JP2015165198A - Method and device for estimating state of charge of storage battery - Google Patents

Method and device for estimating state of charge of storage battery Download PDF

Info

Publication number
JP2015165198A
JP2015165198A JP2014040095A JP2014040095A JP2015165198A JP 2015165198 A JP2015165198 A JP 2015165198A JP 2014040095 A JP2014040095 A JP 2014040095A JP 2014040095 A JP2014040095 A JP 2014040095A JP 2015165198 A JP2015165198 A JP 2015165198A
Authority
JP
Japan
Prior art keywords
charge
storage battery
state
coefficient group
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014040095A
Other languages
Japanese (ja)
Other versions
JP6314543B2 (en
Inventor
井上 秀樹
Hideki Inoue
秀樹 井上
酒井 政則
Masanori Sakai
政則 酒井
横田 登志美
Toshimi Yokota
登志美 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2014040095A priority Critical patent/JP6314543B2/en
Publication of JP2015165198A publication Critical patent/JP2015165198A/en
Application granted granted Critical
Publication of JP6314543B2 publication Critical patent/JP6314543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for accurately estimating the state of charge (SOC) of a storage battery.SOLUTION: A device for estimating the state of charge of a storage battery includes: means 104 for calculating the SOC from information on a voltage, charge and discharge currents, and temperature of a storage battery with an arithmetic expression using a coefficient group; means 105 for performing, in creating or updating the coefficient group, switching as to whether make the same or different a direction of charge or discharge during the measurement of a voltage, currents, and temperature of the storage battery for the creation of coefficients and a direction of charge or discharge during the adjustment of the SOC to be a preferred value, which is temporally prior to the measurement; and means 106 for creating/updating the coefficient group for estimating the SOC from the measurements obtained by the above means.

Description

本発明は、蓄電池の状態を検知(推定)する方法に関する。   The present invention relates to a method for detecting (estimating) a state of a storage battery.

本技術分野の背景技術として、電流値とその継続時間から蓄電池へ入出力される電荷量を求め、満充電等の基準点からの電荷量の変化量から、蓄電池の残量(以降、SOC:State Of Chargeと表記)を求める方式(以降、電流積算方式と表記)が知られている。また、鉛蓄電池に関し、ある時点の電流、電圧、温度、SOCを関連付けた式が非特許文献1に記載されている。非特許文献1に記載された式を用いれば、収束計算にて電流、電圧、温度からSOCを求めることができる。   As background art in this technical field, the amount of charge input / output to / from the storage battery is obtained from the current value and its duration, and the remaining amount of the storage battery (hereinafter referred to as SOC: A method (hereinafter referred to as a current integration method) for obtaining State Of Charge) is known. Further, regarding a lead storage battery, Non-Patent Document 1 describes an equation that associates current, voltage, temperature, and SOC at a certain point in time. If the formula described in Non-Patent Document 1 is used, SOC can be obtained from current, voltage, and temperature by convergence calculation.

電気学会論文B,128巻8号、2008年)「階段状電流を用いた鉛蓄電池シミュレーションモデリング手法」(The Institute of Electrical Engineers of Japan, B, 128, No. 8, 2008) "Lead-Battery Simulation Modeling Method Using Stepped Current"

従来の電流積算方式を用いたSOCの推定では、基準点からの積算回数の増加に伴い、誤差が累積する。一般に蓄電池は、適切なSOC範囲内で運用を行うことで所定の性能を充足できるように設計されている。よって、SOC推定に誤差が含まれた場合、適切なSOC範囲を逸脱した運用となり、蓄電池の劣化をまねく。特に、風力や太陽光の出力平準化用の蓄電池においては、常に充電と放電の双方に対応できるように部分充電状態(以降、PSOC :Partial State Of Chargeと表記)で長時間運用されるため、満充電状態に頻繁に到達する他の用途の蓄電池と比較し、電流積算方式を用いたSOCでの累積誤差の問題が顕著化しやすかった。   In SOC estimation using the conventional current integration method, errors accumulate as the number of integrations from the reference point increases. In general, a storage battery is designed to satisfy a predetermined performance by operating within an appropriate SOC range. Therefore, if an error is included in the SOC estimation, the operation deviates from the appropriate SOC range, resulting in deterioration of the storage battery. In particular, in storage batteries for wind power and solar power leveling, it is operated for a long time in a partially charged state (hereinafter referred to as PSOC: Partial State Of Charge) so that it can always handle both charging and discharging, Compared to storage batteries for other applications that frequently reach a fully charged state, the problem of cumulative error in SOC using the current integration method was likely to be noticeable.

また、従来の(非特許文献1)に記載されている階段状の電流パターンを用い、係数を決定したSOC推定法では、蓄電池の種類や型式によって、正確なSOCに対し特定の方向に推定誤差が生じる課題があった。   Moreover, in the SOC estimation method in which the coefficient is determined using the stepped current pattern described in the conventional (Non-patent Document 1), the estimation error in a specific direction with respect to the exact SOC depending on the type and model of the storage battery. There was a problem that occurred.

上記課題を解決するために、本発明の蓄電池状態検知方法は、蓄電池の電圧、充放電電流、温度の情報からある係数群を用いた演算式によりSOCを算出する手順、上記係数群を作成若しくは更新するに際し、係数の作成のための蓄電池の電圧、電流、温度の計測時の充電若しくは放電の方向と、その計測に時間的に先行しSOCを好ましい値に調整する際の充電若しくは放電の方向とを同一にするか異にするかの切り替えを行う手順、上記手順による計測値からSOC推定のための係数群を作成/更新する手順、を有する。   In order to solve the above problems, the storage battery state detection method of the present invention is a procedure for calculating the SOC by an arithmetic expression using a certain coefficient group from information on the voltage, charge / discharge current, and temperature of the storage battery, creating the coefficient group or When updating, the direction of charge or discharge when measuring the voltage, current, and temperature of the storage battery to create the coefficient, and the direction of charge or discharge when adjusting the SOC to a preferred value in time before the measurement And a procedure for switching between the same and different, and a procedure for creating / updating a coefficient group for SOC estimation from the measured values according to the above procedure.

電圧、電流、温度の現在値よりSOCを算出するため、従来の電流積算方式を用いたSOCの推定のように累積回数に応じた誤差の累積を回避可能である。正確なSOCに対する誤差の発生方向が逆となる複数の推定結果を用いることで、従来の(非特許文献1)に記載されている階段状の電流パターンを用いて作成した係数からSOCを推定する方式と比較し、誤差を縮小することが可能となる。時間的に先行する充放電の電流方向を変えることで、正確なSOCに対する誤差の発生方向が、実用上十分に高い確率で逆となる複数のSOC推定の係数を作成できる。   Since the SOC is calculated from the current values of voltage, current, and temperature, it is possible to avoid the accumulation of errors according to the number of times of accumulation, as in the estimation of SOC using a conventional current integration method. By using a plurality of estimation results in which the direction of error generation with respect to an accurate SOC is reversed, the SOC is estimated from the coefficient created using the step-like current pattern described in the conventional (Non-Patent Document 1). Compared with the method, the error can be reduced. By changing the current direction of charge and discharge that precedes in time, it is possible to create a plurality of SOC estimation coefficients in which the direction of error generation with respect to an accurate SOC is reversed with a sufficiently high probability in practical use.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

全体構成を示す図である。It is a figure which shows the whole structure. SOC算出部の概略フローを示す図である。It is a figure which shows the schematic flow of a SOC calculation part. SOC係数更新部の概略フローを示す図である。It is a figure which shows the schematic flow of a SOC coefficient update part. SOC算出係数更新部のフローを示す図である。It is a figure which shows the flow of a SOC calculation coefficient update part. 測定間SOC調整のフローを示す図である。It is a figure which shows the flow of SOC adjustment between measurements. 係数決定用電流、電圧、温度の計測のフローを示す図である。It is a figure which shows the flow of a measurement of the electric current for coefficient determination, a voltage, and temperature. sign(Icond)=sign(Imes)の場合のSOC推移と印加電流を示す図である。It is a figure which shows SOC transition and applied current in the case of sign (Icond) = sign (Imes). sign(Icond)≠sign(Imes)の場合のSOC推移と印加電流を示す図である。It is a figure which shows SOC transition and applied electric current in the case of sign (Icond) <= sign (Imes). 本発明の実施例3に係るSOC算出処理を模式的に示す図である。It is a figure which shows typically the SOC calculation process which concerns on Example 3 of this invention. 直前の推定分極量算出手段による算出処理を模式的に示す図である。It is a figure which shows typically the calculation process by the estimated polarization amount calculation means immediately before. Icondの電流印加時間を可変にすることにより分極量を調整して係数を作成する方法を説明する図である。It is a figure explaining the method of adjusting the amount of polarization and making a coefficient by making current application time of Icond variable. Icond印加後の大きな分極量印加の直後に、逆方向の小さな分極量が印加された場合に相当するSOC推定係数を算出する場合の電流印加パタンを示す図である。It is a figure which shows the electric current application pattern in the case of calculating the SOC estimation coefficient equivalent to the case where the small amount of polarization of a reverse direction is applied immediately after application of the large amount of polarization after Icond application. 長い時定数の電流変動による分極と短い時定数の電流変動による分極とが重畳されるSOC推定モデルを示す図である。It is a figure which shows the SOC estimation model with which the polarization by the current fluctuation of a long time constant and the polarization by the current fluctuation of a short time constant are superimposed.

以下、実施例に関し図面を用い説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1に全体の構成を示す。この例では、風力発電サイトにおける出力変動平準化に用いられる蓄電池を対象とし、そのSOCを推定する構成を示している。   Fig. 1 shows the overall configuration. In this example, a configuration for estimating the SOC of a storage battery used for output fluctuation leveling at a wind power generation site is shown.

同図101はSOC推定の対象となる蓄電池、102は蓄電池101を充放電させるための(双方向)コンバータ、103は平準化動作の制御及び当該サイトの平準化動作に関連する制御全般を行う平準化制御部、104は計測値に基づき蓄電池101のSOCを推定するSOC算出部(SOC演算部)、105はSOC推定結果に基づき平準化制御部103に搭載の制御アルゴリズムに従って蓄電池101の充放電を行うようコンバータ102に充放電指令を出力する充放電制御部、106は所定条件下でSOC推定のための係数の更新が必要となった際に同係数の決定に必要な充放電動作を行い、その結果に基づき係数を決定するSOC算出部係数更新部、107は風力発電機や連系点からの電流の入出力によらずSOC推定係数の決定に必要な充放電動作を実現するために用いる他の蓄電池のバンク、もしくは充放電装置、もしくは他の負荷などの電流入出力可能機器、108は外部系統との連系点、109は母線、110は風力発電機である。   Fig. 101 is a storage battery subject to SOC estimation, 102 is a (bidirectional) converter for charging / discharging the storage battery 101, 103 is a leveling operation that controls the leveling operation and the overall control related to the leveling operation of the site. 104 is a SOC calculation unit (SOC calculation unit) that estimates the SOC of the storage battery 101 based on the measured value, 105 is a charge / discharge of the storage battery 101 according to the control algorithm installed in the leveling control unit 103 based on the SOC estimation result The charge / discharge control unit 106 outputs a charge / discharge command to the converter 102 so as to perform the charge / discharge operation necessary for determining the coefficient when it is necessary to update the coefficient for SOC estimation under a predetermined condition, SOC calculation unit coefficient update unit that determines the coefficient based on the result, 107 is used to realize the charge / discharge operation necessary for determining the SOC estimation coefficient regardless of the input / output of current from the wind power generator or interconnection point Other storage battery banks or charge / discharge devices Ku is the current input and output apparatus capable of such other loads, 108 linking point with an external system, 109 bus, 110 is a wind power generator.

SOC算出部104で実行されるタスクに関し、その概略のフローを図2に示す。図2に示すフローは、通常の平準化動作時にタイマーによる時間経過やその他SOCが必要となった際に起動されるタスクで、蓄電池101に関する電圧、電流、温度の計測値を読み込み(s501)、前記計測値に基づき所定アルゴリズムに従いSOCを算出し(s502)、算出結果のSOCを後段の処理のために出力する(s503)。   FIG. 2 shows a schematic flow of tasks executed by the SOC calculation unit 104. The flow shown in FIG. 2 is a task that is started when the time elapsed by the timer or other SOC is required during normal leveling operation, and reads the measured values of voltage, current, and temperature related to the storage battery 101 (s501), Based on the measured value, the SOC is calculated according to a predetermined algorithm (s502), and the calculated SOC is output for subsequent processing (s503).

蓄電池101に関する電圧、電流、温度の計測値(計測データ)やその他の計測値(計測データ)は、図1に一点鎖線で示すように、平準化制御部103に送られて、平準化制御部103で計測される。このために、平準化制御部103には、各種計測値を計測する計測部が設けられている。平準化制御部103自体が各種計測値の計測部を構成しているとみなしてもよい。   The measured values (measurement data) of the voltage, current, and temperature related to the storage battery 101 and other measured values (measurement data) are sent to the leveling control unit 103 as indicated by the one-dot chain line in FIG. Measured at 103. For this purpose, the leveling control unit 103 is provided with a measurement unit that measures various measurement values. The leveling control unit 103 itself may be regarded as constituting a measurement unit for various measurement values.

SOC算出係数更新部106で実行されるタスクに関し、その概略のフローを図3に示す。図3に示すフローは経年変化等、SOC推定用の係数の更新が必要となった際に起動されるタスクである。まず、SOC算出係数更新要否判定部111により、現在のSOC推定用係数による推定精度が、十分か否かを判定する。判定には、例えば均等充電やリセット充電直後の電流積算SOC値と比較する方法がある。もしくはSOC算出係数更新外部入力112により、外部からの指令で更新を起動しても良い。SOC算出係数更新要否判定部111から更新の起動信号を送信すると、SOC算出係数更新部106では、SOC推定計数の更新モードへ移行が可能であるかを判定する(s504)。前記条件が満たされた場合、通常の動作モードである発電機出力変動平準化モードからSOC推定係数更新モードへ移行する(s505)。前記更新モードへの移行後、SOC推定係数算出のための充放電、及び計測を行う(s506)。前記計測結果を用い、SOC推定係数を算出する(s507)。前記算出結果を、SOC算出部104にて用いる係数格納部へ転送(s508)後、発電機出力変動平準化モードへ復帰する(s509)。   A schematic flow of tasks executed by the SOC calculation coefficient update unit 106 is shown in FIG. The flow shown in FIG. 3 is a task that is started when the coefficient for SOC estimation needs to be updated, such as aging. First, the SOC calculation coefficient update necessity determination unit 111 determines whether the estimation accuracy based on the current SOC estimation coefficient is sufficient. For the determination, for example, there is a method of comparing with a current integrated SOC value immediately after equal charge or reset charge. Alternatively, the update may be activated by an external command by SOC calculation coefficient update external input 112. When an update start signal is transmitted from the SOC calculation coefficient update necessity determination unit 111, the SOC calculation coefficient update unit 106 determines whether or not it is possible to shift to the SOC estimation count update mode (s504). When the condition is satisfied, the mode shifts from the generator output fluctuation leveling mode, which is the normal operation mode, to the SOC estimation coefficient update mode (s505). After the transition to the update mode, charge / discharge for calculating the SOC estimation coefficient and measurement are performed (s506). An SOC estimation coefficient is calculated using the measurement result (s507). The calculation result is transferred to the coefficient storage unit used in the SOC calculation unit 104 (s508), and then returned to the generator output fluctuation leveling mode (s509).

次に、図4を用い前出のSOC推定係数算出のための充放電及び計測のフロー(s506)の動作を説明する。まず、s511にて、一連の係数更新のための測定においてSOCの基準点となる値に、調整する。基準点の例として、SOC100%などがある。次にs512にて、SOCを所定の値まで調整した後、s513にて所定の電流条件下で、端子電圧、蓄電池若しくは蓄電池周囲の温度を計測する。上記s512のSOC調整とs513の計測は、一般に複数のSOC状態にわたって繰り返し計測する。s514で全てのSOC条件にわたり計測が終了したことを判定し、SOC推定係数算出のための充放電及び計測の一連のフローが終了する。本フローにおいて、s512とs513の順番は逆でも良い。また、s513の後ろにもうひとつのs512を挿入しても良い。   Next, the operation of the charge / discharge and measurement flow (s506) for calculating the SOC estimation coefficient described above will be described with reference to FIG. First, in s511, adjustment is made to a value that becomes a reference point of SOC in a series of measurements for coefficient update. An example of the reference point is SOC 100%. Next, after adjusting the SOC to a predetermined value in s512, the terminal voltage, the storage battery, or the temperature around the storage battery is measured under a predetermined current condition in s513. The SOC adjustment of s512 and the measurement of s513 are generally repeatedly measured over a plurality of SOC states. In s514, it is determined that measurement has been completed over all SOC conditions, and a series of charging / discharging and measurement flows for calculating the SOC estimation coefficient is completed. In this flow, the order of s512 and s513 may be reversed. Further, another s512 may be inserted after s513.

次に図5を用い、s512における測定間SOC調整の動作について説明する。まずs521にてSOCの到達目標値を設定する。例えばSOCの現在の値が100%のとき、s513の測定をSOC90%で行いたい場合は、SOC到達目標をSOC90%とする。このとき、到達目標はSOCの絶対値ではなく、SOCの変化量ΔSOCを基準にしても良い。例えばΔSOCの値としては、3%以上40%未満とする。ΔSOCの下限は、充放電によりOCV(Open Circuit Voltage)状態からの端子電圧のずれを十分に発生させるに足る量を設定する。従って分極を起こしやすい蓄電池においては、小さいΔSOCを用いることができる。分極を起こしにくい蓄電池では逆である。一方、ΔSOCを過大にとると、SOC推定係数のSOCに対する分解能が低下する。例えばDOD(Depth of Discharge)が80%の測定において、ΔSOCを40%とすると、SOCに対するサンプリング点数は3点となる。   Next, the operation of the SOC adjustment between measurements in s512 will be described using FIG. First, at s521, the SOC target value is set. For example, when the current value of SOC is 100%, if the measurement of s513 is to be performed at SOC 90%, the SOC achievement target is SOC 90%. At this time, the reaching target may be based on the SOC variation ΔSOC instead of the SOC absolute value. For example, the value of ΔSOC is 3% or more and less than 40%. The lower limit of ΔSOC is set to an amount sufficient to cause a terminal voltage deviation from the OCV (Open Circuit Voltage) state due to charge / discharge. Therefore, a small ΔSOC can be used in a storage battery that is prone to polarization. The opposite is true for storage batteries that are less prone to polarization. On the other hand, if ΔSOC is excessively large, the resolution of the SOC estimation coefficient with respect to SOC decreases. For example, in a measurement with a DOD (Depth of Discharge) of 80%, if ΔSOC is 40%, the number of sampling points for the SOC is 3.

尚、この一連の測定でのSOC調整においては、SOC基準点からの積算時間(積算回数)が小さいため、電流積算SOCを用いることを仮定しているが、これに限らない。目標SOC設定後、s522にてSOC調整のための電流Icond (I conditioningの略)を印加する。対象の蓄電池101への電流の印加は、複数バンク構成の他の蓄電池バンクや他の電流入出力可能機器107との電流の授受、若しくは電流配分の調整、契約条件にもよるものの、外部の交流電源との電流の授受のいずれかによって行う。Icondの値としては、対象の蓄電池の充放電電流の制限値内であることは当然であるが、後段の係数決定用の計測時の印加電流Imes(I measurementの略)の最大値以下かつ最小値以上を目安とする。一例として0.1CA等が挙げられる(1CAは、満充電の蓄電池を1時間で完全に放電し得る電流値。但し、容量が放電電流値に依存しないと仮定)。同電流値は、SOC推定係数算出のための測定にかかる時間に直接影響を与えるほか、導かれるSOC推定係数の特性に影響を与える。例えば、Icondの値を大きくすると、同電流によるSOC調整後、OCV状態と比較し端子電圧の変化量が大きくなる。なお、これは分極等の影響と思われる。Icondがどの程度の場合に、より良いSOC推定係数が得られるかは、平準化の対象の風力サイトの特性(風況、発電機の特性等)に合わせ調整する。以降、電流方向の定義として、マイナス値を充電方向、プラス値を放電方向とする。よって、充電方向のIcondにつき、sign(Icond)=-1、同じく放電方向のIcondにつき、sign(Icond)=1である。尚、sign(・)はカッコ内の符号を、絶対値1に同符号を付した値に変換する演算子である。   Note that, in the SOC adjustment in this series of measurements, since the integration time (number of integrations) from the SOC reference point is small, it is assumed that the current integration SOC is used, but this is not restrictive. After setting the target SOC, a current Icond (abbreviation for I conditioning) is applied for SOC adjustment in s522. Current application to the target storage battery 101 depends on the exchange of current with other storage battery banks and other current input / output devices 107 that have multiple banks, adjustment of current distribution, and contract conditions, but external AC This is done either by exchanging current with the power supply. The value of Icond is naturally within the limit value of the charge / discharge current of the target storage battery, but it is less than the maximum value of the applied current Imes (abbreviation of I measurement) at the time of measurement for determining the coefficient at the subsequent stage. Use the value above as a guide. An example is 0.1 CA (1 CA is a current value at which a fully charged storage battery can be completely discharged in one hour, provided that the capacity does not depend on the discharge current value). The current value directly affects the time required for the measurement for calculating the SOC estimation coefficient, and also affects the characteristics of the derived SOC estimation coefficient. For example, when the value of Icond is increased, the amount of change in the terminal voltage is increased after the SOC adjustment with the same current as compared with the OCV state. This seems to be the effect of polarization and the like. When the Icond is high, the better SOC estimation coefficient can be obtained according to the characteristics of the wind site to be leveled (wind conditions, generator characteristics, etc.). Hereinafter, as a definition of the current direction, a negative value is a charging direction and a positive value is a discharging direction. Therefore, sign (Icond) = − 1 for Icond in the charging direction, and sign (Icond) = 1 for Icond in the discharging direction. Sign (·) is an operator that converts the sign in parentheses into a value obtained by adding the same sign to absolute value 1.

s523にて、Icond*Tcondの積算値をもとに算出されるSOCが目標値に到達したことを判定後、SOC調整を終了する。尚、s521の段階で既に目標値に到達している場合は、図示してはいないが、そのまま終了する。   In s523, after determining that the SOC calculated based on the integrated value of Icond * Tcond has reached the target value, the SOC adjustment is terminated. If the target value has already been reached in step s521, the process ends without being shown in the figure.

次に図6を用い、s513における係数決定用電流、電圧、温度計測の動作について説明する。まずs531にて、次段で印加する計測用電流Imesの印加方向(充電方向か放電方向か)を決定する。s532にて前のステップで決定した方向のImesを印加する。Imesの印加に伴い、s533にて端子電圧、電流、蓄電池温度(若しくは蓄電池周囲の温度)を計測する。
Imesの印加に伴い蓄電池の端子電圧は、一定値への漸近に近い変化を示す(但し、Imes印加前の電流値(=Icond)とImesの電流値が異なる場合)。同変化量が十分に小さくなった点、若しくはΔSOC換算量で一定値を超えた点、或いは所定時間Tmesの経過により計測を終了する(s534)。以上のステップを、複数のImesに関し順次に印加し、全てのImesに関する印加をもって終了する(s535)。Imesの値に関しては、例えばIcondより小さい値、Icond程度の値、Icond以上の値を3点程度以上選択する。また、s532を含むループ中では、Imesは絶対値の小さい値から絶対値の大きな値の順で印加すると、直前のImesの印加による端子電圧変動の影響を軽減できる。
Next, the coefficient determination current, voltage, and temperature measurement operations in s513 will be described with reference to FIG. First, in s531, the application direction (charging direction or discharging direction) of the measurement current Imes applied in the next stage is determined. In s532, Imes in the direction determined in the previous step is applied. With application of Imes, terminal voltage, current, and storage battery temperature (or temperature around the storage battery) are measured in s533.
As Imes is applied, the terminal voltage of the storage battery changes almost asymptotically to a constant value (provided that the current value before Imes application (= Icond) and the current value of Imes are different). The measurement is terminated when the change amount becomes sufficiently small, when the ΔSOC conversion amount exceeds a certain value, or when a predetermined time Tmes elapses (s534). The above steps are sequentially applied with respect to a plurality of Imes, and are completed with the application with respect to all the Imes (s535). As for the value of Imes, for example, a value smaller than Icond, a value about Icond, and a value more than Icond are selected about three or more points. Further, in the loop including s532, if Imes is applied in the order of the value having the smallest absolute value to the value having the largest absolute value, the influence of the terminal voltage fluctuation due to the application of the immediately preceding Imes can be reduced.

次に図3のs507におけるSOC推定係数の構成例を示す。   Next, a configuration example of the SOC estimation coefficient in s507 of FIG. 3 is shown.

SOCをS[無次元,満充電:1,完全放電:0],蓄電池電圧をv[V],蓄電池電流をi[A]とすると、SOCと蓄電池電圧vとの関係は、(式1)で示される。   When SOC is S [dimensionless, full charge: 1, complete discharge: 0], battery voltage is v [V], and battery current is i [A], the relationship between SOC and battery voltage v is (Equation 1) Indicated by

Figure 2015165198
Figure 2015165198

ここで、(式1)における係数Cv1、Cv2、Cv3は、充電時、電流値iとの関係において下記(式2)で示される。 Here, the coefficients Cv1, Cv2, and Cv3 in (Expression 1) are expressed by the following (Expression 2) in relation to the current value i during charging.

Figure 2015165198
Figure 2015165198

(式1)は便宜上SOC、電流、温度(係数値に反映)から、電圧を求める形式となっているが、広く公知である二次方程式の解の公式を用い、Sを陽に求める形式に容易に変換できる。黄金分割等を用いる反復手法で数値的にSを求める方法を用いても良い。 (Equation 1) is a form to calculate voltage from SOC, current, temperature (reflected in coefficient value) for convenience, but using a widely known quadratic equation solution formula, S is positively calculated. Can be easily converted. You may use the method of calculating | requiring S numerically with the iterative method using a golden section etc.

ここで、(式1)における係数群Cxx, (式2)における係数群Cyyyyに関し、
・sign(Icond)=sign(Imes)かつsign(Imes)=-1の条件下の測定データにより導出された係数群を、順方向の充電係数(以降Ccf)、
・sign(Icond)=sign(Imes)かつsign(Imes)=1の条件下の測定データにより導出された係数群を、順方向の放電係数(以降Cdf)、
・sign(Icond)≠sign(Imes)かつsign(Imes)=-1の条件下の測定データにより導出された係数群を、逆方向の充電係数(以降Ccr)、
・sign(Icond)≠sign(Imes)かつsign(Imes)=1の条件下の測定データにより導出された係数群を、逆方向の放電係数(以降Cdr)、
と定義する。
Here, regarding the coefficient group Cxx in (Expression 1) and the coefficient group Cyyyy in (Expression 2),
A coefficient group derived from measurement data under the condition of sign (Icond) = sign (Imes) and sign (Imes) = − 1 is a forward charge coefficient (hereinafter Ccf),
-The coefficient group derived from the measurement data under the condition of sign (Icond) = sign (Imes) and sign (Imes) = 1, the forward discharge coefficient (hereinafter Cdf),
-The coefficient group derived from the measurement data under the condition of sign (Icond) ≠ sign (Imes) and sign (Imes) = -1, the charging coefficient in the reverse direction (hereinafter Ccr),
-The coefficient group derived from the measurement data under the condition of sign (Icond) ≠ sign (Imes) and sign (Imes) = 1, the discharge coefficient in the reverse direction (hereinafter Cdr),
It is defined as

加えて、Ccfを用い、算出したSOC値をS(Ccf)と表記する(他の係数群も同様)。   In addition, using Ccf, the calculated SOC value is expressed as S (Ccf) (the same applies to other coefficient groups).

ここで、図7にsign(Icond)=sign(Imes)の場合のSOC推移と印加電流の一例、及び図8にsign(Icond)≠sign(Imes)の場合のSOC推移と印加電流の一例を示すが、OCVより端子電圧の変動を加える電流印加を、係数の決定のための測定に先行して行う方式であれば、どの方式でも良く、図示の限りではない。   Here, FIG. 7 shows an example of SOC transition and applied current when sign (Icond) = sign (Imes), and FIG. 8 shows an example of SOC transition and applied current when sign (Icond) ≠ sign (Imes). As shown, any method may be used as long as the current application for applying the terminal voltage variation from the OCV is performed prior to the measurement for determining the coefficient, and is not limited to the illustration.

次に、SOC推定係数の作成段階ではなく、SOC推定係数を用いたSOC推定を実際に行なう際に、どの係数を充放電どの方向の電流に対して適用し、算出するかを、便宜的に下記の式を用いて示す。
Sl=Sc(Ccf)+Sd(Cdr) (式3)
上記(式3)の右辺第一項は、SOC推定の対象の蓄電池に対し、充電方向の電流が印加されている場合のSOC推定(Sc)において、係数群Ccfを適用し、同じく右辺第二項は放電方向のSOC推定(Sd)において、係数群Cdrを適用しSOCを算出することを擬似的に表現した。上記(式3)の左辺Slは、同演算結果が、低め(SOC Low)のSOC推定値となることが予め予想される推定結果であることを示している。
Next, when actually performing SOC estimation using the SOC estimation coefficient, not in the stage of creating the SOC estimation coefficient, it is convenient to determine which coefficient is applied to the charge / discharge direction and calculated. The following formula is used.
Sl = Sc (Ccf) + Sd (Cdr) (Formula 3)
The first term on the right side of the above (Equation 3) applies the coefficient group Ccf in the SOC estimation (Sc) when the current in the charging direction is applied to the storage battery subject to the SOC estimation, The term is a pseudo representation of calculating the SOC by applying the coefficient group Cdr in the SOC estimation (Sd) of the discharge direction. The left side Sl of the above (Equation 3) indicates that the calculation result is an estimation result that is predicted in advance to be a lower (SOC Low) SOC estimation value.

同じく、高め(SOC High)のSOC推定結果となることが予想される便宜的表現は下記(式4)である。
Sh=Sc(Ccr)+Sd(Cdf) (式4)
上記、(式3)及び(式4)の結果を用い、本実施例のSOC推定結果Soutは、下記(式5)で示される。
Sout=p*Sl+(1-p)*Sh (式5)
ここで、pはSlとShを内外分する係数で、例えば0.5を用いると、両者の中点がSOC推定結果となることを示している。上記pは、蓄電池の特性の他、実際に適用する風力サイトの特性に応じ、適宜調整する。
Similarly, a convenient expression that is expected to be a higher (SOC High) SOC estimation result is the following (formula 4).
Sh = Sc (Ccr) + Sd (Cdf) (Formula 4)
Using the results of (Equation 3) and (Equation 4) described above, the SOC estimation result Sout of this example is expressed by the following (Equation 5).
Sout = p * Sl + (1-p) * Sh (Formula 5)
Here, p is a coefficient that divides Sl and Sh inward and outward, and using 0.5, for example, indicates that the midpoint of both is the SOC estimation result. The above p is appropriately adjusted according to the characteristics of the wind power site actually applied in addition to the characteristics of the storage battery.

上記実施例に示したSOC推定係数の作成方法及びSOC推定方法は、SOC推定係数更新の場合のみならず、平準化用蓄電池システムの製造時に一度だけ実施する場合に適用しても良い。若しくは、新規に新しい種類もしくはリビジョンの蓄電池の導入時に一度だけ実施する場合に適用しても良い。   The SOC estimation coefficient creation method and the SOC estimation method shown in the above embodiment may be applied not only when the SOC estimation coefficient is updated, but also when it is performed only once when the leveling storage battery system is manufactured. Alternatively, the present invention may be applied to a case where a new storage battery of a new type or revision is introduced only once.

次に第二の実施例について説明する。   Next, a second embodiment will be described.

蓄電池の特性によっては、充電方向若しくは放電方向の少なくとも一方が、直前の電流状態による端子電圧の変動よりも小さい場合がある。その場合、先の(式3)(式4)の組み合わせである、
Sl=Sc(Ccf)+Sd(Cdr), Sh=Sc(Ccr)+Sd(Cdf)
に替えて、下記の組み合わせを用いることができる。
Depending on the characteristics of the storage battery, at least one of the charging direction and the discharging direction may be smaller than the terminal voltage fluctuation due to the immediately preceding current state. In that case, it is a combination of the previous (formula 3) (formula 4),
Sl = Sc (Ccf) + Sd (Cdr), Sh = Sc (Ccr) + Sd (Cdf)
Instead of, the following combinations can be used.

放電方向の端子電圧変動が小さい場合、下記(式6)或いは(式7)を用いる。
Sl=Sc(Ccf)+Sd(Cdf), Sh=Sc(Ccr)+Sd(Cdf) (式6)
Sl=Sc(Ccf)+Sd(Cdr), Sh=Sc(Ccr)+Sd(Cdr) (式7)
充電方向の端子電圧変動が小さい場合、下記(式8)或いは(式9)を用いる。
Sl=Sc(Ccf)+Sd(Cdr), Sh=Sc(Ccf)+Sd(Cdf) (式8)
Sl=Sc(Ccr)+Sd(Cdr), Sh=Sc(Ccr)+Sd(Cdf) (式9)
上記(式6)〜(式9)のどれかを用いると、SOC推定のための係数群決定のための測定回数を減らせるため、工数削減のほか風力サイトの稼働時間への影響を低減できる。若しくは同じ稼働時間であれば、係数の更新頻度を増やすことができる。
When the terminal voltage fluctuation in the discharge direction is small, the following (Equation 6) or (Equation 7) is used.
Sl = Sc (Ccf) + Sd (Cdf), Sh = Sc (Ccr) + Sd (Cdf) (Formula 6)
Sl = Sc (Ccf) + Sd (Cdr), Sh = Sc (Ccr) + Sd (Cdr) (Formula 7)
When the terminal voltage fluctuation in the charging direction is small, the following (Equation 8) or (Equation 9) is used.
Sl = Sc (Ccf) + Sd (Cdr), Sh = Sc (Ccf) + Sd (Cdf) (Formula 8)
Sl = Sc (Ccr) + Sd (Cdr), Sh = Sc (Ccr) + Sd (Cdf) (Formula 9)
Using any of (Equation 6) to (Equation 9) above can reduce the number of measurements to determine the coefficient group for SOC estimation, thus reducing man-hours and reducing the impact on wind turbine operating time . Or if it is the same operation time, the update frequency of a coefficient can be increased.

次に第三の実施例について説明する。   Next, a third embodiment will be described.

第一の実施例における(式5)の内外分係数pは固定値であった。ここでは、pを可変値とする。pの可変方法としては、時間的に先行する、ある期間の電流値の移動平均若しくは一時遅れ値に基づいた量を用い、適宜倍率の係数とオフセットを乗じる方法があり、良好な補正ができる。   The inner / outer division coefficient p in (Equation 5) in the first example was a fixed value. Here, p is a variable value. As a variable method of p, there is a method of using an amount based on a moving average or temporary delay value of a current value in a certain period, which is preceded in time, and appropriately multiplying by a coefficient of magnification and an offset, and good correction can be performed.

p=(電流一時遅れ値-オフセット)*倍率係数 (式10)
pの可変は、特に(式6)〜(式9)のように、非対称性からSOC推定の誤差が残りやすい形式に適用すると効果が高い。これらの処理を模式的に示したものが図9である。同図で直前の推定分極量の演算部は、前出のpを算出する。ShとSlの演算結果とpを用いた傾倒の具合から、SOCを算出する。図9の模式的回路では内分のみだが、そのまま外分にも拡張できる。
p = (temporary current delay value-offset) * magnification factor (Equation 10)
The variable of p is particularly effective when applied to a form in which an error in SOC estimation tends to remain due to asymmetry, as in (Expression 6) to (Expression 9). FIG. 9 schematically shows these processes. In the figure, the immediately preceding estimated polarization amount calculation unit calculates the above-mentioned p. The SOC is calculated from the calculation result of Sh and Sl and the degree of tilt using p. In the schematic circuit of FIG. 9, only the inner part is shown, but it can be extended to the outer part as it is.

前出の実施例では、ShとSlとの内外分の位置は、分極の量に直線的に比例する仮定を用いた。蓄電池の種類や充放電のパタンによっては、上記関係が非線形となることが考えられる。この場合、前出のShとSlのような分極量の大きな端点ではなく、予め分極の量を調整して係数を作成したS_1,S_2,…,S_nの複数の係数群による算出を用いても良い。同係数は、図11のt1,t2に示すようにIcondの電流印加時間を可変とすることで、分極量を調整し係数を作成したものである。SOCの推定時、係数決定のための分極量と最も類似する条件を、図10の直前の推定分極量算出手段により算出し、最も類似する係数に相当する重みWmを加重する。簡単な例としては、最も類似する係数群に相当する重みWm=1とし、他の重みを0とする。又は、総和が1となるよう規格化した重みを、類似度に応じた配分しても良い。S_1,S_2,…,S_nの複数の係数群を作成する際の、分極の量(Icondの電流印加時間に相当)の調整は、実際に当該SOC推定を行う風力サイトの風の特徴(風況)にあわせ、適宜調整しても良い。これは、風力発電の発電量の変動は、分極の量という一次元の値で記述するのには限界があるためである。一方、次元を増やすと、係数の更新等の維持管理の工数増に見合った精度向上が必ずしも見込めるとは限らない。逆に、蓄電池の劣化を含め、多くの要因が作用している状況下で、多くの係数を適正に保つ作業は実現性が低い。よって、対象の風力サイトの実際の発電電力のパタンの実績値の分析と、分極の量(Icondの電流印加時間に相当)の調整とで、一次元の重み付けに投影させる方式が、実用面で有用と考える。   In the previous embodiment, the assumption was made that the positions of the inner and outer portions of Sh and Sl are linearly proportional to the amount of polarization. Depending on the type of storage battery and the charge / discharge pattern, the above relationship may be nonlinear. In this case, the calculation using a plurality of coefficient groups of S_1, S_2,. good. The coefficient is created by adjusting the amount of polarization by changing the current application time of Icond as indicated by t1 and t2 in FIG. At the time of SOC estimation, the most similar condition to the polarization amount for determining the coefficient is calculated by the estimated polarization amount calculating means immediately before FIG. 10, and the weight Wm corresponding to the most similar coefficient is weighted. As a simple example, the weight Wm = 1 corresponding to the most similar coefficient group is set, and the other weights are set to 0. Alternatively, the weights normalized so that the sum is 1 may be distributed according to the degree of similarity. When creating multiple coefficient groups S_1, S_2, ..., S_n, the amount of polarization (corresponding to the current application time of Icond) is adjusted by the characteristics of the wind at the wind site that actually performs the SOC estimation (wind conditions) ) May be adjusted as appropriate. This is because fluctuations in the amount of power generated by wind power generation are limited in describing with a one-dimensional value of the amount of polarization. On the other hand, when the number of dimensions is increased, it is not always possible to expect an improvement in accuracy commensurate with an increase in maintenance man-hours such as coefficient updating. On the contrary, the work which maintains many coefficients appropriately under the situation where many factors including the deterioration of the storage battery are acting is not feasible. Therefore, a method of projecting to a one-dimensional weighting by analyzing the actual value of the actual generated power pattern of the target wind site and adjusting the amount of polarization (corresponding to the current application time of Icond) is practical. I think it is useful.

図12A及び図12Bは、Icond加印後の大きな分極量印加の直後に、逆方向の小さな分極量が印加された場合に相当するSOC推定係数を算出する場合の電流印加パタンの例である。同電流印加パタンでは、Icondの印加時間を極端に小さくして求めても良いが、効率が良くない上、別の特性を反映した推定係数ができる可能性がある。よって、今回図12(a)に示す印加パタンを用いることで、係数Cdrを前半のImesD1, ImesD2, ImesD3を用いて求めた直後に、前記、ImesC1, ImesC2, ImesC3を用い逆方向の小さな分極量が印加された場合の係数を求める。これらの係数を求める組み合わせは、図示しないものの、Icondの電流の方向とImesCn, ImesDnの前後関係で4通りある。この例のように、充電若しくは放電のある方向の電流が継続した後、短時間逆方向の電流となり、再びもとの方向の電流となるケースは、風力発電の出力変動抑制用途の蓄電池ではしばしばみられる充放電パタンである。例えば、放電が長時間継続した後、大振幅の充電が短時間生じるのは、風速が徐々に強まり、風車をカットオフすべき風速に短時間到達した後、再び発電可能な風速まで弱まった場合である。類似の目的で、図12Bに示すように、より短い期間の電流方向の反転を含むパタンでSOC推定係数を作成してもよい。   FIG. 12A and FIG. 12B are examples of current application patterns for calculating an SOC estimation coefficient corresponding to a case where a small amount of polarization in the reverse direction is applied immediately after application of a large amount of polarization after Icond application. The same current application pattern may be obtained by making the application time of Icond extremely small, but it is not efficient and there is a possibility that an estimation coefficient reflecting another characteristic may be formed. Therefore, by using the application pattern shown in FIG. The coefficient is obtained when is applied. Although not shown, there are four combinations for obtaining these coefficients depending on the current direction of Icond and the context of ImesCn and ImesDn. As shown in this example, a case where the current in the direction of charging or discharging continues and then becomes a current in the reverse direction for a short time and then becomes the current in the original direction again is often the case in storage batteries for wind power output fluctuation suppression applications. It is a charge / discharge pattern that can be seen. For example, after a discharge lasts for a long time, charging with large amplitude occurs for a short time when the wind speed gradually increases, reaches the wind speed at which the windmill should be cut off for a short time, and then weakens to the wind speed at which power can be generated again. It is. For a similar purpose, as shown in FIG. 12B, the SOC estimation coefficient may be created with a pattern including inversion of the current direction for a shorter period.

前出の図12Bの電流パタンを用いると、極短時間の電流変動に関する分極の影響を考慮したSOC推定係数が作成される。この場合、より長い時定数の電流変動による分極と、短い時定数の電流変動による分極が、重畳される図13に示すSOC推定モデルを適用しても良い。これは、蓄電池の特性を等価回路で記述する際に、一般に用いられるCR(コンデンサと抵抗)の並列回路を2直列に構成したものと類似の効果をもたらす。つまり相対的に大きな時定数での電流の変化による分極の影響(重みWLとする)と、相対的に小さな時定数での電流の変化による分極の影響(重みWsとする)とを重畳させることで、より精度の高いSOC推定値を得ることができる。同様に、2直列に限らず、3直列以上の多段構成に相当する時定数で各々係数を求めるとともに、同様に重み付けをしてSOCを推定しても良い。重みの算出は公知のカットオフ周波数を異にしたローパスフィルタや時定数を異にした一次遅れ値を数値演算的に算出することで容易に得ることができる。   Using the current pattern shown in FIG. 12B, an SOC estimation coefficient that takes into account the influence of polarization on current fluctuation in a very short time is created. In this case, the SOC estimation model shown in FIG. 13 in which polarization due to current fluctuation with a longer time constant and polarization due to current fluctuation with a short time constant are superimposed may be applied. This provides an effect similar to that in which two parallel circuits of CR (capacitor and resistor) that are generally used are configured in series when describing the characteristics of the storage battery with an equivalent circuit. In other words, the effect of polarization due to a change in current with a relatively large time constant (weighted WL) and the effect of polarization due to a change in current with a relatively small time constant (weighted Ws) are superimposed. Thus, a more accurate SOC estimation value can be obtained. Similarly, not only two series but also respective coefficients may be obtained with time constants corresponding to a multistage configuration of three or more series, and the SOC may be estimated by weighting similarly. The calculation of the weight can be easily obtained by numerically calculating a known low-pass filter having a different cutoff frequency or a first-order lag value having a different time constant.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためのものであり、必ずしも全ての構成を備えるものに限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, the above-described embodiments are for explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、上記の各構成、機能、処理部(算出部)、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。   Each of the above-described configurations, functions, processing units (calculation units), processing means, and the like may be realized in hardware by designing a part or all of them, for example, with an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。   Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

101…蓄電池、102…コンバータ、103…平準化制御部、104…SOC算出部、105…充放電制御部、106…SOC算出係数更新部、107…他の電流入出力可能機器、108…外部系統との連系点、109…母線、110…風力発電機、111…SOC算出係数更新要否判定部、112…SOC算出係数更新外部入力、s501〜s535…フローチャートのステップ。   101 ... Storage battery, 102 ... Converter, 103 ... Leveling control unit, 104 ... SOC calculation unit, 105 ... Charge / discharge control unit, 106 ... SOC calculation coefficient update unit, 107 ... Other current input / output devices, 108 ... External system 109 ... busbar, 110 ... wind power generator, 111 ... SOC calculation coefficient update necessity determination unit, 112 ... SOC calculation coefficient update external input, s501 to s535 ... steps of the flowchart.

Claims (5)

蓄電池の充電状態推定方法において、
蓄電池の電圧、充放電電流、温度の情報からある係数群を用いた演算式により充電状態を算出する手順と、前記係数群の作成若しくは更新に際し、係数群の作成のための蓄電池の電圧、電流、温度の計測時における充電若しくは放電の方向と、その計測に時間的に先行し充電状態を好ましい値に調整する際の充電若しくは放電の方向とを同一にするか異にするかの切り替えを行う手順と、前記手順を適用して得られた計測値から充電状態推定のための係数群を作成/更新する手順とを有することを特徴とする蓄電池の充電状態推定方法。
In the method for estimating the state of charge of a storage battery,
The procedure for calculating the state of charge by an arithmetic expression using a certain coefficient group from information on the voltage, charge / discharge current, and temperature of the storage battery, and the voltage and current of the storage battery for creating the coefficient group when creating or updating the coefficient group The direction of charging or discharging at the time of temperature measurement and the direction of charging or discharging at the time prior to the measurement and adjusting the charging state to a preferred value are switched between the same or different. A method for estimating a state of charge of a storage battery, comprising: a procedure; and a step of creating / updating a coefficient group for estimating a state of charge from a measurement value obtained by applying the procedure.
請求項1に記載の蓄電池の充電状態推定方法において、
充電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果と放電時の蓄電池に関し前記2つの電流の方向を異にして作成した係数群による演算結果との双方を用いて演算した第一の充電状態値と、
充電時の蓄電池に関し前記2つの電流の方向を異にして作成した係数群による演算結果と放電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果との双方を用いて演算した第二の充電状態値と、
を用いて充電状態を推定することを特徴とする蓄電池の充電状態推定方法。
The method for estimating the state of charge of a storage battery according to claim 1,
Using both the calculation result by the coefficient group created by making the two current directions the same for the storage battery at the time of charging and the calculation result by the coefficient group created by making the two current directions different by the battery at the time of the discharge The first state of charge value calculated by
Using both the calculation result by the coefficient group created with the two current directions different for the storage battery during charging and the calculation result by the coefficient group created by making the two current directions the same for the storage battery during discharge The second state of charge value calculated by
A method for estimating the state of charge of a storage battery, wherein the state of charge is estimated using a battery.
請求項1に記載の蓄電池の充電状態推定方法において、
充電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果と放電時の蓄電池に関し前記2つの電流の方向を異にして作成した係数群による演算結果との双方を用いて演算した第一の充電状態値と、
充電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果と放電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果の双方を用いて演算した第三の充電状態値と、
を用いて充電状態を推定することを特徴とする蓄電池の充電状態推定方法。
The method for estimating the state of charge of a storage battery according to claim 1,
Using both the calculation result by the coefficient group created by making the two current directions the same for the storage battery at the time of charging and the calculation result by the coefficient group created by making the two current directions different by the battery at the time of the discharge The first state of charge value calculated by
Using both the calculation result by the coefficient group created by making the two current directions the same with respect to the storage battery at the time of charging and the calculation result by the coefficient group created by making the two current directions the same with respect to the storage battery at the time of discharge The calculated third charge state value,
A method for estimating the state of charge of a storage battery, wherein the state of charge is estimated using a battery.
請求項1に記載の蓄電池の充電状態推定方法において、
充電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果と放電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果との双方を用いて演算した第三の充電状態値と、
充電時の蓄電池に関し前記2つの電流の方向を異にして作成した係数群による演算結果と放電時の蓄電池に関し前記2つの電流の方向を同一にして作成した係数群による演算結果との双方を用いて演算した第二の充電状態値と、
を用いて充電状態を推定することを特徴とする蓄電池の充電状態推定方法。
The method for estimating the state of charge of a storage battery according to claim 1,
Using both the calculation result of the coefficient group created with the same direction of the two currents for the storage battery during charging and the calculation result of the coefficient group created with the same direction of the two currents for the storage battery during discharge And the third state of charge value calculated by
Using both the calculation result by the coefficient group created with the two current directions different for the storage battery during charging and the calculation result by the coefficient group created by making the two current directions the same for the storage battery during discharge The second state of charge value calculated by
A method for estimating the state of charge of a storage battery, wherein the state of charge is estimated using a battery.
蓄電池の充電状態推定装置において、
蓄電池の電流、電圧、温度の計測部と、所定の条件成立時に前記係数群の更新の要否を判定する判定部と、判定部の指示により前記係数群の更新のための測定を制御する係数更新部と、前記係数更新部において係数算出に用いる計測値の取得に時間的に先行し開放電圧より高い端子電圧もしくは低い端子電圧となるよう充放電方向の切り替えを行う制御部と、前記制御部の切り替え方向の異なる条件下で作成した複数の係数群から複数の充電状態を算出し該複数の充電状態の推定値に対する演算を行いあらたな充電状態の推定値を算出する演算部とを備えたことを特徴とする蓄電池の充電状態推定装置。
In the storage battery charge state estimation device,
Storage battery current, voltage, temperature measurement unit, determination unit for determining whether or not the coefficient group needs to be updated when a predetermined condition is satisfied, and a coefficient for controlling measurement for updating the coefficient group according to an instruction from the determination unit An update unit, a control unit that switches the charge / discharge direction so as to obtain a terminal voltage that is higher or lower than the open-circuit voltage in time before acquisition of a measurement value used for coefficient calculation in the coefficient update unit, and the control unit A calculation unit that calculates a plurality of charge states from a plurality of coefficient groups created under different conditions of the switching direction and calculates the estimated values of the plurality of charge states, and calculates a new charge state estimate. An apparatus for estimating the state of charge of a storage battery.
JP2014040095A 2014-03-03 2014-03-03 Method and apparatus for estimating state of charge of storage battery Active JP6314543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040095A JP6314543B2 (en) 2014-03-03 2014-03-03 Method and apparatus for estimating state of charge of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040095A JP6314543B2 (en) 2014-03-03 2014-03-03 Method and apparatus for estimating state of charge of storage battery

Publications (2)

Publication Number Publication Date
JP2015165198A true JP2015165198A (en) 2015-09-17
JP6314543B2 JP6314543B2 (en) 2018-04-25

Family

ID=54187733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040095A Active JP6314543B2 (en) 2014-03-03 2014-03-03 Method and apparatus for estimating state of charge of storage battery

Country Status (1)

Country Link
JP (1) JP6314543B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656152A (en) * 2016-03-30 2016-06-08 上海铁路通信有限公司 Portable battery management device for reader-writer of responder
JP2017097795A (en) * 2015-11-27 2017-06-01 富士通株式会社 Calculation unit, program, information processing method
GB2551139A (en) * 2016-06-06 2017-12-13 Hyperdrive Innovation Ltd Methods and apparatus for monitoring electricity storage systems
CN110208706A (en) * 2019-06-13 2019-09-06 重庆长安新能源汽车科技有限公司 A kind of power battery health status online evaluation system and method based on car networking
CN114171811A (en) * 2021-11-30 2022-03-11 上海瑞浦青创新能源有限公司 Stepped charging method and charging device and application thereof
CN115566296A (en) * 2022-01-05 2023-01-03 荣耀终端有限公司 Battery power display method, electronic device, program product, and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188965A (en) * 2003-12-24 2005-07-14 Furukawa Electric Co Ltd:The Determining method of remaining capacity of secondary battery, and detecting method and device of remaining capacity of secondary battery mounted on vehicle using determined result
US20110031938A1 (en) * 2009-08-04 2011-02-10 Yosuke Ishikawa Method of Estimating Battery State of Charge
WO2013099401A1 (en) * 2011-12-27 2013-07-04 新神戸電機株式会社 Storage battery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188965A (en) * 2003-12-24 2005-07-14 Furukawa Electric Co Ltd:The Determining method of remaining capacity of secondary battery, and detecting method and device of remaining capacity of secondary battery mounted on vehicle using determined result
US20110031938A1 (en) * 2009-08-04 2011-02-10 Yosuke Ishikawa Method of Estimating Battery State of Charge
WO2013099401A1 (en) * 2011-12-27 2013-07-04 新神戸電機株式会社 Storage battery system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097795A (en) * 2015-11-27 2017-06-01 富士通株式会社 Calculation unit, program, information processing method
US10491491B2 (en) 2015-11-27 2019-11-26 Fujitsu Limited Calculation device, program, and information processing method
CN105656152A (en) * 2016-03-30 2016-06-08 上海铁路通信有限公司 Portable battery management device for reader-writer of responder
CN105656152B (en) * 2016-03-30 2018-03-02 上海铁路通信有限公司 A kind of portable transponder read write line cell managing device
GB2551139A (en) * 2016-06-06 2017-12-13 Hyperdrive Innovation Ltd Methods and apparatus for monitoring electricity storage systems
GB2551139B (en) * 2016-06-06 2020-08-12 Hyperdrive Innovation Ltd Methods and apparatus for monitoring electricity storage systems
CN110208706A (en) * 2019-06-13 2019-09-06 重庆长安新能源汽车科技有限公司 A kind of power battery health status online evaluation system and method based on car networking
CN114171811A (en) * 2021-11-30 2022-03-11 上海瑞浦青创新能源有限公司 Stepped charging method and charging device and application thereof
CN115566296A (en) * 2022-01-05 2023-01-03 荣耀终端有限公司 Battery power display method, electronic device, program product, and medium
CN115566296B (en) * 2022-01-05 2023-09-08 荣耀终端有限公司 Battery power display method, electronic device, program product and medium

Also Published As

Publication number Publication date
JP6314543B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314543B2 (en) Method and apparatus for estimating state of charge of storage battery
CN107690585B (en) Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery
CN107425548B (en) Interpolation H∞Dynamic state estimation method for extended Kalman filter generator
CN108028439B (en) Method and device for estimating the current no-load voltage profile of a battery pack
JP4630113B2 (en) Secondary battery deterioration state determination method and secondary battery deterioration state determination device
KR101021745B1 (en) System, method, and article of manufacture for determining an estimated battery cell module state
JP2015038444A (en) Secondary battery remaining capacity estimation method and secondary battery remaining capacity estimation apparatus
WO2015033503A1 (en) Estimation device and estimation method
JP6548387B2 (en) Method and apparatus for estimating state of charge of secondary battery
US9201119B2 (en) Battery fuel gauge
CN103852727A (en) Method and device for estimating power battery charge state on line
JP6213333B2 (en) Estimation program, estimation method, and estimation apparatus
JP2014025739A (en) Battery state estimation apparatus
JP6947937B2 (en) Battery state estimation device, battery control device
WO2016147722A1 (en) Estimating device, estimating method and program
JP2014119351A (en) Parameter estimation device, parameter estimation method, power storage system, and program
JP2010203885A (en) Device of estimating inputtable/outputtable power of secondary battery
JP4275696B2 (en) Sampling frequency control system and protective relay
JPWO2016084282A1 (en) Power adjustment apparatus, power distribution system, power adjustment method, and program
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
CN107508335B (en) Current limiting method and device of charging equipment
JP2019164148A (en) Secondary battery charge state estimation method and secondary battery charge state estimation device
KR20200056716A (en) Battery SOH output system and method
JP6067289B2 (en) Reduced model creation device, creation method and creation program for power system
US11035902B2 (en) Advanced fuel gauge

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151