JP2015168605A - Production method of hydroxyapatite crystal - Google Patents
Production method of hydroxyapatite crystal Download PDFInfo
- Publication number
- JP2015168605A JP2015168605A JP2014045259A JP2014045259A JP2015168605A JP 2015168605 A JP2015168605 A JP 2015168605A JP 2014045259 A JP2014045259 A JP 2014045259A JP 2014045259 A JP2014045259 A JP 2014045259A JP 2015168605 A JP2015168605 A JP 2015168605A
- Authority
- JP
- Japan
- Prior art keywords
- phosphoric acid
- calcium
- crystal
- apatite
- polymerized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
本発明は、水酸アパタイト結晶の製造方法に係り、特に、酸性溶液の状態で合成を開始してアパタイト結晶を生成する方法に関するものである。 The present invention relates to a method for producing hydroxyapatite crystals, and more particularly to a method for producing apatite crystals by starting synthesis in an acidic solution state.
水酸アパタイトは非常に広い範囲で応用され、例えば、人工歯根、人工骨用原料、吸着剤、各種触媒、温度センサー等のために使用される。 Hydroxyapatite is applied in a very wide range, and is used for, for example, artificial tooth roots, artificial bone raw materials, adsorbents, various catalysts, temperature sensors and the like.
水酸アパタイトの製造方法は、水溶液反応によるもの、固相反応によるもの、融体から始めるもの等がある。 Hydroxyapatite production methods include an aqueous solution reaction, a solid phase reaction, and a melt starting method.
水溶液反応による場合、生成するアパタイトの結晶性が低く、水熱水溶液反応を用いても単結晶で大粒子径のアパタイトを作成することは困難である。 In the case of the aqueous solution reaction, the crystallinity of the apatite to be produced is low, and it is difficult to produce apatite with a single crystal and a large particle diameter even by using the hydrothermal aqueous solution reaction.
固相反応による場合、結晶性が発達していることから焼結用の原料として用いることはできない。 In the case of a solid phase reaction, the crystallinity is developed, so that it cannot be used as a raw material for sintering.
融体から始め引き上げ法あるいはフラックス法を適用する場合、水酸イオンの供給ができないので水酸アパタイトの合成に適用できない。 When the pulling method or the flux method is applied starting from the melt, it cannot be applied to the synthesis of hydroxyapatite because it cannot supply hydroxide ions.
水酸アパタイトの大型単結晶を作成するため、水熱育成法がしばしば用いられる。例えば、Arendsらは、非特許文献1(Journal of Crystal Growth 第46巻 P213−220(1979))において、育成温度430〜500℃、圧力200MPa、育成期間20〜70日にて、長径0.1mmから最大3mmの柱状水酸アパタイト単結晶を育成している。 Hydrothermal growth is often used to produce large single crystals of hydroxyapatite. For example, Arends et al. In Non-Patent Document 1 (Journal of Crystal Growth Vol. 46, P213-220 (1979)) has a growth temperature of 430 to 500 ° C., a pressure of 200 MPa, a growth period of 20 to 70 days, and a major axis of 0.1 mm. Columnar hydroxyapatite single crystals of up to 3 mm are grown.
しかしながら、これによると、育成期間が極めて長く、工業化に適さないこと、複雑な化学物質が必要であるという問題点がある。特に、合成環境の圧力(200MPa)及び育成温度(430℃以上)が高いため、合成装置が大規模で高価になることが課題となる。 However, according to this, there is a problem that the growing period is extremely long, it is not suitable for industrialization, and complicated chemical substances are required. In particular, since the pressure (200 MPa) and the growth temperature (430 ° C. or higher) of the synthesis environment are high, the problem is that the synthesis apparatus becomes large and expensive.
類例として、Roy(103MPa、745〜900℃)、Mengeot(310MPa以上、390℃以上)、Suetsugu(54MPa、1400℃)らの研究例もあるが、圧力及び育成温度が高い点では同じである。
以上の点に鑑み、本発明は、より低圧・低温で水酸アパタイト結晶を生成できる方法を提供することを目的とする。 In view of the above points, an object of the present invention is to provide a method capable of producing a hydroxyapatite crystal at a lower pressure and a lower temperature.
ここで、酸性という条件は、一般にはアパタイト製造には不適である。したがって、特許文献2(特開平7−2505号公報)に開示されるように、溶液をアルカリ性に保って結晶を生成するのが一般である。 Here, the condition of acidity is generally unsuitable for apatite production. Therefore, as disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 7-2505), it is common to generate crystals while keeping the solution alkaline.
本発明者は、一般的な手法とは異なる新たな手法を模索すべく鋭意研究し、低圧・低温での水酸アパタイト結晶の生成に成功し、本発明の完成に至ったものである。 The present inventor has eagerly studied to search for a new technique different from the general technique, succeeded in producing a hydroxyapatite crystal at low pressure and low temperature, and completed the present invention.
本発明に係る水酸アパタイト結晶の製造方法は、重合リン酸とカルシウム塩に水を加え、又は、カルシウム塩に重合リン酸水溶液を加え酸性溶液として合成を開始し、重合リン酸の加水分解に伴うリン酸イオンの放出、キレート能力の減弱に伴うカルシウムイオンの放出によりアパタイト結晶を生成するものである。 In the method for producing hydroxyapatite crystals according to the present invention, water is added to polymerized phosphoric acid and calcium salt, or synthesis is started as an acidic solution by adding polymerized phosphoric acid aqueous solution to calcium salt to hydrolyze polymerized phosphoric acid. Apatite crystals are produced by the release of phosphate ions and the release of calcium ions accompanying a decrease in chelating ability.
本発明によれば、以下の説明により明らかなように、従来よりも圧倒的に低圧・低温でアパタイト結晶を生成できるため、合成装置の規模を縮小し、廉価に構成することができる。 According to the present invention, as will be apparent from the following description, apatite crystals can be generated at a much lower pressure and lower temperature than in the prior art, so the scale of the synthesis apparatus can be reduced and the construction can be made inexpensively.
以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明に係る水酸アパタイト結晶の製造方法は、重合リン酸とカルシウムイオンとの混和物に水を加え酸性溶液として合成を開始し、重合リン酸の加水分解に伴うリン酸イオンの放出、キレート能力の減弱に伴うカルシウムイオンの放出によりアパタイト結晶を生成するものである。 The method for producing a hydroxyapatite crystal according to the present invention comprises synthesizing an acidic solution by adding water to a mixture of polymerized phosphoric acid and calcium ions, releasing phosphate ions accompanying the hydrolysis of polymerized phosphoric acid, chelating Apatite crystals are produced by the release of calcium ions accompanying a decrease in ability.
好ましくは、育成温度を200℃とし、かつ圧力を1.5MPaとする。勿論、これらの数値は例示に過ぎず、本発明は、これらの数値のみに限定されない。 Preferably, the growth temperature is 200 ° C. and the pressure is 1.5 MPa. Of course, these numerical values are merely examples, and the present invention is not limited to these numerical values.
また好ましくは、重合リン酸はポリリン酸及び縮合リン酸の少なくとも一方を含み、カルシウムイオンは酸化カルシウムにより供給されるようにする。 Preferably, the polymerized phosphoric acid includes at least one of polyphosphoric acid and condensed phosphoric acid, and calcium ions are supplied by calcium oxide.
重合リン酸は、化学的手法又は生物学的手法のいずれによるものでも良く、代表的には、ポリリン酸又は縮合リン酸の少なくとも一種を含む。 The polymerized phosphoric acid may be obtained by either a chemical method or a biological method, and typically includes at least one of polyphosphoric acid or condensed phosphoric acid.
カルシウムイオンは、酸化カルシウム、水酸化カルシウムなどにより供給されるのが好ましい。 Calcium ions are preferably supplied by calcium oxide, calcium hydroxide or the like.
本方法の基本は、重合リン酸とカルシウムイオンの混和物に、水を加えて反応させアパタイトを製造する点にあるが、溶液が酸性の状態で合成が開始する点に特徴がある。 The basis of this method is that apatite is produced by adding water to a mixture of polymerized phosphoric acid and calcium ions to react, but is characterized in that synthesis starts when the solution is in an acidic state.
ポリリン酸は鎖状にリン酸が結合したもので、加熱、フォスファターゼにより鎖の端の部分から加水分解され、リン酸イオンを供給し、カルシウムと結合してアパタイト形成が進行する。 Polyphosphate is a chain of phosphoric acid, and is hydrolyzed from the end of the chain by heating and phosphatase, supplying phosphate ions, and binding to calcium to promote apatite formation.
アパタイト形成に適切な条件(アルカリ性)を最初から与えてしまえば、カルシウムとリン酸はただちに結合を始め、微細な結晶として沈殿する。このため結晶は大きく発育することができない。 If conditions (alkalineity) appropriate for apatite formation are given from the beginning, calcium and phosphoric acid begin to bond immediately and precipitate as fine crystals. For this reason, crystals cannot grow greatly.
本法は、敢えてアパタイト形成に不適な酸性条件から合成を開始するので、カルシウムとリン酸がただちに開始直後に結合を始めることはない。しかしながら、その後、ポリリン酸の加水分解により反応が進行し、PHは上昇していく。 In this method, synthesis is started from an acidic condition unsuitable for apatite formation, so that calcium and phosphoric acid do not immediately start bonding immediately after the start. However, after that, the reaction proceeds due to hydrolysis of polyphosphoric acid, and PH increases.
本法では育成温度200℃、1.5MPa、育成期間1〜7日にて長径0.1mmから最大5mmの柱状アパタイト結晶を得られる。 In this method, columnar apatite crystals having a major axis of 0.1 mm to a maximum of 5 mm can be obtained at a growth temperature of 200 ° C., 1.5 MPa, and a growth period of 1 to 7 days.
合成の起点材料のリン酸供給には、リン酸水素アンモニウム、カルシウム源に塩化カルシウムなどの化学物質が良く用いられる。 Chemical substances such as ammonium hydrogen phosphate and calcium chloride are often used to supply phosphoric acid as a starting material for synthesis.
合成系に水酸アパタイトを構成しないイオン、例えば硝酸、塩酸、炭酸、アンモニウム、カリウム等が混入していると、イオン吸着能が高い水酸アパタイトの骨格に入り込み排除することは困難となる。 If ions that do not constitute hydroxyapatite, such as nitric acid, hydrochloric acid, carbonic acid, ammonium, potassium, etc., are mixed in the synthetic system, it is difficult to enter and exclude the hydroxyapatite skeleton having high ion adsorption ability.
本法の合成系には、リン酸とカルシウムと水以外は不要であり、合成の基点が酸性溶液から開始されるためアルカリ溶液には強力に吸収される大気中の炭酸ガスを排除できる効果もある。 The synthesis system of this method does not require anything other than phosphoric acid, calcium, and water, and since the base point of synthesis is started from an acidic solution, the alkaline solution also has the effect of eliminating carbon dioxide in the atmosphere that is strongly absorbed. is there.
ポリリン酸の多価金属イオンのキレート吸着能力は広く知られており、取り込みたいイオンをあらかじめポリリン酸とキレートさせておき、このポリリン酸を合成基点としてもよい。 The chelate adsorption ability of polyvalent metal ions of polyphosphoric acid is widely known, and an ion to be incorporated may be chelated with polyphosphoric acid in advance, and this polyphosphoric acid may be used as a synthetic base point.
例えば、放射性物質(放射性ストロンチウム、放射性セシウム等)で汚染された水から、放射線物質を吸着させて水から取り除き、アパタイト合成することによって、放射性物質が骨格に閉じ込められたアパタイトが生成する。生成されたアパタイトは固体であるから、取り扱いが容易であり、PHが中性域からアルカリ性域まで安定している。 For example, apatite in which a radioactive substance is confined in a skeleton is generated by adsorbing and removing a radioactive substance from water contaminated with a radioactive substance (radioactive strontium, radioactive cesium, etc.) and apatite synthesis. Since the produced apatite is solid, it is easy to handle, and PH is stable from a neutral range to an alkaline range.
本発明の水酸アパタイト結晶の製造方法は、簡便で低温低圧条件であるため、各種分野での応用範囲が広いアパタイトを製造できる。 Since the method for producing a hydroxyapatite crystal of the present invention is simple and under low-temperature and low-pressure conditions, apatite having a wide range of applications in various fields can be produced.
以下、写真及びグラフ等を示しながら、各実施例を説明する。
(実施例1)
本例では、上述したように、育成温度200℃、1.5MPa、育成期間1〜7日による。
Each example will be described below with reference to photographs and graphs.
Example 1
In this example, as described above, the growth temperature is 200 ° C., 1.5 MPa, and the growth period is 1 to 7 days.
図1は、本発明の実施例1によるアパタイト結晶を示す100倍顕微鏡写真であり、図2は、本発明の同アパタイト結晶をマクロ撮影した写真である。 FIG. 1 is a 100 × micrograph showing an apatite crystal according to Example 1 of the present invention, and FIG. 2 is a macro photograph of the apatite crystal of the present invention.
図1、図2により、長径0.1mmから最大5mmの柱状アパタイト結晶が得られている点が分かる。 1 and 2, it can be seen that columnar apatite crystals having a major axis of 0.1 mm to a maximum of 5 mm are obtained.
(実施例2)
本例では、2.5gの酸化カルシウムに2gのポリリン酸と10mlの水を加え、攪拌ののち1週間200℃の電気炉で係留し、水洗ののち乾燥させた。
(Example 2)
In this example, 2 g of polyphosphoric acid and 10 ml of water were added to 2.5 g of calcium oxide, stirred, moored in an electric furnace at 200 ° C. for 1 week, washed and dried.
図3は、本発明の実施例2による乾燥後のSEM像である。図3の視野全体のCa/Pのモル比は2.3であるが、図3中央の結晶の点分析ではCa/Pのモル比が1.36である。 FIG. 3 is an SEM image after drying according to Example 2 of the present invention. The Ca / P molar ratio of the entire visual field in FIG. 3 is 2.3, but the Ca / P molar ratio is 1.36 in the point analysis of the crystal in the center of FIG.
図3の結果を分析すると、水酸化カルシウムと水酸アパタイトとが混在していることが分かった。結晶は明瞭な六角柱形状を成しており、合成系にカルシウムとリン酸イオンと水、最終的にアルカリ性水であったため、柱状の水酸アパタイト結晶が得られている。 When the result of FIG. 3 was analyzed, it was found that calcium hydroxide and hydroxyapatite were mixed. The crystal has a clear hexagonal columnar shape, and since calcium, phosphate ions, water, and finally alkaline water were used in the synthetic system, columnar hydroxyapatite crystals were obtained.
結晶単独を拾い出して顕微ラマンで測定すると水酸アパタイトの結晶であることが分かった。なお、図3に示された細かい粉末は水酸化カルシウムとして混在しているものと考えられる。 The crystal alone was picked up and measured by microscopic Raman, and was found to be a hydroxyapatite crystal. In addition, it is thought that the fine powder shown by FIG. 3 is mixed as calcium hydroxide.
(実施例3)
本例では、ポリリン酸を2グラム、酸化カルシウムを所定グラム混和し、水を10CCいれて24時間200℃で水熱合成を行った。
(Example 3)
In this example, 2 grams of polyphosphoric acid and a predetermined amount of calcium oxide were mixed, 10 CC of water was added, and hydrothermal synthesis was performed at 200 ° C. for 24 hours.
図4は、本発明の実施例3において酸化カルシウムを3グラム混和した場合の写真、図5は、同場合のX線回折図形を示すグラフである。 FIG. 4 is a photograph in the case of mixing 3 grams of calcium oxide in Example 3 of the present invention, and FIG. 5 is a graph showing an X-ray diffraction pattern in the same case.
図6は、本発明の実施例3において酸化カルシウムを2.5グラム混和した場合の写真、図7は、同場合のX線回折図形を示すグラフである。 FIG. 6 is a photograph in which 2.5 grams of calcium oxide is mixed in Example 3 of the present invention, and FIG. 7 is a graph showing an X-ray diffraction pattern in the same case.
図8は、本発明の実施例3において酸化カルシウムを1.5グラム混和した場合の写真、図9は、同場合のX線回折図形を示すグラフである。 FIG. 8 is a photograph in which 1.5 grams of calcium oxide is mixed in Example 3 of the present invention, and FIG. 9 is a graph showing an X-ray diffraction pattern in the same case.
図4、図6により分かるように、酸化カルシウムが3グラム又は2.5グラムのものでは棒状の結晶が多く存在する。 As can be seen from FIGS. 4 and 6, there are many rod-like crystals when the calcium oxide is 3 grams or 2.5 grams.
また図8により分かるように、酸化カルシウムが1.5グラムのものでは板状の結晶が多く存在する。 As can be seen from FIG. 8, many plate-like crystals exist when the calcium oxide is 1.5 grams.
図5、図7及び図9に示したX線回折の分析によると、棒状の結晶はハイドロキシアパタイトであり、板状の結晶はモネタイトと考えられる。 According to the X-ray diffraction analysis shown in FIGS. 5, 7, and 9, the rod-like crystals are hydroxyapatite, and the plate-like crystals are considered to be monetite.
(実施例4)
本例では、2.5グラムの酸化カルシウム、2グラムのポリリン酸で5日間200℃で水熱合成を行った。図10は、本発明の実施例4におけるX線回折図形等を示すグラフである。
Example 4
In this example, hydrothermal synthesis was performed at 200 ° C. for 5 days with 2.5 grams of calcium oxide and 2 grams of polyphosphoric acid. FIG. 10 is a graph showing an X-ray diffraction pattern and the like in Example 4 of the present invention.
5日間のうちの第1日目では、アパタイト以外のリン酸カルシウム成分が見られたが、その成分はその後消え、水酸化カルシウムが残留している。 On the first day of the five days, calcium phosphate components other than apatite were observed, but these components disappeared and calcium hydroxide remained.
図11は、本発明の実施例4において酸化カルシウムを2.4グラムとした場合であり、5日目に撮影したSEM写真である。柱状の結晶が多く分布するのが理解されよう。 FIG. 11 is a SEM photograph taken on the fifth day in the case where the calcium oxide was 2.4 grams in Example 4 of the present invention. It will be understood that many columnar crystals are distributed.
(実施例5)
本例では、2グラムの酸化カルシウムに2グラムのポリリン酸に10mlの水を加え、育成温度200℃で1日経過したものである。
(Example 5)
In this example, 10 grams of water was added to 2 grams of polyphosphoric acid to 2 grams of calcium oxide, and one day had elapsed at a growth temperature of 200 ° C.
図12は、本発明の実施例5における視野全体を示す写真、図13は、図12の棒状結晶の部分に着目する写真、図14は、図12の下側の板状結晶の部分に着目する写真、図15は、図12の上側の板状結晶の部分に着目する写真である。 12 is a photograph showing the entire field of view in Example 5 of the present invention, FIG. 13 is a photograph focusing on the rod-shaped crystal portion of FIG. 12, and FIG. 14 is focusing on the lower plate-shaped crystal portion of FIG. FIG. 15 is a photograph focusing on the upper plate-like crystal portion of FIG.
図12に示す視野全体を元素分析すると、視野全体においてCa/Pのモル比は1.43であり、立方体の結晶にはリンが含まれていないことが分かった。 Elemental analysis of the entire field of view shown in FIG. 12 revealed that the molar ratio of Ca / P in the entire field of view was 1.43, and the cubic crystals did not contain phosphorus.
図13に示す棒状結晶の部分では、Ca/Pのモル比が1.75であり、図14に示す下側の板状結晶の部分では、Ca/Pのモル比が1.47であり、図15に示す上側の板状結晶の部分では、Ca/Pのモル比が0.957である。 In the rod-like crystal portion shown in FIG. 13, the Ca / P molar ratio is 1.75, and in the lower plate-like crystal portion shown in FIG. 14, the Ca / P molar ratio is 1.47. In the upper plate crystal portion shown in FIG. 15, the Ca / P molar ratio is 0.957.
(実施例5)
巨大な結晶を求めなければ、次のような手法も有効である。即ち、重合リン酸の加水分解は、70℃あるいはそれ以下の低温でも生じ、アパタイトそのものを生成できる。但し、低品位のリン酸カルシウムが含まれ結晶の大きさは、実施例1〜4よりも小さくなる。
(Example 5)
The following technique is also effective if a huge crystal is not required. That is, hydrolysis of polymerized phosphoric acid occurs even at a low temperature of 70 ° C. or lower, and apatite itself can be generated. However, low-grade calcium phosphate is included, and the size of the crystals is smaller than in Examples 1-4.
しかしながら、小径であっても、歯磨きに含有させたり、市販の微粒子の代用品として実用になりうるし、製造コストも従来法よりも低廉にすることができる。 However, even if it has a small diameter, it can be contained in toothpaste, or can be put into practical use as a substitute for commercially available fine particles, and the manufacturing cost can be made lower than that of the conventional method.
さらには、生体中のフォスファターゼ(骨が生体中で形成される箇所に存在する。)等のような重合リン酸の分解酵素の存在下では、さらに低温(例えば体温等)でも重合リン酸の加水分解が生じ、同様のアパタイトを生成できる。 Furthermore, in the presence of a polymerized phosphate degrading enzyme such as phosphatase in the living body (where bone is formed in the living body), the hydrolysis of the polymerized phosphate can be performed even at a lower temperature (for example, body temperature). Decomposition occurs and similar apatite can be produced.
このようなアパタイトは、結晶化の程度が低いが、反応活性が高く不安定なため、体内で壊れて吸収されやすい性質を有する。このため、例えば、骨充填材料としての用途に好適に使用できるという利点がある。 Such apatite has a low degree of crystallization, but has a high reaction activity and is unstable, and therefore has a property of being easily broken and absorbed in the body. For this reason, there exists an advantage that it can be used conveniently for the use as a bone filling material, for example.
以上のように実施例5によれば、小径ではあるが有用なアパタイトを従来法よりも、大幅に容易かつ安価に生成できるメリットがある。なお、実施例5において、特に言及していない点は、実施例1と同様である。 As described above, according to Example 5, there is an advantage that useful apatite having a small diameter can be generated much more easily and inexpensively than the conventional method. In Example 5, points not particularly mentioned are the same as in Example 1.
実施例1〜5のいずれにおいても、紫外線の存在下においてポリリン酸を分解させてアパタイト結晶を生成しても良い。生成速度は低いが、立体造形が可能である。より具体的には、3次元プリンタを用いて、光化学的に結晶化を発生させ、骨や歯の形状を立体構築することもできる。また、合成系においてフッ素を添加すると、反応を加速することができる。 In any of Examples 1 to 5, apatite crystals may be generated by decomposing polyphosphoric acid in the presence of ultraviolet light. Although the generation speed is low, three-dimensional modeling is possible. More specifically, using a three-dimensional printer, crystallization can be generated photochemically to form a three-dimensional structure of bones and teeth. In addition, when fluorine is added in the synthesis system, the reaction can be accelerated.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014045259A JP5936083B2 (en) | 2014-03-07 | 2014-03-07 | Method for producing hydroxyapatite crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014045259A JP5936083B2 (en) | 2014-03-07 | 2014-03-07 | Method for producing hydroxyapatite crystals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015168605A true JP2015168605A (en) | 2015-09-28 |
JP5936083B2 JP5936083B2 (en) | 2016-06-15 |
Family
ID=54201668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014045259A Active JP5936083B2 (en) | 2014-03-07 | 2014-03-07 | Method for producing hydroxyapatite crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5936083B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5381499A (en) * | 1976-12-28 | 1978-07-18 | Tokyo Ika Shika Daigakuchiyou | Method of making caoop205 base apatite |
JPS55167114A (en) * | 1979-06-16 | 1980-12-26 | Mitsubishi Mining & Cement Co Ltd | Manufacture of hydroxyapatite |
US4274879A (en) * | 1979-03-05 | 1981-06-23 | Tate & Lyle Limited | Synthetic bone ash |
JPS63100007A (en) * | 1986-10-16 | 1988-05-02 | Hisao Sugihara | Preparation of hydroxy apatite |
JPS63100008A (en) * | 1986-10-16 | 1988-05-02 | Hisao Sugihara | Preparation of tricalcium phosphate |
JPH01290513A (en) * | 1988-05-16 | 1989-11-22 | Taiyo Kagaku Kogyo Kk | Preparation of hydroxyapatite |
JPH11268905A (en) * | 1998-03-24 | 1999-10-05 | Maruo Calcium Co Ltd | Inorganic dispersing agent, stabilizer for suspension polymerization, polymeric particle, unsaturated polyester resin composition, and toner composition |
JP2010280583A (en) * | 2009-06-02 | 2010-12-16 | Chiba Inst Of Technology | Organic calcium phosphate precursor and calcium phosphate powder, ceramic structure and method for producing them |
JP2015086083A (en) * | 2013-10-28 | 2015-05-07 | 三菱製紙株式会社 | (carbonate) hydroxyapatite and method of producing fine particle of the same |
-
2014
- 2014-03-07 JP JP2014045259A patent/JP5936083B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5381499A (en) * | 1976-12-28 | 1978-07-18 | Tokyo Ika Shika Daigakuchiyou | Method of making caoop205 base apatite |
US4274879A (en) * | 1979-03-05 | 1981-06-23 | Tate & Lyle Limited | Synthetic bone ash |
JPS55167114A (en) * | 1979-06-16 | 1980-12-26 | Mitsubishi Mining & Cement Co Ltd | Manufacture of hydroxyapatite |
JPS63100007A (en) * | 1986-10-16 | 1988-05-02 | Hisao Sugihara | Preparation of hydroxy apatite |
JPS63100008A (en) * | 1986-10-16 | 1988-05-02 | Hisao Sugihara | Preparation of tricalcium phosphate |
JPH01290513A (en) * | 1988-05-16 | 1989-11-22 | Taiyo Kagaku Kogyo Kk | Preparation of hydroxyapatite |
JPH11268905A (en) * | 1998-03-24 | 1999-10-05 | Maruo Calcium Co Ltd | Inorganic dispersing agent, stabilizer for suspension polymerization, polymeric particle, unsaturated polyester resin composition, and toner composition |
JP2010280583A (en) * | 2009-06-02 | 2010-12-16 | Chiba Inst Of Technology | Organic calcium phosphate precursor and calcium phosphate powder, ceramic structure and method for producing them |
JP2015086083A (en) * | 2013-10-28 | 2015-05-07 | 三菱製紙株式会社 | (carbonate) hydroxyapatite and method of producing fine particle of the same |
Non-Patent Citations (2)
Title |
---|
JPN6016002370; K.KANDORI et al.: 'Preparation of Spherical and Balloonlike Calcium Phosphate Particles from Forced Hydrolysis of Ca(OH' J. Phys. Chem. C Vol.114 No.14, 2010, Pages6440-6445 * |
JPN6016002371; 杉原久夫 他: '縮合リン酸化合物からのリン酸カルシウムの生成' Gypsum & Lime No.210, 19870901, Pages292-300 * |
Also Published As
Publication number | Publication date |
---|---|
JP5936083B2 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors | |
Tõnsuaadu et al. | A review on the thermal stability of calcium apatites | |
Zhuang et al. | Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and its characterization | |
Hao et al. | Controlled growth of hydroxyapatite fibers precipitated by propionamide through hydrothermal synthesis | |
KR20070053337A (en) | Ceramic particle group and method for production thereof and use thereof | |
US20210100930A1 (en) | Whitlockite coating constructed on surface of calcium phosphate-based bioceramic substrate and preparation method therefor | |
Gross et al. | Efficient zinc incorporation into hydroxyapatite through crystallization of an amorphous phase could extend the properties of zinc apatites | |
Kim et al. | Hydroxyapatite formation from calcium carbonate single crystal under hydrothermal condition: Effects of processing temperature | |
Lakrat et al. | Synthesis of B-type carbonated hydroxyapatite by a new dissolution-precipitation method | |
Lee et al. | Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions | |
Macha et al. | Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate | |
Evis et al. | X-ray investigation of sintered cadmium doped hydroxyapatites | |
Lu et al. | Spatially resolved product speciation during struvite synthesis from magnesite (MgCO3) particles in ammonium (NH4+) and phosphate (PO43–) aqueous solutions | |
Qin et al. | Facet-specific dissolution–precipitation at struvite–water interfaces | |
Parthiban et al. | Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing | |
JP5936083B2 (en) | Method for producing hydroxyapatite crystals | |
Takeuchi et al. | Preparation of porous β-tricalcium phosphate using starfish-derived calcium carbonate as a precursor | |
Bonou et al. | Conversion of snail shells (Achatina achatina) acclimatized in Benin to calcium phosphate for medical and engineering use | |
Fedotov et al. | Preparation of octacalcium phosphate from calcium carbonate powder | |
Kim et al. | Hydroxyapatite formation through dissolution–precipitation reaction: Effects of solubility of starting materials | |
JP7315160B2 (en) | Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water | |
JP5544813B2 (en) | Method for producing spherical hydroxyapatite | |
Hassan et al. | Synthesis of Hydroxyapatite Nanostructures Using Chemical Method | |
Toyama et al. | Preparation of high-concentration hydroxyapatite solution by carbon dioxide blowing for morphological control of hydroxyapatite | |
Mohan et al. | Hydroxyapatite scaffolds constituting highly oriented crystals derived from synthetic precursors by hydrothermal reactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5936083 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |