JP2015171185A - Power generation member and manufacturing method for the same - Google Patents

Power generation member and manufacturing method for the same Download PDF

Info

Publication number
JP2015171185A
JP2015171185A JP2014042981A JP2014042981A JP2015171185A JP 2015171185 A JP2015171185 A JP 2015171185A JP 2014042981 A JP2014042981 A JP 2014042981A JP 2014042981 A JP2014042981 A JP 2014042981A JP 2015171185 A JP2015171185 A JP 2015171185A
Authority
JP
Japan
Prior art keywords
electrodes
power generation
piezoelectric
generation member
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014042981A
Other languages
Japanese (ja)
Inventor
秋山 善一
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014042981A priority Critical patent/JP2015171185A/en
Publication of JP2015171185A publication Critical patent/JP2015171185A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a power generation member using a piezoelectric material which can increase an output voltage when vibration is applied to the power generating member.SOLUTION: In a power generation member 10 using a piezoelectric material, plural piezoelectric elements each of which has electrodes on both the surfaces of a piezoelectric layer 300 are provided on a substrate 100, and the plural piezoelectric elements 501 to 506 are electrically connected to one another in series. The plural piezoelectric elements may be formed to be arranged at predetermined intervals in a direction along the surface of the substrate. Furthermore, the power generation member 10 has plural first electrodes 201 to 204 formed on the substrate so as to be arranged at predetermined intervals in a direction along the surface of the substrate, a piezoelectric layer 300 formed on the plural first electrodes so as to straddle the plural first electrodes, and plural second electrodes 401 to 403 which are formed on the piezoelectric layer so as to confront the gaps of the plural first electrodes through the piezoelectric layer and be arranged at predetermined intervals in a direction along the surface of the substrate. The plural piezoelectric elements may be formed in plural areas where the first and second electrodes confront each other through the piezoelectric layer.

Description

本発明は、圧電体を用いた発電部材及びその製造方法に関するものである。   The present invention relates to a power generation member using a piezoelectric body and a manufacturing method thereof.

従来、圧電体の層(以下「圧電体層」という。)を2枚の電極で挟んだ構造の圧電素子を、振動によって変形可能に保持された振動板の表面に接合した発電部材が知られている。この発電部材では、振動板とともに圧電素子が振動して変形することにより圧電素子に発生した電荷を電力として電極から出力することができる。例えば、特許文献1〜3には、振動板の表面に単一の圧電素子を接合した発電部材が開示されている。また、特許文献4には、複数の圧電素子を積層し、各圧電素子を電気的に並列接続した発電部材が開示されている。   2. Description of the Related Art Conventionally, a power generation member is known in which a piezoelectric element having a structure in which a piezoelectric layer (hereinafter referred to as a “piezoelectric layer”) is sandwiched between two electrodes is joined to the surface of a diaphragm that is held deformable by vibration. ing. In this power generation member, the electric charge generated in the piezoelectric element when the piezoelectric element vibrates and deforms together with the diaphragm can be output from the electrode as electric power. For example, Patent Documents 1 to 3 disclose power generation members in which a single piezoelectric element is bonded to the surface of a diaphragm. Patent Document 4 discloses a power generation member in which a plurality of piezoelectric elements are stacked and the piezoelectric elements are electrically connected in parallel.

上記従来の発電部材では振動を加えたときの出力電圧が低く、圧電体を用いた発電部材の実用化に向けて出力電圧をより高めたいという要請がある。   The above-described conventional power generation member has a low output voltage when vibration is applied, and there is a demand to increase the output voltage for practical use of a power generation member using a piezoelectric body.

本発明は以上の問題点に鑑みなされたものであり、その目的は、圧電体を用いた発電部材において振動を加えたときの出力電圧の向上を図ることである。   The present invention has been made in view of the above problems, and an object thereof is to improve an output voltage when vibration is applied to a power generation member using a piezoelectric body.

上記目的を達成するために、請求項1の発明は、圧電体を用いた発電部材であって、圧電体層の両面それぞれに電極を有する圧電素子が基板上に複数設けられ、該複数の圧電素子は電気的に直列接続されていること特徴とするものである。   In order to achieve the above object, the invention of claim 1 is a power generation member using a piezoelectric body, wherein a plurality of piezoelectric elements each having an electrode on each side of the piezoelectric layer are provided on the substrate, and the plurality of piezoelectric elements are provided. The elements are electrically connected in series.

本発明によれば、振動を加えたときの出力電圧の向上を図ることができる。   According to the present invention, it is possible to improve the output voltage when vibration is applied.

本発明の実施形態に係る発電部材の一構成例を示す部分斜視図。The fragmentary perspective view which shows one structural example of the electric power generation member which concerns on embodiment of this invention. 図1の矢印A方向から見た発電部材の側面図。The side view of the electric power generation member seen from the arrow A direction of FIG. 本実施形態に係る発電部材の製造方法の一例を示す説明図。Explanatory drawing which shows an example of the manufacturing method of the electric power generation member which concerns on this embodiment. 発電部材の製造方法における分極処理の様子を示す説明図。Explanatory drawing which shows the mode of the polarization process in the manufacturing method of an electric power generation member. 比較例の単一の圧電素子からなる発電部材の側面図。The side view of the electric power generation member which consists of a single piezoelectric element of a comparative example.

以下、図面を参照して本発明の実施の形態を説明する。なお、以下の実施形態で参照する各図は本発明の内容を理解でき得る程度に形状、大きさ及び位置関係を概略的に示してあるに過ぎず、従って、本発明は各図で例示された形状、大きさ及び位置関係のみに限定されるものではない。また、後述において例示する数値は、本発明の好適な例に過ぎず、従って、本発明は例示された数値に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, each figure referred in the following embodiment has shown only the shape, the magnitude | size, and positional relationship so that the content of this invention can be understood, Therefore, this invention is illustrated in each figure. It is not limited only to the shape, size, and positional relationship. Moreover, the numerical value illustrated below is only a suitable example of this invention, Therefore, this invention is not limited to the illustrated numerical value.

図1は、本発明の実施形態に係る圧電体を用いた発電部材(「圧電発電素子」や「発電素子」とも呼ばれる)の一構成例を示す部分斜視図である。また、図2は、図1の矢印A方向から見た発電部材の側面図である。
本実施形態の発電部材10は、圧電体層300の両面それぞれに電極を有する圧電素子が基板100上に複数設けられ、それら複数の圧電素子501〜506が電気的に直列接続された構造を有している。
FIG. 1 is a partial perspective view showing a configuration example of a power generation member (also referred to as “piezoelectric power generation element” or “power generation element”) using a piezoelectric body according to an embodiment of the present invention. FIG. 2 is a side view of the power generation member viewed from the direction of arrow A in FIG.
The power generation member 10 of the present embodiment has a structure in which a plurality of piezoelectric elements having electrodes on both surfaces of the piezoelectric layer 300 are provided on the substrate 100, and the plurality of piezoelectric elements 501 to 506 are electrically connected in series. doing.

なお、本実施形態では6個の圧電素子501〜506が形成されている例について説明するが、圧電素子の個数Nは複数であれば6個以外であってもよい。また、本実施形態では複数の圧電素子が一次元的(列状)に並ぶように形成されている例について説明するが、複数の圧電素子は二次元的に並ぶように形成されてもよい。また、本実施形態では、複数の圧電素子を基板の表面に沿った方向に並ぶように形成されているが、複数の圧電素子は基板の表面に垂直な方向に積層するように形成されてもよい。   In this embodiment, an example in which six piezoelectric elements 501 to 506 are formed will be described. However, the number N of piezoelectric elements may be other than six as long as it is plural. In this embodiment, an example in which a plurality of piezoelectric elements are formed so as to be arranged one-dimensionally (in a row) will be described. However, a plurality of piezoelectric elements may be formed so as to be arranged two-dimensionally. In the present embodiment, the plurality of piezoelectric elements are formed so as to be aligned in the direction along the surface of the substrate. However, the plurality of piezoelectric elements may be stacked in a direction perpendicular to the surface of the substrate. Good.

図1及び図2に示すように、本実施形態の発電部材10において、複数の第1電極201〜204が、基板100の表面に沿った方向に所定の間隙で並ぶように基板100上に形成されている。また、圧電体層300は、複数の第1電極201〜204にまたがるように複数の第1電極201〜204上に形成されている。また、複数の第2電極401〜403は、複数の第1電極201〜204の間隙それぞれに圧電体層300を介して対向し且つ基板100の表面に沿った方向に所定の間隙で並ぶように圧電体層300上に形成されている。図2中の破線で示すように、複数の圧電素子501〜506は、圧電体層300を介して第1電極と第2電極とが互いに対向している複数の領域に形成されている。複数の第1電極の並び方向における両端部の第1電極201、204の露出している部分が、振動が加えられたときに電圧が出力される出力電極になっている。   As shown in FIGS. 1 and 2, in the power generation member 10 of the present embodiment, the plurality of first electrodes 201 to 204 are formed on the substrate 100 so as to be aligned with a predetermined gap in the direction along the surface of the substrate 100. Has been. The piezoelectric layer 300 is formed on the plurality of first electrodes 201 to 204 so as to straddle the plurality of first electrodes 201 to 204. Further, the plurality of second electrodes 401 to 403 are opposed to the gaps of the plurality of first electrodes 201 to 204 via the piezoelectric layer 300 and are arranged at a predetermined gap in the direction along the surface of the substrate 100. It is formed on the piezoelectric layer 300. As indicated by broken lines in FIG. 2, the plurality of piezoelectric elements 501 to 506 are formed in a plurality of regions in which the first electrode and the second electrode face each other through the piezoelectric layer 300. The exposed portions of the first electrodes 201 and 204 at both ends in the arrangement direction of the plurality of first electrodes are output electrodes that output a voltage when vibration is applied.

次に、上記構成の発電部材10において、従来の発電部材と同等な形状でほぼ1桁高い電圧を出力することができる発電機能の原理について説明する。本実施形態の発電部材10は、圧電効果による応力−電荷発生機構の原理に着目したものであり、従来の発電部材の出力電圧(例えば100[mV]〜数百[mV])よりも1桁高い出力電圧(例えば1[V]以上の電圧)を達成している。   Next, the principle of the power generation function capable of outputting a voltage almost one digit higher in the shape equivalent to that of the conventional power generation member in the power generation member 10 having the above configuration will be described. The power generation member 10 of the present embodiment focuses on the principle of the stress-charge generation mechanism based on the piezoelectric effect, and is one digit higher than the output voltage (for example, 100 [mV] to several hundred [mV]) of the conventional power generation member. A high output voltage (for example, a voltage of 1 [V] or higher) is achieved.

一般に、基板(振動板)を介して圧電素子に振動を伝えると圧電効果により圧電素子の両面の電極に電荷が発生する。発生する電荷は圧電定数d(単位:[pC/N])で見積もることができ、加えられた力と圧電定数dとの積で何[C(クーロン)]の電荷が発生するかがわかる。圧電定数dは圧電体の材料によって異なり、特にジルコン酸チタン酸鉛(以下「PZT」と略す。)のセラミックス材料の圧電定数dの値が大きい。ここで、振動による単位力あたりの発生電荷を高くするのであれば、圧電定数dの値が大きな材料を使えばよい。   In general, when vibration is transmitted to a piezoelectric element through a substrate (vibrating plate), electric charges are generated on the electrodes on both sides of the piezoelectric element due to the piezoelectric effect. The generated charge can be estimated by the piezoelectric constant d (unit: [pC / N]), and it can be understood how many [C (Coulomb)] charges are generated by the product of the applied force and the piezoelectric constant d. The piezoelectric constant d varies depending on the material of the piezoelectric body, and in particular, the value of the piezoelectric constant d of a ceramic material of lead zirconate titanate (hereinafter abbreviated as “PZT”) is large. Here, if the generated charge per unit force due to vibration is increased, a material having a large piezoelectric constant d may be used.

しかしながら、圧電素子で構成された発電部材から大きな電力を得ようとする場合は、単純に圧電定数dの値が大きな材料を使えばよいというわけではなく、以下に示すように発電部材の出力端子から見た静電容量を考慮する必要がある。   However, when a large electric power is to be obtained from a power generation member constituted by a piezoelectric element, it is not necessary to simply use a material having a large piezoelectric constant d. As shown below, the output terminal of the power generation member It is necessary to consider the capacitance seen from the above.

振動によって電荷が発生した圧電素子に蓄えられる電気エネルギー[J]は、次式(1)で与えられる。
(1/2)・C・V・・・(1)
ここで、Cは圧電素子の静電容量[F]であり、Vは圧電素子の電極間に発生した出力電圧[V]である。上記式(1)で示すように、圧電素子における電気エネルギーは、静電容量の1次に比例し、電圧の2乗に比例する。従って、圧電素子から取り出すことが可能な電気エネルギーについては、圧電素子の静電容量よりも出力電圧の寄与が大きく、出力電圧が高ければ高いほどよいことがわかる。
The electrical energy [J] stored in the piezoelectric element in which electric charges are generated by vibration is given by the following equation (1).
(1/2) · C · V 2 (1)
Here, C is the capacitance [F] of the piezoelectric element, and V is the output voltage [V] generated between the electrodes of the piezoelectric element. As shown by the above formula (1), the electric energy in the piezoelectric element is proportional to the first order of the capacitance and proportional to the square of the voltage. Therefore, it can be seen that the electrical energy that can be extracted from the piezoelectric element contributes more to the output voltage than the capacitance of the piezoelectric element, and the higher the output voltage, the better.

一方、圧電効果によって圧電素子に発生する発生電荷Q[クーロン]はQ=CVの関係式で示されるよう、発生電荷Qを静電容量Cで除した値が出力電圧Vとなる。圧電素子の静電容量Cは、形状が決まれば、次式(2)により求まる。
C=ε・ε・(S/d) ・・・(2)
ここで、εは圧電体の比誘電率であり、εは真空の誘電率である。また、S及びdはそれぞれ電極で挟まれている部分の圧電体層の面積[m]及び厚さ[m]ある。PZTの比誘電率が2000ほどあるが、圧電体層の同じ形状であれば圧電体の比誘電率の小さいものは静電容量Cは小さくなる。
On the other hand, the generated charge Q [Coulomb] generated in the piezoelectric element due to the piezoelectric effect is the output voltage V obtained by dividing the generated charge Q by the capacitance C as shown by the relational expression Q = CV. The capacitance C of the piezoelectric element can be obtained by the following equation (2) once the shape is determined.
C = ε r · ε 0 · (S / d) (2)
Here, epsilon r is the relative permittivity of the piezoelectric, epsilon 0 is the permittivity of vacuum. S and d are the area [m 2 ] and the thickness [m] of the piezoelectric layer between the electrodes, respectively. Although the relative dielectric constant of PZT is about 2000, if the piezoelectric layer has the same shape, the capacitance C of the piezoelectric body having a small relative dielectric constant is small.

本実施形態の発電部材は、基板100の表面に沿った方向に複数(N個:図示の例では6個)の圧電素子を配置され、電気的に直列接続されている。ここで、N個の圧電素子それぞれの静電容量が互いに同じC[F]である場合は、電気的に直列接続されたN個の圧電素子全体の静電容量CtotalはC/N[F]になる。これに対し、本実施形態の1個の圧電素子とほぼ同じ形状の単一の圧電素子の場合、その単一の圧電素子の静電容量はC[F]である。従って、本実施形態のN個の圧電素子が直列接続された発電部材全体の静電容量Ctotal(=C/N)は、単一の圧電素子の静電容量Cの1/Nとなる。また、本実施形態の発電部材及び上記単一の圧電素子は、全体として外部から受ける振動の機械的エネルギーは同じになるので、本実施形態の発電部材の出力電圧Vtotalは、上記単一の圧電素子の出力電圧VのほぼN倍になる。図2の発電部材の例では、電気的に直列接続された6個の圧電素子が形成されているので、出力電Vtotalは、単一の圧電素子の出力電圧Vのほぼ6倍になる。 In the power generation member of this embodiment, a plurality (N: six in the illustrated example) of piezoelectric elements are arranged in a direction along the surface of the substrate 100 and are electrically connected in series. Here, when each of the N piezoelectric elements has the same capacitance C [F], the capacitance C total of the entire N piezoelectric elements electrically connected in series is C / N [F. ]become. On the other hand, in the case of a single piezoelectric element having substantially the same shape as one piezoelectric element of the present embodiment, the capacitance of the single piezoelectric element is C [F]. Therefore, the electrostatic capacity C total (= C / N) of the entire power generating member in which N piezoelectric elements of the present embodiment are connected in series is 1 / N of the electrostatic capacity C of a single piezoelectric element. Moreover, since the mechanical energy of the vibration received from the outside as a whole is the same for the power generation member of the present embodiment and the single piezoelectric element, the output voltage V total of the power generation member of the present embodiment is the single unit. This is approximately N times the output voltage V of the piezoelectric element. In the example of the power generation member in FIG. 2, six piezoelectric elements electrically connected in series are formed, so that the output power V total is almost six times the output voltage V of a single piezoelectric element.

次に、本実施形態に係る発電部材10の製造方法について説明する。
図3は、本実施形態に係る発電部材10の製造方法の一例を示す説明図である。図3の例では、図中の左から順番に各工程が実施されることにより、長方形の基板100上に発電部材10を製造している。また、図3では、図示の便宜上、発電部材10の手前側の一部分について示している。
Next, a method for manufacturing the power generation member 10 according to this embodiment will be described.
Drawing 3 is an explanatory view showing an example of the manufacturing method of power generation member 10 concerning this embodiment. In the example of FIG. 3, the power generation member 10 is manufactured on the rectangular substrate 100 by performing each process in order from the left in the drawing. Further, in FIG. 3, for convenience of illustration, a part of the front side of the power generation member 10 is illustrated.

図3において、まず、基板100の表面に沿った長手方向に所定の間隙で並ぶように基板100上に複数の第1電極201〜204を形成する。
次に、複数の第1電極201〜204にまたがるように複数の第1電極201〜204上に圧電体層300を形成する。
次に、複数の第1電極201〜204の間隙に圧電体層300を介して対向し且つ第1電極201〜204の並び方向と同じ方向に所定の間隙で並ぶように圧電体層300上に複数の第2電極401〜403を形成する。
In FIG. 3, first, a plurality of first electrodes 201 to 204 are formed on the substrate 100 so as to be aligned with a predetermined gap in the longitudinal direction along the surface of the substrate 100.
Next, the piezoelectric layer 300 is formed on the plurality of first electrodes 201 to 204 so as to extend over the plurality of first electrodes 201 to 204.
Next, on the piezoelectric layer 300, the gaps between the plurality of first electrodes 201 to 204 are opposed to each other with the piezoelectric layer 300 interposed therebetween and are arranged with a predetermined gap in the same direction as the arrangement direction of the first electrodes 201 to 204. A plurality of second electrodes 401 to 403 are formed.

そして、複数の第2電極401〜403を形成した後、圧電体層300に対する分極処理を行う。この分極処理では、図4に示すように複数の第1電極201〜204の並び方向における両端部の第1電極201、204の間に直流電圧が印加される。この電圧印加により、圧電体層300を介して第1電極と第2電極とが互いに対向している複数の領域それぞれが、図4中の矢印に示す方向に分極軸が向くように分極処理される。この結果、圧電体層300における各圧電素子501〜506に対応する複数の領域は、図中の各領域の並び方向で交互に反転した分極軸を有した状態で圧電性を発現する。   Then, after forming the plurality of second electrodes 401 to 403, the piezoelectric layer 300 is subjected to polarization treatment. In this polarization process, as shown in FIG. 4, a DC voltage is applied between the first electrodes 201 and 204 at both ends in the arrangement direction of the plurality of first electrodes 201 to 204. By this voltage application, each of the plurality of regions in which the first electrode and the second electrode are opposed to each other through the piezoelectric layer 300 is polarized so that the polarization axis is directed in the direction indicated by the arrow in FIG. The As a result, the plurality of regions corresponding to the respective piezoelectric elements 501 to 506 in the piezoelectric layer 300 exhibit piezoelectricity in a state having polarization axes that are alternately inverted in the arrangement direction of the respective regions in the drawing.

次に、本実施形態に係る発電部材10のより具体的な実施例1、2について、比較例1、2とともに説明する。   Next, more specific Examples 1 and 2 of the power generation member 10 according to the present embodiment will be described together with Comparative Examples 1 and 2.

〔実施例1〕
本実施例1の発電部材10は、次の(1)〜(5)に示すように作製した。
(1)基板としては、主成分がジルコニアのセラミックからなるジルコニアセラミックスシート(日本ファインセラミックス社製、厚さ:100[μm])を用いた。
(2)第1電極としてはPt(白金)からなる電極を形成した。このPt電極は、田中貴金属社製のPtペーストを基板上にスクリーン印刷法にて印刷し、乾燥・脱脂の工程の後、1300[℃]で焼成することにより、複数の分割電極として作製した。Pt電極の膜厚は3[μm]であった。
(3)圧電体としてはPZT(52/48)を用いた。堺化学工業社製のPZT粉をスクリーン印刷用のペーストに処方した後、Pt電極が形成された基板上に印刷し、乾燥・脱脂の工程の後、1270[℃]で焼成して圧電体層を作成した。圧電体層の膜厚20[μm]である。
(4)第2電極としてはAg/Pd(70/30)からなる電極を形成した。このAg/Pd電極は、昭栄化学社製のAg−Pdペーストをスクリーン印刷法にて圧電体層上に印刷し、乾燥・脱脂の工程を経て850[℃]の焼成にて形成した。Ag/Pd電極を複数の分割電極として形成することにより、電気的に直列接続された圧電素子(PZTキャパシター)の数を10個とした。
(5)分極処理は、温度:120[℃]、圧電体層における直流電界強度:25[kV/cm]、処理時間:20[分]の条件で行った。この分極処理により、各圧電素子における圧電体層の部分に圧電性を出現させた。
[Example 1]
The power generation member 10 of Example 1 was manufactured as shown in the following (1) to (5).
(1) As a substrate, a zirconia ceramic sheet (manufactured by Nippon Fine Ceramics Co., Ltd., thickness: 100 [μm]) made of a ceramic whose main component is zirconia was used.
(2) An electrode made of Pt (platinum) was formed as the first electrode. This Pt electrode was produced as a plurality of divided electrodes by printing a Pt paste manufactured by Tanaka Kikinzoku Co., Ltd. on a substrate by a screen printing method, followed by drying and degreasing steps and firing at 1300 [° C.]. The film thickness of the Pt electrode was 3 [μm].
(3) PZT (52/48) was used as the piezoelectric body. A PZT powder made by Sakai Chemical Industry Co., Ltd. was formulated into a screen printing paste, printed on a substrate on which a Pt electrode was formed, dried and degreased, and then fired at 1270 [° C.] to obtain a piezoelectric layer It was created. The film thickness of the piezoelectric layer is 20 [μm].
(4) As the second electrode, an electrode made of Ag / Pd (70/30) was formed. This Ag / Pd electrode was formed by printing Ag-Pd paste manufactured by Shoei Chemical Co., Ltd. on the piezoelectric layer by a screen printing method, followed by drying and degreasing steps and firing at 850 [° C.]. By forming the Ag / Pd electrodes as a plurality of divided electrodes, the number of electrically connected piezoelectric elements (PZT capacitors) was ten.
(5) The polarization treatment was performed under the conditions of temperature: 120 [° C.], DC electric field strength in the piezoelectric layer: 25 [kV / cm], and treatment time: 20 [min]. By this polarization treatment, piezoelectricity appeared in the piezoelectric layer portion of each piezoelectric element.

なお、上記第1電極及び第2電極を形成するときの電極形成用スクリーン版のメッシュは#300を用いた。また、複数の第1電極の互いに隣り合う電極間の分割幅(間隙)を20[μm]とした。また、複数の第2電極についても、互いに隣り合う電極間の分割幅(間隙)を20[μm]とした。   In addition, # 300 was used for the mesh of the electrode forming screen plate when forming the first electrode and the second electrode. Further, the division width (gap) between adjacent electrodes of the plurality of first electrodes was set to 20 [μm]. In addition, also for the plurality of second electrodes, the division width (gap) between adjacent electrodes was set to 20 [μm].

〔比較例1〕
比較例1として、図5に示すように、上記第1電極及び第2電極を分割しないで基板100上に第1電極250と圧電体層350と第2電極350とを積層して形成した単一の圧電素子から発電部材10’を作製した。他の製造工程及び材料については上記実施例1と同様である。
[Comparative Example 1]
As Comparative Example 1, as shown in FIG. 5, the first electrode 250, the piezoelectric layer 350, and the second electrode 350 are stacked on the substrate 100 without dividing the first electrode and the second electrode. A power generation member 10 ′ was produced from one piezoelectric element. Other manufacturing processes and materials are the same as those in the first embodiment.

上記実施例1及び比較例1それぞれの発電部材の各部における寸法は次のように設定した。
比較例1の場合、第1電極のパターンは幅2[mm]及び長さ14[mm]とし、圧電体層(PZT)のパターンは幅2[mm]及び長さ13[mm]とし、第2電極のパターンは幅1.9[mm]及び長さ12[mm]とした。第1電極及び第2電極で挟まれてなる圧電素子(PZTキャパシター)の静電容量は、23.2[nF](測定周波数:10[kHz])であった。この静電容量の測定値と素子寸法の値からPZTの比誘電率は2300と算出され、典型的な値であることが確認できた。
The dimensions of each part of the power generation members of Example 1 and Comparative Example 1 were set as follows.
In the case of Comparative Example 1, the pattern of the first electrode is 2 [mm] wide and 14 [mm] long, the pattern of the piezoelectric layer (PZT) is 2 [mm] wide and 13 [mm] long, The two-electrode pattern had a width of 1.9 [mm] and a length of 12 [mm]. The capacitance of the piezoelectric element (PZT capacitor) sandwiched between the first electrode and the second electrode was 23.2 [nF] (measurement frequency: 10 [kHz]). The relative dielectric constant of PZT was calculated to be 2300 from the measured capacitance value and the element dimension value, and it was confirmed that this was a typical value.

実施例1では、分割電極(第1電極及び第2電極)にギャップ20[μm]が含まれているが、長さ12[mm]に対し無視してもよいほどの電極面積の減少であり、静電容量の測定結果も、比較例1の場合の10分の1(2.3[nF])に減少した。   In the first embodiment, the split electrode (first electrode and second electrode) includes the gap 20 [μm], but the electrode area is negligibly small with respect to the length 12 [mm]. Also, the measurement result of the electrostatic capacitance was reduced to 1/10 (2.3 [nF]) in the case of Comparative Example 1.

上記実施例1及び比較例1の発電部材のエネルギーハーベスター(環境発電装置)としての性能は、片持ち梁形状に保持した後、従来公知の方法で行った。具体的には、加振器、振動センサー、素子出力増幅器、記録計(オシロスコープ)にて、片持ち梁の共振周波数の1/20の周波数の振動を与えて出力電圧を測定した。測定に用いたFET(素子出力増幅器)のインピーダンス整合は必要と思われるが、ここでは出力電圧の相対変化に着目し、実施例1の効果(電極分割の効果)を検証した。   The performance as an energy harvester (environmental power generation device) of the power generation members of Example 1 and Comparative Example 1 was performed by a conventionally known method after being held in a cantilever shape. Specifically, the output voltage was measured by applying a vibration having a frequency 1/20 of the resonance frequency of the cantilever using an exciter, a vibration sensor, an element output amplifier, and a recorder (oscilloscope). The impedance matching of the FET (element output amplifier) used for the measurement seems to be necessary, but here, the effect of Example 1 (the effect of electrode division) was verified by focusing on the relative change of the output voltage.

比較例1の発電部材の出力電圧は200[mV](振動条件:周波数=60[Hz],加速度=0.08G)であった。これに対し、実施例1の発電部材の出力電圧は、2.05[V](同じ振動条件:周波数=60[Hz],加速度=0.08G)となり、比較例1の略10倍まで高めることができた。   The output voltage of the power generation member of Comparative Example 1 was 200 [mV] (vibration condition: frequency = 60 [Hz], acceleration = 0.08 G). On the other hand, the output voltage of the power generation member of Example 1 is 2.05 [V] (the same vibration condition: frequency = 60 [Hz], acceleration = 0.08 G), which is increased to about 10 times that of Comparative Example 1. I was able to.

〔実施例2〕
上記実施例1で用いたPZTは鉛を含んでおり、その含有率は60[質量%]を占めている。インフラ設備の診断などに自立電源として使われる場合、発電部材自体は少量であるが、多数配置される。このように多数配置される発電部材に鉛が含まれていると、その環境面での影響を無視することはできない。そこで、本実施例2では、PZTの代替材料として鉛を含まない圧電体の材料を使用している。
[Example 2]
PZT used in Example 1 above contains lead, and the content thereof occupies 60 [mass%]. When used as a stand-alone power source for diagnosis of infrastructure equipment, a small number of power generation members are arranged, but a large number are arranged. If lead is contained in a large number of power generation members arranged in this way, the environmental impact cannot be ignored. Therefore, in the second embodiment, a piezoelectric material not containing lead is used as an alternative material for PZT.

また、上記実施例1においてはPZTを焼成するため、基板上に形成する第1電極としてPt(白金)電極を採用した。これは酸素を含む雰囲気下で1300[℃]までの耐熱性を有する材料は白金しかないからである。しかし、白金は高価なこと、加えて価格の変動要因を含んでいることから、製品化を考えた場合、白金を電極に用いるのはあまり好ましくないため、白金以外の安価な卑金属材料の使用が望まれる。   Further, in Example 1 above, in order to fire PZT, a Pt (platinum) electrode was employed as the first electrode formed on the substrate. This is because platinum is the only material having heat resistance up to 1300 [° C.] in an atmosphere containing oxygen. However, since platinum is expensive and includes price fluctuation factors, it is not preferable to use platinum as an electrode when considering commercialization. Therefore, the use of inexpensive base metal materials other than platinum is not recommended. desired.

酸素を極端に低減した雰囲気で、セラミックスを焼成することができれば、安価なNi(ニッケル)材料が電極の材料として候補になる。酸化物セラミックスを焼成するのに、酸素がない状態ではセラミックスが還元してしまい、このままでは製造することはできない。従って、セラミックコンデンサー製造で用いられているNi電極にするためには、還元雰囲気下(Niが酸化しない程度の酸素分圧下)での焼成が有効である。   If ceramics can be fired in an atmosphere in which oxygen is extremely reduced, an inexpensive Ni (nickel) material is a candidate for an electrode material. In firing oxide ceramics, the ceramics are reduced in the absence of oxygen, and cannot be produced as they are. Therefore, firing in a reducing atmosphere (under an oxygen partial pressure that does not oxidize Ni) is effective for obtaining a Ni electrode used in the production of ceramic capacitors.

実施例2では、以上の課題を解決し、さらにエネルギーハーベスター(環境発電装置)としての性能も向上させた。   In Example 2, the above problems were solved and the performance as an energy harvester (environmental power generation device) was also improved.

実施例1ではジルコニアセラミックスシートを用いたが、この材料は酸素分圧の低い状態では還元してしまい、基板として好ましくない。   In Example 1, a zirconia ceramic sheet was used. However, this material is reduced when the oxygen partial pressure is low, which is not preferable as a substrate.

そこで、実施例2では、低酸素分圧下でも変質しないアルミナセラミックスシートを用いて、次の(1)〜(6)に示すように発電部材を作製した。
(1)基板としては、主成分がアルミナのセラミックからなるアルミナセラミックスシート(日本ファインセラミックス社製、厚さ:100[μm])を用いた。
(2)第1電極としてはNi(ニッケル)からなる電極を形成した。このNi電極は、大研化学工業社製のNiペーストをスクリーン印刷法にて印刷し、乾燥を行った。Ni電極の膜厚は3[μm]であった。
(3)圧電体としてはチタン酸バリウム(堺化学工業社製のBT01,BT05粉、配分はBT01:20部、BT05:80部)を用いた。酸素分圧の低い状態にてチタン酸バリウムが還元することを防ぐため、Mnをチタン酸バリウム重量に対し1[モル%]の比率で添加した。このときのMn試薬として二酸化マンガンを使用した。そして、スクリーン印刷用のペーストに処方した後、印刷、乾燥を行った。印刷・乾燥後の膜厚は、焼成後の膜厚が20[μm]になるように設定した。
(4)第2電極としてはNi電極を用い、第1電極と同じ条件で形成した。
(5)基板上に3つの層(第1電極、圧電体層、第2電極)を積層したあと、脱脂、還元雰囲気で焼成して圧電素子を作製した。これは積層セラミックコンデンサで行われている電極及び誘電材料の同時焼成処理である。還元雰囲気は濃度3[%]のHガス(窒素バランス)を管状炉に導入、酸素分圧は1×10−8[Pa]以下とし、焼成温度は1350[℃]とした。この焼成処理により、電極として安価なNiが採用できた。このNi電極を複数の分割電極として形成することにより、電気的に直列接続された圧電素子(チタン酸バリウムキャパシター)の数を10個とした。
(6)分極処理は、温度:120[℃]、圧電体層における直流電界強度:25[kV/cm]、処理時間:20[分]の条件で行った。この分極処理により、各圧電素子における圧電体層の部分に圧電性を出現させた。
Therefore, in Example 2, a power generation member was produced as shown in the following (1) to (6) using an alumina ceramic sheet that does not change even under a low oxygen partial pressure.
(1) As the substrate, an alumina ceramic sheet (manufactured by Nippon Fine Ceramics Co., Ltd., thickness: 100 [μm]) made of ceramic whose main component is alumina was used.
(2) As the first electrode, an electrode made of Ni (nickel) was formed. This Ni electrode was dried by printing a Ni paste manufactured by Daiken Chemical Industry Co., Ltd. by a screen printing method. The film thickness of the Ni electrode was 3 [μm].
(3) Barium titanate (BT01, BT05 powder manufactured by Sakai Chemical Industry Co., Ltd., distribution was BT01: 20 parts, BT05: 80 parts) was used as the piezoelectric body. In order to prevent barium titanate from being reduced at a low oxygen partial pressure, Mn was added at a ratio of 1 [mol%] to the weight of barium titanate. Manganese dioxide was used as the Mn reagent at this time. And after formulating into a paste for screen printing, printing and drying were performed. The film thickness after printing and drying was set so that the film thickness after firing was 20 [μm].
(4) A Ni electrode was used as the second electrode and was formed under the same conditions as the first electrode.
(5) After laminating three layers (first electrode, piezoelectric layer, and second electrode) on the substrate, a piezoelectric element was fabricated by firing in a degreasing and reducing atmosphere. This is a simultaneous firing process of an electrode and a dielectric material performed in a multilayer ceramic capacitor. As the reducing atmosphere, H 2 gas (nitrogen balance) having a concentration of 3 [%] was introduced into the tubular furnace, the oxygen partial pressure was 1 × 10 −8 [Pa] or less, and the firing temperature was 1350 [° C.]. By this firing treatment, inexpensive Ni could be employed as the electrode. By forming this Ni electrode as a plurality of divided electrodes, the number of electrically connected piezoelectric elements (barium titanate capacitors) was ten.
(6) The polarization treatment was performed under the conditions of temperature: 120 [° C.], DC electric field strength in the piezoelectric layer: 25 [kV / cm], and treatment time: 20 [min]. By this polarization treatment, piezoelectricity appeared in the piezoelectric layer portion of each piezoelectric element.

なお、上記第1電極及び第2電極を形成するときの電極形成用スクリーン版のメッシュは#300を用いた。また、複数の第1電極の互いに隣り合う電極間の分割幅(間隙)を20[μm]とした。また、複数の第2電極についても、互いに隣り合う電極間の分割幅(間隙)を20[μm]とした。   In addition, # 300 was used for the mesh of the electrode forming screen plate when forming the first electrode and the second electrode. Further, the division width (gap) between adjacent electrodes of the plurality of first electrodes was set to 20 [μm]. In addition, also for the plurality of second electrodes, the division width (gap) between adjacent electrodes was set to 20 [μm].

〔比較例2〕
比較例2として、図5に示すように、上記第1電極及び第2電極を分割しないで基板100上に第1電極250と圧電体層350と第2電極350とを積層して形成した単一の圧電素子から発電部材10’を作製した。他の製造工程及び材料については上記実施例2と同様である。
[Comparative Example 2]
As Comparative Example 2, as shown in FIG. 5, the first electrode 250, the piezoelectric layer 350, and the second electrode 350 are stacked on the substrate 100 without dividing the first electrode and the second electrode. A power generation member 10 ′ was produced from one piezoelectric element. Other manufacturing processes and materials are the same as those in the second embodiment.

実施例2及び比較例2それぞれの発電部材の各部における寸法は次のように設定した。
比較例2の場合、第1電極のパターンは幅2[mm]及び長さ14[mm]とし、圧電体層(チタン酸バリウム)のパターンは幅2[mm]及び長さ13[mm]とし、第2電極のパターンは幅1.9[mm]及び長さ12[mm]とした。第1電極及び第2電極で挟まれてなる圧電素子(チタン酸バリウムキャパシター)の静電容量は、13.2[nF](測定周波数:10[kHz])であった。この静電容量の測定値と素子寸法の値からチタン酸バリウムの比誘電率は1300と算出され、典型的な値であることが確認できた。
The dimension in each part of the electric power generation member of Example 2 and Comparative Example 2 was set as follows.
In the case of Comparative Example 2, the pattern of the first electrode is 2 [mm] wide and 14 [mm] long, and the pattern of the piezoelectric layer (barium titanate) is 2 [mm] wide and 13 [mm] long. The second electrode pattern had a width of 1.9 [mm] and a length of 12 [mm]. The capacitance of the piezoelectric element (barium titanate capacitor) sandwiched between the first electrode and the second electrode was 13.2 [nF] (measurement frequency: 10 [kHz]). The relative dielectric constant of barium titanate was calculated to be 1300 from the measured capacitance value and the element dimension value, confirming that it was a typical value.

実施例2では、分割電極(第1電極及び第2電極)にギャップ20[μm]が含まれているが、長さ12[mm]に対し無視してもよいほどの電極面積の減少であり、静電容量の測定結果も、比較例2の場合の10分の1(1.3[nF])に減少した。   In Example 2, the split electrode (the first electrode and the second electrode) includes the gap 20 [μm]. However, the electrode area can be ignored with respect to the length 12 [mm]. Also, the measurement result of the electrostatic capacitance was reduced to 1/10 (1.3 [nF]) in the case of Comparative Example 2.

上記実施例2及び比較例2の発電部材のエネルギーハーベスター(環境発電装置)としての性能は、片持ち梁形状に保持した後、従来公知の方法で行った。すなわち、加振器、振動センサー、素子出力増幅器、記録計(オシロスコープ)にて、片持ち梁の共振周波数の1/20の周波数の振動を与えて出力電圧を測定した。測定に用いたFET(素子出力増幅器)のインピーダンス整合は必要と思われるが、ここでは出力電圧の相対変化に着目し、実施例2の効果(電極分割の効果)を検証した。   The performance of the power generation members of Example 2 and Comparative Example 2 as an energy harvester (environmental power generation device) was maintained in a cantilever shape and then performed by a conventionally known method. That is, the output voltage was measured by applying vibration having a frequency 1/20 of the resonance frequency of the cantilever with an exciter, a vibration sensor, an element output amplifier, and a recorder (oscilloscope). Although it seems that impedance matching of the FET (element output amplifier) used for the measurement is necessary, the effect of Example 2 (effect of electrode division) was verified by paying attention to the relative change in the output voltage.

比較例2の発電部材の出力電圧は170[mV](振動条件:周波数=60[Hz],加速度=0.08G)であった。これに対し、実施例2の発電部材の出力電圧は、1.75[V](同じ振動条件:周波数=60[Hz],加速度=0.08G)となり、比較例2の略10倍まで高めることができた。   The output voltage of the power generation member of Comparative Example 2 was 170 [mV] (vibration condition: frequency = 60 [Hz], acceleration = 0.08 G). On the other hand, the output voltage of the power generation member of Example 2 is 1.75 [V] (same vibration condition: frequency = 60 [Hz], acceleration = 0.08 G), which is increased to about 10 times that of Comparative Example 2. I was able to.

前述の実施例1及び実施例2での出力電圧の差は、圧電体層の材料として用いたPZT(実施例1)とチタン酸バリウム(実施例2)との間の圧電定数の差に起因している。比誘電率ではチタン酸バリウムの方が小さいので出力電圧の面で有利であるが、PZTの圧電定数は300[pm/V]であり、チタン酸バリウムの圧電定数(150[pm/V])の2倍である。   The difference in output voltage between Example 1 and Example 2 described above is caused by the difference in piezoelectric constant between PZT (Example 1) and barium titanate (Example 2) used as the material of the piezoelectric layer. doing. In terms of relative permittivity, barium titanate is smaller, which is advantageous in terms of output voltage. However, the piezoelectric constant of PZT is 300 [pm / V], and the piezoelectric constant of barium titanate (150 [pm / V]). Twice as much.

但し、実施例2の発電部材は次のような利点を有している。
・出力は実用上達成可能な値である。
・基板上に互いに並べて配置する圧電素子の数(第1電極の数、第2電極の数)の増加により実デバイスへの調整が可能である。
・鉛を含まない。
・価格変動要素を持ち、値段が高価な白金材料を用いないで製造できる。
However, the power generation member of Example 2 has the following advantages.
・ Output is a practically achievable value.
Adjustment to an actual device is possible by increasing the number of piezoelectric elements (number of first electrodes, number of second electrodes) arranged side by side on the substrate.
・ Does not contain lead.
-It can be manufactured without using expensive platinum materials that have price fluctuation factors.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
圧電体を用いた発電部材10であって、圧電体層300の両面それぞれに電極を有する圧電素子が基板100上に複数(N個)設けられ、複数の圧電素子501〜506は電気的に直列接続されている。
これによれば、上記実施形態について説明したように、発電部材を構成する電気的に直列接続された複数(N個)の圧電素子501〜506に振動を加えたときの出力電圧は、単一の圧電素子の出力電圧のN倍になる。従って、圧電体を用いた発電部材において振動を加えたときの出力電圧の向上を図ることができる。
(態様B)
上記態様Aにおいて、複数(N個)の圧電素子は、基板の表面に沿った方向に所定の間隙で並ぶように形成されている。
これによれば、上記実施形態について説明したように、複数の圧電素子を基板上に積層して形成したものに比して薄くすることができるので、振動を加えたときの発電部材の変形量の低下を抑制し、振動を加えたときの出力電圧をより高めることができる。また、基板上に複数の圧電素子を繰り返し形成して積層する必要がないので、発電部材の製造工程が簡易になり、製造コストを低減することができる。
(態様C)
上記態様Bにおいて、基板の表面に沿った方向に所定の間隙で並ぶように基板上に形成された複数の第1電極201〜204と、複数の第1電極にまたがるように複数の第1電極上に形成された圧電体層300と、複数の第1電極の間隙に圧電体層を介して対向し且つ基板の表面に沿った方向に所定の間隙で並ぶように圧電体層上に形成された複数の第2電極401〜403と、を備え、複数の圧電素子501〜506は、圧電体層を介して第1電極と第2電極とが互いに対向している複数の領域に形成されている。
これによれば、上記実施形態について説明したように、複数の第1電極を基板上の同一層に一括形成することができ、また、その上に形成する圧電体層は分割して形成する必要がなく単一の層として形成することができる。更に、複数の第2電極は圧電体層上の同一層に一括形成することができる。従って、発電部材の製造工程が簡易になり、製造コストを低減することができる。
(態様D)
上記態様A乃至Cのいずれかにおいて、圧電体層300の材料は、マンガンが添加された主成分がチタン酸バリウムの材料である。
これによれば、上記実施形態について説明したように、基板と圧電体層との間に形成する電極の材料として高価な白金を用いる必要がないため、更に製造コストを低減することができる。
(態様E)
上記態様A乃至Dのいずれかにおいて、基板100は、主成分がアルミナ又はジルコニアのセラミックスからなる基板である。
これによれば、上記実施形態について説明したように、主成分がアルミナ又はジルコニアのセラミックスからなる基板は、圧電体膜形成プロセスに対して優れた耐性を有しているので、圧電素子の圧電特性の安定性及び再現性に優れ、信頼性の高い発電部材を提供できる。特に、主成分がアルミナのセラミックスからなる基板の場合は、安価なNi等の電極材料が酸化しにくい還元雰囲気下(低酸素分圧下)で圧電体層の焼成を行う場合にも基板が変質しない。従って、基板の変質を防止するとともに、製造コストを低減することができる。
(態様F)
圧電体層300の両面それぞれに電極を有する圧電素子が基板100上に設けられ、圧電素子が振動することで電圧を出力可能な発電部材の製造方法であって、基板100の表面に沿った方向に所定の間隙で並ぶように基板100上に複数の第1電極201〜204を形成する工程と、複数の第1電極201〜204にまたがるように複数の第1電極201〜204上に圧電体層300を形成する工程と、複数の第1電極201〜204の間隙に圧電体層300を介して対向し且つ第1電極201〜204の並び方向と同じ方向に所定の間隙で並ぶように圧電体層300上に複数の第2電極401〜403を形成する工程と、複数の第1電極201〜204の並び方向における両端部の第1電極201、204の間に直流電圧を印加することにより、圧電体層300を介して第1電極と第2電極とが互いに対向している複数の領域それぞれに対して分極処理を行う工程と、を含む。
これによれば、上記実施形態について説明したように、複数の第1電極を基板上の同一層に一括形成することができ、また、その上に形成する圧電体層は分割して形成する必要がなく単一の層として形成することができる。更に、複数の第2電極は圧電体層上の同一層に一括形成することができる。また、圧電体層300を介して第1電極と第2電極とが互いに対向している複数の領域それぞれに対する分極処理についても一括して行うことができる。従って、発電部材の製造工程が簡易になり、製造コストを低減することができる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
In the power generation member 10 using a piezoelectric body, a plurality (N) of piezoelectric elements having electrodes on both surfaces of the piezoelectric layer 300 are provided on the substrate 100, and the plurality of piezoelectric elements 501 to 506 are electrically connected in series. It is connected.
According to this, as described in the above embodiment, the output voltage when a plurality of (N) piezoelectric elements 501 to 506 that are electrically connected in series constituting the power generation member are vibrated is a single output voltage. N times the output voltage of the piezoelectric element. Therefore, it is possible to improve the output voltage when vibration is applied to the power generation member using the piezoelectric body.
(Aspect B)
In the aspect A, the plurality (N) of piezoelectric elements are formed so as to be aligned with a predetermined gap in a direction along the surface of the substrate.
According to this, as described in the above embodiment, the amount of deformation of the power generation member when vibration is applied can be reduced as compared with a structure in which a plurality of piezoelectric elements are stacked on the substrate. The output voltage when vibration is applied can be further increased. Moreover, since it is not necessary to repeatedly form and laminate a plurality of piezoelectric elements on the substrate, the manufacturing process of the power generation member is simplified, and the manufacturing cost can be reduced.
(Aspect C)
In the above aspect B, a plurality of first electrodes 201 to 204 formed on the substrate so as to be aligned with a predetermined gap in a direction along the surface of the substrate, and a plurality of first electrodes so as to straddle the plurality of first electrodes. The piezoelectric layer 300 is formed on the piezoelectric layer so as to face the gap between the plurality of first electrodes via the piezoelectric layer and to be aligned with a predetermined gap in the direction along the surface of the substrate. A plurality of second electrodes 401 to 403, and the plurality of piezoelectric elements 501 to 506 are formed in a plurality of regions in which the first electrode and the second electrode face each other through the piezoelectric layer. Yes.
According to this, as described in the above embodiment, a plurality of first electrodes can be collectively formed on the same layer on the substrate, and the piezoelectric layer formed thereon needs to be formed separately. And can be formed as a single layer. Further, the plurality of second electrodes can be collectively formed in the same layer on the piezoelectric layer. Therefore, the manufacturing process of the power generation member is simplified, and the manufacturing cost can be reduced.
(Aspect D)
In any one of the above aspects A to C, the material of the piezoelectric layer 300 is a material in which the main component to which manganese is added is barium titanate.
According to this, as described in the above embodiment, since it is not necessary to use expensive platinum as a material for the electrode formed between the substrate and the piezoelectric layer, the manufacturing cost can be further reduced.
(Aspect E)
In any of the above aspects A to D, the substrate 100 is a substrate whose main component is ceramic of alumina or zirconia.
According to this, as described in the above embodiment, since the substrate made of ceramics whose main component is alumina or zirconia has excellent resistance to the piezoelectric film forming process, the piezoelectric characteristics of the piezoelectric element It is possible to provide a highly reliable power generation member having excellent stability and reproducibility. In particular, in the case of a substrate made of a ceramic whose main component is alumina, the substrate is not altered even when the piezoelectric layer is fired in a reducing atmosphere (low oxygen partial pressure) in which an inexpensive electrode material such as Ni is difficult to oxidize. . Therefore, it is possible to prevent the substrate from being deteriorated and to reduce the manufacturing cost.
(Aspect F)
A method of manufacturing a power generation member in which piezoelectric elements having electrodes on both surfaces of a piezoelectric layer 300 are provided on a substrate 100, and a voltage can be output when the piezoelectric element vibrates, in a direction along the surface of the substrate 100 Forming a plurality of first electrodes 201 to 204 on the substrate 100 so as to be arranged at a predetermined gap, and a piezoelectric body on the plurality of first electrodes 201 to 204 so as to straddle the plurality of first electrodes 201 to 204. The step of forming the layer 300 and the piezoelectric so as to be opposed to the gap between the plurality of first electrodes 201 to 204 through the piezoelectric layer 300 and to be arranged at a predetermined gap in the same direction as the arrangement direction of the first electrodes 201 to 204. A DC voltage is applied between the step of forming the plurality of second electrodes 401 to 403 on the body layer 300 and the first electrodes 201 and 204 at both ends in the arrangement direction of the plurality of first electrodes 201 to 204. More, and a step of performing polarization processing for each of a plurality of regions where the first electrode and the second electrode through the piezoelectric layer 300 face each other.
According to this, as described in the above embodiment, a plurality of first electrodes can be collectively formed on the same layer on the substrate, and the piezoelectric layer formed thereon needs to be formed separately. And can be formed as a single layer. Further, the plurality of second electrodes can be collectively formed in the same layer on the piezoelectric layer. In addition, the polarization treatment for each of the plurality of regions in which the first electrode and the second electrode are opposed to each other via the piezoelectric layer 300 can be performed collectively. Therefore, the manufacturing process of the power generation member is simplified, and the manufacturing cost can be reduced.

10 発電部材
100 基板
201〜204 第1電極
300 圧電体層
401〜403 第2電極
501〜506 圧電素子
DESCRIPTION OF SYMBOLS 10 Power generation member 100 Substrate 201-204 1st electrode 300 Piezoelectric layer 401-403 2nd electrode 501-506 Piezoelectric element

特開2013−146180号公報JP 2013-146180 A 特開2013−187928号公報JP 2013-187828 A 特開2013−110920号公報JP 2013-110920 A 特開2012−023345号公報JP2012-023345A

Claims (6)

圧電体を用いた発電部材であって、
圧電体層の両面それぞれに電極を有する圧電素子が基板上に複数設けられ、該複数の圧電素子は電気的に直列接続されていること特徴とする発電部材。
A power generation member using a piezoelectric body,
A power generating member, wherein a plurality of piezoelectric elements each having an electrode on each side of a piezoelectric layer are provided on a substrate, and the plurality of piezoelectric elements are electrically connected in series.
請求項1の発電部材において、
前記複数の圧電素子は、前記基板の表面に沿った方向に所定の間隙で並ぶように形成されていることを特徴とする発電部材。
The power generation member according to claim 1,
The power generation member, wherein the plurality of piezoelectric elements are formed so as to be arranged with a predetermined gap in a direction along a surface of the substrate.
請求項2の発電部材において、
前記基板の表面に沿った方向に所定の間隙で並ぶように該基板上に形成された複数の第1電極と、
前記複数の第1電極にまたがるように該複数の第1電極上に形成された圧電体層と、
前記複数の第1電極の間隙に前記圧電体層を介して対向し且つ前記基板の表面に沿った方向に所定の間隙で並ぶように該圧電体層上に形成された複数の第2電極と、を備え、
前記複数の圧電素子は、前記圧電体層を介して前記第1電極と前記第2電極とが互いに対向している複数の領域に形成されていることを特徴とする発電部材。
The power generation member according to claim 2,
A plurality of first electrodes formed on the substrate so as to be aligned with a predetermined gap in a direction along the surface of the substrate;
A piezoelectric layer formed on the plurality of first electrodes so as to straddle the plurality of first electrodes;
A plurality of second electrodes formed on the piezoelectric layer so as to face the gaps of the plurality of first electrodes via the piezoelectric layer and to be aligned with a predetermined gap in a direction along the surface of the substrate; With
The power generation member, wherein the plurality of piezoelectric elements are formed in a plurality of regions in which the first electrode and the second electrode face each other through the piezoelectric layer.
請求項1乃至3のいずれかの発電部材において、
前記圧電体層の材料は、マンガンが添加された主成分がチタン酸バリウムの材料であることを特徴とする発電部材。
In the electric power generation member in any one of Claims 1 thru | or 3,
The power generation member according to claim 1, wherein the piezoelectric layer is made of barium titanate as a main component to which manganese is added.
請求項1乃至4のいずれかの発電部材において、
前記基板は、主成分がアルミナ又はジルコニアのセラミックスからなる基板であることを特徴とする発電部材。
In the electric power generation member in any one of Claims 1 thru | or 4,
The power generation member, wherein the substrate is a substrate whose main component is ceramic of alumina or zirconia.
圧電体を用いた発電部材の製造方法であって、
基板の表面に沿った方向に所定の間隙で並ぶように該基板上に複数の第1電極を形成する工程と、
前記複数の第1電極にまたがるように該複数の第1電極上に圧電体層を形成する工程と、
前記複数の第1電極の間隙に前記圧電体層を介して対向し且つ該複数の第1電極の並び方向と同じ方向に所定の間隙で並ぶように該圧電体層上に複数の第2電極を形成する工程と、
前記複数の第1電極の並び方向における両端部の第1電極の間に直流電圧を印加することにより、前記圧電体層を介して前記第1電極と前記第2電極とが互いに対向している複数の領域それぞれに対して分極処理を行う工程と、
を含むことを特徴とする発電部材の製造方法。
A method for producing a power generation member using a piezoelectric body,
Forming a plurality of first electrodes on the substrate so as to be aligned with a predetermined gap in a direction along the surface of the substrate;
Forming a piezoelectric layer on the plurality of first electrodes so as to straddle the plurality of first electrodes;
A plurality of second electrodes on the piezoelectric layer so as to face the gaps of the plurality of first electrodes through the piezoelectric layer and to be arranged at a predetermined gap in the same direction as the arrangement direction of the plurality of first electrodes. Forming a step;
By applying a DC voltage between the first electrodes at both ends in the arrangement direction of the plurality of first electrodes, the first electrode and the second electrode are opposed to each other through the piezoelectric layer. Performing a polarization treatment on each of the plurality of regions;
The manufacturing method of the electric power generation member characterized by including.
JP2014042981A 2014-03-05 2014-03-05 Power generation member and manufacturing method for the same Pending JP2015171185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014042981A JP2015171185A (en) 2014-03-05 2014-03-05 Power generation member and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014042981A JP2015171185A (en) 2014-03-05 2014-03-05 Power generation member and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2015171185A true JP2015171185A (en) 2015-09-28

Family

ID=54203491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014042981A Pending JP2015171185A (en) 2014-03-05 2014-03-05 Power generation member and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2015171185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149075A1 (en) * 2022-02-02 2023-08-10 富士フイルム株式会社 Piezoelectric film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149075A1 (en) * 2022-02-02 2023-08-10 富士フイルム株式会社 Piezoelectric film

Similar Documents

Publication Publication Date Title
US7592738B2 (en) Ultrasonic motor
US9525365B2 (en) Power-generating device with vibration plate that applies compressive stress to the piezoelectric layer when the vibration plate does not vibrate
US8207653B2 (en) Piezoelectric generating apparatus
JP5665522B2 (en) Vibrating body and vibration type driving device
CN101596522B (en) Inertial piezoelectric exciting device and implementation method
JP5050164B2 (en) Piezoelectric actuator unit and manufacturing method thereof
KR100436637B1 (en) Piezoelectric transformer
JP4676286B2 (en) Manufacturing method of single plate type piezoelectric bimorph element
JP5707839B2 (en) Piezoelectric generator and method for manufacturing piezoelectric generator
WO2013031715A1 (en) Layered piezoelectric element
JP3090023B2 (en) Multilayer piezoelectric transformer
JP2015171185A (en) Power generation member and manufacturing method for the same
WO2010024276A1 (en) Laminated piezoelectric element
KR20170000596A (en) piezoelectric device and piezoelectric speaker using the same
US20150131821A1 (en) Piezoelectric vibration element, and piezoelectric vibration device and portable terminal using piezoelectric vibration element
JP2003009555A (en) Laminated electrical energy-mechanical energy transducer and vibration wave drive device
JP5586248B2 (en) Piezoelectric laminated parts
JP2003254989A (en) Acceleration sensor
US6903498B2 (en) Piezoelectric device, ladder type filter, and method of producing the piezoelectric device
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JPS63288075A (en) Electrostrictive effect element
Kok et al. Free-standing thick-film piezoelectric multimorph cantilevers for energy harvesting
JP4344798B2 (en) Piezoelectric vibrator for tactile sensor
JP2019153734A (en) Laminated piezoelectric element
CN115932420B (en) Electric field sensor