JP2015168383A - Pneumatic tire for winter and production method thereof - Google Patents

Pneumatic tire for winter and production method thereof Download PDF

Info

Publication number
JP2015168383A
JP2015168383A JP2014046443A JP2014046443A JP2015168383A JP 2015168383 A JP2015168383 A JP 2015168383A JP 2014046443 A JP2014046443 A JP 2014046443A JP 2014046443 A JP2014046443 A JP 2014046443A JP 2015168383 A JP2015168383 A JP 2015168383A
Authority
JP
Japan
Prior art keywords
oil
pneumatic tire
microalgae
mass
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014046443A
Other languages
Japanese (ja)
Other versions
JP6069240B2 (en
Inventor
慶太郎 藤倉
Keitaro Fujikura
慶太郎 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014046443A priority Critical patent/JP6069240B2/en
Publication of JP2015168383A publication Critical patent/JP2015168383A/en
Application granted granted Critical
Publication of JP6069240B2 publication Critical patent/JP6069240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire for winter excellent in performance balance of on-ice performance, high mileage and wet grip performance, and reducing a used amount of an oil resource.SOLUTION: The pneumatic tire for winter is configured so that: on a tread surface, fine relieves are provided, and digging-up friction is generated and fibers are intertwined each other, for achieving high mileage. In addition, a rubber composition including a rubber component and micro-fibrillated plant fiber is used for forming a tread of the tire, in order to enhance adhesion friction effect to a frozen road, by hydrophilic effect of the fibers.

Description

本発明は、ゴム組成物を用いて作製したトレッドを有する冬用空気入りタイヤ及び該冬用空気入りタイヤの製造方法に関する。 The present invention relates to a winter pneumatic tire having a tread produced using a rubber composition and a method for producing the winter pneumatic tire.

冬用空気入りタイヤでは、アイスバーン路面での摩擦を向上させるために様々な取り組みがなされている。例えば、掘り起こし摩擦を改善するためには、従来からトレッド表面の凹凸を増やすべく種々の配合剤を組合せて配合しているが、一般的には発熱性等が悪化することになる。 In winter pneumatic tires, various efforts have been made to improve friction on the ice-burn road surface. For example, in order to improve digging and friction, conventionally, various compounding agents are combined in order to increase unevenness of the tread surface, but generally exothermicity is deteriorated.

特許文献1には、米穀のもみ殻、麦殻、コルク片、オガクズなどのセルロース物質を主体とする粉体加工品をトレッドに含むことで、粘着摩擦と掘り起こし摩擦を向上した冬用タイヤが提案されている。しかし、氷上性能、低燃費性、ウェットグリップ性能のバランスという点では、改善の余地がある。 Patent Document 1 proposes a winter tire that improves adhesive friction and digging friction by including powder processed products mainly composed of cellulose substances such as rice husk, wheat husk, cork pieces, and sawdust in the tread. Has been. However, there is room for improvement in terms of the balance between performance on ice, fuel efficiency, and wet grip performance.

特許4262357号公報Japanese Patent No. 4262357

本発明は、前記課題を解決し、氷上性能、低燃費性、ウェットグリップ性能の性能バランスに優れるとともに、石油資源の使用量も低減された冬用空気入りタイヤを提供することを目的とする。 The object of the present invention is to provide a winter pneumatic tire that solves the above-mentioned problems and has an excellent performance balance between on-ice performance, low fuel consumption, and wet grip performance, and also reduces the amount of petroleum resources used.

本発明は、ゴム成分及びミクロフィブリル化植物繊維を含むゴム組成物を用いて作製したトレッドを有する冬用空気入りタイヤに関する。 The present invention relates to a winter pneumatic tire having a tread produced using a rubber composition containing a rubber component and microfibrillated plant fibers.

前記ゴム成分が、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含むことが好ましい。 The rubber component preferably contains at least one selected from the group consisting of natural rubber, modified natural rubber, synthetic rubber and modified synthetic rubber.

前記ミクロフィブリル化植物繊維がセルロースミクロフィブリルであることが好ましい。 It is preferable that the microfibrillated plant fiber is cellulose microfibril.

前記ミクロフィブリル化植物繊維の平均繊維径が10μm以下であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less.

前記ミクロフィブリル化植物繊維の含有量が、前記ゴム成分100質量部に対して1〜100質量部であることが好ましい。 It is preferable that the content of the microfibrillated plant fiber is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.

オイルとして、テレビン油及び/又は微細藻類由来のオイルを含むことが好ましい。 The oil preferably includes turpentine oil and / or oil derived from microalgae.

前記テレビン油の含有量がゴム成分100質量部に対して0.01〜50質量部であることが好ましい。 The content of the turpentine oil is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the rubber component.

前記微細藻類が、Euglenophyceae網に属する微細藻類であることが好ましい。 The microalgae is preferably a microalga belonging to the Euglenophycea net.

前記微細藻類が、ユーグレナ属に属する微細藻類であることが好ましい。 The microalgae is preferably a microalga belonging to the genus Euglena.

前記微細藻類由来のオイルが、前記微細藻類を培養した後、精製することにより得られたオイル成分であることが好ましい。 The oil derived from the microalgae is preferably an oil component obtained by culturing the microalgae and then refining it.

前記微細藻類由来のオイルが、前記微細藻類を、脂肪酸を添加した培地で培養することにより得られたものであることが好ましい。 The oil derived from the microalgae is preferably obtained by culturing the microalgae in a medium to which a fatty acid is added.

前記微細藻類由来のオイルが、前記微細藻類を、好気性条件で培養した後、嫌気性条件で培養することにより得られたものであることが好ましい。 It is preferable that the oil derived from the microalgae is obtained by culturing the microalgae under anaerobic conditions after culturing the microalgae.

本発明はまた、前記ミクロフィブリル化植物繊維及び前記ゴム成分を予め混合する工程(A)を含む前記冬用空気入りタイヤの製造方法に関する。 The present invention also relates to a method for producing the winter pneumatic tire including the step (A) of previously mixing the microfibrillated plant fiber and the rubber component.

前記ミクロフィブリル化植物繊維並びに、前記テレビン油及び/又は微細藻類由来のオイルを混合する工程(a)と、該工程で得られた混合物と前記ゴム成分を更に混合する工程(A)とを含むことが好ましい。 Including a step (a) of mixing the microfibrillated plant fiber and the turpentine oil and / or oil derived from microalgae, and a step (A) of further mixing the mixture obtained in the step and the rubber component. Is preferred.

本発明によれば、ゴム成分及びミクロフィブリル化植物繊維を含むゴム組成物を用いて作製したトレッドを有する冬用空気入りタイヤであるので、氷上性能、低燃費性及びウェットグリップ性能の性能バランスに優れる。また、上記ミクロフィブリル化植物繊維は、植物由来であるため、本発明の冬用空気入りタイヤは、石油資源の使用量が低減されており、環境に配慮されたタイヤである。 According to the present invention, since it is a winter pneumatic tire having a tread produced using a rubber composition containing a rubber component and microfibrillated plant fibers, the performance balance between on-ice performance, low fuel consumption, and wet grip performance is achieved. Excellent. In addition, since the microfibrillated plant fiber is derived from a plant, the winter pneumatic tire of the present invention has a reduced amount of petroleum resources and is an environment-friendly tire.

まず、本発明の冬用空気入りタイヤが有するトレッドを構成するゴム組成物について説明する。
本発明におけるゴム組成物は、ゴム成分及びミクロフィブリル化植物繊維を含む。ミクロフィブリル化植物繊維を添加することで、トレッド表面に微細な起伏を生じさせ、掘り起こし摩擦を起こすことができる。また、ミクロフィブリル化植物繊維同士が絡み合うことで、低燃費性を良好にし、ミクロフィブリル化植物繊維の親水性効果により、凍結路に対する粘着摩擦効果も期待できる。これらの作用により、氷上性能、低燃費性及びウェットグリップ性能の性能バランスを改善できるものと推察される。
First, the rubber composition which comprises the tread which the winter pneumatic tire of this invention has is demonstrated.
The rubber composition in the present invention contains a rubber component and microfibrillated plant fibers. By adding the microfibrillated plant fiber, fine undulations can be generated on the tread surface, and digging and friction can be caused. In addition, the microfibrillated plant fibers are entangled with each other, so that the fuel efficiency is improved and the adhesive friction effect on the frozen road can be expected due to the hydrophilic effect of the microfibrillated plant fibers. By these actions, it is presumed that the balance of performance on ice, fuel efficiency and wet grip performance can be improved.

また、ミクロフィブリル化植物繊維は、石油を原料としない材料(石油外資源)であるため、石油資源の使用量を低減することができる。 Moreover, since the microfibrillated plant fiber is a material that does not use petroleum as a raw material (resource other than petroleum), the amount of petroleum resource used can be reduced.

ゴム成分としてはとくに限定されないが、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムが挙げられるが、天然ゴム又は改質天然ゴムを含むことが好ましく、天然ゴム又は改質天然ゴムと共に合成ゴムを含むことがより好ましい。 The rubber component is not particularly limited, and includes natural rubber, modified natural rubber, synthetic rubber, and modified synthetic rubber, but preferably includes natural rubber or modified natural rubber, and is synthesized with natural rubber or modified natural rubber. More preferably, rubber is included.

天然ゴム(NR)としては、TSR20,RRS#3などの一般的に用いられているものが挙げられ、改質天然ゴムとしては、エポキシ化天然ゴム(ENR)や脱タンパク質天然ゴムなどが挙げられる。NRや改質天然ゴムを含有する場合、ゴム成分100質量%中の合計含有率は10質量%以上であることが好ましく、15質量%以上であることがより好ましい。合計含有率が10質量%未満であると、耐摩耗性の悪化、低温脆化温度が高くなる傾向がある。また、該合計含有率は、70質量%以下であることが好ましく、60質量%以下であることがより好ましい。合計含有率が70質量%を超えると、氷上性能が低下する傾向がある。 Examples of natural rubber (NR) include those commonly used such as TSR20 and RRS # 3, and examples of modified natural rubber include epoxidized natural rubber (ENR) and deproteinized natural rubber. . When NR or modified natural rubber is contained, the total content in 100% by mass of the rubber component is preferably 10% by mass or more, and more preferably 15% by mass or more. When the total content is less than 10% by mass, wear resistance deteriorates and the low temperature embrittlement temperature tends to increase. Moreover, it is preferable that this total content rate is 70 mass% or less, and it is more preferable that it is 60 mass% or less. When the total content exceeds 70% by mass, the on-ice performance tends to decrease.

ENRのエポキシ化率は5モル%以上であることが好ましく、10モル%以上であることがより好ましい。ENRのエポキシ化率が、5モル%未満であると、ゴム組成物に対する改質効果が小さい傾向がある。また、ENRのエポキシ化率は、80モル%以下であることが好ましく、60モル%以下であることがより好ましい。ENRのエポキシ化率が、80モル%をこえると、ポリマー成分がゲル化する傾向がある。 The epoxidation rate of ENR is preferably 5 mol% or more, and more preferably 10 mol% or more. When the epoxidation rate of ENR is less than 5 mol%, the modification effect on the rubber composition tends to be small. The epoxidation rate of ENR is preferably 80 mol% or less, and more preferably 60 mol% or less. When the epoxidation rate of ENR exceeds 80 mol%, the polymer component tends to gel.

ENRを含有する場合、ENRの含有率は10質量%以上であることが好ましく、15質量%以上であることがより好ましい。ENRの含有率が10質量%未満であると、ウェットグリップ性能が低下する傾向がある。また、ENRの含有率は70質量%以下であることが好ましく、60質量%以下であることがより好ましい。ENRの含有率が70質量%をこえると、氷上性能及びウェットグリップ性能が低下する傾向がある。 When ENR is contained, the content of ENR is preferably 10% by mass or more, and more preferably 15% by mass or more. If the ENR content is less than 10% by mass, the wet grip performance tends to decrease. The ENR content is preferably 70% by mass or less, and more preferably 60% by mass or less. When the content of ENR exceeds 70% by mass, the performance on ice and the wet grip performance tend to deteriorate.

合成ゴムとしては、例えば、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)などのジエン系ゴムが挙げられ、グリップ性能、転がり抵抗および耐摩耗性をバランスよく向上させることができるという理由から、BR、SBRからなる群から選ばれる少なくとも1種のゴムが好ましく、BRがより好ましい。なお、これら合成ゴムは、アミノ基等の変性基が付与された変性合成ゴムであってもよい。また、将来の石油枯渇を想定した場合、より好ましくは、これらのジエン系ポリマーを使用しない、もしくはモノマーに再生可能な生物由来原料を使用していることが好ましい。このような生物由来原料から製造されたジエン系合成ゴムとしては、例えば、BRの場合、バイオエタノールに触媒を作用させてブタジエンを得て、重合するなどの公知の方法により得ることができる。 Examples of the synthetic rubber include styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile butadiene rubber (NBR), ethylene propylene diene rubber (EPDM), and chloroprene rubber (CR). Diene rubbers such as) are preferable, and at least one rubber selected from the group consisting of BR and SBR is preferable because the grip performance, rolling resistance, and wear resistance can be improved in a balanced manner. More preferred. These synthetic rubbers may be modified synthetic rubbers provided with a modifying group such as an amino group. In addition, when it is assumed that petroleum will be depleted in the future, it is more preferable that these diene polymers are not used, or a bio-derived raw material that can be regenerated as a monomer is used. For example, in the case of BR, a diene-based synthetic rubber produced from such a bio-derived raw material can be obtained by a known method such as polymerization by obtaining a butadiene by allowing a catalyst to act on bioethanol.

BRを含有する場合、ゴム成分100質量%中のBRの含有率は10質量%以上であることが好ましく、20質量%以上であることがより好ましい。BRの含有率が10質量%未満であると、充分な氷上性能が得られないおそれがある。また、該含有率は90質量%以下であることが好ましく、80質量%以下であることがより好ましい。BRの含有率が90質量%を超えると、加工性が悪化するおそれがある。 When BR is contained, the content of BR in 100% by mass of the rubber component is preferably 10% by mass or more, and more preferably 20% by mass or more. If the BR content is less than 10% by mass, sufficient performance on ice may not be obtained. Moreover, it is preferable that this content rate is 90 mass% or less, and it is more preferable that it is 80 mass% or less. If the BR content exceeds 90% by mass, the workability may be deteriorated.

SBRを含有する場合、SBRの含有率は5質量%以上であることが好ましく、10質量%以上であることがより好ましい。SBRの含有率が5質量%未満であると、良好なウェットグリップ性能が得られないおそれがある。また、該含有率は50質量%以下であることが好ましく、40質量%以下であることがより好ましい。SBRの含有率が50質量%を超えると、充分な氷上性能が得られないおそれがある。 When SBR is contained, the content of SBR is preferably 5% by mass or more, and more preferably 10% by mass or more. If the SBR content is less than 5% by mass, good wet grip performance may not be obtained. Moreover, it is preferable that this content rate is 50 mass% or less, and it is more preferable that it is 40 mass% or less. If the SBR content exceeds 50% by mass, sufficient performance on ice may not be obtained.

ミクロフィブリル化植物繊維としては、とくに限定されないが、良好な補強性が得られるという点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙、バクテリアセルロース、ホヤセルロース等の天然物に由来するものが好ましい。 Although it does not specifically limit as a microfibrillated plant fiber, A cellulose microfibril is preferable from the point that favorable reinforcement property is acquired. As cellulose microfibrils, for example, those derived from natural products such as wood, bamboo, hemp, jute, kenaf, crop residue, cloth, recycled pulp, waste paper, bacterial cellulose, squirt cellulose and the like are preferable.

ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記セルロースミクロフィブリルの原料を水酸化ナトリウム等の薬品で化学処理した後、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。この方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。 Although it does not specifically limit as a manufacturing method of a microfibrillated plant fiber, For example, after chemically processing the raw material of the said cellulose microfibril with chemicals, such as sodium hydroxide, a refiner, a twin screw kneader (double screw extruder), Examples of the method include mechanical grinding or beating using a twin-screw kneading extruder, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, a vibration mill, a sand grinder, and the like. In this method, since lignin is separated from the raw material by chemical treatment, microfibrillated plant fibers substantially free of lignin are obtained.

ミクロフィブリル化植物繊維の平均繊維径は、ゴム補強効果が良好である観点から、好ましくは10μm以下、より好ましくは5μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。ミクロフィブリル化植物繊維の平均繊維径の下限は特に限定されないが、ミクロフィブリル化植物繊維の水分散液とゴム成分とを混合する場合に、濾水性の悪化による作業性の悪化を抑制できる観点から、4nm以上であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 1 μm or less, and particularly preferably 0.5 μm or less from the viewpoint of good rubber reinforcing effect. The lower limit of the average fiber diameter of the microfibrillated plant fiber is not particularly limited, but when mixing the aqueous dispersion of the microfibrillated plant fiber and the rubber component, from the viewpoint of suppressing workability deterioration due to deterioration of drainage. It is preferable that it is 4 nm or more.

ミクロフィブリル化植物繊維の平均繊維長は、好ましくは5mm以下、より好ましくは1mm以下であり、また、好ましくは1μm以上、より好ましくは50μm以上である。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。なお、ミクロフィブリル化植物繊維の平均繊維径及び平均繊維長は、走査型電子顕微鏡写真の画像解析、透過型顕微鏡写真の画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。 The average fiber length of the microfibrillated plant fiber is preferably 5 mm or less, more preferably 1 mm or less, and preferably 1 μm or more, more preferably 50 μm or more. When the average fiber length is less than the lower limit or exceeds the upper limit, there is a tendency similar to the average fiber diameter described above. In addition, the average fiber diameter and average fiber length of microfibrillated plant fibers are the image analysis of scanning electron micrographs, image analysis of transmission micrographs, analysis of X-ray scattering data, pore electrical resistance method (Coulter principle method) ) Etc.

ミクロフィブリル化植物繊維の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは100質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。上記範囲内であれば、ゴム補強効果とエネルギーロスのバランスが良好であり、また、ゴム成分と複合化する工程での各種材料の歩留まりや作業性も良好である。 The content of the microfibrillated plant fiber is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, and preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. Part or less, more preferably 20 parts by weight or less, still more preferably 10 parts by weight or less. If it is in the said range, the balance of a rubber reinforcement effect and energy loss will be favorable, and the yield and workability | operativity of various materials in the process combined with a rubber component will also be favorable.

ゴム成分とミクロフィブリル化植物繊維との相溶性を向上させるために、テレビン油、トール油、セラック樹脂、工業リグニン、ヘキサメチレンテトラミン、微細藻類の乾燥物、微細藻類から抽出された油分などを配合しても良い。氷上性能の観点から、テレビン油、微細藻類から抽出された油分が好ましい。 In order to improve the compatibility between the rubber component and microfibrillated plant fiber, turpentine oil, tall oil, shellac resin, industrial lignin, hexamethylenetetramine, dried microalgae, oil extracted from microalgae, etc. May be. From the viewpoint of performance on ice, turpentine oil and oil extracted from microalgae are preferred.

テレビン油とは、松精油、テレピン油、ターペンタインとも呼ばれ、マツ科の樹木のチップや松脂を水蒸気蒸留することによって得られ、α−ピネン、β−ピネン、p−シメンを主成分とする。製法によって、ガム・テレビン油、ウッド・テレビン油、サルフェート・テレビン油に大別される。ガム・テレビン油は、松ヤニを水蒸気蒸留することによって得られる。ウッド・テレビン油は、針葉樹の樹皮や切り株を水蒸気蒸留や乾留することによって得られる。サルフェート・テレビン油は、製紙用のパルプ製造時の加熱処理で発生する蒸気を濃縮することによって得られる。テレビン油は、製法はいずれでも良く、原料となる樹木の種類も特に問わない。 Turpentine oil is also called pine essential oil, turpentine oil, or turpentine, and is obtained by steam-distilling pine family tree chips or pine oil, and is mainly composed of α-pinene, β-pinene, and p-cymene. Depending on the production method, it is roughly divided into gum turpentine oil, wood turpentine oil and sulfate turpentine oil. Gum turpentine oil is obtained by steam distillation of pine ani. Wood turpentine oil is obtained by steam distillation or dry distillation of conifer bark and stumps. Sulfate turpentine oil is obtained by concentrating steam generated by heat treatment during the manufacture of pulp for papermaking. Turpentine oil can be produced by any method, and the type of tree used as a raw material is not particularly limited.

テレビン油を含有する場合、テレビン油の含有量は、ゴム成分100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上であり、また、好ましくは50質量部以下、より好ましくは10質量部以下、更に好ましくは3質量部以下、特に好ましくは1質量部以下、最も好ましくは0.5質量部以下である。上記範囲内であれば、ミクロフィブリル化植物繊維を良好に分散させ、氷上性能、ウェットグリップ性能及び低燃費性をバランス良く改善できる。 When turpentine oil is contained, the content of turpentine oil is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and further preferably 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component. Yes, preferably 50 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 3 parts by mass or less, particularly preferably 1 part by mass or less, and most preferably 0.5 parts by mass or less. Within the above range, the microfibrillated plant fiber can be well dispersed and the performance on ice, wet grip performance and fuel efficiency can be improved in a well-balanced manner.

微細藻類から抽出された油分としては、微細藻類由来のオイルが好適に使用でき、微細藻類由来のオイルとは、微細藻類により産生される脂肪族系炭化水素を意味する。脂肪族系炭化水素としては、微細藻類が産生する脂肪族系炭化水素であれば特に限定されず、例えば、n−ヘプタデセン等の炭素数が15〜50の飽和又は不飽和の脂肪族炭化水素;n−エイコサジエン等の炭素数が15〜50の飽和又は不飽和の脂肪酸;ラウリン酸メチル、ミリスチン酸ミリスチル、パルミチン酸メチル等の炭素数が15〜50の飽和又は不飽和の脂肪酸エステル等が挙げられる。また、これらをフィッシャー・トロプシュ法などにより炭素数を改変したり、水添により二重結合を飽和させたものであってもよい。なかでも、炭素数が15〜50(好ましくは炭素数が15〜40)の飽和又は不飽和の脂肪酸エステル(特に、(高級)脂肪酸と(高級)脂肪族アルコールとのエステル)が好ましい。 As the oil extracted from microalgae, oil derived from microalgae can be suitably used, and the oil derived from microalgae means an aliphatic hydrocarbon produced by microalgae. The aliphatic hydrocarbon is not particularly limited as long as it is an aliphatic hydrocarbon produced by microalgae, for example, a saturated or unsaturated aliphatic hydrocarbon having 15 to 50 carbon atoms such as n-heptadecene; Saturated or unsaturated fatty acid having 15 to 50 carbon atoms such as n-eicosadiene; saturated or unsaturated fatty acid ester having 15 to 50 carbon atoms such as methyl laurate, myristyl myristate and methyl palmitate . Further, these may be those obtained by modifying the carbon number by the Fischer-Tropsch method or the like, or by saturating the double bond by hydrogenation. Of these, saturated or unsaturated fatty acid esters having 15 to 50 carbon atoms (preferably 15 to 40 carbon atoms) (particularly esters of (higher) fatty acids and (higher) aliphatic alcohols) are preferred.

微細藻類由来のオイルの融点は、−60〜70℃であることが好ましく、−50〜30℃であることがより好ましく、−50〜10℃であることがさらに好ましく、−50〜5℃であることが特に好ましい。−60℃未満では、オイルが揮発しやすい恐れがある。70℃を超えると、氷上性能が劣る可能性がある。 The melting point of oil derived from microalgae is preferably −60 to 70 ° C., more preferably −50 to 30 ° C., further preferably −50 to 10 ° C., and −50 to 5 ° C. It is particularly preferred. If it is less than -60 ° C, the oil may easily volatilize. When it exceeds 70 degreeC, the on-ice performance may be inferior.

なお、本明細書において、融点は、DSC(示差走査熱量測定)におけるピーク温度であり、複数のピークがある場合は、最も融解熱量ΔH(J/g)が大きいピーク温度を融点とする。 In this specification, the melting point is a peak temperature in DSC (differential scanning calorimetry), and when there are a plurality of peaks, the melting point is the peak temperature having the largest heat of fusion ΔH (J / g).

微細藻類としては、体内の栄養分の一部を炭化水素(脂肪族系炭化水素)に変換する性質を有する藻類であれば特に限定されず、二酸化炭素を資化できる藻類が好ましい。具体的には、Euglenophyceae網に属する微細藻類、クロレラ (Chlorella)属に属する微細藻類、イカダモ(Scenedesmus)属に属する微細藻類、デスモデスムス(Desmodesmus)属に属する微細藻類、スピルリナ(Spirulina)属に属する微細藻類、アルスロスピラ(オルソスピラ)(Arthrospira)属に属する微細藻類、ボツリオコッカス(Botryococcus)属に属する微細藻類(特に、ボツリオコッカス・ブラウニー(Botryococcus braunii ))、シュードコリシスチス(Pseudochoricystis)属に属する微細藻類(特にシュードコリシスチスエリプソイディア(Pseudochoricystis ellipsoidea))等が挙げられる。これらの微細藻類は、オイル(脂肪族系炭化水素)を生合成できることが知られている。なかでも、オイルの生産性の観点からEuglenophyceae網に属する微細藻類が好ましい。 The microalgae is not particularly limited as long as it is algae having a property of converting a part of nutrients in the body into hydrocarbons (aliphatic hydrocarbons), and algae capable of assimilating carbon dioxide are preferable. Specifically, the microalgae belonging to the Euglenophyceae net, the microalgae belonging to the genus Chlorella, the microalgae belonging to the genus Sucredesmus, the microalgae belonging to the genus Desmodesmus, and the microgenus belonging to the genus Spirulina (Spirulina) Algae, microalgae belonging to the genus Arthrospira, microalgae belonging to the genus Botryococcus (especially Botriococcus braunii), belonging to the genus Pseudocystis Microalgae (especially Pseudochoristis ellipsoid) oidea)), and the like. These microalgae are known to be able to biosynthesize oil (aliphatic hydrocarbons). Among these, microalgae belonging to the Euglenophycea net are preferable from the viewpoint of oil productivity.

Euglenophyceae網に属する微細藻類としては、例えば、ユーグレナ(Euglena)属、アスタシア属、カウキネア属、トックリヒゲムシ属、ペラネマ属、ウチワヒゲムシ属、レボキンクリス属、ストロンボモナス属に属する微細藻類等が挙げられる。なかでも、ユーグレナ属に属する微細藻類が好ましい。
これは、ユーグレナ属に属する微細藻類は、培養が容易な上、好気性条件下で培養すると、炭水化物としてパラミロンを細胞内に蓄積し、その後、嫌気性条件下で培養することにより、蓄積されたパラミロンが分解されてオイル((高級)脂肪酸と(高級)脂肪族アルコールとのエステル)が生成することが知られており(特開昭59−118090号公報)、更に、本発明者らが該オイルを可塑剤成分としてゴム組成物に配合することにより、本発明の効果をより効果的に得られることを見出したからである。
Examples of the microalgae belonging to the Euglenophyceae net include the microalgae belonging to the genus Euglena, Astasia, Kaukinea, Tokurigemushi, Peranema, Puchiwagemushi, Levokincris, and Strombomonas. Of these, microalgae belonging to the genus Euglena are preferred.
This is because microalgae belonging to the genus Euglena are easy to culture, and when cultured under aerobic conditions, paramylon is accumulated in the cells as carbohydrates and then accumulated under anaerobic conditions. It is known that paramylon is decomposed to produce oil (ester of (higher) fatty acid and (higher) aliphatic alcohol) (Japanese Patent Application Laid-Open No. 59-118090). This is because it has been found that the effects of the present invention can be obtained more effectively by blending oil into the rubber composition as a plasticizer component.

また、ユーグレナ属に属する微細藻類は、培養条件によっては、乾燥菌体質量の50質量%にも達する極めて高い生産効率でオイル((高級)脂肪酸と(高級)脂肪族アルコールとのエステル)を生産することが知られており(特開昭59−118090号公報)、生産効率の点でも、他の天然由来オイル類と比較して優れている。 In addition, microalgae belonging to the genus Euglena produce oils (esters of (higher) fatty acids and (higher) fatty alcohols) with extremely high production efficiency that reaches 50% by weight of the dry cell mass depending on the culture conditions. (Japanese Patent Laid-Open No. 59-118090) is superior to other naturally-derived oils in terms of production efficiency.

ユーグレナ属に属する微細藻類は、動物学ではミドリムシ目、植物学ではEuglenophyceae網、ミドリムシ目に属する鞭毛虫の一群であり、池や沼等の天然水系に自然に生息している採取、培養が容易なものである。代表的なものとして、ユーグレナ・グラシリス・Z株、ユーグレナ・グラシリス・バシラリス変株、ユーグレナ・ビリディス、アスタシア・ロンガ等が挙げられるが、これらに限定されるものでなく、また公知の方法で処理した各種変異株も使用することができる。 The microalgae belonging to the genus Euglena are a group of flagellates belonging to the order of Euglena in zoology, Euglenophyceae net in the botany, and Euglena, and can be easily collected and cultured in natural water systems such as ponds and swamps. It is a thing. Representative examples include Euglena Gracilis Z strain, Euglena Gracilis Basilis variant, Euglena Viridis, Astasia Longa, etc., but are not limited thereto, and were treated by a known method. Various mutant strains can also be used.

微細藻類の培養には、各種微生物を培養する公知の方法が適用できる。具体的には、炭素源、窒素源、無機塩、ビタミン類を適量加えた培地であれば良く、公知のものとしては、コーレン・ハットナー培地(Korren and Hutner,J.Protozool.14,Supple.17(1967))、ハットナー培地(Hutner,J.Protozool,6,23(1959))、クレマー・マイヤー培地(Cramer and Myers,Arch.Mikrobiol,17,384,(1952))等が挙げられるが、この限りではない。 For culturing microalgae, known methods for culturing various microorganisms can be applied. Specifically, a medium containing an appropriate amount of a carbon source, a nitrogen source, an inorganic salt, and vitamins may be used, and known media include Koren-Hutner medium (Korren and Hutner, J. Protocol. 14, Supple. 17). (1967)), Hutner medium (Hutner, J. Protocol, 6, 23 (1959)), Kramer-Myers medium, Archer Mikrobiol, 17, 384 (1952)) and the like. Not as long.

また微細藻類の培養、微細藻類からのオイルの抽出に関しては、公知の方法、例えば、北岡らの成書(「ユーグレナ」北岡正三郎編、学会出版センター(1989年))や、化学と工業(谷口道子、化学と工業、52巻、262項(1999))などに詳しくまとめられている方法に基づいて行うことができる。また、上記微細藻類のなかでも、ユーグレナ属、クロレラ属、スピルリナ属、アルスロスピラ属に属する微細藻類等は、既に工業的規模で培養されている。 Regarding the cultivation of microalgae and the extraction of oil from microalgae, known methods such as Kitaoka et al.'S book ("Euglena" edited by Shozaburo Kitaoka, Society Publishing Center (1989)), Chemistry and Industry (Taniguchi) Michiko, Chemistry and Industry, Vol. 52, Item 262 (1999)) and the like. Among the above-mentioned microalgae, microalgae belonging to the genus Euglena, Chlorella, Spirulina, and Arsulospira have already been cultured on an industrial scale.

炭素源としては、グルコース、澱粉水解物、糖蜜、グルタミン酸、酢酸、エタノールなどが好ましく、2種類以上を組み合わせて用いてもかまわない。 As the carbon source, glucose, starch hydrolyzate, molasses, glutamic acid, acetic acid, ethanol and the like are preferable, and two or more kinds may be used in combination.

窒素源としては、アンモニア、アンモニウム塩、グルタミン酸、アスバラギン酸などが好ましく、2種類以上を組み合わせて用いてもかまわない。また前記炭素源と窒素源の質量比(C/N)は4〜30が好ましい。 As the nitrogen source, ammonia, ammonium salt, glutamic acid, aspartic acid and the like are preferable, and two or more kinds may be used in combination. The mass ratio (C / N) of the carbon source and nitrogen source is preferably 4-30.

無機塩としては、カルシウム、マグネシウム、マンガン、鉄類を含む無機塩を組み合わせることが望ましい。 As the inorganic salt, it is desirable to combine inorganic salts containing calcium, magnesium, manganese, and irons.

ビタミン類としては、ビタミンB、ビタミンB12、ビタミンB16等を組み合わせて加えることが好ましい。 As vitamins, vitamin B 1 , vitamin B 12 , vitamin B 16 and the like are preferably added in combination.

培養温度は20℃〜35℃が好ましく、27℃〜33℃がより好ましい。20℃未満でも35℃を超えても培養は可能であるが、成長が遅くなりオイルの生成効率が悪くなる傾向がある。 The culture temperature is preferably 20 ° C to 35 ° C, more preferably 27 ° C to 33 ° C. Culturing is possible at temperatures below 20 ° C. and above 35 ° C., but growth tends to be slow and oil production efficiency tends to be poor.

培養は、暗所で行っても明所で行ってもよい。すなわち、光照射を行ってもよく、暗黒下や、室内光下でもよい。 Culture may be performed in the dark or in the light. That is, light irradiation may be performed, and it may be under dark or indoor light.

液体又は懸濁液で培養する際には、適度の振盪、若しくは攪拌を行うことが望ましい。また、培養は好気性条件下で行うことが望ましく、通気は、培養液1リットル、1分間あたり0.4〜2リットルが、生育上望ましい。また、通気と炭素源供与をかねて、酸素/二酸化炭素混合溶液を通気してもかまわない。 When culturing in a liquid or suspension, it is desirable to perform appropriate shaking or stirring. In addition, the culture is preferably performed under aerobic conditions, and aeration is desirably 1 to 2 liters of culture solution per minute and 0.4 to 2 liters per minute. Further, the oxygen / carbon dioxide mixed solution may be ventilated for both aeration and carbon source donation.

また、特開昭59−118090号公報に記載のように、パラミロンのオイルへの変換を促進するため、ユーグレナ属に属する微細藻類を好気性条件下で一定期間培養してパラミロンを細胞内に蓄積した後、嫌気性条件下に移行させて培養し、オイル((高級)脂肪酸と(高級)脂肪族アルコールとのエステル)を生成させることが望ましい。この場合、4日〜7日間好気性条件下で培養し、成長の定常期に達したところで、嫌気性条件下に変換して1〜3日間培養することが望ましい。これにより、多量のオイルを効率良く生成できる。 Further, as described in JP-A-59-118090, in order to promote the conversion of paramylon into oil, microalgae belonging to the genus Euglena are cultured for a certain period under aerobic conditions to accumulate paramylon in the cells. Then, it is desirable to transfer to anaerobic conditions and culture to produce oil (ester of (higher) fatty acid and (higher) fatty alcohol). In this case, it is desirable to culture under aerobic conditions for 4 days to 7 days, and after reaching the stationary phase of growth, convert to anaerobic conditions and culture for 1 to 3 days. Thereby, a lot of oil can be generated efficiently.

嫌気性条件下に変換する方法としては、例えば、好気性条件下で培養した細胞を遠心分離等で集めた後、リン酸緩衝液等の溶液に懸濁し、窒素ガスを通気する方法等が挙げられる。 Examples of the method for conversion to anaerobic conditions include a method in which cells cultured under an aerobic condition are collected by centrifugation and then suspended in a solution such as a phosphate buffer and aerated with nitrogen gas. It is done.

また、オイル((高級)脂肪酸と(高級)脂肪族アルコールとのエステル)は、構成する脂肪酸、脂肪族アルコールの炭素数が小さいほど、また不飽和度が大きいほど低い融点を示す傾向がある。そのため、特開昭61−254193号公報に記載のように、微細藻類の培養の際に、脂肪酸を添加することによって、生成するオイルの融点を目的に応じて制御することができる。 Oils (esters of (higher) fatty acids and (higher) aliphatic alcohols) tend to exhibit a lower melting point as the number of carbon atoms of the fatty acids and aliphatic alcohols formed is smaller and as the degree of unsaturation is larger. Therefore, as described in JP-A-61-254193, the melting point of the oil to be produced can be controlled according to the purpose by adding a fatty acid during the cultivation of microalgae.

本発明のように、得られたオイル(脂肪酸エステル)を加工性の向上、氷上性能、耐摩耗性の改善等を目的として可塑剤としてタイヤ用ゴム組成物に配合する場合、ユーグレナ属に属する微細藻類を通常の培地(脂肪酸が添加されていない培地)で培養することにより得られる不飽和結合が少ない脂肪酸エステルは、25℃で固形状であるため、可塑剤として充分な効果(特に、加工性及び氷上性能の向上効果)が得られないおそれがある。そのため、脂肪酸エステルの融点を低下させるために脂肪酸を添加することが好ましい。これにより、加工性及び氷上性能の向上効果が向上し、得られたオイルをより好適に可塑剤として使用することができる。 When the obtained oil (fatty acid ester) is blended in a tire rubber composition as a plasticizer for the purpose of improving processability, performance on ice, improving wear resistance, etc., as in the present invention, Fatty acid esters with low unsaturated bonds obtained by culturing algae in a normal medium (medium without added fatty acid) are solid at 25 ° C., and are therefore sufficiently effective as plasticizers (especially processability). In addition, there is a risk that the on-ice performance improvement effect) cannot be obtained. Therefore, it is preferable to add a fatty acid in order to lower the melting point of the fatty acid ester. Thereby, the improvement effect of workability and on-ice performance improves, and the obtained oil can be used more suitably as a plasticizer.

従って、上記添加物とは別に、特定の組成のオイル(例えば、特定の炭素数を有するオイルや特定数の不飽和結合を有するオイル)を生成させる目的で、脂肪酸を添加することが好ましい。脂肪酸を添加するタイミングとしては、特に限定されず、培養の初期段階から添加しておいてもよいが、上述のように、ユーグレナ属に属する微細藻類を好気性条件下で一定期間培養してパラミロンを細胞内に蓄積させた後、嫌気性条件下に移行する際、又は嫌気性条件下への移行の前後24時間以内に行うことが好ましい。これにより、添加した脂肪酸を構成成分とする脂肪酸エステルを効率的に生成できる。 Therefore, apart from the above additives, it is preferable to add a fatty acid for the purpose of producing an oil having a specific composition (for example, an oil having a specific carbon number or an oil having a specific number of unsaturated bonds). The timing of adding the fatty acid is not particularly limited, and may be added from the initial stage of the culture. However, as described above, the microalga belonging to the genus Euglena is cultured under aerobic conditions for a certain period of time. Is preferably carried out within 24 hours before or after the transition to anaerobic conditions. Thereby, the fatty acid ester which makes the added fatty acid a structural component can be produced | generated efficiently.

脂肪酸の炭素数としては、生成するオイル(例えば、脂肪酸エステル)の望ましい融点を考慮すると、8〜40が好ましく、10〜30がより好ましく、15〜30がさらに好ましい。 The carbon number of the fatty acid is preferably 8 to 40, more preferably 10 to 30 and even more preferably 15 to 30 in consideration of a desirable melting point of the oil (for example, fatty acid ester) to be generated.

上記脂肪酸としては、ミリストレイン酸、パルミトレインン酸、オレイン酸、ネルボン酸、エライジン酸、リノール酸、リノレン酸、ガドレイン酸、ゴンドイン酸、セトレイン酸、エルカ酸等の不飽和脂肪酸;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルコロステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸等の飽和脂肪酸等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。なかでも、不飽和脂肪酸が好ましく、ミリストレイン酸、パルミトレイン酸、オレイン酸、ネルボン酸、エライジン酸、ガドレイン酸、セトレイン酸、エルカ酸のような不飽和結合(二重結合)を分子内に1つ有する不飽和脂肪酸がより好ましい。これにより、得られる脂肪酸エステルが不飽和結合を有することとなり、脂肪酸エステルの融点を低下させることができ、可塑剤としてより好適に使用できる脂肪酸エステルが得られる。 Examples of the fatty acids include unsaturated fatty acids such as myristoleic acid, palmitoleic acid, oleic acid, nervonic acid, elaidic acid, linoleic acid, linolenic acid, gadoleic acid, gondoic acid, cetreic acid, erucic acid; lauric acid, myristic acid And saturated fatty acids such as palmitic acid, stearic acid, tubercolostearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, and montanic acid. These may be used alone or in combination of two or more. Of these, unsaturated fatty acids are preferred, and one unsaturated bond (double bond) such as myristoleic acid, palmitoleic acid, oleic acid, nervonic acid, elaidic acid, gadoleic acid, cetreic acid, and erucic acid is present in the molecule. An unsaturated fatty acid is more preferable. Thereby, the obtained fatty acid ester has an unsaturated bond, the melting point of the fatty acid ester can be lowered, and a fatty acid ester that can be more suitably used as a plasticizer is obtained.

脂肪酸の添加量としては、培地に対して0.1〜5質量%程度が好ましい。 The amount of fatty acid added is preferably about 0.1 to 5% by mass relative to the medium.

培養した微細藻類(細胞)からオイル成分を精製する方法としては、公知のいずれの方法を用いても構わない。例えば、培養液よりろ過、及び/又は遠心分離により細胞を集め、有機溶媒により抽出する方法、細胞を超音波等で破砕し、遠心分離することによりオイル成分を分離する方法、細胞を超音波等で破砕し、有機溶媒により抽出する方法等が挙げられる。また、カラムクロマトグラフィー等で、さらに精製しても構わない。 Any known method may be used as a method of purifying the oil component from the cultured microalgae (cells). For example, the cells are collected from the culture solution by filtration and / or centrifugation, and extracted with an organic solvent. The cells are crushed with ultrasonic waves, and the oil components are separated by centrifugation. The cells are ultrasonicated. And a method of extracting with an organic solvent. Further, it may be further purified by column chromatography or the like.

精製することにより得られたオイル成分は、ゴム成分や他の配合物と混練することにより、本発明の効果が好適に得られるゴム組成物が得られる。 The oil component obtained by refining can be kneaded with a rubber component or other compound to obtain a rubber composition that can suitably obtain the effects of the present invention.

微細藻類由来のオイルを含有する場合、微細藻類由来のオイルの含有量は、ゴム成分100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上であり、また、好ましくは50質量部以下、より好ましくは10質量部以下、更に好ましくは3質量部以下、特に好ましくは1質量部以下、最も好ましくは0.5質量部以下である。上記範囲内であれば、ミクロフィブリル化植物繊維を良好に分散させ、氷上性能、ウェットグリップ性能及び低燃費性をバランス良く改善できる。 When oil derived from microalgae is contained, the content of oil derived from microalgae is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and still more preferably with respect to 100 parts by mass of the rubber component. Is 0.1 parts by mass or more, preferably 50 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 3 parts by mass or less, particularly preferably 1 part by mass or less, and most preferably 0.5 parts by mass. Or less. Within the above range, the microfibrillated plant fiber can be well dispersed and the performance on ice, wet grip performance and fuel efficiency can be improved in a well-balanced manner.

本発明では、上記テレビン油、微細藻類由来のオイルや、トール油、セラック樹脂、工業リグニン、ヘキサメチレンテトラミン、微細藻類の乾燥物などと共に、他の天然由来のオイルや石油系オイルを配合してもよい。 In the present invention, other turpentine oil, microalga-derived oil, tall oil, shellac resin, industrial lignin, hexamethylenetetramine, dried microalgae, and other naturally-derived oils and petroleum oils may be blended. Good.

上記他の天然由来のオイルや石油系オイルとしては、例えば、プロセスオイル、植物油脂、その混合物等を用いることができる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル(アロマオイル)等が挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生湯、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられるが、特に種類は制限されない。 Examples of the other naturally derived oils and petroleum oils include process oils, vegetable oils and fats, and mixtures thereof. Examples of the process oil include paraffinic process oil, naphthenic process oil, aromatic process oil (aromatic oil) and the like. As vegetable oils and fats, castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut hot water, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, beet flower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, and tung oil, but the type is not particularly limited.

上記他の天然由来のオイルや石油系オイルの含有量は、ゴム成分100質量部に対して、好ましくは100質量部以下、より好ましくは50質量部以下である。
100質量部を超えると、充分なウェットグリップ性能が得られないおそれがある。
The content of the other naturally derived oil or petroleum oil is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, with respect to 100 parts by mass of the rubber component.
If it exceeds 100 parts by mass, sufficient wet grip performance may not be obtained.

本発明におけるゴム組成物には、前記成分以外にも、従来よりタイヤ工業で使用される配合剤、たとえば、シリカやカーボンブラックのような充填剤、可塑剤、老化防止剤、硫黄、加硫促進剤、酸化亜鉛、ステアリン酸などを、必要に応じて適宜配合することができる。 In addition to the above-mentioned components, the rubber composition in the present invention includes compounding agents conventionally used in the tire industry, for example, fillers such as silica and carbon black, plasticizers, anti-aging agents, sulfur, and vulcanization acceleration. An agent, zinc oxide, stearic acid, and the like can be appropriately blended as necessary.

また、本発明におけるゴム組成物の製造方法は、ゴム成分、ミクロフィブリル化植物繊維を混合する方法であれば特に限定されないが、例えば、ミクロフィブリル化植物繊維とゴム成分を予め混合する工程(A)を含む製造方法が好適である。 The method for producing a rubber composition in the present invention is not particularly limited as long as it is a method of mixing a rubber component and microfibrillated plant fibers. For example, a step of previously mixing microfibrillated plant fibers and a rubber component (A ) Is preferred.

上記工程(A)では、ミクロフィブリル化植物繊維及びゴム成分を混合する。このように、予めミクロフィブリル化植物繊維及びゴム成分を混合することで、ゴム組成物中にミクロフィブリル化植物繊維を充分に分散できる。ミクロフィブリル化植物繊維及びゴム成分を容易に混合できるという点から、該工程では、ミクロフィブリル化植物繊維及びゴム成分を水等の溶媒中で混合することが好ましい。 In the step (A), the microfibrillated plant fiber and the rubber component are mixed. Thus, by mixing the microfibrillated plant fiber and the rubber component in advance, the microfibrillated plant fiber can be sufficiently dispersed in the rubber composition. In the process, it is preferable to mix the microfibrillated plant fiber and the rubber component in a solvent such as water because the microfibrillated plant fiber and the rubber component can be easily mixed.

上記工程(A)では、ミクロフィブリル化植物繊維の水分散液を使用することが好ましい。これにより、ミクロフィブリル化植物繊維とゴム成分とを短時間で均一に混合できる。ミクロフィブリル化植物繊維の水分散液中、ミクロフィブリル化植物繊維の含有量(固形分)は、好ましくは2〜40質量%、より好ましくは5〜30質量%である。 In the step (A), it is preferable to use an aqueous dispersion of microfibrillated plant fibers. Thereby, the microfibrillated plant fiber and the rubber component can be uniformly mixed in a short time. The content (solid content) of microfibrillated plant fibers in the aqueous dispersion of microfibrillated plant fibers is preferably 2 to 40% by mass, more preferably 5 to 30% by mass.

必要に応じて、上記工程(A)において、ミクロフィブリル化植物繊維とゴム成分を混合する前に、上記テレビン油及び/又は微細藻類由来のオイルとミクロフィブリル化植物繊維とを混合する工程(a)を含むことが好ましい。これにより、前述する工程(A)でゴム成分と、工程(a)で得られた混合物とを混合した際、ゴム成分中にミクロフィブリル化植物繊維をより良好に分散できる。 Optionally, in the step (A), before mixing the microfibrillated plant fiber and the rubber component, the step (a) of mixing the turpentine oil and / or the microalgal-derived oil and the microfibrillated plant fiber. It is preferable to contain. Thereby, when the rubber component and the mixture obtained in the step (a) are mixed in the step (A) described above, the microfibrillated plant fiber can be more favorably dispersed in the rubber component.

工程(A)と必要に応じて工程(a)とにより、ミクロフィブリル化植物繊維がゴムマトリクス中に均一に分散したマスターバッチを調製できる。なお、工程(A)で得られた混合物がスラリー状態である場合は、上記混合物を公知の方法で凝固、乾燥した後、バンバリーミキサー等で混練りすることにより、マスターバッチを調製できる。このマスターバッチを他の配合剤と混練することにより、本発明におけるゴム組成物が得られる。 A master batch in which microfibrillated plant fibers are uniformly dispersed in a rubber matrix can be prepared by the step (A) and, if necessary, the step (a). In addition, when the mixture obtained at the step (A) is in a slurry state, a master batch can be prepared by solidifying and drying the mixture by a known method and then kneading with a Banbury mixer or the like. The rubber composition in the present invention is obtained by kneading this master batch with other compounding agents.

本発明におけるゴム組成物は、トレッドに使用され、本発明は該トレッドを有する冬用空気入りタイヤに関する。本発明の冬用空気入りタイヤは、上記ゴム組成物を用いて公知の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 The rubber composition in the present invention is used for a tread, and the present invention relates to a winter pneumatic tire having the tread. The winter pneumatic tire of this invention is manufactured by a well-known method using the said rubber composition. That is, by extruding a rubber composition blended with various additives as necessary in accordance with the shape of the tire tread at an unvulcanized stage, and molding it by a normal method on a tire molding machine After forming an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.

本発明の冬用空気入りタイヤは、乗用車、トラック・バス等に好適に使用できる。 The winter pneumatic tire of the present invention can be suitably used for passenger cars, trucks, buses and the like.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、実施例、及び比較例で使用した各種薬品について、まとめて説明する。 Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.

<微細藻類由来のオイルの調製例>
グルコース:ナカライテスク(株)製
硫酸アンモニウム:関東化学(株)製
コーンスティープリカー:王子コーンスターチ(株)製
硫酸マグネシウム:関東化学(株)製
リン酸一カリウム:和光純薬工業(株)製
エチレンジアミン四酢酸ナトリウム塩:ナカライテスク(株)製
モール塩:和光純薬工業(株)製
硫酸亜鉛:和光純薬工業(株)製
硫酸マンガン:関東化学(株)製
ビタミンB:シグマアルドリッチ社製
ビタミンB12:シグマアルドリッチ社製
<Preparation example of oil derived from microalgae>
Glucose: Nacalai Tesque Co., Ltd. ammonium sulfate: Kanto Chemical Co., Ltd. Corn steep liquor: Oji Corn Starch Co., Ltd. Magnesium sulfate: Kanto Chemical Co., Ltd. monopotassium phosphate: Wako Pure Chemical Industries, Ltd. Sodium acetate: Nacalai Tesque Co., Ltd. Mole salt: Wako Pure Chemical Industries, Ltd. Zinc sulfate: Wako Pure Chemical Industries, Ltd. Manganese sulfate: Kanto Chemical Co., Ltd. Vitamin B 1 : Vitamins manufactured by Sigma Aldrich B 12: sigma-Aldrich Co.

グルコース20g、硫酸アンモニウム7g、コーンスティープリカー5g、硫酸マグネシウム0.5g、リン酸一カリウム0.5g、エチレンジアミン四酢酸ナトリウム塩0.05g、モール塩0.05g、硫酸亜鉛0.025g、硫酸マンガン0.02g、ビタミンB5mg、ビタミンB1210μgを水道水1Lに溶解し、2L容量のジャーファーメンターに仕込んで、オートクレーブで滅菌(120℃、20分)した。これに予め同様の培地で前培養したユーグレナ・グラシリス(Euglena grasilis)の培養液100mlを接種し、オレイン酸3.0gを無菌的に添加し、室内光の下、28℃で72時間、120rpmの好気的な条件で振盪培養した。この時、培地のpHはpHコントローラーを用い、2N水酸化ナトリウム水溶液で3.5になるよう、培養終了まで維持した。
更に、遠心分離により培養細胞を採取し、pH6.8のリン酸バッファーに懸濁し、室内光の下、1分間に20mlの窒素ガス通気下で2日間、120rpmの嫌気的な条件で振盪培養した。
その後、培養細胞は超音波処理により破砕を行い、(クロロホルム:メタノール=1:2)の溶液により、オイル成分を抽出し、微細藻類由来のオイル2.8gを得た。
20 g of glucose, 7 g of ammonium sulfate, 5 g of corn steep liquor, 0.5 g of magnesium sulfate, 0.5 g of monopotassium phosphate, 0.05 g of sodium ethylenediaminetetraacetate, 0.05 g of molle salt, 0.025 g of zinc sulfate, 0.02 g of manganese sulfate 02 g, vitamin B 1 5 mg and vitamin B 12 10 μg were dissolved in 1 L of tap water, charged into a 2 L capacity jar fermenter, and sterilized (120 ° C., 20 minutes) in an autoclave. This was inoculated with 100 ml of Euglena gracilis pre-cultured in the same medium, and 3.0 g of oleic acid was aseptically added, and at room temperature, 28 rpm for 72 hours at 120 rpm. Shake culture was performed under aerobic conditions. At this time, the pH of the medium was maintained until the end of the culture using a pH controller so that the pH became 3.5 with 2N aqueous sodium hydroxide solution.
Further, the cultured cells were collected by centrifugation, suspended in a phosphate buffer having a pH of 6.8, and cultured with shaking under anaerobic conditions at 120 rpm for 2 days under room light under 20 ml nitrogen gas flow for 1 minute. .
Thereafter, the cultured cells were disrupted by sonication, and the oil component was extracted with a solution of (chloroform: methanol = 1: 2) to obtain 2.8 g of oil derived from microalgae.

<マスターバッチの調製例>
天然ゴムラテックス:HYTEX HA(Golden Hope Plantations(ゴールデン・ホープ・プランテーションズ)社製の天然ゴムラテックス、固形分:60質量%、平均粒径:1μm)
ミクロフィブリル化植物繊維:ダイセル化学工業(株)製のセリッシュKY−100G(平均繊維長:0.5mm、平均繊維径:0.02μm、固形分:10質量%)
テレビン油:日本テルペン化学(株)製テレピン油
微細藻類由来のオイル:上記調製例を参照
<Example of preparation of master batch>
Natural rubber latex: HYTEX HA (natural rubber latex manufactured by Golden Hope Plantations, solid content: 60% by mass, average particle size: 1 μm)
Microfibrillated plant fiber: Selish KY-100G manufactured by Daicel Chemical Industries, Ltd. (average fiber length: 0.5 mm, average fiber diameter: 0.02 μm, solid content: 10% by mass)
Turpentine oil: Nippon Terpene Chemical Co., Ltd. turpentine oil Oil derived from microalgae: See above preparation example

<製造例1:マスターバッチ1の調製>
表1の配合に従い、高速ホモジナイザー(IKA社製のバッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて、24,000rpmの条件でミクロフィブリル化植物繊維及びテレビン油を水中で1時間撹拌分散させ、ついで天然ゴムラテックスを添加し、さらに30分撹拌分散させた。得られた混合液を5質量%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
<Production Example 1: Preparation of Masterbatch 1>
In accordance with the composition shown in Table 1, the microfibrillated plant fiber and turpentine oil were stirred and dispersed in water at 24,000 rpm for 1 hour using a high-speed homogenizer (IKA's batch homogenizer T65D Ultra Turrax (Ultraturrax T25)). Then, natural rubber latex was added, and the mixture was further stirred and dispersed for 30 minutes. The obtained mixed solution was coagulated with a 5 mass% formic acid aqueous solution, washed with water, and dried in a heating oven at 40 ° C to obtain a master batch 1.

<製造例2:マスターバッチ2の調製>
テレビン油の代わりに微細藻類由来のオイルを用いたこと以外はマスターバッチ1と同様の方法でマスターバッチ2を得た。
<Production Example 2: Preparation of Masterbatch 2>
Masterbatch 2 was obtained in the same manner as Masterbatch 1 except that oil derived from microalgae was used instead of turpentine oil.

<製造例3:マスターバッチ3の調製>
テレビン油を配合しない点以外はマスターバッチ1と同様の方法でマスターバッチ3を得た。
<Production Example 3: Preparation of Masterbatch 3>
Master batch 3 was obtained in the same manner as master batch 1 except that turpentine oil was not blended.

<製造例4:マスターバッチ4の調製>
天然ゴムラテックスをそのまま5%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ4を得た。
<Production Example 4: Preparation of Masterbatch 4>
The natural rubber latex was coagulated as it was with a 5% aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 4.

Figure 2015168383
Figure 2015168383

<実施例1〜3および比較例1>
BR:宇部興産(株)製のUBEPOL BR150B
マスターバッチ1〜4:上記製造例で調製
カーボンブラック:キャボットジャパン(株)製のショウブラックN220
オイル:出光興産(株)製のダイアナプロセスオイルPS323
老化防止剤:大内新興化学工業(株)製のノクラック6C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーDM
<Examples 1-3 and Comparative Example 1>
BR: UBEPOL BR150B manufactured by Ube Industries, Ltd.
Master batches 1 to 4: Carbon black prepared in the above production example: Show black N220 manufactured by Cabot Japan Co., Ltd.
Oil: Diana Process Oil PS323 manufactured by Idemitsu Kosan Co., Ltd.
Anti-aging agent: NOCRACK 6C manufactured by Ouchi Shinsei Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate zinc oxide: Zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd .: Ouchi Shinsei Chemical NOCELLER DM manufactured by Kogyo Co., Ltd.

表2の配合に従い、135℃に加熟した250ccインターナルミキサーを用いて、88rpmの条件で加硫促進剤及び硫黄以外の薬品と各種マスターバッチとを3分間混練りした。混練りしたゴムを排出して、60℃、24rpmの条件で6インチオープンロールにより加硫促進剤と硫黄を添加、5分間混練し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を150℃でプレス加熱することで、加硫ゴム組成物を得た。作製した加硫ゴム組成物を用い、以下に示す評価を行った。結果を表2に示す。 In accordance with the formulation shown in Table 2, a vulcanization accelerator and chemicals other than sulfur and various master batches were kneaded for 3 minutes under the condition of 88 rpm using a 250 cc internal mixer ripened to 135 ° C. The kneaded rubber was discharged, and a vulcanization accelerator and sulfur were added with a 6-inch open roll at 60 ° C. and 24 rpm, and kneaded for 5 minutes to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-heated at 150 ° C. to obtain a vulcanized rubber composition. The following evaluations were performed using the prepared vulcanized rubber composition. The results are shown in Table 2.

(氷上性能)
−5℃に温度制御された恒温室内に設置された−2℃の氷面上に、前記加硫ゴム組成物を2kg/cmで押し付け、20km/hで滑らせるときの摩擦係数(氷上摩擦係数)を測定し、比較例1の氷上摩擦性能指数を100とし、下記計算式により、各配合の氷上摩擦係数を指数表示した。氷上摩擦性能指数が大きいほど、空気入りタイヤとして用いた場合に、氷上摩擦性能が高く、氷上性能に優れることを示す。
(氷上摩擦性能指数)=(各配合の氷上摩擦係数)/(比較例1の氷上摩擦係数)×100
(Performance on ice)
Friction coefficient (friction on ice) when the vulcanized rubber composition is pressed at 2 kg / cm 2 and slid at 20 km / h on an ice surface of −2 ° C. installed in a temperature-controlled room controlled at −5 ° C. The coefficient of friction on ice of Comparative Example 1 was set to 100, and the coefficient of friction on ice of each formulation was expressed as an index according to the following formula. The larger the on-ice friction performance index, the higher the on-ice friction performance and the better on-ice performance when used as a pneumatic tire.
(Friction performance index on ice) = (Friction coefficient on ice for each formulation) / (Friction coefficient on ice in Comparative Example 1) × 100

(ウェットグリップ性能)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度0℃、初期歪み10%、動歪み0.5%の条件下で各配合の損失正接(tanδ)を測定し、比較例1のtanδを100として、下記計算式により指数表示した(ウェットグリップ性能指数)。指数が大きいほど、空気入りタイヤとして用いた場合に、ウェットグリップ性能が優れることを示す。
(ウェットグリップ性能指数)=(各配合のtanδ)/(比較例1のtanδ)×100
(Wet grip performance)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 0 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). The loss tangent (tan δ) of each formulation was measured under the condition of dynamic strain of 0.5%, and the tan δ of Comparative Example 1 was taken as 100 and expressed as an index according to the following formula (wet grip performance index). The larger the index, the better the wet grip performance when used as a pneumatic tire.
(Wet grip performance index) = (tan δ of each formulation) / (tan δ of Comparative Example 1) × 100

(転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のtanδ(損失正接)を測定し、比較例1のtanδを100として、下記計算式により指数表示した(転がり抵抗指数)。
(転がり抵抗指数)=(各配合のtanδ)/(比較例1のtanδ)×100
転がり抵抗指数が小さい程、空気入りタイヤとして用いた場合に良好な転がり抵抗特性(低燃費性)を与えることを示す。
(Rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). Then, tan δ (loss tangent) of each measurement test piece was measured under the conditions of dynamic strain 2% and frequency 10 Hz, and the tan δ of Comparative Example 1 was set to 100 and expressed as an index according to the following formula (rolling resistance index).
(Rolling resistance index) = (tan δ of each formulation) / (tan δ of Comparative Example 1) × 100
The smaller the rolling resistance index, the better the rolling resistance characteristics (low fuel consumption) when used as a pneumatic tire.

Figure 2015168383
Figure 2015168383

表2より、フィラーとしてカーボンブラックを用いた比較例1と比較して、ミクロフィブリル化植物繊維を配合した実施例3では、氷上性能、ウェットグリップ性能及び低燃費性の性能バランスを顕著に改善できた。テレビン油又は微細藻類由来のオイル、並びにミクロフィブリル化植物繊維を配合した実施例1、2では、前記性能バランスを更に改善できた。 From Table 2, compared with Comparative Example 1 using carbon black as a filler, Example 3 containing microfibrillated plant fibers can significantly improve the performance balance of on-ice performance, wet grip performance and low fuel consumption. It was. In Examples 1 and 2 in which turpentine oil or oil derived from microalgae and microfibrillated plant fiber were blended, the performance balance could be further improved.

Claims (14)

ゴム成分及びミクロフィブリル化植物繊維を含むゴム組成物を用いて作製したトレッドを有する冬用空気入りタイヤ。 A winter pneumatic tire having a tread produced using a rubber composition containing a rubber component and microfibrillated plant fibers. 前記ゴム成分が、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含む請求項1記載の冬用空気入りタイヤ。 The winter pneumatic tire according to claim 1, wherein the rubber component includes at least one selected from the group consisting of natural rubber, modified natural rubber, synthetic rubber, and modified synthetic rubber. 前記ミクロフィブリル化植物繊維がセルロースミクロフィブリルである請求項1又は2記載の冬用空気入りタイヤ。 The winter pneumatic tire according to claim 1 or 2, wherein the microfibrillated plant fiber is cellulose microfibril. 前記ミクロフィブリル化植物繊維の平均繊維径が10μm以下である請求項1〜3のいずれかに記載の冬用空気入りタイヤ。 The winter pneumatic tire according to any one of claims 1 to 3, wherein the microfibrillated plant fiber has an average fiber diameter of 10 µm or less. 前記ミクロフィブリル化植物繊維の含有量が、前記ゴム成分100質量部に対して1〜100質量部である請求項1〜4のいずれかに記載の冬用空気入りタイヤ。 The winter pneumatic tire according to any one of claims 1 to 4, wherein a content of the microfibrillated plant fiber is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component. オイルとして、テレビン油及び/又は微細藻類由来のオイルを含む請求項1〜5のいずれかに記載の冬用空気入りタイヤ。 The pneumatic tire for winter according to any one of claims 1 to 5, comprising turpentine oil and / or oil derived from microalgae as the oil. 前記テレビン油の含有量がゴム成分100質量部に対して0.01〜50質量部である請求項6記載の冬用空気入りタイヤ。 The winter pneumatic tire according to claim 6, wherein a content of the turpentine oil is 0.01 to 50 parts by mass with respect to 100 parts by mass of the rubber component. 前記微細藻類が、Euglenophyceae網に属する微細藻類である請求項6記載の冬用空気入りタイヤ。 The winter pneumatic tire according to claim 6, wherein the microalga is a microalga belonging to the Euglenophycea net. 前記微細藻類が、ユーグレナ属に属する微細藻類である請求項6又は8記載の冬用空気入りタイヤ。 The winter pneumatic tire according to claim 6 or 8, wherein the microalga is a microalga belonging to the genus Euglena. 前記微細藻類由来のオイルが、前記微細藻類を培養した後、精製することにより得られたオイル成分である請求項6、8及び9のいずれかに記載の冬用空気入りタイヤ。 The winter pneumatic tire according to any one of claims 6, 8, and 9, wherein the oil derived from the microalgae is an oil component obtained by culturing the microalgae and then refining the oil. 前記微細藻類由来のオイルが、前記微細藻類を、脂肪酸を添加した培地で培養することにより得られたものである請求項6、8、9及び10のいずれかに記載の冬用空気入りタイヤ。 The winter pneumatic tire according to any one of claims 6, 8, 9, and 10, wherein the oil derived from the microalgae is obtained by culturing the microalgae in a medium to which a fatty acid is added. 前記微細藻類由来のオイルが、前記微細藻類を、好気性条件で培養した後、嫌気性条件で培養することにより得られたものである請求項6、8、9、10及び11のいずれかに記載の冬用空気入りタイヤ。 The oil derived from the microalgae is obtained by culturing the microalgae under anaerobic conditions and then culturing them under anaerobic conditions. The described winter pneumatic tire. 前記ミクロフィブリル化植物繊維及び前記ゴム成分を予め混合する工程(A)を含む請求項1〜12のいずれかに記載の冬用空気入りタイヤの製造方法。 The manufacturing method of the winter pneumatic tire in any one of Claims 1-12 including the process (A) which mixes the said microfibrillated plant fiber and the said rubber component previously. 前記ミクロフィブリル化植物繊維並びに、前記テレビン油及び/又は微細藻類由来のオイルを混合する工程(a)と、該工程で得られた混合物と前記ゴム成分を更に混合する工程(A)とを含む請求項13に記載の製造方法。 A step (a) of mixing the microfibrillated plant fiber and the turpentine oil and / or oil derived from microalgae, and a step (A) of further mixing the mixture obtained in the step and the rubber component. Item 14. The manufacturing method according to Item 13.
JP2014046443A 2014-03-10 2014-03-10 Winter pneumatic tire and manufacturing method thereof Active JP6069240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046443A JP6069240B2 (en) 2014-03-10 2014-03-10 Winter pneumatic tire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046443A JP6069240B2 (en) 2014-03-10 2014-03-10 Winter pneumatic tire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015168383A true JP2015168383A (en) 2015-09-28
JP6069240B2 JP6069240B2 (en) 2017-02-01

Family

ID=54201501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046443A Active JP6069240B2 (en) 2014-03-10 2014-03-10 Winter pneumatic tire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6069240B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199555A1 (en) * 2015-06-08 2016-12-15 住友ゴム工業株式会社 Pneumatic tire and motorcycle tire
JP2017002149A (en) * 2015-06-08 2017-01-05 住友ゴム工業株式会社 Tire for two-wheeled automobile
JP2017002148A (en) * 2015-06-08 2017-01-05 住友ゴム工業株式会社 Pneumatic tire
EP3181624A1 (en) * 2015-12-14 2017-06-21 The Goodyear Tire & Rubber Company Rubber composition containing algae oil and tire with component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024895A (en) * 2006-07-25 2008-02-07 Bridgestone Corp Tire
JP4129086B2 (en) * 1997-09-24 2008-07-30 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー Tire tread for eye traction
JP2010077257A (en) * 2008-09-25 2010-04-08 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2012160938A1 (en) * 2011-05-25 2012-11-29 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
JP2013166914A (en) * 2012-01-16 2013-08-29 Sumitomo Rubber Ind Ltd Masterbatch, rubber composition, and pneumatic tire
JP2013194088A (en) * 2012-03-16 2013-09-30 Sumitomo Rubber Ind Ltd Rubber composition for tire, production method of the same, and pneumatic tire
JP2014019856A (en) * 2012-07-23 2014-02-03 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4129086B2 (en) * 1997-09-24 2008-07-30 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー Tire tread for eye traction
JP2008024895A (en) * 2006-07-25 2008-02-07 Bridgestone Corp Tire
JP2010077257A (en) * 2008-09-25 2010-04-08 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2012160938A1 (en) * 2011-05-25 2012-11-29 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
JP2013166914A (en) * 2012-01-16 2013-08-29 Sumitomo Rubber Ind Ltd Masterbatch, rubber composition, and pneumatic tire
JP2013194088A (en) * 2012-03-16 2013-09-30 Sumitomo Rubber Ind Ltd Rubber composition for tire, production method of the same, and pneumatic tire
JP2014019856A (en) * 2012-07-23 2014-02-03 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199555A1 (en) * 2015-06-08 2016-12-15 住友ゴム工業株式会社 Pneumatic tire and motorcycle tire
JP2017002149A (en) * 2015-06-08 2017-01-05 住友ゴム工業株式会社 Tire for two-wheeled automobile
JP2017002148A (en) * 2015-06-08 2017-01-05 住友ゴム工業株式会社 Pneumatic tire
EP3181624A1 (en) * 2015-12-14 2017-06-21 The Goodyear Tire & Rubber Company Rubber composition containing algae oil and tire with component

Also Published As

Publication number Publication date
JP6069240B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6224429B2 (en) Rubber composition for tire and pneumatic tire
JP6069240B2 (en) Winter pneumatic tire and manufacturing method thereof
JP5442608B2 (en) Elastomer composition and tire using the elastomer composition
WO2014017508A1 (en) Rubber composition for tire, tire member, method for producing biomass-derived rubber, and pneumatic tire
JP6950169B2 (en) Rubber composition for tires and tires
JP2014051617A (en) Rubber composition for tire, tire member and pneumatic tire
JP5670970B2 (en) Rubber composition for tire and pneumatic tire
JP5992749B2 (en) Rubber composition for tire and pneumatic tire
JP6332925B2 (en) Cap tread rubber composition for passenger car tire, cap tread rubber for passenger car tire, and pneumatic tire for passenger car
Deng et al. Research progress on sustainability of key tire materials
WO2017097948A1 (en) Process for manufacturing a tyre containing microcapsules, and said tyre
JP6532192B2 (en) Rubber composition for tire, tire member, and pneumatic tire
JP2015010136A (en) Rubber composition for tire, and pneumatic tire using the same
JP2015030815A (en) Tire rubber composition and pneumatic tire
JP5866413B2 (en) Rubber composition for tire, tire member, and pneumatic tire
JP2020186142A (en) Silica-carbon composite material and its manufacturing method
JP5992750B2 (en) Rubber composition for tire and pneumatic tire
JPWO2010050587A1 (en) ELASTOMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND TIRE USING THE ELASTOMER COMPOSITION
JP7467745B1 (en) Method for producing wet masterbatch, rubber composition, and tire
JP6304924B2 (en) Rubber composition for sidewall and pneumatic tire
JP7483997B1 (en) Side reinforcement rubber for run-flat tires, and run-flat tires
JP6317498B2 (en) Rubber composition for tread for studless tire and studless tire
JP6317497B2 (en) Tread rubber composition and pneumatic tire
JP2022179157A (en) Cap tread and passenger car tire
DI LORENZO Tailored Bioplasticizer for elastomeric compounds from sustainable biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6069240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250