全体に、前記弾性部材を配置してもよい。この場合には、原料溶液の基材内側への浸入、原料溶液の基材内側からの逆流を弾性部材によって抑制する効果を高めることができる。   Here, in the method for producing a ceramic filter, in the elastic member arranging step, the elastic member may be arranged on the entire inner peripheral surface of the base material. In this case, it is possible to enhance the effect of suppressing the penetration of the raw material solution into the base material and the back flow of the raw material solution from the base material by the elastic member.

また、前記基材の内側に配置する前の前記弾性部材の外径は、前記基材の内径よりも大きいことが好ましい。この場合には、弾性部材配置工程では、基材の内周面(対向領域)に対して弾性部材が密着して配置されることとなる。これにより、原料溶液の基材内側への浸入や原料溶液の基材内側からの逆流を弾性部材によって抑制する効果を高めることができる。なお、弾性部材の外径は、基材を損傷させることなく、基材の内側に配置できる程度の大きさに設定すればよい。   Moreover, it is preferable that the outer diameter of the said elastic member before arrange | positioning inside the said base material is larger than the internal diameter of the said base material. In this case, in the elastic member arranging step, the elastic member is arranged in close contact with the inner peripheral surface (opposed region) of the base material. Thereby, the effect which suppresses the penetration | invasion of the raw material solution to the base material inside and the backflow from the base material inside of the raw material solution by an elastic member can be heightened. In addition, what is necessary is just to set the outer diameter of an elastic member to the magnitude | size which can be arrange | positioned inside a base material, without damaging a base material.

また、前記膜前駆体形成工程の後、前記基材の内側に前記弾性部材を配置した状態で、前記膜前駆体を乾燥させる乾燥工程を行い、該乾燥工程の後、前記基材の内側から前記弾性部材を除去することが好ましい。すなわち、乾燥前の膜前駆体は、流動性等を有する場合がある。したがって、基材と膜前駆体との両方を乾燥させた後に弾性部材を除去することで、膜前駆体を乾燥させる前に、つまり膜前駆体が流動性等を有する状態で弾性部材を除去する場合に比べ、弾性部材の除去時に膜前駆体を傷つける心配がない。これにより、基材の外周面に膜前駆体を精度良く形成することができ、セラミック分離膜の成膜精度を高めることができる。   In addition, after the film precursor forming step, a drying step of drying the film precursor is performed in a state where the elastic member is disposed inside the base material. After the drying step, from the inside of the base material It is preferable to remove the elastic member. That is, the film precursor before drying may have fluidity and the like. Therefore, by removing the elastic member after drying both the base material and the film precursor, the elastic member is removed before the film precursor is dried, that is, in a state where the film precursor has fluidity and the like. Compared to the case, there is no fear of damaging the film precursor when removing the elastic member. Thereby, a membrane precursor can be formed with high accuracy on the outer peripheral surface of the substrate, and the film formation accuracy of the ceramic separation membrane can be increased.

また、前記弾性部材を構成する材料としては、例えば、弾力性・柔軟性に優れた高分子材料が適している。また、前記弾性部材として要求される特性としては、本発明の効果を阻害しないように、原料溶液に溶解しないこと、膨潤・吸水しないこと等が挙げられる。弾性部材が原料溶液に溶出すると、原料溶液の成分が変化する可能性があるため、好ましくない。また、弾性部材が膨潤・吸水すると、基材内部に浸透する原料溶液の量が個々の基材で異なり、セラミック分離膜の膜厚ばらつきが大きくなるため、好ましくない。   In addition, as a material constituting the elastic member, for example, a polymer material excellent in elasticity and flexibility is suitable. Further, the characteristics required for the elastic member include not dissolving in the raw material solution and not swelling / water absorption so as not to hinder the effects of the present invention. If the elastic member elutes into the raw material solution, the components of the raw material solution may change, which is not preferable. In addition, when the elastic member swells and absorbs water, the amount of the raw material solution penetrating into the base material differs depending on the individual base material, and the film thickness variation of the ceramic separation membrane increases, which is not preferable.

原料溶液の溶媒が水である場合、弾性部材を構成する高分子材料としては、例えば、シリコンゴム、シリコンスポンジ、シリコンチューブ、ウレタンゴム、ウレタンスポンジ等が挙げられる。また、ゴム風船を用いることもできる。この場合には、基材の内側にゴム風船を配置し、これを膨らませることで基材の内側に弾性部材を配置することができる。   When the solvent of the raw material solution is water, examples of the polymer material constituting the elastic member include silicon rubber, silicon sponge, silicon tube, urethane rubber, and urethane sponge. A rubber balloon can also be used. In this case, an elastic member can be arrange | positioned inside a base material by arrange | positioning a rubber balloon inside a base material and inflating this.

また、前記基材を構成する材料としては、例えば、アルミナ、チタニア、ジルコニア、シリカ、窒化ケイ素、炭化ケイ素、無機系結合材等のセラミック材料を用いることができる。無機系結合材とは、例えば、ガラスフリット、カオリン、タルク(長石、ケイ石)等をいう。   Moreover, as a material which comprises the said base material, ceramic materials, such as an alumina, a titania, a zirconia, a silica, a silicon nitride, a silicon carbide, an inorganic type binder, can be used, for example. Examples of the inorganic binder include glass frit, kaolin, talc (feldspar, quartzite) and the like.

また、前記基材は、前述した材料からなる支持体のみで構成されていてもよいし、例えば、支持体の外周面にセラミック分離膜の密着性を高めるための中間膜(中間層)等を形成して構成されていてもよい。また、前記基材の気孔径、気孔率等は、特に限定されず、用途等に応じて適宜設定することができる。   Further, the base material may be constituted only by a support made of the above-mentioned material, for example, an intermediate film (intermediate layer) for improving the adhesion of the ceramic separation membrane on the outer peripheral surface of the support. It may be formed and configured. Moreover, the pore diameter, porosity, etc. of the base material are not particularly limited, and can be appropriately set according to the application.

また、前記セラミック分離膜としては、例えば、アルミナ、チタニア、ジルコニア、シリカ、窒化ケイ素、炭化ケイ素等のセラミック微粒子を焼成してなるセラミック多孔質膜や、ゼオライト膜等を用いることができる。   Further, as the ceramic separation membrane, for example, a ceramic porous membrane formed by firing ceramic fine particles such as alumina, titania, zirconia, silica, silicon nitride, silicon carbide, a zeolite membrane, or the like can be used.

また、前記セラミック分離膜としてセラミック多孔質膜を用いた場合、その気孔径、気孔率、膜厚等は、特に限定されず、用途等に応じて適宜設定することができる。気孔径や気孔率は、原料溶液中に含まれるセラミック分離膜の原料の粒径等により制御することができ、膜厚は、原料溶液中の原料濃度や成膜回数等により制御することができる。   Further, when a ceramic porous membrane is used as the ceramic separation membrane, its pore diameter, porosity, film thickness and the like are not particularly limited, and can be appropriately set according to applications and the like. The pore diameter and porosity can be controlled by the particle size of the raw material of the ceramic separation membrane contained in the raw material solution, and the film thickness can be controlled by the raw material concentration in the raw material solution, the number of film formations, etc. .

実施形態1において、(a)はセラミックフィルタを示す斜視図であり、(b)はセラミックフィルタの軸方向断面を示す断面図である。In Embodiment 1, (a) is a perspective view which shows a ceramic filter, (b) is sectional drawing which shows the axial direction cross section of a ceramic filter. 実施形態1において、(a)は基材を示す斜視図であり、(b)は基材の軸方向断面を示す断面図である。In Embodiment 1, (a) is a perspective view which shows a base material, (b) is sectional drawing which shows the axial direction cross section of a base material. 実施形態1において、基材の内側に弾性部材を配置した状態を示す断面説明図である。In Embodiment 1, it is sectional explanatory drawing which shows the state which has arrange | positioned the elastic member inside the base material. 実施形態1において、原料溶液に弾性部材を内側に配置した基材を浸漬した状態を示す説明図である。In Embodiment 1, it is explanatory drawing which shows the state which immersed the base material which has arrange | positioned the elastic member inside the raw material solution. 実施形態1において、基材の外周面の膜形成領域に膜前駆体を形成した状態を示す断面説明図である。In Embodiment 1, it is sectional explanatory drawing which shows the state which formed the film | membrane precursor in the film | membrane formation area of the outer peripheral surface of a base material. 実施形態2において、基材の内側に弾性部材を配置した状態を示す断面説明図である。In Embodiment 2, it is sectional explanatory drawing which shows the state which has arrange | positioned the elastic member inside the base material. その他の実施形態において、(a)は基材を示す斜視図であり、(b)はセラミックフィルタを示す斜視図である。In other embodiment, (a) is a perspective view which shows a base material, (b) is a perspective view which shows a ceramic filter. その他の実施形態において、(a)は基材を示す斜視図であり、(b)は基材の軸方向断面を示す断面図である。In other embodiment, (a) is a perspective view which shows a base material, (b) is sectional drawing which shows the axial cross section of a base material. その他の実施形態において、(a)及び(b)は基材の内側に弾性部材を配置した状態を示す断面説明図である。In other embodiment, (a) and (b) are sectional explanatory drawings which show the state which has arrange | positioned the elastic member inside the base material.

本発明の実施形態について、図面を用いて説明する。
(実施形態1)
まず、本実施形態のセラミックフィルタの製造方法により製造されるセラミックフィルタについて説明する。
Embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
First, the ceramic filter manufactured by the manufacturing method of the ceramic filter of this embodiment is demonstrated.

図1(a)、(b)に示すように、セラミックフィルタ1は、多孔質筒状の基材2と、基材2の外周面21に形成されたセラミック分離膜3とを備えている。円筒状の基材2は、多孔質のアルミナからなる支持体である。基材2は、外径が14mm、内径が10mm、全長が200mmである。セラミック分離膜3は、アルミナからなるセラミック多孔質膜である。セラミック分離膜3の膜厚は、60μmである。   As shown in FIGS. 1A and 1B, the ceramic filter 1 includes a porous cylindrical substrate 2 and a ceramic separation membrane 3 formed on the outer peripheral surface 21 of the substrate 2. The cylindrical substrate 2 is a support made of porous alumina. The base material 2 has an outer diameter of 14 mm, an inner diameter of 10 mm, and an overall length of 200 mm. The ceramic separation membrane 3 is a ceramic porous membrane made of alumina. The film thickness of the ceramic separation membrane 3 is 60 μm.

次に、本実施形態のセラミックフィルタの製造方法について説明する。
図2〜図5に示すように、本実施形態のセラミックフィルタの製造方法は、基材2の内側に、弾性を有する弾性部材4を配置する弾性部材配置工程と、セラミック分離膜3の原料を含む原料溶液5に、弾性部材4を内側に配置した基材2を浸漬し、基材2の外周面21における膜形成領域211に膜前駆体30を形成する膜前駆体形成工程と、基材2の外周面21の膜形成領域211に形成された膜前駆体30からセラミック分離膜3を成膜する成膜工程とを有している。そして、弾性部材配置工程では、少なくとも、基材2の外周面21の膜形成領域211に対向する基材2の内周面22の対向領域221に、弾性部材4を配置する。以下、これを詳説する。
Next, the manufacturing method of the ceramic filter of this embodiment is demonstrated.
As shown in FIGS. 2 to 5, the ceramic filter manufacturing method of the present embodiment includes an elastic member arranging step of arranging an elastic member 4 having elasticity inside the base material 2, and a raw material for the ceramic separation membrane 3. A film precursor forming step of immersing the base material 2 in which the elastic member 4 is disposed inside the raw material solution 5 to form the film precursor 30 in the film forming region 211 on the outer peripheral surface 21 of the base material 2; A film forming step of forming the ceramic separation film 3 from the film precursor 30 formed in the film forming region 211 on the outer peripheral surface 21 of the second outer peripheral surface 21. In the elastic member arranging step, the elastic member 4 is arranged at least in the facing region 221 of the inner peripheral surface 22 of the base material 2 that faces the film forming region 211 of the outer peripheral surface 21 of the base material 2. This will be described in detail below.

まず、セラミックフィルタ1(図1)を製造するに当たって、図2に示すように、多孔質円筒状の基材2を準備した。具体的には、アルミナ:100重量部、メチルセルロース:10重量部、水:25重量部、潤滑剤:5重量部をミキサーで混合・混練し、押出成形用坏土を得た。そして、押出成形機を用いて、外径14mm、内径10mm、全長300mmの円筒体を押出成形し、ローラー回転乾燥機で乾燥させ、焼成前の円筒状成形体を得た。   First, when manufacturing the ceramic filter 1 (FIG. 1), as shown in FIG. 2, the porous cylindrical base material 2 was prepared. Specifically, 100 parts by weight of alumina, 10 parts by weight of methyl cellulose, 25 parts by weight of water, and 5 parts by weight of a lubricant were mixed and kneaded with a mixer to obtain a clay for extrusion molding. Then, a cylindrical body having an outer diameter of 14 mm, an inner diameter of 10 mm, and a total length of 300 mm was extruded using an extrusion molding machine and dried by a roller rotary dryer to obtain a cylindrical molded body before firing.

得られた円筒状成形体を大気雰囲気中、1600℃、3時間の条件で焼成し、円筒状焼成体を得た。その後、円筒状焼成体の両端部を切除し、研磨を行った。これにより、図2(a)、(b)に示すように、多孔質のアルミナセラミックからなる全長200mmの円筒状の基材2を得た。本実施形態では、同図に示すように、基材2の外周面21全体がセラミック分離膜3(図1)を形成する膜形成領域211である。   The obtained cylindrical molded body was fired under conditions of 1600 ° C. and 3 hours in an air atmosphere to obtain a cylindrical fired body. Thereafter, both ends of the cylindrical fired body were excised and polished. As a result, as shown in FIGS. 2A and 2B, a cylindrical substrate 2 having a total length of 200 mm made of porous alumina ceramic was obtained. In the present embodiment, as shown in the figure, the entire outer peripheral surface 21 of the substrate 2 is a film forming region 211 that forms the ceramic separation membrane 3 (FIG. 1).

次いで、図3に示すように、弾性部材配置工程を行った。具体的には、多孔質円筒状の基材2の内側(内周面22側)に、外径12mmの円柱状のシリコンスポンジからなる弾性部材4を挿入配置した。そして、基材2の内周面22の対向領域221に、弾性部材4を接触させて配置した。本実施形態では、基材2の内側に配置する前(弾性部材配置工程前)の弾性部材4の外径は、基材2の内径よりも大きい。また、弾性部材4の全長は、基材2の全長よりも長い。   Subsequently, as shown in FIG. 3, the elastic member arrangement | positioning process was performed. Specifically, the elastic member 4 made of a cylindrical silicon sponge having an outer diameter of 12 mm was inserted and disposed inside the porous cylindrical base material 2 (inner peripheral surface 22 side). Then, the elastic member 4 is disposed in contact with the facing region 221 of the inner peripheral surface 22 of the base material 2. In the present embodiment, the outer diameter of the elastic member 4 before being arranged inside the base material 2 (before the elastic member arranging step) is larger than the inner diameter of the base material 2. The total length of the elastic member 4 is longer than the total length of the substrate 2.

また、基材2の内側に挿入配置された弾性部材4の外周面41は、基材2の内周面22の対向領域221に密着している。なお、対向領域221とは、基材2の外周面21の膜形成領域211に対して径方向に対向する基材2の内周面22の領域のことである。本実施形態では、基材2の外周面21全体が膜形成領域211であるため、基材2の内周面22全体が対向領域221である。また、弾性部材4の両端部は、基材2の両端から外側に飛び出している。   Further, the outer peripheral surface 41 of the elastic member 4 inserted and arranged inside the base material 2 is in close contact with the facing region 221 of the inner peripheral surface 22 of the base material 2. Note that the facing region 221 is a region of the inner peripheral surface 22 of the base material 2 that faces the film forming region 211 of the outer peripheral surface 21 of the base material 2 in the radial direction. In the present embodiment, since the entire outer peripheral surface 21 of the substrate 2 is the film forming region 211, the entire inner peripheral surface 22 of the substrate 2 is the opposing region 221. Further, both end portions of the elastic member 4 protrude outward from both ends of the base material 2.

次いで、図4に示すように、膜前駆体形成工程を行った。具体的には、原料溶液5に、弾性部材4を内側に配置した基材2を浸漬した。なお、原料溶液5は、粒径0.35μmのアルミナ:100重量部、ポリアクリル酸エステル:1.5重量部、ポリアクリル酸系有機バインダ:20重量部、水:200重量部を混合して調製した。基材2の下降速度は1mm/秒とした。そして、基材2が完全に原料溶液5に浸かった状態で10分間保持した。その後、引き上げ速度1mm/秒で基材2を原料溶液5から引き上げた。   Next, as shown in FIG. 4, a film precursor forming step was performed. Specifically, the base material 2 with the elastic member 4 disposed inside was immersed in the raw material solution 5. The raw material solution 5 was prepared by mixing 100 parts by weight of alumina having a particle size of 0.35 μm, 1.5 parts by weight of polyacrylate ester, 20 parts by weight of a polyacrylic organic binder, and 200 parts by weight of water. Prepared. The descending speed of the base material 2 was 1 mm / second. And it hold | maintained for 10 minutes in the state in which the base material 2 was immersed in the raw material solution 5 completely. Then, the base material 2 was pulled up from the raw material solution 5 at a pulling rate of 1 mm / second.

これにより、図5に示すように、基材2の外周面21の膜形成領域211(外周面21全体)に膜前駆体30をコーティングした。膜前駆体30は、基材2の外周面21上に原料溶液5中のアルミナ微粒子が堆積して形成された焼き付け前のセラミック多孔質膜である。   Thereby, as shown in FIG. 5, the film precursor 30 was coated on the film formation region 211 (the entire outer peripheral surface 21) of the outer peripheral surface 21 of the substrate 2. The film precursor 30 is a ceramic porous film before baking formed by depositing alumina fine particles in the raw material solution 5 on the outer peripheral surface 21 of the substrate 2.

次いで、乾燥工程を行った。具体的には、基材2の内側に弾性部材4を配置した状態(図5に示す状態)で、膜前駆体30を室温で24時間乾燥させた。その後、基材2の内側から弾性部材4を引き抜いて除去した。なお、乾燥工程における乾燥温度は、原料溶液5の溶媒(本実施形態では水)の沸点未満にすることが好ましい。沸点以上の温度で乾燥させると、溶媒の突沸により膜前駆体30が剥がれる可能性があるからである。   Subsequently, the drying process was performed. Specifically, the film precursor 30 was dried at room temperature for 24 hours in a state where the elastic member 4 was disposed inside the substrate 2 (state shown in FIG. 5). Thereafter, the elastic member 4 was pulled out from the inside of the substrate 2 and removed. In addition, it is preferable that the drying temperature in a drying process shall be less than the boiling point of the solvent of this raw material solution 5 (this embodiment water). This is because if the film is dried at a temperature equal to or higher than the boiling point, the film precursor 30 may be peeled off due to bumping of the solvent.

次いで、成膜工程を行った。具体的には、膜前駆体30が形成された基材2を大気雰囲気中、1400℃、2時間の条件で焼成し、膜前駆体30の焼き付けを行った。なお、焼き付け温度は、セラミック材料により異なるが、通常1000〜1600℃程度である。これにより、図1に示すように、基材2の外周面21全体にセラミック分離膜3を成膜し、セラミックフィルタ1を得た。   Next, a film forming process was performed. Specifically, the base material 2 on which the film precursor 30 was formed was baked under conditions of 1400 ° C. for 2 hours in the air atmosphere, and the film precursor 30 was baked. In addition, although baking temperature changes with ceramic materials, it is about 1000-1600 degreeC normally. Thereby, as shown in FIG. 1, the ceramic separation membrane 3 was formed on the entire outer peripheral surface 21 of the substrate 2, and the ceramic filter 1 was obtained.

次に、本実施形態における作用効果について説明する。
本実施形態のセラミックフィルタの製造方法は、弾性部材配置工程において、基材2の内側に弾性部材4を配置する。このとき、基材2の外周面21の膜形成領域211に対向する基材2の内周面22の対向領域221に、弾性部材4を接触させて配置する。そのため、原料溶液5に基材2を浸漬した際に、原料溶液5が基材2の内側に浸入することを弾性部材4によって抑制できる。したがって、浸漬した基材2を原料溶液5から引き上げる際に、基材2の内側に浸入した原料溶液5が基材2の内周面22の対向領域221(膜前駆体30を形成する膜形成領域211に対向する領域)から基材2の外側に逆流することを弾性部材4によって抑制できる。
Next, the function and effect of this embodiment will be described.
In the method for producing a ceramic filter of the present embodiment, the elastic member 4 is arranged inside the base material 2 in the elastic member arranging step. At this time, the elastic member 4 is placed in contact with the facing region 221 of the inner peripheral surface 22 of the base material 2 that faces the film forming region 211 of the outer peripheral surface 21 of the base material 2. Therefore, when the base material 2 is immersed in the raw material solution 5, the elastic member 4 can suppress the raw material solution 5 from entering the inside of the base material 2. Therefore, when the immersed base material 2 is pulled up from the raw material solution 5, the raw material solution 5 that has entered the inside of the base material 2 forms the opposing region 221 (film formation for forming the film precursor 30) on the inner peripheral surface 22 of the base material 2. The elastic member 4 can suppress backflow from the region 211 to the outside of the substrate 2.

これにより、基材2の引き上げ時に基材2の内側から外側に向かって逆流する原料溶液5によって、基材2の外周面21に形成した膜前駆体30が押し上げられて浮いたり、基材2内部に残留する微小な気泡が膜前駆体30に移動したりすることを抑制できる。そして、膜前駆体30に基づいて成膜するセラミック分離膜3の浮き(剥離)・ただれやピンホールといった膜欠陥の発生を抑制することができる。その結果、基材2の外周面21にセラミック分離膜3を精度良く成膜することができる。   Thereby, the film precursor 30 formed on the outer peripheral surface 21 of the base material 2 is pushed up and floats by the raw material solution 5 that flows backward from the inside to the outside of the base material 2 when the base material 2 is pulled up. It is possible to suppress the minute bubbles remaining inside from moving to the film precursor 30. And generation | occurrence | production of film | membrane defects, such as a float (peeling), dripping, and a pinhole, of the ceramic separation film 3 formed into a film based on the film | membrane precursor 30 can be suppressed. As a result, the ceramic separation membrane 3 can be accurately formed on the outer peripheral surface 21 of the substrate 2.

また、本実施形態において、弾性部材配置工程では、基材2の内周面22全体に、弾性部材4を配置する。そのため、原料溶液5の基材2内側への浸入、原料溶液5の基材2内側からの逆流を弾性部材4によって抑制する効果を高めることができる。また、弾性部材4の両端部が基材2の両端から外側に飛び出していることから、基材2を原料溶液5に浸漬する際の作業性を向上させることができる。   Moreover, in this embodiment, the elastic member 4 is arrange | positioned in the whole inner peripheral surface 22 of the base material 2 at an elastic member arrangement | positioning process. Therefore, the elastic member 4 can enhance the effect of suppressing the intrusion of the raw material solution 5 into the base material 2 and the backflow of the raw material solution 5 from the base material 2 inside. Further, since both end portions of the elastic member 4 protrude outward from both ends of the base material 2, workability when the base material 2 is immersed in the raw material solution 5 can be improved.

また、基材2の内側に配置する前の弾性部材4の外径は、基材2の内径よりも大きい。そのため、弾性部材配置工程では、基材2の内周面22(対向領域221)に対して弾性部材4が密着して配置されることとなる。これにより、原料溶液5の基材2内側への浸入や原料溶液5の基材2内側からの逆流を弾性部材4によって抑制する効果を高めることができる。   Further, the outer diameter of the elastic member 4 before being arranged inside the base material 2 is larger than the inner diameter of the base material 2. Therefore, in the elastic member arranging step, the elastic member 4 is arranged in close contact with the inner peripheral surface 22 (opposing region 221) of the base material 2. Thereby, the effect which suppresses the penetration | invasion of the raw material solution 5 to the base material 2 inner side and the backflow from the base material 2 inner side of the raw material solution 5 by the elastic member 4 can be heightened.

また、膜前駆体形成工程の後、基材2の内側に弾性部材4を配置した状態で、膜前駆体30を乾燥させる乾燥工程を行い、乾燥工程の後、基材2の内側から弾性部材4を除去する。すなわち、乾燥前の膜前駆体30は、流動性等を有する場合がある。したがって、基材2と膜前駆体30との両方を乾燥させた後に弾性部材4を除去することで、膜前駆体30を乾燥させる前に、つまり膜前駆体30が流動性等を有する状態で弾性部材4を除去する場合に比べ、弾性部材4の除去時に膜前駆体30を傷つける心配がない。これにより、基材2の外周面21に膜前駆体30を精度良く形成することができ、セラミック分離膜3の成膜精度を高めることができる。   In addition, after the film precursor forming step, a drying step of drying the film precursor 30 is performed in a state where the elastic member 4 is disposed inside the base material 2. After the drying step, the elastic member is formed from the inside of the base material 2. 4 is removed. That is, the film precursor 30 before drying may have fluidity and the like. Therefore, by removing the elastic member 4 after drying both the base material 2 and the film precursor 30, before the film precursor 30 is dried, that is, in a state where the film precursor 30 has fluidity and the like. Compared to the case where the elastic member 4 is removed, there is no fear of damaging the film precursor 30 when the elastic member 4 is removed. Thereby, the film | membrane precursor 30 can be accurately formed in the outer peripheral surface 21 of the base material 2, and the film-forming precision of the ceramic separation membrane 3 can be improved.

このように、本実施形態によれば、セラミック分離膜3の成膜精度を高めることができるセラミックフィルタの製造方法を提供することができる。すなわち、膜欠陥の無い、高品質のセラミック分離膜3を備えたセラミックフィルタ1を得ることができる。   Thus, according to the present embodiment, it is possible to provide a method for manufacturing a ceramic filter that can increase the film formation accuracy of the ceramic separation membrane 3. That is, the ceramic filter 1 including the high-quality ceramic separation membrane 3 free from membrane defects can be obtained.

なお、本実施形態では、原料溶液5に含まれる溶媒として、取り扱いの容易性から水を使用したが、基材2に対する濡れ性を向上させるため、原料溶液5に有機系溶媒を混合してもよい。   In this embodiment, water is used as the solvent contained in the raw material solution 5 for ease of handling. However, in order to improve the wettability with respect to the base material 2, an organic solvent may be mixed with the raw material solution 5. Good.

また、本実施形態では、原料溶液5に基材2を浸漬した後、引き上げ速度1mm/秒で基材2を原料溶液5から引き上げたが、基材2の引き上げ速度は、0.1〜30mm/秒の範囲内に設定することが好ましく、0.5〜10mm/秒の範囲内に設定することがより好ましい。引き上げ速度が0.1mm/秒未満の場合には、処理時間が長くなるおそれがある。一方、引き上げ速度が30mm/秒を超える場合には、原料溶液5中の気泡を巻き込んでしまうおそれがある。   Moreover, in this embodiment, after immersing the base material 2 in the raw material solution 5, the base material 2 was pulled up from the raw material solution 5 at a pulling speed of 1 mm / sec. The pulling speed of the base material 2 was 0.1 to 30 mm. / Second is preferable, and it is more preferable to set within a range of 0.5 to 10 mm / second. When the pulling rate is less than 0.1 mm / second, the processing time may be long. On the other hand, when the pulling speed exceeds 30 mm / sec, there is a possibility that bubbles in the raw material solution 5 are involved.

また、本実施形態では、1回の成膜工程で所望の膜厚のセラミック分離膜3を成膜したが、例えば、1回の成膜工程で所望の膜厚が得られない場合には、成膜工程を複数回行って厚膜化の調整をすることも可能である。この場合、一連の工程(弾性部材配置工程、膜前駆体形成工程及び成膜工程)を複数回繰り返して行うことが好ましい。   Further, in the present embodiment, the ceramic separation film 3 having a desired film thickness is formed in one film forming process. For example, when a desired film thickness cannot be obtained in one film forming process, It is also possible to adjust the thickening by performing the film forming process a plurality of times. In this case, it is preferable to repeat a series of steps (an elastic member arranging step, a film precursor forming step, and a film forming step) a plurality of times.

特に、膜前駆体となるセラミック多孔質膜を形成するたびにそのセラミック多孔質膜を焼き付けることが好ましい。セラミック多孔質膜の焼き付けをせずに、さらにその上にセラミック多孔質膜を形成しようとすると、先に形成したセラミック多孔質膜が原料溶液に溶解し、膜表面が不均一となり、膜欠陥を引き起こす原因となる可能性があるからである。また、基材2の軸方向において、セラミック分離膜3の膜厚ばらつきを抑えるために、基材2を上下に反転させながら一連の工程を複数回繰り返して行うことが好ましい。   In particular, it is preferable that the ceramic porous film be baked each time a ceramic porous film serving as a film precursor is formed. If an attempt is made to form a ceramic porous film on the ceramic porous film without further baking, the previously formed ceramic porous film is dissolved in the raw material solution, the film surface becomes uneven, and film defects are caused. This is because it may cause it. Further, in order to suppress variations in the film thickness of the ceramic separation membrane 3 in the axial direction of the substrate 2, it is preferable to repeat a series of steps a plurality of times while the substrate 2 is turned upside down.

(実施形態2)
本実施形態は、セラミックフィルタの製造方法において、弾性部材の種類・形状を変更した例である。
(Embodiment 2)
The present embodiment is an example in which the type and shape of the elastic member are changed in the ceramic filter manufacturing method.

図6に示すように、本実施形態のセラミックフィルタの製造方法において、弾性部材配置工程では、基材2の内側に、外径10.5mmの円筒状のシリコンチューブからなる弾性部材4を挿入配置した。その他の基本的な製造方法は、実施形態1と同様である。   As shown in FIG. 6, in the ceramic filter manufacturing method of the present embodiment, in the elastic member arranging step, the elastic member 4 made of a cylindrical silicon tube having an outer diameter of 10.5 mm is inserted and arranged inside the substrate 2. did. Other basic manufacturing methods are the same as those in the first embodiment.

本実施形態の場合にも、実施形態1と同様に、基材2の外周面21にセラミック分離膜3を精度良く成膜することができる。そして、セラミック分離膜3における膜欠陥の発生を抑制することができる。すなわち、膜欠陥の無い、高品質のセラミック分離膜3を備えたセラミックフィルタ1を得ることができる。その他の基本的な作用効果は、実施形態1と同様である。   Also in the case of the present embodiment, the ceramic separation membrane 3 can be accurately formed on the outer peripheral surface 21 of the substrate 2 as in the first embodiment. And generation | occurrence | production of the membrane defect in the ceramic separation membrane 3 can be suppressed. That is, the ceramic filter 1 including the high-quality ceramic separation membrane 3 free from membrane defects can be obtained. Other basic functions and effects are the same as those of the first embodiment.

(実験例1)
本実験例は、本発明の実施例であるセラミックフィルタ(実施例1、2)及び比較例であるセラミックフィルタ(比較例1)について、セラミック分離膜(セラミック多孔質膜)を評価したものである。
(Experimental example 1)
In this experimental example, the ceramic separation membrane (ceramic porous membrane) was evaluated for the ceramic filter (Examples 1 and 2) which is an example of the present invention and the ceramic filter (Comparative Example 1) which is a comparative example. .

<実施例1、2のセラミックフィルタの作製>
実施例1のセラミックフィルタは、前述の実施形態1と同様の方法(弾性部材:円柱状のシリコンスポンジ)により作製した。また、実施例2のセラミックフィルタは、前述の実施形態2と同様の方法(弾性部材:円筒状のシリコンチューブ)により作製した。
<Production of Ceramic Filters of Examples 1 and 2>
The ceramic filter of Example 1 was produced by the same method (elastic member: cylindrical silicon sponge) as that of the above-described Embodiment 1. The ceramic filter of Example 2 was produced by the same method (elastic member: cylindrical silicon tube) as in Embodiment 2 described above.

<比較例1のセラミックフィルタの作製>
比較例1のセラミックフィルタは、弾性部材を用いないこと以外は前述の実施形態1、2と同様の方法により作製した。なお、膜前駆体形成工程では、基材に対して封止処理等を施すことにより、原料溶液が基材の軸方向両端開口部から基材の内側に浸入しないようにした。
<Preparation of Ceramic Filter of Comparative Example 1>
The ceramic filter of Comparative Example 1 was produced by the same method as in Embodiments 1 and 2 except that no elastic member was used. In the film precursor formation step, the raw material solution was prevented from entering the inside of the base material from the opening portions at both ends in the axial direction of the base material by performing a sealing treatment or the like on the base material.

<セラミック分離膜の評価>
軸方向両端部を切除して全長150mmとした円筒状のセラミックフィルタに対して、セラミック分離膜(セラミック多孔質膜)の最大孔径及び膜厚を測定した。最大孔径は、バルブポイント法(ASTM F316−03に準拠)によりPoloLux1000(ベネルクス・サイエンティフィック社製)を用いて測定した。また、測定液は、パーフルオロエーテルを主成分とする湿潤液を用いた。なお、実施例1、2及び比較例1のサンプル個体数は5とした。
<Evaluation of ceramic separation membrane>
The maximum pore diameter and film thickness of the ceramic separation membrane (ceramic porous membrane) were measured with respect to a cylindrical ceramic filter having a total length of 150 mm by cutting off both axial ends. The maximum pore size was measured using PoloLux 1000 (Benelux Scientific) according to the valve point method (according to ASTM F316-03). Moreover, the wetting liquid which has perfluoroether as a main component was used for the measuring liquid. The number of samples in Examples 1 and 2 and Comparative Example 1 was 5.

Figure 2015171691
表1にセラミック分離膜の評価結果を示す。
Figure 2015171691
Table 1 shows the evaluation results of the ceramic separation membrane.

同表からわかるように、実施例1、2のセラミックフィルタのセラミック分離膜の最大孔径は、0.2〜0.3μmである。多孔質の基材の貫通孔分布が0.8〜3.1μmであることから、この最大孔径の値は、セラミック分離膜由来の孔径と推測される。   As can be seen from the table, the maximum pore size of the ceramic separation membrane of the ceramic filters of Examples 1 and 2 is 0.2 to 0.3 μm. Since the through-hole distribution of the porous base material is 0.8 to 3.1 μm, the value of the maximum pore diameter is presumed to be the pore diameter derived from the ceramic separation membrane.

一方、比較例1のセラミックフィルタのセラミック分離膜には、最大孔径の値が基材の貫通孔分布と一致するものがある。これは、セラミック分離膜に膜欠陥が発生しており、基材の貫通孔の孔径を検出したものと推測される。   On the other hand, some ceramic separation membranes of the ceramic filter of Comparative Example 1 have a maximum pore diameter value that matches the through-hole distribution of the substrate. This is presumably because a membrane defect has occurred in the ceramic separation membrane, and the hole diameter of the through hole of the base material has been detected.

このように、本発明のセラミックフィルタの製造方法によれば、セラミック分離膜(セラミック多孔質膜)の成膜精度を高め、膜欠陥の発生を抑制することができることがわかった。すなわち、膜欠陥の無い、高品質のセラミック分離膜(セラミック多孔質膜)を備えたセラミックフィルタが得られることがわかった。   Thus, according to the manufacturing method of the ceramic filter of this invention, it turned out that the film-forming precision of a ceramic separation membrane (ceramic porous membrane) can be improved, and generation | occurrence | production of a membrane defect can be suppressed. That is, it was found that a ceramic filter provided with a high-quality ceramic separation membrane (ceramic porous membrane) free from membrane defects was obtained.

(実施形態3)
本実施形態は、セラミックフィルタの製造方法において、セラミック分離膜の種類を変更した例である。以下、前述の図1〜図4を用いて説明する。
(Embodiment 3)
The present embodiment is an example in which the type of ceramic separation membrane is changed in the method for manufacturing a ceramic filter. Hereinafter, description will be made with reference to FIGS.

図1に示すように、本実施形態のセラミックフィルタの製造方法により製造されるセラミックフィルタ1において、セラミック分離膜3は、ゼオライト膜である。その他の基本的な構成は、実施形態1と同様である。   As shown in FIG. 1, in the ceramic filter 1 manufactured by the method for manufacturing a ceramic filter of the present embodiment, the ceramic separation membrane 3 is a zeolite membrane. Other basic configurations are the same as those in the first embodiment.

また、本実施形態のセラミックフィルタの製造方法において、図2に示すように、多孔質円筒状の基材2を準備した。次いで、図3に示すように、弾性部材配置工程を行った。具体的には、多孔質円筒状の基材2の内側に、弾性部材4を挿入配置した。   Moreover, in the method for manufacturing a ceramic filter of the present embodiment, a porous cylindrical base material 2 was prepared as shown in FIG. Subsequently, as shown in FIG. 3, the elastic member arrangement | positioning process was performed. Specifically, the elastic member 4 was inserted and arranged inside the porous cylindrical base material 2.

次いで、図4に示すように、膜前駆体形成工程を行った。具体的には、ゼオライト種結晶を純水に分散させたスラリー状の原料溶液5に、弾性部材4を内側に配置した基材2を所定時間浸漬した後、原料溶液5から引き上げた。これにより、基材2の外周面21の膜形成領域211(外周面21全体)に膜前駆体であるゼオライト種結晶を付着させた。   Next, as shown in FIG. 4, a film precursor forming step was performed. Specifically, the base material 2 with the elastic member 4 disposed inside was immersed in a slurry-like raw material solution 5 in which zeolite seed crystals were dispersed in pure water, and then pulled up from the raw material solution 5. Thereby, the zeolite seed crystal as the film precursor was adhered to the film forming region 211 (the entire outer peripheral surface 21) of the outer peripheral surface 21 of the base material 2.

次いで、乾燥工程を行った。具体的には、基材2の内側に弾性部材4を配置した状態で、膜前駆体であるゼオライト種結晶を80℃で乾燥させた。その後、基材2の内側から弾性部材4を引き抜いて除去した。   Subsequently, the drying process was performed. Specifically, the zeolite seed crystal as the membrane precursor was dried at 80 ° C. in a state where the elastic member 4 was disposed inside the substrate 2. Thereafter, the elastic member 4 was pulled out from the inside of the substrate 2 and removed.

次いで、成膜工程を行った。具体的には、耐圧容器(図示略)内に入れた所定の合成液に、膜前駆体(ゼオライト種結晶)を付着させた基材2を浸漬した。そして、耐圧容器を150℃の高温乾燥機に静置し、水熱合成を行った。なお、合成液としては、組成を調整して均一化した水溶液、例えば、Si元素源、Al元素源、必要に応じて構造規定剤と呼ばれる有機テンプレートやアルカリ源等を含む水溶液を用いた。   Next, a film forming process was performed. Specifically, the base material 2 on which the film precursor (zeolite seed crystal) was adhered was immersed in a predetermined synthetic solution placed in a pressure vessel (not shown). And the pressure-resistant container was left still in a 150 degreeC high temperature dryer, and hydrothermal synthesis was performed. As the synthesis solution, an aqueous solution having a uniform composition was used, for example, an Si element source, an Al element source, and an aqueous solution containing an organic template or an alkali source called a structure directing agent as necessary.

次いで、耐圧容器を室温まで冷却し、耐圧容器内から基材2を取り出した。そして、基材2を水洗いし、乾燥させた。これにより、図1に示すように、基材2の外周面21全体にセラミック分離膜3(ゼオライト膜)を成膜し、セラミックフィルタ1を得た。その他の基本的な製造方法は、実施形態1と同様である。   Next, the pressure vessel was cooled to room temperature, and the substrate 2 was taken out from the pressure vessel. Then, the substrate 2 was washed with water and dried. Thereby, as shown in FIG. 1, the ceramic separation membrane 3 (zeolite membrane) was formed on the entire outer peripheral surface 21 of the substrate 2, and the ceramic filter 1 was obtained. Other basic manufacturing methods are the same as those in the first embodiment.

本実施形態の場合にも、実施形態1と同様に、基材2の外周面21にセラミック分離膜3(ゼオライト膜)を精度良く成膜することができる。そして、セラミック分離膜3における膜欠陥の発生を抑制することができる。すなわち、膜欠陥の無い、高品質のセラミック分離膜3を備えたセラミックフィルタ1を得ることができる。その他の基本的な作用効果は、実施形態1と同様である。   Also in the case of the present embodiment, the ceramic separation membrane 3 (zeolite membrane) can be accurately formed on the outer peripheral surface 21 of the substrate 2 as in the first embodiment. And generation | occurrence | production of the membrane defect in the ceramic separation membrane 3 can be suppressed. That is, the ceramic filter 1 including the high-quality ceramic separation membrane 3 free from membrane defects can be obtained. Other basic functions and effects are the same as those of the first embodiment.

(実験例2)
本実験例は、本発明の実施例であるセラミックフィルタ(実施例3)及び比較例であるセラミックフィルタ(比較例2)について、セラミック分離膜(ゼオライト膜)を評価したものである。
(Experimental example 2)
In this experimental example, the ceramic separation membrane (zeolite membrane) was evaluated for the ceramic filter (Example 3) as an example of the present invention and the ceramic filter (Comparative Example 2) as a comparative example.

<実施例3のセラミックフィルタの作製>
実施例3のセラミックフィルタは、前述の実施形態3と同様の方法(弾性部材:円柱状のシリコンスポンジ)により作製した。
<Preparation of Ceramic Filter of Example 3>
The ceramic filter of Example 3 was produced by the same method (elastic member: cylindrical silicon sponge) as that of the above-described Embodiment 3.

<比較例2のセラミックフィルタの作製>
比較例2のセラミックフィルタは、弾性部材を用いないこと以外は前述の実施形態3と同様の方法により作製した。なお、膜前駆体形成工程では、基材に対して封止処理等を施すことにより、原料溶液が基材の軸方向両端開口部から基材の内側に浸入しないようにした。
<Preparation of Ceramic Filter of Comparative Example 2>
The ceramic filter of Comparative Example 2 was produced by the same method as in Embodiment 3 except that no elastic member was used. In the film precursor formation step, the raw material solution was prevented from entering the inside of the base material from the opening portions at both ends in the axial direction of the base material by performing a sealing treatment or the like on the base material.

<セラミック分離膜の評価>
作製したセラミックフィルタのセラミック分離膜(ゼオライト膜)に対して、浸透気化分離評価を実施した。浸透気化分離評価は、エタノール90%、水10%の混合液を供給液として、透過側を2kPaまで減圧した場合の透過液側の水の純度を測定することで分離係数を算出し、これを比較した。分離係数は、(透過液の水量/透過液のエタノール量)/(供給液の水量/供給液のエタノール量)の式により求めることができる。
<Evaluation of ceramic separation membrane>
The pervaporation separation evaluation was performed on the ceramic separation membrane (zeolite membrane) of the produced ceramic filter. Permeate vaporization separation evaluation calculates the separation factor by measuring the purity of water on the permeate side when the permeate side is depressurized to 2 kPa using a 90% ethanol and 10% water mixture as the feed liquid. Compared. The separation factor can be obtained from the equation (water amount of permeate / ethanol amount of permeate) / (water amount of feed solution / ethanol amount of feed solution).

前述の浸透気化分離評価を実施したところ、実施例3のセラミック分離膜の分離係数は2200であったのに対し、比較例2のセラミック分離膜の分離係数は150であった。これは、比較例2のセラミック分離膜に膜欠陥が発生しており、エタノールを十分に分離できなかったものと推測される。   When the above-described pervaporation evaluation was performed, the separation factor of the ceramic separation membrane of Example 3 was 2200, whereas the separation factor of the ceramic separation membrane of Comparative Example 2 was 150. This is presumed that a membrane defect occurred in the ceramic separation membrane of Comparative Example 2 and ethanol could not be sufficiently separated.

このように、本発明のセラミックフィルタの製造方法によれば、セラミック分離膜(ゼオライト膜)の成膜精度を高め、膜欠陥の発生を抑制することができることがわかった。すなわち、膜欠陥の無い、高品質のセラミック分離膜(ゼオライト膜)を備えたセラミックフィルタが得られることがわかった。   Thus, according to the manufacturing method of the ceramic filter of this invention, it turned out that the film-forming precision of a ceramic separation membrane (zeolite membrane) can be improved, and generation | occurrence | production of a membrane defect can be suppressed. That is, it was found that a ceramic filter provided with a high-quality ceramic separation membrane (zeolite membrane) free of membrane defects was obtained.

(その他の実施形態)
本発明は、前記実施形態に何ら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
(Other embodiments)
It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the present invention.

(1)前記実施形態では、図2(a)、(b)に示すように、多孔質のアルミナからなる基材2を用いたが、これに限定されるものではなく、例えば、図7(a)に示すように、基材2として、多孔質のアルミナ等のセラミックからなる支持体2aと、その支持体2aの外周面に形成された多孔質の中間膜2bとを有する基材2を用いてもよい。そして、図7(b)に示すように、支持体2a及び中間膜2bにより構成された基材2にセラミック分離膜3を形成したセラミックフィルタ1としてもよい。なお、中間膜2bは、例えば、セラミック分離膜3との密着性を高めるためのものであり、図7(a)のように1層であってもよいし、複数層であってもよい。   (1) In the said embodiment, as shown to FIG. 2 (a), (b), although the base material 2 which consists of porous alumina was used, it is not limited to this, For example, FIG. As shown in a), as the substrate 2, a substrate 2 having a support 2a made of ceramic such as porous alumina, and a porous intermediate film 2b formed on the outer peripheral surface of the support 2a. It may be used. Then, as shown in FIG. 7B, a ceramic filter 1 in which a ceramic separation membrane 3 is formed on a base material 2 constituted by a support 2a and an intermediate membrane 2b may be used. Note that the intermediate film 2b is, for example, for improving the adhesion with the ceramic separation film 3, and may be a single layer as shown in FIG. 7A or a plurality of layers.

(2)前記実施形態では、図2(a)、(b)に示すように、基材2の外周面21全体が膜形成領域211であるが、例えば、図8(a)、(b)に示すように、基材2の外周面21の一部が膜形成領域211であってもよい。同図に示す例では、基材2の外周面21における両端部分を除く部分(点線と点線の間の領域)が膜形成領域211である。   (2) In the embodiment, as shown in FIGS. 2A and 2B, the entire outer peripheral surface 21 of the base material 2 is the film formation region 211. For example, FIG. 8A and FIG. As shown in FIG. 3, a part of the outer peripheral surface 21 of the base material 2 may be the film forming region 211. In the example shown in the figure, the portion (the region between the dotted lines) excluding both end portions on the outer peripheral surface 21 of the base material 2 is the film forming region 211.

また、前記実施形態では、図2(a)、(b)に示すように、基材2の内周面22全体が対向領域221であるが、例えば、図8(a)、(b)に示すように、基材2の内周面22の一部が対向領域221であってもよい。同図に示す例では、基材2の内周面22における両端部分を除く部分(点線と点線の間の領域)が対向領域221である。   Moreover, in the said embodiment, as shown to FIG. 2 (a), (b), although the whole internal peripheral surface 22 of the base material 2 is the opposing area | region 221, for example, to FIG. 8 (a), (b) As shown, a part of the inner peripheral surface 22 of the substrate 2 may be a facing region 221. In the example shown in the figure, a portion (a region between dotted lines) excluding both end portions on the inner peripheral surface 22 of the base material 2 is the facing region 221.

(3)前記実施形態では、弾性部材配置工程において、図3に示すように、少なくとも、基材2の外周面21の膜形成領域211に対向する基材2の内周面22の対向領域221に弾性部材4を配置する。したがって、例えば、図9(a)に示すように、基材2の内周面22の対向領域221のみに弾性部材4を配置してもよいし、図9(b)に示すように、基材2の内周面22の対向領域221及びその外側(点線よりも外側)の領域にまで弾性部材4を配置してもよい。   (3) In the embodiment, in the elastic member arranging step, as shown in FIG. 3, at least the facing region 221 of the inner peripheral surface 22 of the base material 2 that faces the film forming region 211 of the outer peripheral surface 21 of the base material 2. The elastic member 4 is disposed on the surface. Therefore, for example, as shown in FIG. 9 (a), the elastic member 4 may be disposed only in the facing region 221 of the inner peripheral surface 22 of the base member 2, or as shown in FIG. 9 (b). The elastic member 4 may be disposed up to the opposing region 221 of the inner peripheral surface 22 of the material 2 and the region outside (outside the dotted line).

(4)前記実施形態では、弾性部材配置工程において、図3に示すように、基材2の内周面22全体に弾性部材4を配置しているが、例えば、図9(a)に示すように、基材2の内周面22の一部に弾性部材4を配置してもよい。   (4) In the embodiment, in the elastic member arranging step, the elastic member 4 is arranged on the entire inner peripheral surface 22 of the base member 2 as shown in FIG. 3, but for example, as shown in FIG. As described above, the elastic member 4 may be disposed on a part of the inner peripheral surface 22 of the substrate 2.

(5)前記実施形態では、弾性部材配置工程において、図3に示すように、基材2の内側に弾性部材4を配置した状態で、弾性部材4の両端部が基材2の両端から外側に飛び出しているが、例えば、図9(a)、(b)に示すように、弾性部材4の両端部が基材2の両端から外側に飛び出さないようにしてもよい。   (5) In the said embodiment, in the elastic member arrangement | positioning process, as shown in FIG. 3, in the state which has arrange | positioned the elastic member 4 inside the base material 2, both ends of the elastic member 4 are outside from the both ends of the base material 2. For example, as shown in FIGS. 9A and 9B, both end portions of the elastic member 4 may be prevented from protruding outward from both ends of the base material 2.

(6)前記実施形態1では、弾性部材配置工程において、図3に示すように、基材2の内側に、中実のシリコンスポンジからなる弾性部材4を挿入配置している。また、前記実施形態2では、弾性部材配置工程において、図6に示すように、基材2の内側に筒状のシリコンチューブからなる弾性部材4を挿入配置している。すなわち、弾性部材4の形状や構造は、基材2を破損させることなく基材2の内周面22の対向領域221に密着させることができれば、特に限定されるものではなく、前述のように中実や筒状であってもよいし、ゴム風船等のように中空であってもよい。   (6) In the first embodiment, in the elastic member arranging step, as shown in FIG. 3, the elastic member 4 made of a solid silicon sponge is inserted and arranged inside the base material 2. Moreover, in the said Embodiment 2, as shown in FIG. 6, the elastic member 4 which consists of a cylindrical silicon tube is inserted and arrange | positioned inside the base material 2 in the elastic member arrangement | positioning process. That is, the shape and structure of the elastic member 4 are not particularly limited as long as the elastic member 4 can be brought into close contact with the facing region 221 of the inner peripheral surface 22 of the base material 2 without damaging the base material 2. It may be solid or cylindrical, or may be hollow like a rubber balloon.

(7)前記実施形態では、乾燥工程の後、基材2の内側から弾性部材4を除去することとしているが、弾性部材4は、基材2の浸漬時及び引き上げ時に基材2に配置されていればよく、成膜工程時には基材2から除去されていることが好ましい。   (7) In the embodiment, the elastic member 4 is removed from the inside of the base material 2 after the drying step. However, the elastic member 4 is disposed on the base material 2 when the base material 2 is immersed and pulled up. It is sufficient that it is removed from the substrate 2 during the film forming step.

1…セラミックフィルタ
2…基材
21…外周面
211…膜形成領域
22…内周面
221…対向領域
3…セラミック分離膜
30…膜前駆体
4…弾性部材
5…原料溶液
DESCRIPTION OF SYMBOLS 1 ... Ceramic filter 2 ... Base material 21 ... Outer peripheral surface 211 ... Membrane formation area 22 ... Inner peripheral surface 221 ... Opposite area | region 3 ... Ceramic separation membrane 30 ... Membrane precursor 4 ... Elastic member 5 ... Raw material solution

Claims (4)

多孔質筒状の基材の外周面にセラミック分離膜を形成してなるセラミックフィルタの製造方法であって、
前記基材の内側に、弾性を有する弾性部材を配置する弾性部材配置工程と、
前記セラミック分離膜の原料を含む原料溶液に、前記弾性部材を内側に配置した前記基材を浸漬し、該基材の前記外周面における膜形成領域に膜前駆体を形成する膜前駆体形成工程と、
前記基材の前記外周面の前記膜形成領域に形成された前記膜前駆体から前記セラミック分離膜を成膜する成膜工程とを有し、
前記弾性部材配置工程では、少なくとも、前記基材の前記外周面の前記膜形成領域に対向する前記基材の内周面の対向領域に、前記弾性部材を配置することを特徴とするセラミックフィルタの製造方法。
A method for producing a ceramic filter formed by forming a ceramic separation membrane on the outer peripheral surface of a porous cylindrical substrate,
An elastic member arranging step of arranging an elastic member having elasticity inside the base material;
A film precursor forming step of immersing the base material in which the elastic member is disposed in a raw material solution containing the raw material of the ceramic separation membrane, and forming a film precursor in a film forming region on the outer peripheral surface of the base material When,
A film forming step of forming the ceramic separation film from the film precursor formed in the film forming region of the outer peripheral surface of the base material,
In the elastic member disposing step, the elastic member is disposed at least in an opposing region of the inner peripheral surface of the base material that opposes the film forming region of the outer peripheral surface of the base material. Production method.
前記弾性部材配置工程では、前記基材の前記内周面全体に、前記弾性部材を配置することを特徴とする請求項1に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 1, wherein, in the elastic member arranging step, the elastic member is arranged on the entire inner peripheral surface of the base material. 前記基材の内側に配置する前の前記弾性部材の外径は、前記基材の内径よりも大きいことを特徴とする請求項1又は2に記載のセラミックフィルタの製造方法。   3. The method of manufacturing a ceramic filter according to claim 1, wherein an outer diameter of the elastic member before being arranged inside the base material is larger than an inner diameter of the base material. 前記膜前駆体形成工程の後、前記基材の内側に前記弾性部材を配置した状態で、前記膜前駆体を乾燥させる乾燥工程を行い、該乾燥工程の後、前記基材の内側から前記弾性部材を除去することを特徴とする請求項1〜3のいずれか1項に記載のセラミックフィルタの製造方法。   After the film precursor forming step, a drying step of drying the film precursor is performed in a state where the elastic member is disposed on the inner side of the base material. After the drying step, the elasticity is applied from the inner side of the base material. The member is removed, The manufacturing method of the ceramic filter of any one of Claims 1-3 characterized by the above-mentioned.
JP2014048924A 2014-03-12 2014-03-12 Manufacturing method of ceramic filter Expired - Fee Related JP6219753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048924A JP6219753B2 (en) 2014-03-12 2014-03-12 Manufacturing method of ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048924A JP6219753B2 (en) 2014-03-12 2014-03-12 Manufacturing method of ceramic filter

Publications (2)

Publication Number Publication Date
JP2015171691A true JP2015171691A (en) 2015-10-01
JP6219753B2 JP6219753B2 (en) 2017-10-25

Family

ID=54259386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048924A Expired - Fee Related JP6219753B2 (en) 2014-03-12 2014-03-12 Manufacturing method of ceramic filter

Country Status (1)

Country Link
JP (1) JP6219753B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194876A (en) * 1989-01-24 1990-08-01 Nitto Denko Corp Manufacture of double layer tube
JP2007090233A (en) * 2005-09-28 2007-04-12 Bussan Nanotech Research Institute Inc Manufacturing method of zeolite separation membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194876A (en) * 1989-01-24 1990-08-01 Nitto Denko Corp Manufacture of double layer tube
JP2007090233A (en) * 2005-09-28 2007-04-12 Bussan Nanotech Research Institute Inc Manufacturing method of zeolite separation membrane

Also Published As

Publication number Publication date
JP6219753B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP5428014B2 (en) Method for producing zeolite membrane
US20080105613A1 (en) Ceramic filter
KR101425373B1 (en) Asymmetric composite membrane of silicone polymer and preparing method of the same
JP6043337B2 (en) Ceramic separation membrane and dehydration method
CN101528329A (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
WO2011122059A1 (en) Carbon membrane structure and method for producing same
JP6436974B2 (en) Monolith type separation membrane structure and method for producing monolith type separation membrane structure
CN108201794A (en) Water process ceramic separation film using oxidation-treated silicon carbide and preparation method thereof
CN104028108A (en) Method for preparing tubular micro-porous filter membrane
JP2023011761A (en) ceramic membrane filter
JP2004305993A (en) Ceramic honeycomb filter and production method therefor
JPH0295423A (en) Inorgannic film
JP6219753B2 (en) Manufacturing method of ceramic filter
KR101563881B1 (en) Manufacturing method of gas separation membrane with sponge-like structure for improved pressure resistance
JP6363592B2 (en) Structure
JPWO2018179959A1 (en) Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
JP7412510B2 (en) ceramic filter
WO2018180211A1 (en) Method for producing zeolite membrane structure
US10213749B2 (en) Separation membrane structure and method for manufacturing same
JP2017183535A (en) Adsorption member and method of application therefor
KR102416209B1 (en) METHOD FOR MANUFACTURING CERAMIC MEMBRANE FOR WATER TREATMENT USING THE OXIDATION TREATED SiC
RU2650170C1 (en) Method of production a tubular filtering element with a fluoroplast membrane
JPWO2011118252A1 (en) Method for producing silica film
JP6417355B2 (en) Monolith type separation membrane structure
Izzati et al. A morphology studies on effect of a coagulation bath mediums as the phase inversion parameter for poly (Vinylidene Fluoride)(Pvdf) membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6219753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees