JP2015168858A - Cobalt extraction solution, cobalt solution, and cobalt collection method - Google Patents

Cobalt extraction solution, cobalt solution, and cobalt collection method Download PDF

Info

Publication number
JP2015168858A
JP2015168858A JP2014044993A JP2014044993A JP2015168858A JP 2015168858 A JP2015168858 A JP 2015168858A JP 2014044993 A JP2014044993 A JP 2014044993A JP 2014044993 A JP2014044993 A JP 2014044993A JP 2015168858 A JP2015168858 A JP 2015168858A
Authority
JP
Japan
Prior art keywords
cobalt
solution
ionic liquid
extraction
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014044993A
Other languages
Japanese (ja)
Other versions
JP5850966B2 (en
Inventor
剛 板倉
Takeshi Itakura
剛 板倉
誠治 中林
Seiji Nakabayashi
誠治 中林
大 池田
Masaru Ikeda
大 池田
明彦 池ヶ谷
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2014044993A priority Critical patent/JP5850966B2/en
Priority to PCT/JP2015/055761 priority patent/WO2015133385A1/en
Priority to US15/123,865 priority patent/US20170107595A1/en
Publication of JP2015168858A publication Critical patent/JP2015168858A/en
Application granted granted Critical
Publication of JP5850966B2 publication Critical patent/JP5850966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cobalt extraction solution capable of extracting cobalt safely at lower cost than cost in a conventional one.SOLUTION: The cobalt extraction solution comprises: an ionic liquid including a quarternary ammonium group; and an organic solvent existing in a state that being mixed with the ionic liquid, and having 60 or more of a kauri-butanol value.

Description

本発明は、コバルト抽出用溶液、コバルト溶液、およびコバルト回収方法に関する。   The present invention relates to a cobalt extraction solution, a cobalt solution, and a cobalt recovery method.

タングステンカーバイドを主成分とし、コバルトやニッケルなどを結合金属として、チタンやタンタル、クロムなどの炭化物等が性能改善のために添加された超硬合金は、硬度や耐摩耗性に優れているため、金属加工用の工具などに広く用いられている。   Cemented carbides with tungsten carbide as the main component, cobalt and nickel as binding metals, and carbides such as titanium, tantalum, and chromium added to improve performance are superior in hardness and wear resistance. Widely used in tools for metal processing.

このような超硬合金を用いた工具は、使用時の欠損や摩耗などにより使用できなくなった工具やその欠損部が、ハードスクラップと呼ばれるスクラップとして廃棄される。   In such a tool using a cemented carbide, a tool that has become unusable due to chipping or wear during use or a chipped portion thereof is discarded as scrap called hard scrap.

また超硬工具の製造時に発生した超硬合金粉末の一部や、超硬工具を、研削砥石を用いて加工することにより発生した研削屑等は、ソフトスクラップと呼ばれるスクラップとして廃棄されることになる。   In addition, some of the cemented carbide powder generated during the manufacture of cemented carbide tools and grinding scraps generated by processing cemented carbide tools with grinding wheels will be discarded as scrap called soft scrap. Become.

なお、以下の説明では、超硬スクラップとは、タングステンカーバイドを50wt%以上含む、コバルト又はニッケルを結合相として持つ合金の、使用済みスクラップとする。   In the following description, the cemented carbide scrap is a used scrap of an alloy containing 50% by weight or more of tungsten carbide and having cobalt or nickel as a binder phase.

これらのハードスクラップやソフトスクラップには希少金属であるタングステンが多量に含まれている。タングステン資源の60%以上は、超硬工具に使用されている。さらに、タングステン材料の中間原料となるパラタングステン酸アンモニウム(APT)や酸化タングステンの価格は、近年上昇を続けており、超硬工具に含まれるタングステンのリサイクル技術の確立が望まれている。   These hard scraps and soft scraps contain a large amount of tungsten which is a rare metal. More than 60% of tungsten resources are used in carbide tools. Furthermore, the prices of ammonium paratungstate (APT) and tungsten oxide, which are intermediate materials for tungsten materials, have been rising in recent years, and establishment of a recycling technique for tungsten contained in carbide tools is desired.

そこで、使用済みの超硬工具等からタングステンカーバイドを再生する超硬工具のリサイクル方法が提案されており、具体的には亜鉛法や溶融塩溶解法、酸化焙焼-アルカリ溶解法などが知られている(特許文献1、2、非特許文献1)。   Therefore, a recycling method for cemented carbide tools that regenerates tungsten carbide from used cemented carbide tools has been proposed. Specifically, the zinc method, molten salt dissolution method, oxidation roasting-alkali dissolution method, etc. are known. (Patent Documents 1 and 2, Non-Patent Document 1).

一方で、上記方法でタングステンを回収した際に生じる残渣には大量のコバルトが含まれており、その回収も望まれる。しかしながら、残渣にはコバルト以外にも鉄、マンガン、ニッケル、銅、クロム、タンタル、タングステン、バナジウムなどが含まれており、超硬原料として再利用する場合や、コバルト地金を作製する場合においてはコバルト純度の問題が生じる。   On the other hand, the residue produced when tungsten is recovered by the above method contains a large amount of cobalt, and its recovery is also desired. However, in addition to cobalt, the residue contains iron, manganese, nickel, copper, chromium, tantalum, tungsten, vanadium, etc. When reusing as a carbide material, The problem of cobalt purity arises.

そのため、タングステンを回収した残渣に含まれるコバルトを分離して純化、回収する技術が望まれている。   Therefore, a technique for separating, purifying, and recovering cobalt contained in the residue from recovering tungsten is desired.

コバルトと鉄、ニッケルを分離する技術は、溶媒抽出法(引用文献3)や、硫化物による沈殿除去法(特許文献4)が報告されている。   As a technique for separating cobalt from iron and nickel, a solvent extraction method (cited document 3) and a precipitation removing method using sulfide (patent document 4) have been reported.

しかしながら、溶媒抽出法は可燃性の危険物溶媒を大量に使用する必要があり、防爆設備を必要とするために安全性とコスト面の問題があった。一方で、硫化物による沈殿除去法は、有害な硫化物を使用する必要があり、環境負荷、作業環境の維持に問題があった。   However, the solvent extraction method requires a large amount of a flammable hazardous material solvent, and requires explosion-proof equipment, so there are safety and cost problems. On the other hand, the precipitation removal method using sulfides requires the use of harmful sulfides, and there are problems in maintaining the environmental load and working environment.

そこで、これらの問題に対応する方法として、イオン液体を用いたコバルトの抽出法が報告されている。ここでいうイオン液体とは、100℃以下で液体状となる塩であり、かつイオンのみからなる液体を意味する。   Therefore, a cobalt extraction method using an ionic liquid has been reported as a method for dealing with these problems. The ionic liquid here means a liquid which is a salt that becomes liquid at 100 ° C. or lower and is composed only of ions.

イオン液体はカチオン部とアニオン部からなる構造を有している。イオン液体を用いる抽出法の具体例としては、カチオン部に4級ホスホニウム基を含むイオン液体(以下、4級ホスホニウム系イオン液体と称す)又は4級アンモニウム基を持つイオン液体(以下、4級アンモニウム系イオン液体と称す)を用い、必要に応じて有機溶媒と混合して粘度を調整したうえで、イオン液体と、コバルトとニッケルを含む溶液とを接触させることにより、イオン液体中にコバルトのみを抽出させる方法がある(非特許文献2、3)。   The ionic liquid has a structure composed of a cation part and an anion part. Specific examples of the extraction method using an ionic liquid include an ionic liquid containing a quaternary phosphonium group in the cation portion (hereinafter referred to as a quaternary phosphonium ionic liquid) or an ionic liquid having a quaternary ammonium group (hereinafter referred to as quaternary ammonium). The ionic liquid is mixed with an organic solvent as necessary, and the viscosity is adjusted. Then, by contacting the ionic liquid with a solution containing cobalt and nickel, only cobalt is added to the ionic liquid. There is a method of extracting (Non-Patent Documents 2 and 3).

特表平11−505801号公報Japanese National Patent Publication No. 11-505801 国際公開第2010/104009号International Publication No. 2010/104009 特開2013−194269号公報JP 2013-194269 A 特開2012−211375号公報JP 2012-212375 A

天満屋泰彦、希少金属等高効率回収システム開発事業「廃超硬工具からのタングステン等の回収」、金属資源レポート、独立行政法人石油天然ガス・金属鉱物資源機構、Vol.38、No.4、2008年11月、pp.407−413Yasuhiko Tenmaya, Development project for high-efficiency recovery system for rare metals, etc., “Recovery of tungsten, etc. from waste carbide tools”, Metal Resource Report, Japan Petroleum Natural Gas / Metal Mineral Resources Organization, Vol. 38, no. 4, November 2008, pp. 407-413 Sil Wellens, Ben Thijs, Koen Binnemans. “An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids” Green Chemistry, 2012, 14, 1657Sil Wellens, Ben Thijs, Koen Binnemans. “An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids” Green Chemistry, 2012, 14, 1657 Patrycja Rybka et.al., Separation Science and Technology, 47, 1296-1302, 2012Patrycja Rybka et.al., Separation Science and Technology, 47, 1296-1302, 2012

しかしながら、非特許文献2、3に示す技術では以下のような問題があった。   However, the techniques shown in Non-Patent Documents 2 and 3 have the following problems.

まず、4級ホスホニウム系イオン液体は、4級アンモニウム系イオン液体よりも非常に高価であり、使用済みの超硬工具等からコバルトを回収するために使用するにはコスト面での問題があった。   First, the quaternary phosphonium-based ionic liquid is much more expensive than the quaternary ammonium-based ionic liquid, and there was a problem in terms of cost when used for recovering cobalt from used carbide tools and the like. .

また、4級アンモニウム系イオン液体はホスホニウム系イオン液体よりも安価であるものの、4級ホスホニウム系イオン液体よりも水への溶解度が高いため、コバルトを含む水溶液からのコバルト抽出に用いると、イオン液体が水溶液に溶解してしまい、コバルトの分離が困難であるという問題があった。   Although quaternary ammonium-based ionic liquids are less expensive than phosphonium-based ionic liquids, they have higher solubility in water than quaternary phosphonium-based ionic liquids, so that when used for cobalt extraction from an aqueous solution containing cobalt, ionic liquids Was dissolved in the aqueous solution, and there was a problem that it was difficult to separate cobalt.

このように、従来のコバルト回収技術はいずれも問題を抱えており、コストと回収効率を兼ね備えた技術はないのが現状であった。   Thus, all of the conventional cobalt recovery technologies have problems, and there is no technology that combines cost and recovery efficiency.

本発明は上記課題に鑑みてなされたものであり、その目的は従来よりも安価で効率よくコバルト抽出が可能なコバルト抽出用溶液を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the solution for cobalt extraction which can extract cobalt more efficiently cheaply than before.

上記した課題を解決するため、本発明者は、従来よりも安価で効率よくコバルト抽出が可能で、かつホスホニウム系イオン液体よりも安価なイオン液体の組成について、検討を行った。   In order to solve the above-described problems, the present inventor has studied a composition of an ionic liquid that can be more efficiently and efficiently extracted with cobalt than a conventional ionic liquid and that is cheaper than a phosphonium-based ionic liquid.

特に、本発明者は4級アンモニウム系イオン液体の水への溶解度を下げることが可能か否かを検討した。   In particular, the present inventor examined whether it is possible to reduce the solubility of quaternary ammonium-based ionic liquids in water.

その結果、4級アンモニウム系イオン液体にある種の有機溶媒を混和させることにより、水への溶解度を大幅に下げることができ、コバルトを含む水溶液からのイオンの抽出が可能であることを見出し、本発明をするに至った。   As a result, by mixing a certain organic solvent in the quaternary ammonium-based ionic liquid, it has been found that the solubility in water can be greatly reduced, and ions can be extracted from an aqueous solution containing cobalt, It came to make this invention.

即ち、本発明の第1の態様は、4級アンモニウム基を含むイオン液体と、前記イオン液体と混和した状態で存在し、カウリブタノール値が60以上の有機溶媒と、を有するコバルト抽出用溶液である。   That is, the first aspect of the present invention is a cobalt extraction solution having an ionic liquid containing a quaternary ammonium group and an organic solvent having a kauributanol value of 60 or more, which is present in a mixed state with the ionic liquid. is there.

本発明の第2の態様は、第1の態様に記載のコバルト抽出用溶液と、前記コバルト抽出用溶液に溶解した、コバルトと塩素を含む酸の水溶液と、を有し、前記コバルト抽出用溶液中にコバルトが溶解している、コバルト溶液である。   A second aspect of the present invention includes the cobalt extraction solution according to the first aspect and an aqueous solution of an acid containing cobalt and chlorine dissolved in the cobalt extraction solution. It is a cobalt solution in which cobalt is dissolved.

本発明の第3の態様は、コバルトと塩素を含む酸の水溶液を、4級アンモニウム基を含むイオン液体と前記イオン液体と混和した状態で存在し、カウリブタノール値が60以上の有機溶媒を有するコバルト抽出用溶液中に溶解させ、前記コバルト抽出用溶液中にコバルトを溶解させることによりコバルトを分離して回収する、を有する、コバルト回収方法である。   In the third aspect of the present invention, an aqueous solution of an acid containing cobalt and chlorine is present in a state of being mixed with an ionic liquid containing a quaternary ammonium group and the ionic liquid, and has an organic solvent having a kauributanol value of 60 or more. A cobalt recovery method comprising: dissolving in a cobalt extraction solution, and separating and recovering cobalt by dissolving the cobalt in the cobalt extraction solution.

本発明によれば、従来よりも安価で効率よくコバルト抽出が可能なコバルト抽出用溶液を提供することができる。   According to the present invention, it is possible to provide a cobalt extraction solution that is cheaper and more efficient than conventional ones.

本実施形態のコバルト抽出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the cobalt extraction method of this embodiment. TOMAC(tri-octhyl-methyl-ammnoiumu-chloride)と有機溶媒の混和比と粘度の関係を示す図である。FIG. 4 is a graph showing the relationship between the mixing ratio of TOMAC (tri-octhyl-methyl-ammnoiumu-chloride) and an organic solvent and the viscosity. TOMACと有機溶媒の混和比とCo抽出能、Co―Ni分離能との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of TOMAC, an organic solvent, Co extraction ability, and Co-Ni separation ability. 実施例のコバルト抽出方法のフローチャートである。It is a flowchart of the cobalt extraction method of an Example.

以下、図面を参照して本発明に好適な実施形態を詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments suitable for the invention will be described in detail with reference to the drawings.

<本実施形態の原理>
まず、本実施形態のコバルト抽出の原理について、簡単に説明する。
<Principle of this embodiment>
First, the principle of cobalt extraction of this embodiment will be briefly described.

本実施形態では、ニッケルとコバルトを含む水溶液中からコバルトを分離するために、イオン液体を用いる。   In this embodiment, an ionic liquid is used to separate cobalt from an aqueous solution containing nickel and cobalt.

具体的には、まず、ニッケルとコバルトと塩素を含む水溶液を用意する。   Specifically, first, an aqueous solution containing nickel, cobalt, and chlorine is prepared.

具体的には、ニッケルとコバルトを含む化合物を、例えば塩酸等の塩素を含む酸に溶解させ、式1に示す反応を生じさせる。
CoO + 2HCl → CoCl2 + H2O …式1
生成する塩化コバルトは水溶性なので、コバルト水溶液を得ることができる。
Specifically, a compound containing nickel and cobalt is dissolved in an acid containing chlorine such as hydrochloric acid to cause the reaction shown in Formula 1.
CoO + 2HCl → CoCl 2 + H 2 O… Formula 1
Since the produced cobalt chloride is water-soluble, an aqueous cobalt solution can be obtained.

次に、ニッケルとコバルトと塩素を含む水溶液と、塩化物イオンをアニオン部として持つイオン液体とを接触させる。   Next, an aqueous solution containing nickel, cobalt, and chlorine is brought into contact with an ionic liquid having a chloride ion as an anion portion.

この際、水溶液中のコバルトは塩素と結合し、塩化物錯体としてイオン液体に抽出される。   At this time, cobalt in the aqueous solution is combined with chlorine and extracted into the ionic liquid as a chloride complex.

一方でニッケルは塩化物錯体を形成しないので、水溶液中に残留し、コバルトと分離される。これが本実施形態のコバルト抽出の原理である。   On the other hand, since nickel does not form a chloride complex, it remains in the aqueous solution and is separated from cobalt. This is the principle of cobalt extraction of this embodiment.

このように、コバルトがイオン液体に抽出される反応を以下に示す。
Co2+ + 4Cl- → CoCl4 2- …式2
2I.L. - Cl + CoCl4 2- → (I.L.)2-CoCl4 + Cl- (I.L.:イオン液体のカチオン部分) …式3
Thus, the reaction in which cobalt is extracted into an ionic liquid is shown below.
Co 2+ + 4Cl - → CoCl 4 2- ... Equation 2
2I.L. - Cl + CoCl 4 2- → (IL) 2 -CoCl 4 + Cl - (IL: the cationic portion of the ionic liquid) Equation 3

また、コバルトの抽出能と分離能を以下のように定義する。
抽出能:単位体積当たりのイオン液体に抽出可能なコバルト量 (g/dm=kg/m)。
分離能:単位体積当たりのイオン液体に抽出されたコバルト量をニッケルの抽出量で除したもの (g/g)。
Moreover, the extraction ability and separation ability of cobalt are defined as follows.
Extraction capacity: Amount of cobalt extractable into ionic liquid per unit volume (g / dm 3 = kg / m 3 ).
Separation ability: The amount of cobalt extracted in an ionic liquid per unit volume divided by the amount of nickel extracted (g / g).

<本実施形態の構成>
次に、本実施形態でコバルト抽出に用いられるコバルト抽出用溶液の構成について説明する。
<Configuration of this embodiment>
Next, the structure of the cobalt extraction solution used for cobalt extraction in this embodiment will be described.

前述のように、本実施形態のコバルト抽出用溶液はコバルトと塩素を含む水溶液と接触させることにより、コバルトを分離するものであり、4級アンモニウム基を含むイオン液体と、イオン液体と混和した状態で存在し、カウリブタノール値(以下、KB値と記載)が60以上の有機溶媒を有する。   As described above, the cobalt extraction solution of this embodiment separates cobalt by contacting with an aqueous solution containing cobalt and chlorine, and is in a state of being mixed with an ionic liquid containing a quaternary ammonium group and the ionic liquid. And has an organic solvent having a Kauributanol value (hereinafter referred to as KB value) of 60 or more.

なお、ここでいうKB値とは、カウリ樹脂ブタノール溶液一定量を三角フラスコに入れ、標準活字用紙の上に置き、試料を加え、濁りが生じて活字が読めなくなった時の試料のml数である。   The KB value here refers to the number of milliliters of a sample when a certain amount of Kauri resin butanol solution is placed in an Erlenmeyer flask, placed on a standard type paper, a sample is added, and turbidity occurs and the typeface cannot be read. is there.

(イオン液体)
イオン液体はコバルトと塩素を含む水溶液と接触することによりコバルトを抽出する液体であり、本実施形態では塩化物イオンをアニオン部として持つ4級アンモニウム系イオン液体を含むイオン液体を用いる。
(Ionic liquid)
The ionic liquid is a liquid that extracts cobalt by contacting with an aqueous solution containing cobalt and chlorine. In this embodiment, an ionic liquid containing a quaternary ammonium-based ionic liquid having a chloride ion as an anion portion is used.

これは、4級アンモニウム系イオン液体は、4級ホスホニウム系イオン液体等の他のイオン液体と比較して非常に安価なイオン液体であるためである。   This is because the quaternary ammonium-based ionic liquid is a very inexpensive ionic liquid as compared with other ionic liquids such as a quaternary phosphonium-based ionic liquid.

4級アンモニウム系イオン液体としてはトリ―オクチル―メチル―アンモニウム―クロライド(tri-octhyl-methyl-ammnoiumu-chloride、TOMAC)又は、ジ―オクタデシル―ジ―メチル―アンモニウム―クロライド(di-octadethyl-di-methyl-ammoniumu-chloride)が例示されるが、必ずしもこれらに限定されるものではない。   Quaternary ammonium-based ionic liquids include tri-octthyl-methyl-ammnoiumu-chloride (TOMAC) or di-octadethyl-di-methyl-ammonium chloride (di-octadethyl-di-). methyl-ammoniumu-chloride) is exemplified, but not necessarily limited thereto.

(有機溶媒)
本実施形態の有機溶媒は4級アンモニウム基を含むイオン液体の水への溶解度を下げるとともに、粘度等の物理特性を調整するものであり、KB値60以上の有機溶媒が用いられる。
(Organic solvent)
The organic solvent of the present embodiment lowers the solubility of an ionic liquid containing a quaternary ammonium group in water and adjusts physical properties such as viscosity, and an organic solvent having a KB value of 60 or more is used.

ここで、KB値60以上の有機溶媒を用いる理由について説明する。
上記の通り、塩化物イオンをアニオン部として持つ4級アンモニウム系イオン液体は他のイオン液体と比較して非常に安価なイオン液体である。
Here, the reason for using an organic solvent having a KB value of 60 or more will be described.
As described above, the quaternary ammonium-based ionic liquid having chloride ions as an anion portion is an ionic liquid that is very inexpensive as compared with other ionic liquids.

しかしながら、金属イオンの抽出に関する検討では、4級アンモニウム系イオン液体と比較して非常に高価な4級ホスホニウム系イオン液体が主に使用されてきた。   However, in studies on extraction of metal ions, quaternary phosphonium ionic liquids that are very expensive compared to quaternary ammonium ionic liquids have been mainly used.

これは、ホスホニウム系イオン液体が水に溶解しないことや、粘度が低いためである。   This is because the phosphonium-based ionic liquid does not dissolve in water and the viscosity is low.

これに対して、安価なアンモニウム系イオン液体は水と体積比で10%程度混ざり合う問題と、粘度が高い問題がある。特にコバルトを抽出した場合、非常に粘度が高くなり、水との分離性が悪いので、例えば連続式抽出塔を通すことができない。このため、抽出効率の高いイオン液体を使用しているにもかかわらず、効率の悪いバッチ式でしか処理を行うことができない。イオン液体の水への溶解は、高価な抽出剤であるイオン液体を系外に排出してしまうので、イオン液体の回収、分解処理を行う必要がある。また、コバルトとニッケルの分離能がホスホニウム系のイオン液体と比較して低い問題もある。   On the other hand, an inexpensive ammonium-based ionic liquid has a problem of being mixed with water by about 10% by volume and a problem of high viscosity. In particular, when cobalt is extracted, the viscosity becomes very high and the separability from water is poor, so that it cannot pass through, for example, a continuous extraction tower. For this reason, in spite of using an ionic liquid with high extraction efficiency, processing can be performed only in a batch system with low efficiency. Since dissolution of the ionic liquid in water discharges the ionic liquid, which is an expensive extractant, out of the system, it is necessary to recover and decompose the ionic liquid. There is also a problem that the separation ability of cobalt and nickel is lower than that of phosphonium-based ionic liquids.

これに対し、本発明者らはKB値60以上の有機溶媒が4級アンモニウム系イオン液体と混和し、混和した状態では水への溶解度が下がり、粘度も低下することを発見したため、KB値60以上の有機溶媒を用いることとしたものである。   In contrast, the present inventors have found that an organic solvent having a KB value of 60 or more is mixed with a quaternary ammonium-based ionic liquid, and in the mixed state, the solubility in water is decreased and the viscosity is also decreased. The above organic solvent is used.

KB値60以上の有機溶媒とは、例えばアルキルベンゼン誘導体やトルエンなどがあげられる。例えばKB値80のアルキルベンゼン誘導体(商品名Solvesso150)を4級アンモニウム系イオン液体に体積比で10%程度添加させることによって、溶媒の粘度を1/10以下に下げることができる。また、水との分離性も改善し、4級アンモニウム系イオン液体が水に溶けてしまう現象が起こらなくなる(有機溶媒との混和前は、4級アンモニウム系イオン液体は重量%で水に3%程度溶解するが、これが0.01%以下になる)。これによって、抽出処理における4級アンモニウム系イオン液体のロス(水への溶解)を抑制することができる。なお、KB値の上限は特に限定されないが、工業上利用可能な有機溶媒ではKB値が110を越えるものを製造するのは困難である。   Examples of the organic solvent having a KB value of 60 or more include alkylbenzene derivatives and toluene. For example, by adding about 10% by volume of an alkylbenzene derivative (trade name Solvesso 150) having a KB value of 80 to a quaternary ammonium-based ionic liquid, the viscosity of the solvent can be lowered to 1/10 or less. In addition, the separability from water is improved, and the phenomenon that the quaternary ammonium ionic liquid dissolves in water does not occur (before mixing with an organic solvent, the quaternary ammonium ionic liquid is 3% by weight in water. It dissolves to a certain extent, but this is 0.01% or less). Thereby, the loss (dissolution in water) of the quaternary ammonium ionic liquid in the extraction process can be suppressed. The upper limit of the KB value is not particularly limited, but it is difficult to produce an industrially available organic solvent having a KB value exceeding 110.

有機溶媒と4級アンモニウム系イオン液体を混合して混和させることにより、水への溶解を抑制できる理由は、4級アンモニウム系イオン液体が疎水性有機溶媒に優先的に溶解することで水への溶解が起こらなくなったためであると考えられる。   The reason why the dissolution in water can be suppressed by mixing and mixing the organic solvent and the quaternary ammonium-based ionic liquid is that the quaternary ammonium-based ionic liquid is preferentially dissolved in the hydrophobic organic solvent so that it can be dissolved in water. This is probably because dissolution did not occur.

また、4級アンモニウム系イオン液体が水に溶け込むのと同様に、水も4級アンモニウム系イオン液体に溶け込む。この水に含まれるニッケルは抽出処理では分離することができず、抽出後にイオン液体を洗浄する必要がある。しかしながら、4級アンモニウム系イオン液体を有機溶媒と混合して混和させることによって4級アンモニウム系イオン液体側に溶け込む水の量も減少するため、ニッケルの混入量も減少し、コバルトとニッケルの分離能を向上させることができる。
以上がKB値60以上の有機溶媒を用いる理由の説明である。
In addition, water is dissolved in the quaternary ammonium ionic liquid in the same manner as the quaternary ammonium ionic liquid is dissolved in water. The nickel contained in the water cannot be separated by the extraction process, and the ionic liquid needs to be washed after the extraction. However, mixing the quaternary ammonium ionic liquid with an organic solvent and mixing it also reduces the amount of water dissolved into the quaternary ammonium ionic liquid, thereby reducing the amount of nickel mixed in and the ability to separate cobalt and nickel. Can be improved.
The above is an explanation of the reason for using an organic solvent having a KB value of 60 or more.

なお、コバルト抽出用溶液は、有機溶媒を体積比で2%以上、50%以下含有するのが望ましく、5%以上、15%以下含有するのがより望ましい。これは、有機溶媒の含有量が2%未満の場合、有機溶媒を含有させた効果が得られないためである。また、50%を超えると、有機溶媒はCoの抽出には関与しないため、Co抽出能が低下するためである。   The cobalt extraction solution preferably contains an organic solvent in a volume ratio of 2% to 50%, and more preferably 5% to 15%. This is because the effect of containing the organic solvent cannot be obtained when the content of the organic solvent is less than 2%. On the other hand, if it exceeds 50%, the organic solvent does not participate in the extraction of Co, and therefore, the Co extraction ability decreases.

また、コバルト抽出用溶液は粘度が0.02Pa・s以上、0.5 Pa・s以下であるように有機溶媒を含有するのが望ましい。これは、粘度が0.02Pa・s未満の溶液を作製するためには有機溶媒を大量に含有させる必要があり、Co抽出能が低下するためである。また、粘度が0.5 Pa・sを超えるとCo抽出の際に連続式の抽出装置を用いた処理が困難となるためである。コバルト抽出用溶液は有機溶媒の含有量が多くなるほど粘度が低くなるが、上記の通り、含有量が多すぎるとCo抽出能が低下するため、有機溶媒の含有量は粘度と抽出能の両方を考慮して設定する必要がある。   The cobalt extraction solution preferably contains an organic solvent so that the viscosity is 0.02 Pa · s or more and 0.5 Pa · s or less. This is because, in order to prepare a solution having a viscosity of less than 0.02 Pa · s, it is necessary to contain a large amount of an organic solvent, and Co extraction ability is reduced. Further, when the viscosity exceeds 0.5 Pa · s, it is difficult to perform a process using a continuous extraction apparatus during Co extraction. As the content of the organic solvent increases, the viscosity of the cobalt extraction solution decreases. However, as described above, if the content is too large, the Co extractability decreases, so the content of the organic solvent reduces both the viscosity and the extractability. It is necessary to set in consideration.

<コバルト抽出方法>
次に、図1を参照して本実施形態に係るコバルト抽出用溶液を用いたコバルト抽出方法について説明する。
<Cobalt extraction method>
Next, a cobalt extraction method using the cobalt extraction solution according to the present embodiment will be described with reference to FIG.

ここでは、タングステン、コバルト、ニッケル、鉄を含有する超硬スクラップに対し、酸化焙焼とアルカリ抽出処理又は溶融塩溶解処理を施し、生成したタングステン酸ナトリウム水溶液をろ過することによって発生する、タングステン抽出残渣からコバルト水溶液を回収する方法が例示されている。   Here, tungsten scrap is generated by subjecting cemented carbide scrap containing tungsten, cobalt, nickel, iron to oxidation roasting and alkali extraction treatment or molten salt dissolution treatment, and filtering the produced sodium tungstate aqueous solution. A method for recovering an aqueous cobalt solution from the residue is exemplified.

まず、タングステン抽出残渣に、塩酸や硫酸などの酸を接触させ、コバルトを塩化コバルトや硫酸コバルトとして水溶液中に浸出させて酸性水溶液とする(図1のS1)。のちの処理を考えると酸の種類は塩酸が好ましい。ただし、後に塩化ナトリウムなどによって塩素を補充する場合は、酸の種類は強酸であれば必ずしも塩酸に限定されるものではなく、硫酸などでもよい。   First, an acid such as hydrochloric acid or sulfuric acid is brought into contact with the tungsten extraction residue, and cobalt is leached into an aqueous solution as cobalt chloride or cobalt sulfate to form an acidic aqueous solution (S1 in FIG. 1). Considering later treatment, hydrochloric acid is preferred as the acid type. However, when chlorine is replenished later with sodium chloride or the like, the acid is not necessarily limited to hydrochloric acid as long as it is a strong acid, and may be sulfuric acid or the like.

また、酸濃度は1規定以上、10規定以下が望ましく、2規定以上、5規定以下がより望ましい。   The acid concentration is preferably 1 N or more and 10 N or less, more preferably 2 N or more and 5 N or less.

これは、酸濃度が10規定を超えると、後述するイオン交換処理の際のマンガンや銅の除去率が低下するためである。また、酸濃度が1規定を下回ると、浸出液(コバルトが浸出した水溶液)中のコバルト濃度が低くなり、処理効率の低下、コストの上昇を招くためである。   This is because when the acid concentration exceeds 10N, the removal rate of manganese and copper during the ion exchange treatment described later decreases. On the other hand, when the acid concentration is less than 1 N, the cobalt concentration in the leachate (the aqueous solution in which cobalt is leached) is lowered, resulting in a decrease in processing efficiency and an increase in cost.

次に、水溶液に過酸化水素を添加する。これは残渣中の鉄を3価に酸化するためである。具体的な添加量は、鉄の0.5倍モル以上、3倍モル以下程度である。なお鉄の0.5倍モルで等量となり、すべての鉄を酸化可能である。   Next, hydrogen peroxide is added to the aqueous solution. This is because iron in the residue is oxidized to trivalent. The specific addition amount is about 0.5 times mol or more and 3 times mol or less of iron. It is equivalent to 0.5 times mole of iron, and all iron can be oxidized.

過酸化水素の添加量が鉄の3倍モルを超えると、余剰の過酸化水素が分解することによって酸素が発生し、後述するイオン交換時に樹脂管に気泡が入る原因となるので、望ましくない。一方で、過酸化水素の添加量が鉄の0.5倍モルを下回ると、未酸化の鉄が溶液中に残留するため、望ましくない。過酸化水素添加後は直ちに鉄が酸化される。   If the amount of hydrogen peroxide added exceeds 3 times the amount of iron, oxygen is generated due to decomposition of excess hydrogen peroxide, which causes bubbles to enter the resin tube during ion exchange described later, which is not desirable. On the other hand, when the addition amount of hydrogen peroxide is less than 0.5 times mole of iron, unoxidized iron remains in the solution, which is not desirable. Immediately after the addition of hydrogen peroxide, iron is oxidized.

次に、水酸化ナトリウムや水酸化カルシウムなどの、アルカリを使って水溶液のpHを1以上、6以下に調整して鉄を沈殿させ、沈殿した鉄を濾過等で除去する(図1のS2)。   Next, the pH of the aqueous solution is adjusted to 1 or more and 6 or less using an alkali such as sodium hydroxide or calcium hydroxide to precipitate iron, and the precipitated iron is removed by filtration or the like (S2 in FIG. 1). .

具体的なアルカリとしては、1価の陽イオンからなる水酸化物が好ましく、コストを考えると水酸化ナトリウムが好ましい。これは、最終的に抽出したCoを超硬工具の原料として用いる場合はCo水溶液にシュウ酸を加えて沈殿させる必要があるが、2価の陽イオンからなる水酸化物をS2で用いると、シュウ酸沈殿生成の際に、コバルトと一緒に水酸化物が沈殿し、不純物として含まれやすくなるためである。ただし、Coを直接還元させるような場合には、アルカリを1価の陽イオンからなる水酸化物に限定する必要はなく、水酸化カルシウム、水酸化マグネシウム、水酸化カリウム、水酸化ストロンチウム、水酸化コバルト等を用いることができる。ただし、炭酸ナトリウムなどの炭酸塩は炭酸コバルトを生成するので望ましくなく、アンモニアはコバルト―アンミン錯体が生成し、コバルトをイオン液体に抽出できなくなるので望ましくない。   As a specific alkali, a hydroxide composed of a monovalent cation is preferable, and sodium hydroxide is preferable in view of cost. This is because when finally extracted Co is used as a raw material for a cemented carbide tool, it is necessary to add oxalic acid to a Co aqueous solution to precipitate, but when a hydroxide composed of a divalent cation is used in S2, This is because hydroxide is precipitated together with cobalt during oxalic acid precipitation, and is easily contained as an impurity. However, in the case of directly reducing Co, it is not necessary to limit the alkali to a hydroxide composed of a monovalent cation. Calcium hydroxide, magnesium hydroxide, potassium hydroxide, strontium hydroxide, hydroxide Cobalt or the like can be used. However, carbonates such as sodium carbonate are undesirable because they produce cobalt carbonate, and ammonia is undesirable because a cobalt-ammine complex is produced and cobalt cannot be extracted into an ionic liquid.

なお、沈殿した鉄はろ過によって除去される。また、pHが6を上回ると、コバルトが水酸化物として沈殿してしまい、コバルトの回収率が低下するので、望ましくない。また、pHが1を下回ると、鉄の沈殿が完全に進まず、鉄の除去率が低下し、この後のイオン交換によるマンガンと銅の除去率も低下するため、望ましくない。   The precipitated iron is removed by filtration. On the other hand, if the pH exceeds 6, cobalt is precipitated as a hydroxide and the recovery rate of cobalt is lowered, which is not desirable. On the other hand, if the pH is lower than 1, the precipitation of iron does not proceed completely, the iron removal rate is lowered, and the removal rate of manganese and copper by subsequent ion exchange is also lowered, which is not desirable.

次に、水溶液に塩化物を添加し、塩化物イオン濃度をコバルトの2倍モル以上にする。これは効率よくイオン液体にコバルトを抽出させるためである。   Next, chloride is added to the aqueous solution so that the chloride ion concentration is at least twice that of cobalt. This is for efficiently extracting cobalt into the ionic liquid.

なお、コバルト浸出処理(図1のS1の処理)に塩酸を用いた場合は、ここでの塩化物の添加は必須ではない。   In addition, when hydrochloric acid is used for the cobalt leaching process (the process of S1 in FIG. 1), the addition of chloride here is not essential.

次に、水溶液をイオン交換樹脂と接触させ、マンガンと銅を除去する(図1のS3)。   Next, the aqueous solution is brought into contact with the ion exchange resin to remove manganese and copper (S3 in FIG. 1).

具体的には、水溶液体積の1/100以上の体積のキレート型陰イオン交換樹脂を10分以上水溶液に浸漬するか、あるいはイオン交換樹脂をカラムに充てん後に水溶液を通液するのが望ましい。   Specifically, it is desirable to immerse a chelate-type anion exchange resin having a volume of 1/100 or more of the aqueous solution in the aqueous solution for 10 minutes or more, or to fill the column with the ion exchange resin and then pass the aqueous solution.

樹脂体積が水溶液体積の1/100未満の場合はマンガンと銅の除去率が低下するため、望ましくない。   When the resin volume is less than 1/100 of the aqueous solution volume, the removal rate of manganese and copper decreases, which is not desirable.

また、樹脂の浸漬時間が10分未満の場合、マンガンと銅の除去率が低下するため、望ましくない。   Moreover, when the immersion time of resin is less than 10 minutes, since the removal rate of manganese and copper falls, it is not desirable.

また、カラムに充てん後通液する場合は、空間速度(Space Velocity、SV) が0.1以上、10以下の速度で通液する。   In addition, when the liquid is passed after filling the column, the space velocity (Space Velocity, SV) is passed at a speed of 0.1 or more and 10 or less.

カラムに充てん時の空間速度が0.1未満の場合は、処理に時間がかかり現実的でないため、望ましくない。   When the space velocity at the time of filling the column is less than 0.1, it is not desirable because the processing takes time and is not realistic.

また、カラムに充てん時の空間速度が10を超える場合は、マンガンと銅の破かが早くなり、イオン交換樹脂の再生頻度が増加するため、望ましくない。   Moreover, when the space velocity at the time of filling a column exceeds 10, the breakage of manganese and copper is accelerated and the regeneration frequency of the ion exchange resin is increased, which is not desirable.

次に、あらかじめ有機溶媒と混和したイオン液体を水溶液に接触させてCoをイオン液体に抽出して溶解させ、ニッケルと分離する(図1のS4)。接触方法は、一般的な溶媒抽出処理と同様で、バッチ式のものでも構わないし、連続式でも構わない。ニッケルは水溶液に残留するため、回収する。   Next, an ionic liquid previously mixed with an organic solvent is brought into contact with the aqueous solution to extract and dissolve Co into the ionic liquid to separate it from nickel (S4 in FIG. 1). The contact method is the same as a general solvent extraction process, and may be a batch type or a continuous type. Nickel is recovered because it remains in the aqueous solution.

また、イオン液体と水溶液との接触時の塩素濃度は、コバルト濃度の2倍モル濃度以上、10倍モル濃度以下であるのが望ましい。   In addition, the chlorine concentration at the time of contact between the ionic liquid and the aqueous solution is desirably 2 to 10 times the molar concentration of the cobalt concentration.

これは、塩素濃度がコバルト濃度の10倍モル濃度を超えると、塩化ナトリウムや塩化カルシウムなどの一般的な塩化物が水に溶ける上限に近くなり、溶解に非常に時間がかかり、さらに増やすと、沈殿が残留することとなり、4級アンモニウム系イオン液体と沈殿物の分離が困難となるためである。   This means that when the chlorine concentration exceeds 10 times the molar concentration of the cobalt concentration, general chlorides such as sodium chloride and calcium chloride are close to the upper limit to dissolve in water, and it takes a very long time to dissolve. This is because a precipitate remains and it is difficult to separate the quaternary ammonium-based ionic liquid from the precipitate.

また、塩素濃度がコバルト濃度の2倍モル濃度未満の場合、コバルトの塩化物錯体が生成しにくくなるので、抽出能が低下するためである。   Further, when the chlorine concentration is less than twice the molar concentration of the cobalt concentration, it is difficult to produce a cobalt chloride complex, and the extractability is reduced.

最後に、コバルトを抽出した溶液(ここではコバルト溶液と称す)を純水等の水と接触させる(図1のS5)。   Finally, a solution from which cobalt is extracted (herein referred to as a cobalt solution) is brought into contact with water such as pure water (S5 in FIG. 1).

純水には塩化物イオンが含まれていないので、コバルトの塩化物錯体が分解して純水側にコバルトが逆抽出される。純水の温度は低い方がコバルトを効率よく抽出できる。
以上が本実施形態のコバルト抽出方法である。
Since pure water does not contain chloride ions, the cobalt chloride complex is decomposed and cobalt is back-extracted to the pure water side. The lower the pure water temperature, the more efficiently cobalt can be extracted.
The above is the cobalt extraction method of this embodiment.

このように、本実施形態のコバルト抽出用溶液は4級アンモニウム基を含むイオン液体と、イオン液体と混和した状態で存在し、カウリブタノール値が60以上の有機溶媒と、を有する。
そのため、従来よりも安価で効率の良いコバルト抽出が可能である。
As described above, the cobalt extraction solution of the present embodiment has an ionic liquid containing a quaternary ammonium group and an organic solvent having a Kauri-butanol value of 60 or more that exists in a state of being mixed with the ionic liquid.
Therefore, cobalt extraction that is cheaper and more efficient than the prior art is possible.

以下、実施例に基づき、本発明を具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated concretely.

(実施例1)
4級アンモニウム系イオン液体を種々の有機溶媒と接触させ、混和の可否および混和できた場合の物理特性の変化として、混和した溶液の粘度の測定を行った。
Example 1
Quaternary ammonium-based ionic liquid was brought into contact with various organic solvents, and the viscosity of the mixed solution was measured as the possibility of mixing and the change in physical properties when mixed.

具体的には、まず4級アンモニウム系イオン液体としてTOMACを用意した。   Specifically, first, TOMAC was prepared as a quaternary ammonium-based ionic liquid.

次に、有機溶媒として、KB値が30〜100の有機溶媒を用意し、TOMACと有機溶媒を接触させた。なお、使用した有機溶媒とKB値の関係は以下の通りである。   Next, an organic solvent having a KB value of 30 to 100 was prepared as an organic solvent, and TOMAC and the organic solvent were brought into contact with each other. In addition, the relationship between the used organic solvent and KB value is as follows.

KB値30の有機溶媒:アイソパーC(エクソンモービル製イソパラフィン系溶剤)、KB値40の有機溶媒:エクソールDSP80(エクソンモービル製ナフテン系溶剤)、KB値60の有機溶媒:シクロヘキサン、KB値80の有機溶媒:Solvesso150(エクソンモービル製芳香族系溶剤)、KB値100の有機溶媒:トルエン。結果を表1に示す。   Organic solvent with a KB value of 30: Isopar C (isoparaffinic solvent manufactured by ExxonMobil), organic solvent with a KB value of 40: Exol DSP80 (Naphthenic solvent manufactured by ExxonMobil), organic solvent with a KB value of 60: cyclohexane, organic with a KB value of 80 Solvent: Solvesso 150 (an aromatic solvent manufactured by ExxonMobil), organic solvent having a KB value of 100: toluene. The results are shown in Table 1.

Figure 2015168858
Figure 2015168858

表1から明らかなように、KB値が60未満の有機溶媒は、TOMACとは混和せず2相に分離した。一方でKB値が60以上の溶媒はTOMACと混和することが確認された。   As is clear from Table 1, the organic solvent having a KB value of less than 60 was not mixed with TOMAC and separated into two phases. On the other hand, it was confirmed that a solvent having a KB value of 60 or more is miscible with TOMAC.

次に、上記の有機溶媒のうち、KB値が60以上の溶媒としてSolvesso150を用意して種々の比率でTOMACと混和させ、混和した溶液の粘度に与える混和比の影響を測定した。結果を図2に示す。   Next, among the above organic solvents, Solvesso 150 was prepared as a solvent having a KB value of 60 or more and mixed with TOMAC at various ratios, and the influence of the mixing ratio on the viscosity of the mixed solution was measured. The results are shown in FIG.

図2に示すように、有機溶媒の混和比を高くすると、混和した溶液の粘度がほぼ直線的に低下することが確認できた。そのため、TOMACへの有機溶媒の添加は、その物理特性に影響を与えることが分かった。   As shown in FIG. 2, it was confirmed that when the mixing ratio of the organic solvent was increased, the viscosity of the mixed solution decreased almost linearly. Therefore, it has been found that the addition of an organic solvent to TOMAC affects its physical properties.

(実施例2)
4級アンモニウム系イオン液体と有機溶媒が混和した溶液(コバルト抽出用溶液)をCo、Ni水溶液と接触させ、Coの抽出能と分離能を評価した。具体的な手順は以下の通りである。
(Example 2)
A solution in which a quaternary ammonium-based ionic liquid and an organic solvent were mixed (cobalt extraction solution) was brought into contact with Co and a Ni aqueous solution, and Co extraction ability and separation ability were evaluated. The specific procedure is as follows.

まず、4級アンモニウム系イオン液体としてTOMACを、有機溶媒としてSolvesso150を用意し、TOMACと有機溶媒を混和比0〜60vol%で混和させてコバルト抽出用溶液を作製した。   First, TOMAC as a quaternary ammonium-based ionic liquid and Solvesso 150 as an organic solvent were prepared, and TOMAC and an organic solvent were mixed at a mixing ratio of 0 to 60 vol% to prepare a cobalt extraction solution.

次に、4mol/Lの塩酸にCo、Niを溶解し、Co、Ni水溶液(Co:43g/dm、Ni:1.0g/dm)を作製した。なお、g/dm=kg/mである(以下同様)。 Next, Co and Ni were dissolved in 4 mol / L hydrochloric acid to prepare a Co and Ni aqueous solution (Co: 43 g / dm 3 , Ni: 1.0 g / dm 3 ). Note that g / dm 3 = kg / m 3 (the same applies hereinafter).

次に、Co、Ni水溶液とコバルト抽出用溶液を分液ロートに入れ、10分間振盪することにより接触させて、Coをコバルト抽出用溶液に移行させCoの抽出を行い、Niを水溶液中に残留させた。   Next, Co, Ni aqueous solution and cobalt extraction solution are placed in a separatory funnel and brought into contact by shaking for 10 minutes, Co is transferred to the cobalt extraction solution to extract Co, and Ni remains in the aqueous solution. I let you.

次に、抽出前後の水溶液のCo、Ni濃度をICP―AESにて定量分析を行い、抽出前後の各元素の濃度差からCo抽出能とCo―Ni間の分離能を算出した。結果を図3に示す。   Next, the Co and Ni concentrations of the aqueous solution before and after extraction were quantitatively analyzed by ICP-AES, and the Co extraction ability and the separation ability between Co and Ni were calculated from the concentration difference of each element before and after extraction. The results are shown in FIG.

図3に示すように、Solvesso150の体積比率が大きくなるほど、Co抽出能が低下した。これは、溶媒中のSolvesso150は、Coの抽出には関与しないためと考えられる。   As shown in FIG. 3, the Co extractability decreased as the volume ratio of Solvesso 150 increased. This is probably because Solvesso150 in the solvent does not participate in the extraction of Co.

一方で、Solvesso150の体積比率が大きくなるほど、Co―Ni間の分離能は向上した。これは、Solvesso150の比率が高くなるほどコバルト抽出用溶液の疎水性が向上し、Niを含む水溶液のコバルト抽出用溶液への溶け込みが抑制されたためと考えられる。   On the other hand, the larger the volume ratio of Solvesso 150, the better the separation between Co and Ni. This is presumably because the higher the ratio of Solvesso 150, the more hydrophobic the cobalt extraction solution, and the more the Ni-containing aqueous solution was prevented from dissolving into the cobalt extraction solution.

(実施例3)
図4に示す手順でコバルト、銅、クロム、マンガン、鉄、ニッケルを含む化合物(コバルト残渣)から本実施形態に係るCo抽出方法により、Coの抽出を試みた。具体的な手順は以下の通りである。
(Example 3)
Co was extracted from the compound (cobalt residue) containing cobalt, copper, chromium, manganese, iron and nickel by the procedure shown in FIG. 4 by the Co extraction method according to this embodiment. The specific procedure is as follows.

まず、コバルト残渣130gを酸としての塩酸(濃度2mol/l)1000mlに溶解させ、酸浸出液を得た(図のS11)。酸浸出液中の金属成分の濃度(mg/dm)は以下の通りである。Cu:1、Cr:150、Mn:27、Fe:1460、Ni:500)。 First, 130 g of cobalt residue was dissolved in 1000 ml of hydrochloric acid as an acid (concentration 2 mol / l) to obtain an acid leaching solution (S11 in the figure). The concentration (mg / dm 3 ) of the metal component in the acid leaching solution is as follows. Cu: 1, Cr: 150, Mn: 27, Fe: 1460, Ni: 500).

次に、酸浸出液に過酸化水素水(濃度0.59mol/l)2ml、と水酸化ナトリウム(濃度8mol/l)を添加してpHを3とし、鉄を沈殿させて回収した(図のS12)。   Next, 2 ml of hydrogen peroxide (concentration 0.59 mol / l) and sodium hydroxide (concentration 8 mol / l) were added to the acid leaching solution to adjust the pH to 3, and iron was precipitated and collected (S12 in the figure). ).

次に、鉄を除去した酸浸出液をイオン交換樹脂(50ml)に接触させ、MnおよびCuをイオン交換樹脂に吸着させて酸浸出液から除去した(図のS13)。   Next, the acid leaching solution from which iron was removed was brought into contact with an ion exchange resin (50 ml), and Mn and Cu were adsorbed on the ion exchange resin and removed from the acid leaching solution (S13 in the figure).

次に、MnおよびCuを除去した酸浸出液を、イオン液体としてのTOMACと有機溶媒としてのSolvesso150を混和させたコバルト抽出用溶液(混和比率10:1)と接触させ、コバルトをコバルト抽出用溶液中のイオン液体に抽出した(図のS14)。   Next, the acid leaching solution from which Mn and Cu have been removed is brought into contact with a cobalt extraction solution (mixing ratio 10: 1) in which TOMAC as an ionic liquid and Solvesso 150 as an organic solvent are mixed, and cobalt in the cobalt extraction solution The ionic liquid was extracted (S14 in the figure).

最後に、コバルト抽出用溶液を純水に接触させ、純水にコバルトを逆抽出した(図のS15)。   Finally, the cobalt extraction solution was brought into contact with pure water, and cobalt was back-extracted into the pure water (S15 in the figure).

各手順における水溶液中の金属濃度のICP―AESによる定量分析結果を表2に示す。   Table 2 shows the results of quantitative analysis by ICP-AES of the metal concentration in the aqueous solution in each procedure.

Figure 2015168858
Figure 2015168858

表2から明らかなように、各手順において順次金属が除去され、最終的にCoが純化された。   As is clear from Table 2, the metal was sequentially removed in each procedure, and finally Co was purified.

以上、本発明を実施形態および実施例に基づき説明したが、本発明は上記した実施形態に限定されることはない。   As mentioned above, although this invention was demonstrated based on embodiment and an Example, this invention is not limited to above-described embodiment.

当業者であれば、本発明の範囲内で各種変形例や改良例に想到するのは当然のことであり、これらも本発明の範囲に属するものと了解される。   It is natural for those skilled in the art to come up with various modifications and improvements within the scope of the present invention, and it is understood that these also belong to the scope of the present invention.

Claims (20)

4級アンモニウム基を含むイオン液体と、
前記イオン液体と混和した状態で存在し、カウリブタノール値が60以上の有機溶媒と、
を有するコバルト抽出用溶液。
An ionic liquid containing a quaternary ammonium group;
An organic solvent present in admixture with the ionic liquid and having a Kauributanol value of 60 or more;
A solution for extracting cobalt.
前記有機溶媒を体積比で2%以上、50%以下含有する、請求項1に記載のコバルト抽出用溶液。   The solution for cobalt extraction according to claim 1, comprising the organic solvent in a volume ratio of 2% or more and 50% or less. 前記有機溶媒を体積比で5%以上、15%以下含有する、請求項1又は2に記載のコバルト抽出用溶液。   The solution for cobalt extraction according to claim 1 or 2, comprising the organic solvent in a volume ratio of 5% or more and 15% or less. 前記有機溶媒は、アルキルベンゼン誘導体又はトルエンである、請求項1〜3のいずれか一項に記載のコバルト抽出用溶液。   The solution for cobalt extraction according to any one of claims 1 to 3, wherein the organic solvent is an alkylbenzene derivative or toluene. 前記イオン液体は、トリ―オクチル―メチル―アンモニウム―クロライド(tri-octhyl-methyl-ammnoiumu-chloride、TOMAC)又は、ジ―オクタデシル―ジ―メチル―アンモニウム―クロライド(di-octadethyl-di-methyl-ammoniumu-chloride)である、請求項1〜4のいずれか一項に記載のコバルト抽出用溶液。   The ionic liquid may be tri-octthyl-methyl-ammonium chloride (TOMAC) or di-octadethyl-di-methyl-ammonium chloride (di-octadethyl-di-methyl-ammoniumu). Cobalt extraction solution according to any one of claims 1 to 4, which is -chloride). 粘度が0.02Pa・s以上、0.5 Pa・s以下である、請求項1〜5のいずれか一項に記載のコバルト抽出用溶液。   The solution for cobalt extraction according to any one of claims 1 to 5, wherein the viscosity is 0.02 Pa · s or more and 0.5 Pa · s or less. 水への溶解度が0.01%以下である、請求項1〜6のいずれか一項に記載のコバルト抽出用溶液   The solution for cobalt extraction according to any one of claims 1 to 6, wherein the solubility in water is 0.01% or less. 請求項1〜7のいずれか一項に記載のコバルト抽出用溶液と、
前記コバルト抽出用溶液に溶解した、コバルトと塩素を含む酸の水溶液と、
を有し、
前記コバルト抽出用溶液中にコバルトが溶解している、コバルト溶液。
Cobalt extraction solution according to any one of claims 1 to 7,
An aqueous solution of an acid containing cobalt and chlorine, dissolved in the cobalt extraction solution;
Have
A cobalt solution in which cobalt is dissolved in the cobalt extraction solution.
コバルトと塩素を含む酸の水溶液を、4級アンモニウム基を含むイオン液体と前記イオン液体と混和した状態で存在し、カウリブタノール値が60以上の有機溶媒を有するコバルト抽出用溶液中に溶解させ、前記コバルト抽出用溶液中にコバルトを溶解させることによりコバルトを分離して回収する、を有する、コバルト回収方法。   An aqueous solution of an acid containing cobalt and chlorine is present in a state where it is mixed with an ionic liquid containing a quaternary ammonium group and the ionic liquid, and dissolved in a cobalt extraction solution having an organic solvent having a kauributanol value of 60 or more, A cobalt recovery method comprising: separating and recovering cobalt by dissolving cobalt in the cobalt extraction solution. (a)コバルトを含む化合物を酸に溶解させて、酸性水溶液とし、
(b)前記酸を、前記コバルト抽出用溶液中に溶解させて前記コバルト抽出用溶液中にコバルトを抽出し、
(c)前記コバルト抽出用溶液を水と接触させて前記水にコバルトを逆抽出して回収する、
を有する、請求項9に記載のコバルト回収方法。
(A) A compound containing cobalt is dissolved in an acid to form an acidic aqueous solution,
(B) The acid is dissolved in the cobalt extraction solution to extract cobalt into the cobalt extraction solution,
(C) bringing the cobalt extraction solution into contact with water and back-extracting and collecting cobalt into the water;
The cobalt recovery method according to claim 9, comprising:
前記コバルト抽出用溶液は、前記有機溶媒を体積比で2%以上、50%以下含有する、請求項9又は10に記載のコバルト回収方法。   The cobalt recovery method according to claim 9 or 10, wherein the cobalt extraction solution contains the organic solvent in a volume ratio of 2% to 50%. 前記コバルト抽出用溶液は、前記有機溶媒を体積比で5%以上、15%以下含有する、請求項9〜11のいずれか一項に記載のコバルト回収方法。   The cobalt recovery method according to any one of claims 9 to 11, wherein the cobalt extraction solution contains the organic solvent in a volume ratio of 5% or more and 15% or less. 前記有機溶媒は、アルキルベンゼン誘導体又はトルエンである、請求項9〜12のいずれか一項に記載のコバルト回収方法。   The cobalt recovery method according to any one of claims 9 to 12, wherein the organic solvent is an alkylbenzene derivative or toluene. 前記イオン液体は、トリ―オクチル―メチル―アンモニウム―クロライド(tri-octhyl-methyl-ammnoiumu-chloride、TOMAC)又は、ジ―オクタデシル―ジ―メチル―アンモニウム―クロライド(di-octadethyl-di-methyl-ammoniumu-chloride)である、請求項9〜13のいずれか一項に記載のコバルト回収方法。   The ionic liquid may be tri-octthyl-methyl-ammonium chloride (TOMAC) or di-octadethyl-di-methyl-ammonium chloride (di-octadethyl-di-methyl-ammoniumu). The method for recovering cobalt according to any one of claims 9 to 13, which is -chloride). 前記化合物はニッケルを含み、
前記(b)は、
前記酸性水溶液を、前記コバルト抽出用溶液中に溶解させて前記コバルト抽出用溶液中にコバルトを抽出し、かつ前記酸性水溶液中に残留したニッケルを回収する、
を有する、請求項10に記載のコバルト回収方法。
The compound comprises nickel;
(B)
Dissolving the acidic aqueous solution in the cobalt extraction solution to extract cobalt into the cobalt extraction solution, and recovering nickel remaining in the acidic aqueous solution;
The cobalt recovery method according to claim 10, comprising:
前記化合物はマンガンと銅の少なくとも一方を含み、
(d)前記酸性水溶液をキレート樹脂と接触させることにより、前記酸性水溶液からマンガンと銅を分離する、
を有する、請求項10に記載のコバルト回収方法。
The compound includes at least one of manganese and copper,
(D) separating manganese and copper from the acidic aqueous solution by contacting the acidic aqueous solution with a chelate resin;
The cobalt recovery method according to claim 10, comprising:
前記化合物は鉄を含み、
(e)前記酸性水溶液から鉄を除去する、
を有する、請求項10に記載のコバルト回収方法。
The compound comprises iron;
(E) removing iron from the acidic aqueous solution;
The cobalt recovery method according to claim 10, comprising:
前記(e)は、
前記酸性水溶液に過酸化水素を添加して鉄を酸化し、
前記酸性水溶液のpHを1以上、6以下に調整して鉄を沈殿させ、
沈殿した鉄を濾過により除去する、
を有する、請求項17に記載のコバルト回収方法。
Said (e) is
Hydrogen peroxide is added to the acidic aqueous solution to oxidize iron,
Adjusting the pH of the acidic aqueous solution to 1 or more and 6 or less to precipitate iron;
Removing the precipitated iron by filtration;
The cobalt recovery method according to claim 17, comprising:
前記(a)は、前記酸性水溶液に塩化物を添加する、を有する請求項10に記載のコバルト回収方法。   The cobalt recovery method according to claim 10, wherein (a) includes adding a chloride to the acidic aqueous solution. 前記化合物は、タングステンとコバルトを含む超硬スクラップからタングステンを回収した後の残渣を含む、請求項10に記載のコバルト回収方法。   The said compound contains the residue after collect | recovering tungsten from the cemented carbide scrap containing tungsten and cobalt, The cobalt collection method of Claim 10 characterized by the above-mentioned.
JP2014044993A 2014-03-07 2014-03-07 Cobalt extraction solution, cobalt solution, and cobalt recovery method Expired - Fee Related JP5850966B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014044993A JP5850966B2 (en) 2014-03-07 2014-03-07 Cobalt extraction solution, cobalt solution, and cobalt recovery method
PCT/JP2015/055761 WO2015133385A1 (en) 2014-03-07 2015-02-27 Solution for use in extraction of cobalt, cobalt solution, and method for collecting cobalt
US15/123,865 US20170107595A1 (en) 2014-03-07 2015-02-27 Solution for use in extraction of cobalt, cobalt solution, and method for collecting cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044993A JP5850966B2 (en) 2014-03-07 2014-03-07 Cobalt extraction solution, cobalt solution, and cobalt recovery method

Publications (2)

Publication Number Publication Date
JP2015168858A true JP2015168858A (en) 2015-09-28
JP5850966B2 JP5850966B2 (en) 2016-02-03

Family

ID=54055193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044993A Expired - Fee Related JP5850966B2 (en) 2014-03-07 2014-03-07 Cobalt extraction solution, cobalt solution, and cobalt recovery method

Country Status (3)

Country Link
US (1) US20170107595A1 (en)
JP (1) JP5850966B2 (en)
WO (1) WO2015133385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069892A (en) * 2019-12-04 2021-06-14 목포대학교산학협력단 Method for recovery ruthenium and cobalt from scrap

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981139B (en) * 2021-02-04 2022-08-16 西安建筑科技大学 Hydrophobic eutectic solvent for separating nickel and cobalt ions, preparation method thereof and method for separating nickel and cobalt ions
CN113373315A (en) * 2021-05-18 2021-09-10 厦门嘉鹭金属工业有限公司 Method for efficiently recovering cobalt and nickel in tungsten slag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158422A (en) * 1989-11-16 1991-07-08 Agency Of Ind Science & Technol Method for melting metal
JPH06200336A (en) * 1992-09-01 1994-07-19 Mitsui Cyanamid Co Separation of cobalt from nickel
JP2012087329A (en) * 2010-10-15 2012-05-10 Yokohama National Univ Method for recovering iron group element and rare earth element using ionic liquid, and apparatus for recovering iron group element and rare earth element
JP2013204068A (en) * 2012-03-27 2013-10-07 Cmc Gijutsu Kaihatsu Kk Method for recovering tungsten or cobalt from cemented carbide powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131998A (en) * 1962-02-15 1964-05-05 Gen Mills Inc Liquid-liquid extraction recovery of cobalt values using a quaternary ammonium extractant
US4031038A (en) * 1975-06-16 1977-06-21 The Dow Chemical Company Water insoluble chelate exchange resins having a crosslinked polymer matrix and pendant thereto a plurality of methyleneaminopyridine groups

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158422A (en) * 1989-11-16 1991-07-08 Agency Of Ind Science & Technol Method for melting metal
JPH06200336A (en) * 1992-09-01 1994-07-19 Mitsui Cyanamid Co Separation of cobalt from nickel
JP2012087329A (en) * 2010-10-15 2012-05-10 Yokohama National Univ Method for recovering iron group element and rare earth element using ionic liquid, and apparatus for recovering iron group element and rare earth element
JP2013204068A (en) * 2012-03-27 2013-10-07 Cmc Gijutsu Kaihatsu Kk Method for recovering tungsten or cobalt from cemented carbide powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069892A (en) * 2019-12-04 2021-06-14 목포대학교산학협력단 Method for recovery ruthenium and cobalt from scrap
KR102320891B1 (en) * 2019-12-04 2021-11-02 목포대학교산학협력단 Method for recovery ruthenium and cobalt from scrap

Also Published As

Publication number Publication date
JP5850966B2 (en) 2016-02-03
WO2015133385A1 (en) 2015-09-11
US20170107595A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5796716B2 (en) Method for removing impurities from cobalt-containing liquid
Ning et al. Selective extraction and deep separation of V (V) and Cr (VI) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21
JP6176491B2 (en) Method for removing copper from aqueous nickel chloride solution
JP5483009B2 (en) A method of recovering tungsten from cemented carbide scrap.
JP5495418B2 (en) Method for recovering manganese
KR101853255B1 (en) Process for purifying zinc oxide
JP2011214132A (en) Recovery method for cobalt
JP2020084199A (en) Production method of cobalt chloride aqueous solution
JP5850966B2 (en) Cobalt extraction solution, cobalt solution, and cobalt recovery method
JP4717908B2 (en) Method for recovering copper from a chloride bath containing copper
JP5339967B2 (en) Method for removing chlorine from acidic liquid
JP6658238B2 (en) Method for removing impurities from aqueous cobalt solution
JP5502178B2 (en) Silver recovery method
JP5777150B2 (en) Method for recovering platinum and palladium
KR100942518B1 (en) Method for recycling cobalt from cobalt scrap
JP2011094219A (en) Extracting solution for vanadium, and method for solvent-extracting vanadium
WO2005103308A1 (en) Method for extracting copper with solvent
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP2010196122A (en) Method for removing metal element from organic phase
JP5423972B2 (en) Cemented carbide scrap processing method
JP2008285691A (en) Method for recovering silver
WO2023017590A1 (en) Method for recovering cobalt and nickel
JP2010248043A (en) Method for refining aqueous nickel chloride solution
JP2010174359A (en) Activation treatment method for organic solvent
JP5540940B2 (en) Copper solvent extraction method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5850966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees