JP2015169374A - Vacuum cooling apparatus - Google Patents

Vacuum cooling apparatus Download PDF

Info

Publication number
JP2015169374A
JP2015169374A JP2014044650A JP2014044650A JP2015169374A JP 2015169374 A JP2015169374 A JP 2015169374A JP 2014044650 A JP2014044650 A JP 2014044650A JP 2014044650 A JP2014044650 A JP 2014044650A JP 2015169374 A JP2015169374 A JP 2015169374A
Authority
JP
Japan
Prior art keywords
pressure
outside air
processing tank
air intake
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014044650A
Other languages
Japanese (ja)
Other versions
JP6215091B2 (en
Inventor
西山 将人
Masato Nishiyama
将人 西山
伸基 明尾
Nobumoto Akio
伸基 明尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2014044650A priority Critical patent/JP6215091B2/en
Publication of JP2015169374A publication Critical patent/JP2015169374A/en
Application granted granted Critical
Publication of JP6215091B2 publication Critical patent/JP6215091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform a more precise pressure control when an inside part of a processing tank is kept at a set pressure under a high vacuum state of a final stage of vacuum cooling process.SOLUTION: This invention relates to a vacuum cooling apparatus for cooling an object 7 to be cooled that is stored in a processing tank 2 by making vacuum in the processing tank 2. There is provided in advance a surrounding air taking valve 3 for taking in the surrounding air in order to adjust a pressure reducing capability at a vacuum generating device 1. In order to hold the pressure in the processing tank under a state in which the inside of the processing tank is kept under a high vacuum, when a measured pressure in the processing tank is lower than a target pressure, an operation for opening the surrounding air taking-in valve 3 to increase an opening degree and in turn when the measured pressure in the processing tank is higher than the target pressure, an operation for closing a degree of opening of the surrounding air taking-in valve 3 is carried out and an operating amount is adjusted by a slight motion for an opening action and a wide motion for a closing action in respect to the operating amount of the surrounding air taking-in valve 3.

Description

本発明は、加熱調理された食品などの被冷却物を処理槽内に収容し、処理槽内を減圧することによって被冷却物内の水分を蒸発させ、蒸発による気化熱によって被冷却物を急速に冷却する真空冷却装置に関するものである。 The present invention accommodates an object to be cooled such as cooked food in a processing tank, evaporates moisture in the object to be cooled by reducing the pressure in the processing tank, and rapidly heats the object to be cooled by heat of vaporization due to evaporation. The present invention relates to a vacuum cooling device that cools the air.

特許第4924147号に記載があるように、被冷却物を収容している処理槽内の気体を外部へ排気し、処理槽内を減圧することで、処理槽内の飽和温度を低下させ、食材からの水分蒸発を促すことにより、その気化熱を利用して食材の冷却を図る真空冷却装置が知られている。給食センターなどにおいては、加熱調理食品を冷却する際に細菌が繁殖しやすい温度帯をできるだけ早く通過させることが要望されており、真空冷却装置であれば短時間で被冷却物の中心部まで冷却が可能であるために広く用いられている。しかし、液状の被冷却物を真空冷却する場合、急激に減圧すると、被冷却物に突沸が発生することになる。その場合には、被冷却物が飛散し、歩留まりが低下するということがあった。 As described in Japanese Patent No. 4924147, the gas in the processing tank containing the object to be cooled is exhausted to the outside, and the inside of the processing tank is decompressed to lower the saturation temperature in the processing tank. 2. Description of the Related Art A vacuum cooling device is known that uses the heat of vaporization to cool a food by promoting moisture evaporation. In food service centers, etc., when cooling cooked foods, it is required to pass through a temperature zone where bacteria can easily propagate as soon as possible. If it is a vacuum cooling device, it cools to the center of the object to be cooled in a short time. Is widely used because it is possible. However, when the liquid object to be cooled is vacuum-cooled, if the pressure is rapidly reduced, bumping occurs in the object to be cooled. In that case, the object to be cooled may scatter and the yield may decrease.

真空冷却装置では、真空配管を介して処理槽と真空発生装置を接続しておき、真空発生装置を作動することで処理槽内の気体を排出し減圧するが、真空発生装置のみで減圧速度を調節することは難しい。そのため、途中に外気取り込み弁を設けた外気取り込み用配管を処理槽に接続し、外気取り込み用配管を介して外気を取り込むことで、減圧速度の調節を行うようにしておく。真空発生装置による排気時に外気取り込み弁を開くと、外気取り込み用配管を通して処理槽内へ外気が取り込まれ、真空発生装置では処理槽内の気体に加えて外気取り込み用配管から導入された外気も排気することになる。そのため処理槽内の減圧速度は低下する。外気取り込み弁から導入する外気量を増減することで、処理槽での減圧速度の調節を行うことができ、外気取り込み弁の開度を大きくして外気取り込み量を多くすれば減圧速度はより大きく低下し、外気取り込み弁の開度を小さくして外気取り込み量を少なくすれば減圧速度の低下は小さくなる。減圧時にこのような徐冷制御(外気取り込み弁の操作)を行うことで減圧速度を調節することができ、被冷却物の突沸を防止することができる。 In the vacuum cooling device, the treatment tank and the vacuum generator are connected via a vacuum pipe, and the gas in the treatment tank is discharged and reduced in pressure by operating the vacuum generator. It is difficult to adjust. Therefore, an outside air intake pipe provided with an outside air intake valve is connected to the processing tank, and the outside pressure is taken in via the outside air intake pipe, so that the decompression speed is adjusted. When the outside air intake valve is opened during exhaust by the vacuum generator, outside air is taken into the treatment tank through the outside air intake pipe. In addition to the gas in the treatment tank, the outside air introduced from the outside air intake pipe is also exhausted by the vacuum generator. Will do. Therefore, the decompression speed in the treatment tank is reduced. By increasing or decreasing the amount of outside air introduced from the outside air intake valve, the decompression speed in the treatment tank can be adjusted, and if the outside air intake valve is increased to increase the amount of outside air intake, the decompression speed increases. If the opening degree of the outside air intake valve is decreased to reduce the outside air intake amount, the decrease in the decompression speed is reduced. By performing such slow cooling control (operation of the outside air intake valve) during decompression, the decompression speed can be adjusted, and bumping of the object to be cooled can be prevented.

また、特許第4924147号の発明は、以下の課題が記載されている。減圧手段の能力にまかせて処理槽内の気体を外部に排気すると、処理槽内圧力が冷却設定温度よりも低い温度の飽和蒸気圧力となるまで、処理槽内は減圧される。従って、食材を冷却し過ぎる恐れがある。また、食材に差し込まれた温度センサ位置によっては温度ムラが生じ、場所によっては過剰な冷却または冷却不足を生じるおそれがある。さらに、食材の種類により温度低下に差があるので、同時に異種食材の冷却を行うと温度ムラが発生し、過剰な冷却または冷却不足を生じる恐れがある。また、同じ食材であっても、大きさや、容器内での位置や詰り具合の差などにより、冷却され易い箇所と冷却され難い箇所とが出現するため、異種食材の場合と同様に、温度ムラなどを生じるおそれがある。 The invention of Japanese Patent No. 4924147 describes the following problems. When the gas in the processing tank is exhausted to the outside depending on the capacity of the decompression means, the inside of the processing tank is depressurized until the pressure in the processing tank reaches a saturated vapor pressure lower than the cooling set temperature. Therefore, there is a risk of overcooling the foodstuff. In addition, temperature unevenness may occur depending on the position of the temperature sensor inserted into the food, and depending on the location, there is a risk of excessive cooling or insufficient cooling. Furthermore, since there is a difference in temperature drop depending on the type of food, if different kinds of food are cooled at the same time, temperature unevenness may occur, which may cause excessive cooling or insufficient cooling. In addition, even if the same food is used, a portion that is easily cooled and a portion that is difficult to cool appear depending on the size, position in the container, and the degree of clogging. This may cause

特許第4924147号の発明では、上記課題に対し、「冷却目標温度を検出するまで、前記減圧手段により前記処理槽内を減圧後、前記温度センサによる品温が冷却保持温度を維持するか、前記圧力センサによる処理槽内圧力が前記冷却保持温度相当の飽和蒸気圧力を維持するように、前記減圧手段および/または前記復圧手段を制御する制御手段とを備える」ことによって解決するようにしている。この場合、品温が冷却目標温度になるまで処理槽内を減圧後、その品温が冷却保持温度を維持するか、処理槽内圧力が冷却保持温度相当の飽和蒸気圧力を維持するよう制御される。このようにして、減圧手段による処理槽内の減圧レベルが規制されると共に、圧力または温度の維持制御がなされることで、食材の冷却の過不足や温度ムラを抑えることができるというものである。 In the invention of Japanese Patent No. 4924147, in response to the above-mentioned problem, “after the pressure inside the processing tank is reduced by the pressure reducing means until the cooling target temperature is detected, the product temperature by the temperature sensor maintains the cooling holding temperature, or And a control means for controlling the decompression means and / or the return pressure means so that the pressure in the processing tank by the pressure sensor maintains a saturated vapor pressure corresponding to the cooling holding temperature. . In this case, after reducing the pressure in the treatment tank until the product temperature reaches the cooling target temperature, the product temperature is controlled to maintain the cooling holding temperature, or the processing tank pressure is controlled to maintain a saturated vapor pressure corresponding to the cooling holding temperature. The In this way, the level of pressure reduction in the processing tank by the pressure reducing means is regulated, and the maintenance of the pressure or temperature is controlled, so that excessive or insufficient cooling of the foodstuffs and temperature unevenness can be suppressed. .

処理槽内圧力を目標圧力に保持するという場合も、前記の徐冷制御時と同様に処理槽内の圧力に基づいて外気取り込み弁の開度を調節し、減圧速度を調節する。外気取り込み弁の操作を適切に行うことで、減圧時の徐冷と圧力保持を行うことができ、冷却の過不足を防止することができる。しかし、高真空状態にある処理槽内の圧力を設定圧力に保持することは簡単ではなかった。処理槽内の圧力を調節するには、真空発生装置は一定能力で作動させた状態で、圧力センサによる計測圧力に基づき外気取り込み弁の開度を調節することで行う。被冷却物では品物の温度低下にともなって蒸気発生量は減少していくなど、状態は常に変化しているため、処理槽内の圧力変化を検出し、減圧速度を調節することで処理槽内の圧力を目標圧力に保つ。外気取り込み弁を開く方向に動かし、外気取り込み弁からの外気取り込み量を増加させると、真空発生装置で処理槽内からの排気量は減少するため、処理槽での減圧速度は低下する。処理槽内からの排気量が被冷却物からの蒸気発生量より少なくなれば、処理槽内の圧力は上昇することになる。処理槽内圧力が目標圧力より低くなっていた場合には、外気の取り込み量を増加して減圧処理槽内の圧力を上昇させる。 In the case where the pressure in the treatment tank is maintained at the target pressure, the opening degree of the outside air intake valve is adjusted based on the pressure in the treatment tank as in the case of the slow cooling control, and the pressure reduction speed is adjusted. By appropriately operating the outside air intake valve, it is possible to perform slow cooling and pressure holding during decompression, and to prevent over- and under-cooling. However, it is not easy to maintain the pressure in the processing tank in a high vacuum state at a set pressure. In order to adjust the pressure in the treatment tank, the vacuum generator is operated with a constant capacity, and the opening degree of the outside air intake valve is adjusted based on the pressure measured by the pressure sensor. Since the state of the object to be cooled is constantly changing, such as the amount of steam generated decreases as the temperature of the product decreases, the pressure inside the treatment tank is detected and the pressure reduction rate is adjusted to detect the inside of the treatment tank. Keep the pressure at the target pressure. When the outside air intake valve is moved in the opening direction and the outside air intake amount from the outside air intake valve is increased, the exhaust amount from the inside of the processing tank is reduced by the vacuum generator, and thus the decompression speed in the processing tank is reduced. If the amount of exhaust from the treatment tank is less than the amount of steam generated from the object to be cooled, the pressure in the treatment tank will increase. When the pressure in the processing tank is lower than the target pressure, the amount of outside air taken in is increased to increase the pressure in the decompression processing tank.

逆に、外気取り込み弁を閉じる方向に動かし、外気取り込み弁からの外気取り込み量を減少すると、真空発生装置では処理槽内からの排気量が増加するために処理槽内の減圧速度は上昇する。処理槽内圧力が設定圧力より高くなっていた場合には、外気の取り込み量を減少して減圧処理槽内の圧力を低下させる。 On the other hand, when the outside air intake valve is moved in the closing direction and the outside air intake amount from the outside air intake valve is decreased, the amount of exhaust from the inside of the processing tank is increased in the vacuum generator, so that the decompression speed in the processing tank increases. When the pressure in the treatment tank is higher than the set pressure, the amount of outside air taken in is reduced to lower the pressure in the decompression treatment tank.

処理槽内の圧力値に基づいて外気取り込み弁の開度を調節することで、処理槽内圧力は設定圧力を挟んで上下動する曲線を描くように制御するのであるが、図3に記載しているように真空度が不足する側に偏った曲線となりがちであった。この場合、真空度は不足した状態で保持されるものであるため、冷却が不足することになる。 By adjusting the opening of the outside air intake valve based on the pressure value in the treatment tank, the pressure in the treatment tank is controlled to draw a curve that moves up and down across the set pressure. As shown, the curve tends to be biased toward the side where the degree of vacuum is insufficient. In this case, since the degree of vacuum is maintained in a state of being insufficient, cooling is insufficient.

特許4924147号公報Japanese Patent No. 4924147

本発明が解決しようとする課題は、処理槽内を目標圧力に保持する場合、処理槽内圧力と目標とする圧力の偏差が大きくなることを防止し、より精密な圧力制御を行うことのできる真空冷却装置を提供することにある。 The problem to be solved by the present invention is that when the inside of the treatment tank is held at the target pressure, it is possible to prevent the deviation between the pressure inside the treatment tank and the target pressure from increasing, and to perform more precise pressure control. The object is to provide a vacuum cooling device.

請求項1に記載の発明は、被冷却物を収容する処理槽、処理槽内の圧力を計測する圧力計測装置、処理槽内の気体を排出する真空発生装置を持ち、処理槽の内部を減圧することで、処理槽に収容した被冷却物の冷却を行う真空冷却装置であって、冷却運転時に真空発生装置での減圧能力を調節するために外気を取り込む外気取り込み弁を設けておき、外気取り込み弁の開度を操作することによって減圧能力の調節を行うようにしている真空冷却装置において、処理槽内が高真空にある状態で処理槽内圧力を目標圧力に保持することを目指し、処理槽内の計測圧力が目標圧力よりも低い場合には前記外気取り込み弁の開度を開く操作を行い、処理槽内の計測圧力が目標圧力よりも高い場合には前記外気取り込み弁の開度を閉じる操作を行うものであって、外気取り込み弁の操作量は開く側へは小さく動かし、閉じる側へは大きく動かすように操作量に重み付けを行っているものであることを特徴とする。 The invention according to claim 1 has a processing tank for storing an object to be cooled, a pressure measuring device for measuring the pressure in the processing tank, and a vacuum generator for discharging the gas in the processing tank, and the inside of the processing tank is decompressed. Thus, a vacuum cooling device that cools an object to be cooled stored in a processing tank, and an outside air intake valve that takes in outside air is provided in order to adjust the pressure reduction capability of the vacuum generator during cooling operation. In a vacuum cooling device that adjusts the pressure reduction capacity by operating the opening of the intake valve, aiming to maintain the processing tank pressure at the target pressure while the processing tank is in a high vacuum state. When the measured pressure in the tank is lower than the target pressure, the opening degree of the outside air intake valve is opened, and when the measured pressure in the processing tank is higher than the target pressure, the opening degree of the outside air intake valve is set. What to close There are, the operation amount of the outside air uptake valves move small to the side opening, and wherein the closed to the side are those by weighting the operation amount to move large.

請求項2に記載の発明は、前記の真空冷却装置において、処理槽内の計測圧力が目標圧力よりも低いために前記外気取り込み弁の開度を開く操作を行う場合は、外気取り込み弁を所定の時間ごとに操作量Aだけ開く操作を行い処理槽内の計測圧力が目標圧力よりも高いために前記外気取り込み弁の開度を閉じる操作を行う場合は、外気取り込み弁を所定の時間ごとに操作量Bだけ閉じる操作を行うものであって、外気取り込み弁開操作時の操作量Aは外気取り込み弁閉操作時の操作量Bよりも小さなものとしていることを特徴とする。 According to the second aspect of the present invention, in the vacuum cooling apparatus described above, when the operation of opening the outside air intake valve is performed because the measured pressure in the processing tank is lower than the target pressure, the outside air intake valve is set to a predetermined value. When the operation amount A is opened every time and the measured pressure in the processing tank is higher than the target pressure, and the opening degree of the outside air intake valve is closed, the outside air intake valve is opened every predetermined time. The operation amount A is closed by the operation amount B, and the operation amount A when the outside air intake valve is opened is smaller than the operation amount B when the outside air intake valve is closed.

処理槽内の圧力が高い状態において、外気取り込み弁を比較的大きく開いても真空発生装置による処理槽内の排気量が大きいため、処理槽内では減圧速度が少し低下するだけという場合でも、処理槽内の圧力が低くなった状態においては、外気取り込み弁の開度を同じだけ開くと、処理槽内からの排気量は大幅に低下し、処理槽内では比較的急激な圧力上昇が発生するということになる。例えて言うと、処理槽内の圧力が高い真空冷却初期で徐冷制御を行う場合、真空発生装置では処理槽内から大量の気体を排気することができ、処理槽内から毎秒100の気体を排気しているとして外気取り込み弁から毎秒10の外気を取り込んでも、処理槽内の減圧速度は少し低下する程度である。しかし、冷却工程が進んで処理槽内の圧力が低くなると、真空発生装置は同じように稼働していても処理槽内から排気できる気体量は減少しており、処理槽内から毎秒1の気体しか排気できなくなっている状態においては、外気取り込み弁より10の外気が入ると処理槽内での減圧は進行せず、逆に圧力が上昇するということになる。 Even when the outside air intake valve is opened relatively large in a state where the pressure in the processing tank is high, the amount of exhaust in the processing tank by the vacuum generator is large. In the state where the pressure in the tank has become low, if the opening degree of the outside air intake valve is opened by the same amount, the exhaust amount from the inside of the processing tank will be greatly reduced, and a relatively rapid pressure increase will occur in the processing tank. It turns out that. For example, when performing slow cooling control in the early stage of vacuum cooling where the pressure in the processing tank is high, the vacuum generator can exhaust a large amount of gas from the processing tank, and 100 gases per second from the processing tank. Even if 10 outside air is taken in from the outside air intake valve as being exhausted, the decompression speed in the processing tank is only slightly reduced. However, as the cooling process progresses and the pressure in the processing tank decreases, the amount of gas that can be exhausted from the processing tank decreases even if the vacuum generator operates in the same way, and 1 gas per second from the processing tank. In a state where only exhaust is possible, if 10 outside air enters from the outside air intake valve, the pressure reduction in the treatment tank does not proceed, but the pressure rises conversely.

そのため、減圧時の徐冷制御と同じような感覚で高真空時に圧力保持のための外気取り込み弁の開度操作を行うと、処理槽内の圧力を上昇させる方向には大きな傾きで変化するが、処理槽内の圧力を低下させる方向には小さな傾きでしか変化しないということになる。本発明では、高真空状態で圧力を保持する場合には、外気取り込み弁の開度を開く際と閉じる際で操作量の重み付けを異ならせている。処理槽内の圧力を高めるために外気取り込み弁の開度を開く場合での開度増加量は、処理槽内の圧力を低くするために外気取り込み弁の開度を閉じる場合での開度減少量よりも小さくしている。このようにしておくと、外気取り込み弁を開く場合にはごく僅かな量ずつひらくことになり、処理槽内の圧力が急激に増加することは防止される。そして外気取り込み弁を閉じる場合には、開く場合よりも大きく閉じていくものであるため、処理槽内の圧力をより速く低下させることができる。 Therefore, if the opening operation of the outside air intake valve for maintaining the pressure during high vacuum is performed in the same way as the slow cooling control during decompression, the direction in which the pressure in the treatment tank is increased changes with a large inclination. This means that the pressure in the treatment tank changes only with a small inclination in the direction of decreasing the pressure. In the present invention, when the pressure is maintained in a high vacuum state, the operation amount is weighted differently when the opening degree of the outside air intake valve is opened and closed. When the opening of the outside air intake valve is opened to increase the pressure in the treatment tank, the amount of increase in opening is reduced when the opening of the outside air intake valve is closed to lower the pressure in the treatment tank. It is smaller than the amount. If it does in this way, when opening an external air intake valve, it will be opened very little by little, and it is prevented that the pressure in a processing tank increases rapidly. And when closing an outside air intake valve, since it closes larger than when opening, the pressure in a processing tank can be reduced more rapidly.

本発明を実施することにより、処理槽内の圧力を目標圧力に保つ際には、目標圧力からの偏差が大きくなることを防止でき、目標圧力に対して実際の圧力が高い側に偏ることはなくなる。目標圧力での保持をより精密に行うことができるため、冷却の過不足になることなく、適正な真空冷却を行うことができるようになる。 By carrying out the present invention, when maintaining the pressure in the treatment tank at the target pressure, it is possible to prevent the deviation from the target pressure from becoming large, and the actual pressure is biased toward the higher side with respect to the target pressure. Disappear. Since holding at the target pressure can be performed more precisely, proper vacuum cooling can be performed without excessive or insufficient cooling.

本発明を実施している真空冷却装置のフロー図Flow diagram of a vacuum cooling device implementing the present invention 本発明の一実施例における処理槽内の圧力変遷図Pressure transition diagram in the treatment tank in one embodiment of the present invention 従来の真空冷却装置における処理槽内の圧力変遷図Transition diagram of pressure in treatment tank in conventional vacuum cooling system

本発明の一実施例を図面を用いて説明する。図1は本発明を実施している真空冷却装置のフロー図、図2は本発明の一実施例における処理槽内の圧力変遷図である。真空冷却装置は、被冷却物7を収容する処理槽2と、処理槽2内の気体を排出する真空発生装置1を持つ。真空冷却装置は、処理槽内を減圧することで被冷却物内の水分を蒸発させるものであり、蒸発時の気化熱によって処理槽2に収容した被冷却物7の冷却を行う。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a vacuum cooling apparatus embodying the present invention, and FIG. 2 is a pressure transition diagram in a processing tank in one embodiment of the present invention. The vacuum cooling device has a processing tank 2 that accommodates an object 7 to be cooled and a vacuum generator 1 that discharges gas in the processing tank 2. The vacuum cooling device evaporates the water in the object to be cooled by reducing the pressure in the processing tank, and cools the object to be cooled 7 accommodated in the processing tank 2 by heat of vaporization at the time of evaporation.

真空発生装置1は真空配管9で処理槽2と接続しており、処理槽2内の気体は真空発生装置1を作動することで真空配管9を通して排出する。真空配管9の途中には、処理槽2から吸引してきた気体を冷却するための熱交換器10を設けておく。処理槽から吸引している気体は蒸気を含んでおり、水は蒸気になると体積が大幅に大きくなるため、そのままでは大容積の蒸気を真空発生装置1へ送ることになり、それでは真空発生装置1の効率が悪くなる。そのために真空配管9に熱交換器10を設けており、熱交換器10で吸引気体の冷却を行うことで蒸気を凝縮させ、真空発生装置1で排出しなければならない気体の体積を縮小する。熱交換器10には冷却用の冷水を供給する冷水発生装置11を接続しており、冷水発生装置11と熱交換器10の間で冷水の循環を行わせるようにしている。熱交換器10で分離した凝縮水は、熱交換器10の下方に設置している凝縮水タンク8にためておき、冷却運転終了後に凝縮水タンク8から排出する。 The vacuum generator 1 is connected to the processing tank 2 by a vacuum pipe 9, and the gas in the processing tank 2 is discharged through the vacuum pipe 9 by operating the vacuum generator 1. A heat exchanger 10 for cooling the gas sucked from the processing tank 2 is provided in the middle of the vacuum pipe 9. The gas sucked from the treatment tank contains steam, and when water becomes steam, the volume is significantly increased. Therefore, a large volume of steam is sent to the vacuum generator 1 as it is. Becomes less efficient. For this purpose, a heat exchanger 10 is provided in the vacuum pipe 9, the suction gas is cooled by the heat exchanger 10, the vapor is condensed, and the volume of the gas that must be discharged by the vacuum generator 1 is reduced. A chilled water generator 11 that supplies chilled water for cooling is connected to the heat exchanger 10 so that the chilled water is circulated between the cold water generator 11 and the heat exchanger 10. The condensed water separated by the heat exchanger 10 is stored in the condensed water tank 8 installed below the heat exchanger 10, and is discharged from the condensed water tank 8 after the cooling operation is completed.

また、被冷却物7が液体であった場合、処理槽2内を急激に減圧すると被冷却物7に突沸が発生し、被冷却物が飛び散ることになるため、冷却時に冷却速度を緩やかにする徐冷制御を行えるようにしておく。徐冷制御は、途中に外気取り込み弁3を設けた外気取り込み用配管4を処理槽2に接続しておき、冷却運転中に外気取り込み弁3を開くことで処理槽2内に外気を導入することによって行う。外気取り込み弁3を通じて外気の導入を行うと、処理槽2内での排気量は減少するため、処理槽2内の減圧速度は低下することになる。 In addition, when the object to be cooled 7 is liquid, if the pressure in the processing tank 2 is rapidly reduced, bumping occurs in the object 7 to be cooled and the object to be cooled scatters. Allow slow cooling control. In the slow cooling control, an outside air intake pipe 4 provided with an outside air intake valve 3 is connected to the treatment tank 2 and the outside air is introduced into the treatment tank 2 by opening the outside air intake valve 3 during the cooling operation. By doing. When the outside air is introduced through the outside air intake valve 3, the amount of exhaust in the processing tank 2 decreases, and the pressure reduction speed in the processing tank 2 decreases.

また、処理槽2には処理槽内の圧力を計測する圧力計測装置5を設けておく。圧力計測装置5で計測した処理槽内の圧力は、真空冷却装置の運転を制御する運転制御装置6へ出力する。運転制御装置6は、真空発生装置1や外気取り込み弁3など、真空冷却装置の各機器を制御することで真空冷却装置の運転を行うものである。運転制御装置6では、経過時間と被冷却物7の温度や圧力計測装置5で計測している処理槽内圧力に基づいて各装置を制御する。 The processing tank 2 is provided with a pressure measuring device 5 for measuring the pressure in the processing tank. The pressure in the processing tank measured by the pressure measuring device 5 is output to the operation control device 6 that controls the operation of the vacuum cooling device. The operation control device 6 operates the vacuum cooling device by controlling each device of the vacuum cooling device such as the vacuum generator 1 and the outside air intake valve 3. In the operation control device 6, each device is controlled based on the elapsed time, the temperature of the object 7 to be cooled, and the pressure in the treatment tank measured by the pressure measuring device 5.

徐冷を行わない冷却運転の場合、外気取り込み弁3は閉じた状態で真空発生装置1の能力をそのまま使用して減圧を行い、処理槽内を目標圧力まで低下させる。被冷却物7が突沸の発生を起こさないものであれば、徐冷制御を行わずに冷却する方がより早く冷却することができる。しかし、急速な減圧を行うと被冷却物に突沸が発生するものであれば徐冷制御が必要となる。被冷却物7の突沸を防ぐ徐冷制御を行う場合は、運転制御装置6に経過時間とその時点における処理槽内の目標圧力を設定しておき、圧力計測装置5で計測している処理槽内圧力値が目標圧力になるように外気取り込み弁3の開度を調節することにより、減圧速度を調節しながら冷却運転を行う。 In the cooling operation in which slow cooling is not performed, the outside air intake valve 3 is closed, and the pressure of the vacuum generator 1 is reduced as it is to reduce the inside of the processing tank to the target pressure. If the object to be cooled 7 does not cause bumping, the cooling can be performed faster without performing the slow cooling control. However, if rapid depressurization causes bumping to occur in the object to be cooled, slow cooling control is required. When performing slow cooling control to prevent bumping of the object 7 to be cooled, a processing tank in which an elapsed time and a target pressure in the processing tank at that time are set in the operation control device 6 and measured by the pressure measuring device 5. By adjusting the opening degree of the outside air intake valve 3 so that the internal pressure value becomes the target pressure, the cooling operation is performed while adjusting the pressure reduction speed.

徐冷制御を行わない場合でも、処理槽内圧力を目標圧力に保持する場合においても、その圧力を保持するために外気取り込み弁3の開度調節を行う。真空発生装置1の稼働を停止すると処理槽2内の圧力は上昇するが、真空発生装置1の能力そのままで運転を行うと、処理槽内の圧力は過剰に低下することになる。そのため、真空発生装置1の稼働は継続しておき、外気取り込み弁3から取り込む外気量を調節することで減圧速度を調節し、処理槽2内の圧力を目標圧力に保つようにする。 Even when the slow cooling control is not performed, the opening degree of the outside air intake valve 3 is adjusted in order to maintain the pressure inside the processing tank at the target pressure. When the operation of the vacuum generator 1 is stopped, the pressure in the processing tank 2 increases. However, when the operation is performed with the capacity of the vacuum generator 1 as it is, the pressure in the processing tank is excessively decreased. Therefore, the operation of the vacuum generator 1 is continued, and the pressure reduction speed is adjusted by adjusting the amount of outside air taken in from the outside air taking-in valve 3 so that the pressure in the processing tank 2 is maintained at the target pressure.

圧力調節は、処理槽内圧力が目標圧力よりも低くなると、外気取り込み弁3を開方向に操作することで減圧能力を低下させて処理槽内の圧力を上昇させ、処理槽内圧力が目標圧力よりも高くなると、外気取り込み弁3を閉じる方向に操作することで減圧能力を増加させて処理槽内の圧力を低下させる。その際、目標値よりも計測圧力値が高い場合に外気取り込み弁を閉じる方向に行う操作量と、目標値よりも計測圧力値が低い場合に外気取り込み弁を開く方向に行う操作量は異ならせておく。高真空状態にある場合は、外気取り込み弁の開度を少し拡大するだけでも処理槽内の圧力はすぐに上昇していくが、処理槽内の圧力を低下させようとした場合には、外気取り込み弁の開度を少し閉じてもなかなか処理槽内の圧力は低下しない。そのため外気取り込み弁を開く場合の操作量は小さくし、外気取り込み弁を閉じる場合の操作量は大きくする。 When the pressure in the processing tank is lower than the target pressure, the pressure adjustment is performed by operating the outside air intake valve 3 in the opening direction to lower the pressure reduction capacity and increase the pressure in the processing tank. If it becomes higher than that, the pressure reduction capability is increased by operating the outside air intake valve 3 in the closing direction, and the pressure in the processing tank is decreased. At this time, the amount of operation performed in the direction to close the outside air intake valve when the measured pressure value is higher than the target value is different from the amount of operation performed in the direction to open the outside air intake valve when the measured pressure value is lower than the target value. Keep it. In a high vacuum state, the pressure in the treatment tank immediately rises even if the opening of the outside air intake valve is slightly increased. However, if the pressure in the treatment tank is to be reduced, the outside air Even if the opening of the intake valve is slightly closed, the pressure in the treatment tank does not easily decrease. Therefore, the operation amount when opening the outside air intake valve is reduced, and the operation amount when closing the outside air intake valve is increased.

例えば、計測圧力が目標圧力よりも低いために処理槽内の圧力を上昇させるという場合には、外気取り込み弁3の開度を毎秒1ずつ開く操作を行い、逆に計測圧力が目標圧力よりも高いために処理槽内の圧力を低下させるという場合には、外気取り込み弁3の開度を毎秒10ずつ閉じる操作を行うように設定しておく。このように設定しておくと、外気取り込み弁3を開く場合は徐々に開き、閉じる場合はより速く閉じていくことになる。 For example, when the pressure in the processing tank is increased because the measured pressure is lower than the target pressure, an operation of opening the opening of the outside air intake valve 3 by 1 every second is performed, and conversely, the measured pressure is lower than the target pressure. If the pressure in the processing tank is to be lowered because of the high pressure, the opening degree of the outside air intake valve 3 is set to perform an operation of closing 10 times per second. With this setting, when the outside air intake valve 3 is opened, it is gradually opened, and when it is closed, it is closed faster.

図2は、外気取り込み弁の操作量に上記の重み付けを行った場合の圧力値変化状況のイメージ、図3は外気取り込み弁の操作量に上記の重み付けを行っていない場合の圧力値変化のイメージを記載している。図2と図3では、真空冷却工程初期の処理槽内圧力が急激に低下している部分から、真空冷却工程中盤の緩やかに低下している部分では同じ動きであるとしている。そして両者は、処理槽内の圧力を目標圧力に保持する真空冷却工程終盤での処理槽内圧力値の変化を拡大して表示している部分では相違点がある。どちらも処理槽内の圧力値は、目標値を挟んで上下している点では同じであるが、傾きと片寄りの点では相違している。 FIG. 2 shows an image of a change in pressure value when the above-described weighting is applied to the operation amount of the outside air intake valve, and FIG. 3 is an image of a change in pressure value when the above weighting is not applied to the operation amount of the outside air intake valve. Is described. 2 and 3, it is assumed that the same movement is observed in a portion where the pressure in the processing tank at the initial stage of the vacuum cooling process is rapidly reduced to a part where the pressure is gradually reduced in the middle of the vacuum cooling process. And both differ in the part which expanded and displayed the change of the pressure value in a processing tank in the last stage of the vacuum cooling process which hold | maintains the pressure in a processing tank at a target pressure. In both cases, the pressure value in the treatment tank is the same in that it moves up and down across the target value, but differs in the point of inclination and deviation.

外気取り込み弁の操作量に上記の重み付けを行っていない図3は、例えば計測圧力が目標圧力よりも低いために処理槽内の圧力を上昇させるという場合には、外気取り込み弁3の開度を毎秒5ずつ開く操作を行い、逆に計測圧力が目標圧力よりも高いために処理槽内の圧力を低下させるという場合も、外気取り込み弁3の開度を毎秒5ずつ閉じる操作を行うという設定である。この場合、圧力値が上昇する場合の傾きは急なのに対し、圧力を低下させる場合の傾きは緩やかとなっている。外気取り込み弁の操作量に重み付けを行っていないと、外気取り込み弁の操作量は開く場合と閉じる場合で同じように操作することになるが、その場合の作用量は外気取り込み弁を開く場合には大きく現れ、外気取り込み弁を閉じる場合には小さく現れる。そのため傾きが異なることになり、処理槽内の圧力が高くなる方向に大きく入り込む。このことにより、圧力の平均値は目標値よりも高い状態となっている。 In FIG. 3 in which the operation amount of the outside air intake valve is not weighted, for example, when the pressure in the processing tank is increased because the measured pressure is lower than the target pressure, the opening degree of the outside air intake valve 3 is set. In the case of performing an operation to open 5 times per second and conversely reducing the pressure in the processing tank because the measured pressure is higher than the target pressure, the operation is performed to close the opening of the outside air intake valve 3 by 5 per second. is there. In this case, the gradient when the pressure value increases is steep, whereas the gradient when the pressure is decreased is gentle. If the amount of operation of the outside air intake valve is not weighted, the amount of operation of the outside air intake valve will be the same when opening and closing, but the amount of action in that case will be when opening the outside air intake valve. Appears larger and appears smaller when the outside air intake valve is closed. Therefore, the inclination is different, and the pressure in the treatment tank is greatly increased. As a result, the average pressure value is higher than the target value.

これに対し、外気取り込み弁の操作量に重み付けを行った図2では、外気取り込み弁を開く方向の操作量はより小さくし、閉じる方向の操作量はより大きくする。処理槽内圧力値の傾きは外気取り込み弁を開く側と閉じる側で同程度になるように外気取り込み弁の操作量に重み付けを行っているので、正弦波に近い波形を描いている。そして目標値に対して処理槽内の圧力値が一方に片寄るということもなく、平均値は目標値に近いものになっている。このようにすることで処理槽内の圧力をより精密に目標圧力付近で保持することができるようになり、冷却の過不足をなくすことができる。 On the other hand, in FIG. 2 in which the operation amount of the outside air intake valve is weighted, the operation amount in the direction of opening the outside air intake valve is made smaller and the operation amount in the closing direction is made larger. Since the amount of operation of the outside air intake valve is weighted so that the inclination of the pressure value in the processing tank is the same between the open side and the close side of the outside air intake valve, a waveform close to a sine wave is drawn. The pressure value in the processing tank does not shift to one side with respect to the target value, and the average value is close to the target value. By doing in this way, it becomes possible to hold | maintain the pressure in a processing tank more precisely near target pressure, and can eliminate the excess and deficiency of cooling.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 真空発生装置
2 処理槽
3 外気取り込み弁
4 外気取り込み用配管
5 圧力計測装置
6 運転制御装置
7 被冷却物
8 凝縮水タンク
9 真空配管
10 熱交換器
11 冷水発生装置




1 Vacuum generator
2 treatment tank
3 Outside air intake valve 4 Outside air intake pipe 5 Pressure measuring device 6 Operation control device 7 Object to be cooled 8 Condensed water tank 9 Vacuum piping 10 Heat exchanger 11 Cold water generator




Claims (2)

被冷却物を収容する処理槽、処理槽内の圧力を計測する圧力計測装置、処理槽内の気体を排出する真空発生装置を持ち、処理槽の内部を減圧することで、処理槽に収容した被冷却物の冷却を行う真空冷却装置であって、冷却運転時に真空発生装置での減圧能力を調節するために外気を取り込む外気取り込み弁を設けておき、外気取り込み弁の開度を操作することによって減圧能力の調節を行うようにしている真空冷却装置において、
処理槽内が高真空にある状態で処理槽内圧力を目標圧力に保持することを目指し、処理槽内の計測圧力が目標圧力よりも低い場合には前記外気取り込み弁の開度を開く操作を行い、処理槽内の計測圧力が目標圧力よりも高い場合には前記外気取り込み弁の開度を閉じる操作を行うものであって、
外気取り込み弁の操作量は開く側へは小さく動かし、閉じる側へは大きく動かすように操作量に重み付けを行っているものであることを特徴とする真空冷却装置。
It has a processing tank that contains the object to be cooled, a pressure measuring device that measures the pressure in the processing tank, and a vacuum generator that discharges the gas in the processing tank. A vacuum cooling device that cools an object to be cooled, and an outside air intake valve that takes in outside air is provided in order to adjust the pressure reducing capacity of the vacuum generator during cooling operation, and the opening degree of the outside air intake valve is operated. In the vacuum cooling device that adjusts the decompression capacity by
Aiming to maintain the pressure inside the treatment tank at the target pressure while the inside of the treatment tank is in a high vacuum, and when the measured pressure in the treatment tank is lower than the target pressure, an operation to open the opening of the outside air intake valve If the measured pressure in the treatment tank is higher than the target pressure, the operation of closing the opening of the outside air intake valve,
A vacuum cooling apparatus characterized by weighting the operation amount so that the operation amount of the outside air intake valve is moved small to the opening side and moved largely to the closing side.
請求項1に記載の真空冷却装置において、処理槽内の計測圧力が目標圧力よりも低いために前記外気取り込み弁の開度を開く操作を行う場合は、外気取り込み弁を所定の時間ごとに操作量Aだけ開く操作を行い処理槽内の計測圧力が目標圧力よりも高いために前記外気取り込み弁の開度を閉じる操作を行う場合は、外気取り込み弁を所定の時間ごとに操作量Bだけ閉じる操作を行うものであって、外気取り込み弁開操作時の操作量Aは外気取り込み弁閉操作時の操作量Bよりも小さなものとしていることを特徴とする真空冷却装置。


2. The vacuum cooling device according to claim 1, wherein when the opening of the outside air intake valve is opened because the measured pressure in the processing tank is lower than the target pressure, the outside air intake valve is operated every predetermined time. When the operation for opening the outside air intake valve is performed by opening the amount A and the measured pressure in the processing tank is higher than the target pressure, the outside air intake valve is closed by the operation amount B every predetermined time. A vacuum cooling device for performing an operation, wherein an operation amount A when the outside air intake valve is opened is smaller than an operation amount B when the outside air intake valve is closed.


JP2014044650A 2014-03-07 2014-03-07 Vacuum cooling device Active JP6215091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044650A JP6215091B2 (en) 2014-03-07 2014-03-07 Vacuum cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044650A JP6215091B2 (en) 2014-03-07 2014-03-07 Vacuum cooling device

Publications (2)

Publication Number Publication Date
JP2015169374A true JP2015169374A (en) 2015-09-28
JP6215091B2 JP6215091B2 (en) 2017-10-18

Family

ID=54202271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044650A Active JP6215091B2 (en) 2014-03-07 2014-03-07 Vacuum cooling device

Country Status (1)

Country Link
JP (1) JP6215091B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204408A (en) * 1978-05-12 1980-05-27 Tweedy Of Burnley Limited Vacuum cooling
JPH0835754A (en) * 1994-07-26 1996-02-06 Waaku:Kk Device and method for cooling food
JP2004218958A (en) * 2003-01-16 2004-08-05 Miura Co Ltd Vacuum cooling method
JP2007229379A (en) * 2006-03-03 2007-09-13 Miura Co Ltd Steam heating apparatus
JP2008249256A (en) * 2007-03-30 2008-10-16 Miura Co Ltd Food machinery with vacuum cooling function and its operating method
JP2010202912A (en) * 2009-03-02 2010-09-16 Mitsui Eng & Shipbuild Co Ltd Atomic layer deposition device and method therefor
JP2013146197A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling device
JP2013148242A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling apparatus
JP2014025623A (en) * 2012-07-25 2014-02-06 Samson Co Ltd Vacuum cooling device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204408A (en) * 1978-05-12 1980-05-27 Tweedy Of Burnley Limited Vacuum cooling
JPH0835754A (en) * 1994-07-26 1996-02-06 Waaku:Kk Device and method for cooling food
JP2004218958A (en) * 2003-01-16 2004-08-05 Miura Co Ltd Vacuum cooling method
JP2007229379A (en) * 2006-03-03 2007-09-13 Miura Co Ltd Steam heating apparatus
JP2008249256A (en) * 2007-03-30 2008-10-16 Miura Co Ltd Food machinery with vacuum cooling function and its operating method
JP2010202912A (en) * 2009-03-02 2010-09-16 Mitsui Eng & Shipbuild Co Ltd Atomic layer deposition device and method therefor
JP2013146197A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling device
JP2013148242A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling apparatus
JP2014025623A (en) * 2012-07-25 2014-02-06 Samson Co Ltd Vacuum cooling device

Also Published As

Publication number Publication date
JP6215091B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP5251557B2 (en) Cooling device and cooling method
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
US20170059240A1 (en) Systems and Methods for Operating a Refrigeration System
JP6601275B2 (en) Vacuum cooling device
JP5115609B2 (en) Cooling system
JP6362467B2 (en) Vacuum cooling device
JP4428271B2 (en) Vacuum cooler, overcooling prevention device, and vacuum cooling method
JP4827009B2 (en) Combined cooling device
JP6095912B2 (en) Vacuum cooling device
JP2004069289A (en) Vacuum cooling method
JP6215091B2 (en) Vacuum cooling device
JP2010133569A (en) Composite cooling device
JP5898967B2 (en) Vacuum cooling device
KR101529626B1 (en) Employment defroster in cold storage
JP2004218958A (en) Vacuum cooling method
JP6748456B2 (en) Vacuum cooling device
JP5950437B2 (en) Vacuum cooling device
JP2021081174A (en) Vacuum cooling device
KR20140093331A (en) Method for preventing dew formation of refrigerator
JP5407378B2 (en) Cooling device and cooling method
JP6537405B2 (en) Vacuum cooling system
JP7137131B2 (en) vacuum cooling system
JP4923964B2 (en) Cooling system
JP4737718B2 (en) Combined cooling device
JP2018162960A (en) Food machine having vacuum cooling function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150