JP2015164165A - semiconductor device - Google Patents

semiconductor device Download PDF

Info

Publication number
JP2015164165A
JP2015164165A JP2014084564A JP2014084564A JP2015164165A JP 2015164165 A JP2015164165 A JP 2015164165A JP 2014084564 A JP2014084564 A JP 2014084564A JP 2014084564 A JP2014084564 A JP 2014084564A JP 2015164165 A JP2015164165 A JP 2015164165A
Authority
JP
Japan
Prior art keywords
resin
bonding material
package
semiconductor device
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014084564A
Other languages
Japanese (ja)
Other versions
JP6349903B2 (en
Inventor
正人 西村
Masato Nishimura
正人 西村
田中 俊明
Toshiaki Tanaka
俊明 田中
偉夫 中子
Takeo Nakako
偉夫 中子
名取 美智子
Michiko Natori
美智子 名取
石川 大
Masaru Ishikawa
大 石川
松本 博
Hiroshi Matsumoto
博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014084564A priority Critical patent/JP6349903B2/en
Publication of JP2015164165A publication Critical patent/JP2015164165A/en
Application granted granted Critical
Publication of JP6349903B2 publication Critical patent/JP6349903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device that is highly reliable under a high-temperature environment.SOLUTION: A semiconductor device comprises: a semiconductor element; a lead frame joined to the semiconductor element; a joining material for joining the semiconductor element to the lead frame; and a cured sealing resin for sealing the semiconductor element, the joining material, and a part of the lead frame. The joining material contains a silver particle sintered body. The glass transformation temperature of the cured sealing resin is 195°C or more. The cured sealing resin has a coefficient of elasticity of 10 to 20 GPa at 50°C and a coefficient of linear expansion of 9×10to 24×10/°C in a glass region.

Description

本発明は、高温動作時にも高い信頼性を有する半導体装置に関する。   The present invention relates to a semiconductor device having high reliability even at high temperature operation.

近年、半導体パッケージ材料において、高温・高湿下での安定性や信頼性に優れた耐熱性が求められている。例えば、ハイブリッド自動車や電気自動車、電鉄、分散電源ではインバーターにパワー半導体が多く使われているが、パワー密度の向上が著しく、パッケージ材料は高温に晒される。また、カーエレクトロニクス分野で用いられる通常の半導体チップを使用するエレクトロニクスコントロールユニット(ECU)も、これまで車室内に搭載されていたが、より環境の厳しいエンジンルーム内へ搭載される方向にあり、より高い耐熱性が要求されている。さらに、シリコンカーバイド(SiC)半導体も適用され始め、200℃以上で高温動作させる用途も今後増えると予想される。   In recent years, semiconductor package materials are required to have heat resistance excellent in stability and reliability under high temperature and high humidity. For example, in hybrid vehicles, electric vehicles, electric railways, and distributed power supplies, power semiconductors are often used for inverters, but the power density is remarkably improved, and the package material is exposed to high temperatures. In addition, electronics control units (ECUs) that use ordinary semiconductor chips used in the car electronics field have also been installed in the vehicle compartment until now, but they are in the direction of being installed in more severe engine rooms. High heat resistance is required. Furthermore, silicon carbide (SiC) semiconductors are beginning to be applied, and it is expected that the number of uses for operating at 200 ° C. or higher will increase in the future.

このような使用条件下でもパワー半導体装置の信頼性が損なわれないことが重要である。特に、半導体チップからの放熱性や、チップ接合材の接続信頼性等の確保が重要である。このため、特許文献1に示すような、半導体チップやワイヤ等を含む基板全体をトランスファーモールド樹脂によって封止することにより、シリコン半導体チップの放熱性と接合材の熱疲労に対する信頼性を向上した半導体装置が提案されている。   It is important that the reliability of the power semiconductor device is not impaired even under such use conditions. In particular, it is important to ensure heat dissipation from the semiconductor chip, connection reliability of the chip bonding material, and the like. For this reason, the semiconductor which improved the heat dissipation of a silicon semiconductor chip and the reliability with respect to the thermal fatigue of a joining material by sealing the whole board | substrate containing a semiconductor chip, a wire, etc. with a transfer mold resin as shown in patent document 1 A device has been proposed.

特開2004−165281号公報JP 2004-165281 A

しかし、200℃以上では樹脂の分解等による劣化が進みやすいため、封止材(以下、「封止樹脂硬化物」という。)等の機械特性の劣化等が懸念されている。また、高温では接着力も低下しやすいため、半導体素子やリードフレーム等から封止樹脂硬化物が剥離することが懸念される。   However, since deterioration due to decomposition of the resin is likely to proceed at 200 ° C. or higher, there is a concern about deterioration of mechanical properties such as a sealing material (hereinafter referred to as “encapsulated resin cured product”). In addition, since the adhesive force tends to decrease at high temperatures, there is a concern that the encapsulated resin cured product may peel from the semiconductor element, the lead frame, or the like.

また、半導体素子の接合材としてはんだは広く使用されているが、はんだは溶融温度以下の温度でも、長時間高温に晒されることで金属間化合物の生成等によって劣化しやすい。そのため、200℃以上の高温環境下でのはんだの接続信頼性が懸念されている。   Moreover, solder is widely used as a bonding material for semiconductor elements, but solder is easily deteriorated due to the formation of intermetallic compounds or the like when exposed to a high temperature for a long time even at a temperature below the melting temperature. Therefore, there is a concern about solder connection reliability in a high temperature environment of 200 ° C. or higher.

そこで、本発明ではこれらの課題を解決し、高温環境下での信頼性の高い半導体装置を提供することを目的とした。   In view of the above, an object of the present invention is to solve these problems and provide a highly reliable semiconductor device in a high temperature environment.

本発明は以下のとおりである。
[1]半導体素子と、この半導体素子と接合されるリードフレームと、前記半導体素子とリードフレームとを接合する接合材と、前記半導体素子と接合材と一部のリードフレームとを封止する封止樹脂硬化物と、を有する半導体装置であって、前記接合材は銀粒子焼結体を含み、前記封止樹脂硬化物のガラス転移温度は200℃以上、50℃での弾性率は10〜20GPa、ガラス領域における線膨張係数は9×10−6〜24×10−6/℃である半導体装置。
[2]銀粒子焼結体を含む接合材の緻密度は50〜100%である、項1に記載の半導体装置。
[3]銀粒子焼結体を含む接合材の厚さは5〜50μmである、項1または2に記載の半導体装置。
[4]封止樹脂硬化物がエポキシ樹脂と無機フィラーとを含有する熱硬化性樹脂の硬化物である、項1〜3のいずれか一項に記載の半導体装置。
[5]封止樹脂硬化物がトランスファーモールド工程によって封止されてなる、項1〜4のいずれか一項に記載の半導体装置。
[6]プライマー樹脂をさらに含む半導体装置であって、半導体素子のリードフレームとの接合面とは反対側の表面にプライマー樹脂が形成されている項1〜5のいずれか一項に記載の半導体装置。
[7]プライマー樹脂のガラス転移温度が200℃以上である、項1〜6のいずれか一項に記載の半導体装置。
[8]プライマー樹脂の厚さが0.1〜20μmである、項1〜7のいずれか一項に記載の半導体装置。
[9]プライマー樹脂がポリアミド樹脂またはポリアミドイミド樹脂である、項1〜8のいずれか一項に記載の半導体装置。
[10]プライマー樹脂が熱可塑性樹脂である、項1〜9のいずれか一項に記載の半導体装置。
The present invention is as follows.
[1] A semiconductor element, a lead frame bonded to the semiconductor element, a bonding material for bonding the semiconductor element and the lead frame, and a seal for sealing the semiconductor element, the bonding material, and a part of the lead frame. A cured resin, wherein the bonding material includes a silver particle sintered body, and the glass transition temperature of the encapsulated resin cured product is 200 ° C. or higher, and the elastic modulus at 50 ° C. is 10 to 10. 20 GPa, a semiconductor device whose linear expansion coefficient in a glass region is 9 × 10 −6 to 24 × 10 −6 / ° C.
[2] The semiconductor device according to Item 1, wherein the density of the bonding material including the silver particle sintered body is 50 to 100%.
[3] The semiconductor device according to Item 1 or 2, wherein the thickness of the bonding material including the silver particle sintered body is 5 to 50 μm.
[4] The semiconductor device according to any one of Items 1 to 3, wherein the encapsulated resin cured product is a cured product of a thermosetting resin containing an epoxy resin and an inorganic filler.
[5] The semiconductor device according to any one of Items 1 to 4, wherein the cured sealing resin is sealed by a transfer molding process.
[6] The semiconductor device according to any one of Items 1 to 5, wherein the semiconductor device further includes a primer resin, and the primer resin is formed on a surface opposite to a bonding surface of the semiconductor element with the lead frame. apparatus.
[7] The semiconductor device according to any one of Items 1 to 6, wherein the primer resin has a glass transition temperature of 200 ° C. or higher.
[8] The semiconductor device according to any one of Items 1 to 7, wherein the primer resin has a thickness of 0.1 to 20 μm.
[9] The semiconductor device according to any one of Items 1 to 8, wherein the primer resin is a polyamide resin or a polyamideimide resin.
[10] The semiconductor device according to any one of Items 1 to 9, wherein the primer resin is a thermoplastic resin.

本発明によれば、高温環境下での信頼性に優れた半導体装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device excellent in the reliability in a high temperature environment can be provided.

本発明にかかるSi p/nダイオードパッケージの断面模式図である。It is a cross-sectional schematic diagram of the Si p / n diode package according to the present invention. 本発明にかかるSi TEGパッケージの断面模式図である。It is a cross-sectional schematic diagram of the Si TEG package according to the present invention.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
また本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
さらに本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
In the present specification, “to” indicates a range including the numerical values described before and after the values as a minimum value and a maximum value, respectively.
Furthermore, in this specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.

以下、本発明の実施形態の例を説明する。   Hereinafter, examples of embodiments of the present invention will be described.

本実施の形態において、リードフレームの一部であるヒートブロックおよびアウターリードは、Cu等の金属で構成されている。ヒートブロックおよびアウターリードは、酸化防止や接合材との接着力を向上させるために、NiやAg等のめっきが施されていてもよい。また、ヒートブロックやアウターリードの一部にめっきが施されていてもよく、例えば、全面にNiめっきが施されているが、接合部分のみAgめっきが施されていてもよい。本発明での半導体素子とリードフレームとの接合は、銀粒子の焼結現象を利用しているため、ヒートブロックの接合部分にはAgめっきが施されているほうが、NiめっきやCuの場合よりも接合材の接着力は向上できる。また、ヒートブロックおよびアウターリードの一部は封止されるため、封止樹脂硬化物との接着力向上を目的に、めっきの種類を選択してもよい。   In the present embodiment, the heat block and the outer lead that are part of the lead frame are made of a metal such as Cu. The heat block and the outer lead may be plated with Ni, Ag, or the like in order to prevent oxidation and improve the adhesive force with the bonding material. Further, a part of the heat block or the outer lead may be plated, for example, Ni plating is performed on the entire surface, but Ag plating may be performed only on the joining portion. Since the joining of the semiconductor element and the lead frame in the present invention utilizes the sintering phenomenon of silver particles, it is better to apply the Ag plating to the joining portion of the heat block than to the case of Ni plating or Cu. However, the adhesive strength of the bonding material can be improved. Moreover, since a part of heat block and an outer lead are sealed, you may select the kind of plating for the purpose of the adhesive force improvement with sealing resin hardened | cured material.

半導体素子はリードフレームの一部であるヒートブロックに接合される。本発明の接合材には、銀粒子接着剤組成物の焼結現象を利用して生成する銀粒子焼結体を含む焼結銀接合材(以下、単に「接合材」ということがある。)を用いる。通常、はんだによって接合されるが、はんだよりも高い耐熱性を有する焼結銀接合材を用いることで、半導体素子が高温で動作する場合、あるいは半導体装置が高温に晒される環境においても、高い接続信頼性が得られる。さらに、焼結銀接合材は、主に銀から構成されるために、はんだよりも熱伝導率が高く、電気伝導率も高い。その結果、焼結銀接合材によって半導体素子を接合した半導体装置は、同じ電流を通電した場合では、はんだ接合した半導体装置よりも、半導体素子の熱を放熱しやすくなり、かつ順方向電圧が低下する。その結果、放熱性が高く、かつチップ周辺のジュール熱発生量が低下するために、半導体素子の到達する最大ジャンクション温度(Tjmax)が低くなる。 The semiconductor element is bonded to a heat block that is a part of the lead frame. The bonding material of the present invention includes a sintered silver bonding material including a silver particle sintered body produced by utilizing the sintering phenomenon of the silver particle adhesive composition (hereinafter sometimes simply referred to as “bonding material”). Is used. Usually bonded by solder, but by using a sintered silver bonding material with higher heat resistance than solder, high connection even when the semiconductor element operates at high temperature or the environment where the semiconductor device is exposed to high temperature Reliability is obtained. Furthermore, since the sintered silver bonding material is mainly composed of silver, it has higher thermal conductivity and higher electrical conductivity than solder. As a result, a semiconductor device in which semiconductor elements are bonded with a sintered silver bonding material is easier to dissipate the heat of the semiconductor element than a solder-bonded semiconductor device when the same current is applied, and the forward voltage is reduced. To do. As a result, heat dissipation is high and the amount of Joule heat generated around the chip is reduced, so that the maximum junction temperature (T jmax ) reached by the semiconductor element is lowered.

ヒートブロック上への銀粒子接着剤組成物層の形成方法は、スクリーン印刷のような通常の印刷方法で形成してもよく、スプレーのような塗布方法で形成してもよく、予め溶媒を乾燥させた銀粒子の凝集体を設置してもよい。この銀粒子接着剤組成物層に半導体素子を設置し、加圧状態あるいは無加圧状態にて加熱することで銀粒子接着剤組成物を焼結させ、銀粒子焼結体を含む焼結銀接合材を得ることができる。   The method for forming the silver particle adhesive composition layer on the heat block may be formed by a normal printing method such as screen printing, or may be formed by a coating method such as spraying, and the solvent is dried in advance. Aggregated silver particles may be provided. Sintered silver containing a silver particle sintered body by placing a semiconductor element on this silver particle adhesive composition layer and sintering the silver particle adhesive composition by heating in a pressurized or non-pressurized state. A bonding material can be obtained.

本発明では、一例として加圧状態にて加熱した焼結銀接合材について記載しているが、加圧条件は0.1〜30MPaの範囲および温度条件は150〜300℃の範囲によって焼結銀接合材を得ることができる。さらに、加圧の圧力が高いほど、加熱温度が高いほど、焼結銀の緻密度が向上し、すなわち接合材中の残留空孔の総体積が減少する。得られた焼結銀接合材の緻密度は50〜100%の範囲が好ましく、60〜99%の範囲がより好ましく、65〜99%の範囲がさらに好ましく、70〜98%の範囲が特に好ましい。この範囲よりも焼結銀接合材の緻密度が低い場合には、焼結銀接合材の機械的強度が低くなりすぎ、接続信頼性が低下すると考えられる。また、この範囲よりも焼結銀接合材の緻密度が高い場合には、接合にさらに高温や高圧力が必要となり、半導体素子の劣化や機械的ダメージが懸念される。   In the present invention, a sintered silver bonding material heated in a pressurized state is described as an example, but the pressure condition is in the range of 0.1 to 30 MPa and the temperature condition is in the range of 150 to 300 ° C. A bonding material can be obtained. Furthermore, the higher the pressurization pressure and the higher the heating temperature, the higher the density of the sintered silver, that is, the total volume of residual voids in the bonding material decreases. The density of the obtained sintered silver bonding material is preferably in the range of 50 to 100%, more preferably in the range of 60 to 99%, further preferably in the range of 65 to 99%, and particularly preferably in the range of 70 to 98%. . When the density of the sintered silver bonding material is lower than this range, it is considered that the mechanical strength of the sintered silver bonding material becomes too low and the connection reliability is lowered. Further, when the density of the sintered silver bonding material is higher than this range, higher temperature and higher pressure are required for bonding, and there is a concern about deterioration of the semiconductor element and mechanical damage.

焼結銀接合材の緻密度は、接合材の断面観察によって評価することができる。まず、パッケージを切断し、その断面を鏡面研磨する。さらに、FIB(Focused Ion Beam、株式会社日立製作所製FB−2000A)装置やCP(Cross Section Polisher)装置、イオンミリング装置によって断面加工することが望ましい。これらの加工によって、平滑で加工歪やだれの無い断面を得ることができる。その後、SEM(Scanning Electron Microscope)やSIM(Scanning Ion Microscope)によって、接合材の断面を観察することで、焼結過程で接合材中に残存した空隙(残留空孔)の分布を観察することができる。SEMやSIMによって観察した画像において、画像処理ソフトによって残留空孔を黒く塗りつぶし、焼結銀部分を白く塗りつぶし、画像を2値化した。2値化した接合材部分に対する白い部分(焼結銀部分)の面積比率を焼結銀の緻密度として評価した。   The density of the sintered silver bonding material can be evaluated by observing a cross section of the bonding material. First, the package is cut and the cross section is mirror-polished. Furthermore, it is desirable to perform cross-section processing using an FIB (Focused Ion Beam, FB-2000A manufactured by Hitachi, Ltd.) apparatus, a CP (Cross Section Polisher) apparatus, or an ion milling apparatus. By these processes, it is possible to obtain a smooth and cross-section free from processing distortion and sagging. Thereafter, by observing the cross section of the bonding material by SEM (Scanning Electron Microscope) or SIM (Scanning Ion Microscope), it is possible to observe the distribution of voids (residual voids) remaining in the bonding material during the sintering process. it can. In the image observed by SEM or SIM, residual voids were painted black with image processing software, the sintered silver portion was painted white, and the image was binarized. The area ratio of the white part (sintered silver part) to the binarized bonding material part was evaluated as the density of the sintered silver.

焼結銀接合材の厚さは5〜50μmの範囲が好ましく、8〜50μmの範囲がより好ましく、10〜40μm以下の範囲がさらに好ましく、15〜40μmの範囲が特に好ましい。この範囲よりも焼結銀接合材が薄い場合には、焼結銀接合材の応力や塑性ひずみが大きくなりやすく、焼結銀接合材が劣化しやすくなる。また、この範囲よりも厚い焼結銀接合材を得るには、印刷等では厚い銀粒子接着剤組成物層の形成が困難となる。そのため、この範囲よりも焼結銀接合材が厚い場合は、銀粒子接着剤組成物層の形成方法に制約が生じるために好ましくない。   The thickness of the sintered silver bonding material is preferably in the range of 5 to 50 μm, more preferably in the range of 8 to 50 μm, further preferably in the range of 10 to 40 μm or less, and particularly preferably in the range of 15 to 40 μm. When the sintered silver bonding material is thinner than this range, the stress and plastic strain of the sintered silver bonding material tend to increase, and the sintered silver bonding material tends to deteriorate. Moreover, in order to obtain a sintered silver bonding material thicker than this range, it becomes difficult to form a thick silver particle adhesive composition layer by printing or the like. Therefore, when the sintered silver bonding material is thicker than this range, the method for forming the silver particle adhesive composition layer is restricted, which is not preferable.

半導体素子のヒートブロック(リードフレームの一部)との接合面とは反対側の面には、ワイヤボンディングやリボンボンディング等によって配線材が接続される。あるいはアウターリードをはんだ等の接合材によって接続してもよい。ワイヤやリボンはAlやCu等の金属が通常用いられるが、半導体素子に損傷を与えずに配線材を接続させる方法であれば、特に限定されない。   A wiring material is connected to the surface of the semiconductor element opposite to the bonding surface with the heat block (a part of the lead frame) by wire bonding or ribbon bonding. Alternatively, the outer leads may be connected by a bonding material such as solder. A metal such as Al or Cu is usually used for the wire and ribbon, but it is not particularly limited as long as it is a method of connecting a wiring material without damaging the semiconductor element.

半導体素子と焼結銀接合材、配線材、ヒートブロックの一部とアウターリードの一部は封止樹脂硬化物によって封止される。半導体素子はSiの場合が多く、その線膨張係数は約3×10−6/℃と小さい。一方、リードフレームや配線材はCuやAlの場合が多く、線膨張係数はそれぞれCuが17×10−6/℃、Alが24×10−6/℃と大きい。これら線膨張係数の差によって生じる熱応力によって、接合材の劣化や配線材接続部の劣化、半導体素子の劣化が発生する。封止樹脂硬化物は、配線材やヒートブロック等の線膨張係数の大きな材料の熱変形を抑制し、さらに半導体素子のように線膨張係数の小さな材料を熱変形しやすくする効果がある。その結果、線膨張係数によって生じる熱応力が低減し、接合材や配線材接続部、半導体素子の劣化が抑制されるため、半導体装置の信頼性を向上させることができる。 The semiconductor element, the sintered silver bonding material, the wiring material, a part of the heat block, and a part of the outer lead are sealed with a cured sealing resin. The semiconductor element is often Si, and its linear expansion coefficient is as small as about 3 × 10 −6 / ° C. On the other hand, lead frames and wiring materials are often Cu and Al, and the coefficient of linear expansion is as large as 17 × 10 −6 / ° C. for Cu and 24 × 10 −6 / ° C. for Al. Due to the thermal stress generated by the difference between these linear expansion coefficients, the deterioration of the bonding material, the wiring material connecting portion, and the semiconductor element occur. The encapsulated resin cured product has an effect of suppressing thermal deformation of a material having a large linear expansion coefficient such as a wiring material or a heat block, and further facilitating thermal deformation of a material having a small linear expansion coefficient such as a semiconductor element. As a result, the thermal stress caused by the linear expansion coefficient is reduced, and deterioration of the bonding material, the wiring material connecting portion, and the semiconductor element is suppressed, so that the reliability of the semiconductor device can be improved.

本発明の接合材である焼結銀接合材を用いた場合、半導体装置の高温信頼性を向上できる封止樹脂硬化物の弾性率(「E」ということがある。)および線膨張係数(「CTE」ということがある。)の範囲を見出した。50℃での弾性率は10〜20GPaの範囲が好ましく、10〜19GPaの範囲がより好ましく、11〜18GPaの範囲がさらに好ましく、12〜17GPaの範囲が特に好ましい。この範囲よりも低い弾性率では封止樹脂硬化物以外の部材の熱変形を抑制するには不十分であり、この範囲よりも高い弾性率では接合材への応力が高まりすぎるため、接合材の劣化を進行しやすくすると考えられる。   When the sintered silver bonding material which is the bonding material of the present invention is used, the elastic modulus (sometimes referred to as “E”) and linear expansion coefficient (“may be referred to as“ E ”) that can improve the high temperature reliability of the semiconductor device. CTE ”))). The elastic modulus at 50 ° C. is preferably in the range of 10 to 20 GPa, more preferably in the range of 10 to 19 GPa, further preferably in the range of 11 to 18 GPa, and particularly preferably in the range of 12 to 17 GPa. If the elastic modulus is lower than this range, it is insufficient to suppress the thermal deformation of the members other than the cured cured resin. If the elastic modulus is higher than this range, the stress on the bonding material is too high. It is thought that deterioration is likely to proceed.

封止樹脂硬化物のガラス転移温度以下、即ちガラス領域での線膨張係数は9×10−6〜24×10−6/℃以下の範囲が好ましく、9×10−6〜22×10−6/℃の範囲がより好ましく、10×10−6〜20×10−6/℃の範囲がさらに好ましく、11×10−6〜18×10−6/℃の範囲が特に好ましい。この範囲よりも低い線膨張係数ではリードフレームやワイヤ等の金属材料の線膨張係数と封止樹脂硬化物の線膨張係数の差が大きくなりすぎ、例えばワイヤ接続部の劣化が進行しやすくなる。また、この範囲よりも大きい線膨張係数では半導体素子と封止樹脂硬化物の線膨張係数の差が大きくなり過ぎ、半導体素子あるいは接合材の劣化が進行しやすくなり、半導体装置の信頼性を低下させる傾向がある。 The glass transition temperature or lower of the cured resin resin, that is, the linear expansion coefficient in the glass region is preferably in the range of 9 × 10 −6 to 24 × 10 −6 / ° C., and 9 × 10 −6 to 22 × 10 −6. The range of 10 ° C./° C. is more preferable, the range of 10 × 10 −6 to 20 × 10 −6 / ° C. is more preferable, and the range of 11 × 10 −6 to 18 × 10 −6 / ° C. is particularly preferable. If the linear expansion coefficient is lower than this range, the difference between the linear expansion coefficient of the metal material such as the lead frame and the wire and the linear expansion coefficient of the cured resin product becomes too large, and for example, deterioration of the wire connection portion easily proceeds. Also, if the linear expansion coefficient is larger than this range, the difference between the linear expansion coefficient of the semiconductor element and the cured resin resin becomes too large, and the deterioration of the semiconductor element or the bonding material is likely to progress, thereby reducing the reliability of the semiconductor device. There is a tendency to make it.

封止樹脂硬化物のガラス転移温度(「Tg」ということがある。)は、195℃以上が好ましく、200℃以上がより好ましく、205℃以上がさらに好ましく、210℃以上が特に好ましい。この範囲よりも低いガラス転移温度では、200℃を超える温度環境において、弾性率の低下や線膨張係数の増加が発生し、前述の好ましい範囲からずれる傾向があり、好ましくない。   The glass transition temperature (sometimes referred to as “Tg”) of the encapsulated resin cured product is preferably 195 ° C. or higher, more preferably 200 ° C. or higher, further preferably 205 ° C. or higher, and particularly preferably 210 ° C. or higher. A glass transition temperature lower than this range is not preferable because a decrease in elastic modulus or an increase in linear expansion coefficient occurs in a temperature environment exceeding 200 ° C., which tends to deviate from the above-mentioned preferable range.

封止樹脂硬化物は、エポキシ樹脂と無機フィラーとを含有する熱硬化性樹脂(封止樹脂)の硬化物であるものを用いることができる。   The encapsulated resin cured product may be a cured product of a thermosetting resin (encapsulating resin) containing an epoxy resin and an inorganic filler.

封止樹脂に用いるエポキシ樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、ジヒドロキシベンゼンノボラック型、フェノールアラルキル型、ビフェニル型、ジシクロペンタジエン型、グリシジルエステル型、グリシジルアミン型、ヒダントイン型、イソシアヌレート型、トリスフェノールメタン型のエポキシ樹脂が挙げられる。これらのエポキシ樹脂は、単独で用いても2種以上を組み合わせて用いることができる。   Examples of the epoxy resin used for the sealing resin include bisphenol A type, bisphenol F type, bisphenol S type, naphthalene type, phenol novolak type, cresol novolak type, dihydroxybenzene novolak type, phenol aralkyl type, biphenyl type, dicyclopentadiene. Type, glycidyl ester type, glycidyl amine type, hydantoin type, isocyanurate type, and trisphenol methane type epoxy resin. These epoxy resins can be used alone or in combination of two or more.

封止樹脂に用いる無機フィラーとしては、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の微粉未、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛などを用いることができる。無機フィラーの含有量は、エポキシ樹脂組成物全体の50〜95重量%の範囲に設定することが好ましい。50重量%未満では、望ましい物性を得ることが困難となる傾向がみられ、95重量%を超えると、流動性が低下し、成形性が低下する傾向がみられる。   Examples of the inorganic filler used for the sealing resin include fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steer. Fine powder such as tight, spinel, mullite, titania, talc, clay, mica, etc., aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as magnesium hydroxide and zinc composite hydroxide, zinc borate, zinc molybdate etc. Can be used. The content of the inorganic filler is preferably set in the range of 50 to 95% by weight of the entire epoxy resin composition. If it is less than 50% by weight, it tends to be difficult to obtain desirable physical properties, and if it exceeds 95% by weight, the fluidity tends to decrease and the moldability tends to decrease.

封止樹脂には、エポキシ樹脂と無機フィラーに加えて、硬化剤、硬化促進剤、難燃剤、離型剤や密着性付与剤等を必要に応じて加えてもよい。   In addition to the epoxy resin and the inorganic filler, a curing agent, a curing accelerator, a flame retardant, a release agent, an adhesion imparting agent, and the like may be added to the sealing resin as necessary.

封止樹脂に用いる硬化剤は、上記エポキシ樹脂の硬化剤としての作用を奏するものであり、特に限定するものではなく1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般や酸無水物等などがある。例えば、フェノール、クレゾール、レゾルシノール、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;フェノール類及び/又はナフトール類と、ジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルとから合成されるフェノールアラルキル樹脂、ビフェニレン型フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;フェノール類及び/又はナフトール類と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノールノボラック樹脂、ジシクロペンタジエン型ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂;トリフェニルメタン型フェノール樹脂;テルペン変性フェノール樹脂;パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;シクロペンタジエン変性フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂、ナフタレンジオールアラルキル樹脂等を用いることができる。   The curing agent used for the sealing resin has an effect as a curing agent for the epoxy resin, and is not particularly limited. Monomers, oligomers, polymers in general having two or more phenolic hydroxyl groups in one molecule, There are acid anhydrides. For example, phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene, and formaldehyde, benzaldehyde, salicylaldehyde Novolak-type phenolic resin obtained by condensation or cocondensation with a compound having an aldehyde group such as an acid catalyst; synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Aralkyl type phenol resins such as phenol aralkyl resins, biphenylene type phenol aralkyl resins, naphthol aralkyl resins; phenols and / or naphthols and dicyclo Dicyclopentadiene-type phenolic resins such as dicyclopentadiene-type phenol novolak resins and dicyclopentadiene-type naphthol novolak resins synthesized by copolymerization with pentadiene; triphenylmethane-type phenol resins; terpene-modified phenol resins; paraxylylene and / or metaxylylene Modified phenol resins; melamine modified phenol resins; cyclopentadiene modified phenol resins; phenol resins obtained by copolymerizing two or more of these, naphthalenediol aralkyl resins, and the like can be used.

封止樹脂に用いる硬化剤促進剤としては、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、1,5−ジアザビシクロ[4.3.0]ノネン−5、5,6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類及びこれらの誘導体;2−メチルイミダゾール、2−フェニルイミダゾール、2―フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類及びこれらの誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−ブチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体;などが挙げられる。これらの1種を単独で用いても2種以上組合せて用いることができる。   As the curing agent accelerator used for the sealing resin, 1,8-diazabicyclo [5.4.0] undecene-7, 1,5-diazabicyclo [4.3.0] nonene-5, 5,6-dibutylamino Cycloamidine compounds such as -1,8-diazabicyclo [5.4.0] undecene-7 and these compounds include maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2, Quinone compounds such as 3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1,4-benzoquinone A compound having intramolecular polarization formed by adding a compound having a π bond such as diazophenylmethane or phenol resin; benzyldimethylamine, trie Tertiary amines such as noramine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and derivatives thereof; 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, etc. Imidazoles and derivatives thereof; organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, tris (4-butylphenyl) phosphine, diphenylphosphine, phenylphosphine and the like, and phosphines thereof Phosphorus compounds having intramolecular polarization formed by adding a compound having a π bond, such as maleic anhydride, the above quinone compound, diazophenylmethane, phenol resin, etc .; tetraphenylphospho Um tetraphenylborate, triphenyl phosphine tetraphenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate, tetraphenyl boron salts and derivatives thereof such as N- methylmorpholine tetraphenylborate; and the like. Even if these 1 type is used independently, it can be used in combination of 2 or more types.

封止樹脂に用いる各種添加剤としては、例えば、難燃剤、離型剤、密着性付与剤等があげられる。   Examples of various additives used for the sealing resin include flame retardants, mold release agents, and adhesion imparting agents.

封止樹脂に用いる難燃剤としては、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機若しくは無機の化合物、金属水酸化物が挙げられる。これらは1種を単独で用いても2種以上を組み合わせて用いることができる。   Examples of the flame retardant used for the sealing resin include known organic or inorganic compounds and metal hydroxides containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom. These may be used alone or in combination of two or more.

封止樹脂に用いる離型剤としては、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスが挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いることができる。   Examples of the mold release agent used for the sealing resin include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene. Even if these 1 type is used independently, 2 or more types can be used in combination.

封止樹脂に用いる密着性付与剤としては、特に限定するものではなく各種シランカップリング剤を用いることができ、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤をこれらは単独でもしくは2種以上併せて用いることができる。   The adhesion-imparting agent used in the sealing resin is not particularly limited, and various silane coupling agents can be used. Various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane. Well-known coupling agents such as titanium compounds, aluminum chelates, and aluminum / zirconium compounds can be used alone or in combination of two or more.

封止樹脂硬化物の形成方法としては、封止樹脂をトランスファーモールド工程によって封止する方法を用いることができる。   As a method for forming the cured sealing resin, a method of sealing the sealing resin by a transfer molding process can be used.

本発明の封止樹脂硬化物用のプライマー樹脂を、半導体素子や接合材、配線材、ヒートブロックの一部、アウターリードの一部に形成することで、封止樹脂硬化物との接着力を向上させることができる。封止樹脂硬化物と半導体素子の接着を維持することで、半導体素子の熱変形を増加させる効果が持続し、半導体素子や接合材の劣化が抑制され、半導体装置の信頼性を向上できる。また、封止樹脂硬化物とヒートブロックの接着を維持することで、ヒートブロックの熱変形を封止樹脂硬化物によって拘束する効果が持続し、半導体素子や接合材の劣化が抑制され、半導体装置の信頼性を向上できる。封止樹脂硬化物と配線材の接着を維持することで、配線材の熱変形を抑制させる効果が持続し、配線材の半導体素子への接続部の劣化を抑制することができる。   By forming the primer resin for a cured cured resin of the present invention on a semiconductor element, a bonding material, a wiring material, a part of a heat block, and a part of an outer lead, the adhesive force with the cured cured resin can be increased. Can be improved. By maintaining adhesion between the cured sealing resin and the semiconductor element, the effect of increasing the thermal deformation of the semiconductor element is maintained, deterioration of the semiconductor element and the bonding material is suppressed, and the reliability of the semiconductor device can be improved. Further, by maintaining the adhesion between the cured resin resin and the heat block, the effect of restraining the heat deformation of the heat block by the cured resin resin is maintained, and the deterioration of the semiconductor element and the bonding material is suppressed. Can improve the reliability. By maintaining the adhesion between the cured sealing resin and the wiring material, the effect of suppressing the thermal deformation of the wiring material can be maintained, and deterioration of the connection portion of the wiring material to the semiconductor element can be suppressed.

封止樹脂硬化物用のプライマー樹脂の形成は、スクリーン印刷やディスペンス塗布、刷毛塗り等の公知の塗布方法を用いることができる。溶媒を乾燥させた後の厚さは0.1〜20μmが好ましく、0.2〜15μmがより好ましく、0.3〜10μmがさらに好ましく、0.5〜7μm以下が特に好ましい。この範囲よりも薄い場合では接着力が低下しやすくなり、封止樹脂硬化物と半導体素子その他の部材との接着を維持する効果を低下させやすいために好ましくない。この範囲よりも厚い場合では溶媒が乾燥されにくくなり、形成されたプライマー樹脂層に溶媒が残存しやすくなり、信頼性試験における封止樹脂硬化物の接着信頼性を低下させやすいために好ましくない。   Formation of the primer resin for the encapsulated resin cured product can be performed by a known coating method such as screen printing, dispensing coating, brush coating, or the like. The thickness after drying the solvent is preferably from 0.1 to 20 μm, more preferably from 0.2 to 15 μm, still more preferably from 0.3 to 10 μm, particularly preferably from 0.5 to 7 μm. If it is thinner than this range, the adhesive force tends to decrease, which is not preferable because the effect of maintaining the adhesion between the encapsulated resin cured product and the semiconductor element and other members tends to decrease. When the thickness is larger than this range, the solvent is difficult to dry, and the solvent is likely to remain in the formed primer resin layer, which is not preferable because the adhesion reliability of the cured sealing resin in the reliability test is likely to be lowered.

封止樹脂硬化物用プライマー樹脂のガラス転移温度は、200℃以上が好ましく、210℃以上がより好ましく、220℃以上がさらに好ましく、230℃以上が特に好ましい。この範囲よりも低いガラス転移温度では、200℃を超える温度環境において、接着力が低下しやすくなり、封止樹脂硬化物と半導体素子その他の部材との接着を維持する効果を低下させやすい。   The glass transition temperature of the primer resin for cured sealing resin is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, further preferably 220 ° C. or higher, and particularly preferably 230 ° C. or higher. If the glass transition temperature is lower than this range, the adhesive force tends to be lowered in a temperature environment exceeding 200 ° C., and the effect of maintaining the adhesion between the cured resin product and the semiconductor element and other members tends to be lowered.

200℃以上のガラス転移温度を有するプライマー樹脂として、ポリイミド樹脂やポリアミドイミド樹脂、ポリアミド樹脂、あるいはそれらの変性物等が挙げられる。半導体素子の表面保護材や層間絶縁膜に用いられているポリイミド樹脂やポリアミドイミド樹脂、ポリアミド樹脂、あるいはそれらの変性物等は本発明の封止樹脂硬化物用プライマー樹脂として好適に用いることができる。しかし、ポリイミド樹脂では、半導体素子等の上に適切な厚みで形成した後にイミド化する必要がある。その結果、300℃以上の高温でポリイミド樹脂を硬化させるため、半導体素子や接合材の熱劣化やヒートブロック等の酸化等の問題が発生しやすい。そのため、300℃以下で硬化できるポリアミド樹脂やポリアミドイミド樹脂がプライマー樹脂としてより好ましく用いることができる。さらに、熱可塑性のポリアミド樹脂やポリアミドイミド樹脂を用いることで、高温での硬化工程が不要となり、200℃以下の溶媒乾燥の工程のみでプライマー樹脂を形成することができる。そのような熱可塑性のプライマー樹脂として日立化成株式会社製HIMAL(「HIMAL」は登録商標)が挙げられ、好適に用いることができる。   Examples of the primer resin having a glass transition temperature of 200 ° C. or higher include polyimide resins, polyamideimide resins, polyamide resins, and modified products thereof. A polyimide resin, polyamideimide resin, polyamide resin, or a modified product thereof used for a surface protective material or an interlayer insulating film of a semiconductor element can be suitably used as a primer resin for a cured cured resin of the present invention. . However, polyimide resin needs to be imidized after being formed on a semiconductor element or the like with an appropriate thickness. As a result, since the polyimide resin is cured at a high temperature of 300 ° C. or higher, problems such as thermal deterioration of semiconductor elements and bonding materials and oxidation of heat blocks and the like are likely to occur. Therefore, a polyamide resin or a polyamideimide resin that can be cured at 300 ° C. or lower can be more preferably used as the primer resin. Furthermore, the use of a thermoplastic polyamide resin or polyamideimide resin eliminates the need for a curing step at a high temperature, and the primer resin can be formed only by a solvent drying step at 200 ° C. or lower. Examples of such a thermoplastic primer resin include HIMAL ("HIMAL" is a registered trademark) manufactured by Hitachi Chemical Co., Ltd., and can be suitably used.

なお、半導体素子にはシリコン(Si)やシリコンカーバイド(SiC)、ガリウムナイトライド(GaN)が特に限定されずに用いることができる。また、半導体素子としては、メモリー系やロジック系のICから、ダイオードやInsulated Gate Bipolar Transistor(IGBT)、Metal−Oxide−Semiconductor Field−Effect−Transistor(MOS−FET)のようなパワー半導体まで特に限定されずに用いることができる。特に、パワー半導体は、高温環境に晒されやすいため、本発明の半導体素子として好適に用いることができる。   Note that silicon (Si), silicon carbide (SiC), and gallium nitride (GaN) can be used for the semiconductor element without any particular limitation. Further, the semiconductor elements are particularly limited from memory-type and logic-type ICs to power semiconductors such as diodes, Insulated Gate Bipolar Transistors (IGBTs), Metal-Oxide-Semiconductor Field-Effect-Transistors (MOS-FETs). It can be used without. In particular, since power semiconductors are easily exposed to high temperature environments, they can be suitably used as the semiconductor element of the present invention.

本発明の半導体装置の形状等は特に限定されないが、例えばパワー半導体素子を用いた場合では、ディスクリートパッケージ、パワーモジュールと呼ばれるパッケージとして用いることができる。   The shape and the like of the semiconductor device of the present invention are not particularly limited. For example, when a power semiconductor element is used, it can be used as a package called a discrete package or a power module.

以下、実施例により本発明を詳細に説明するが、本発明はこれによって制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited by this.

[実施例1]
(銀粒子接着剤組成物の作製)
次に示す工程にて銀粒子接着剤組成物を作製した。まず、DPMA(ダイセル工業株式会社製、ジプロピレングリコールメチルエーテルアセテート)12質量部と、MTPH(日本テルペン化学株式会社製、イソボルニルシクロヘキサノール)12質量部、ステアリン酸0.88質量部をらいかい機にて10分間混練し、液状成分を得た。この液状成分に、リン片状銀粒子(福田金属箔粉工業株式会社製、AgC−239)44質量部と球状銀粒子(メタロー・テクノロジー社製、K−0082P)44質量部を加えてらいかい機にて15分間混練し、銀粒子接着剤組成物を得た。
[Example 1]
(Preparation of silver particle adhesive composition)
A silver particle adhesive composition was prepared by the following steps. First, 12 parts by mass of DPMA (manufactured by Daicel Industries, Ltd., dipropylene glycol methyl ether acetate), 12 parts by mass of MTPH (manufactured by Nippon Terpene Chemical Co., Ltd., isobornylcyclohexanol), and 0.88 parts by mass of stearic acid The mixture was kneaded for 10 minutes with a paddle to obtain a liquid component. To this liquid component, 44 parts by mass of flaky silver particles (Fukuda Metal Foil Powder Co., Ltd., AgC-239) and 44 parts by mass of spherical silver particles (Metal Technology Co., Ltd., K-0082P) can be added. The mixture was kneaded for 15 minutes to obtain a silver particle adhesive composition.

(銀粒子接着剤組成物層の形成)
リードフレームとして、厚み4μmのAgめっきが形成されたCuリードフレームを用意した。Cuリードフレームのヒートブロック部(縦24mm×横19mm×厚さ3mm)にギャップ40μmのメタルマスクを設置し、焼結銀ペースト(銀粒子接着剤組成物)を縦10.5mm×横8mmの範囲にスクリーン印刷した。ついで、Cuリードフレームを160℃のホットプレート上で180秒間加熱し、銀粒子接着剤組成物層を形成した。
(Formation of silver particle adhesive composition layer)
As a lead frame, a Cu lead frame on which 4 μm thick Ag plating was formed was prepared. A metal mask with a gap of 40 μm is placed on the heat block of the Cu lead frame (length 24 mm × width 19 mm × thickness 3 mm), and sintered silver paste (silver particle adhesive composition) is in the range of 10.5 mm length × 8 mm width Screen printed. Next, the Cu lead frame was heated on a hot plate at 160 ° C. for 180 seconds to form a silver particle adhesive composition layer.

(銀粒子接着剤組成物層による接合工程)
半導体素子であるSi p/nダイオードチップ(縦8.5mm×横6mm×厚さ0.6mm、陽極最表面:Al、陰極最表面:Au)の陰極側と銀粒子接着剤組成物層とが接触するように、Si p/nダイオードチップを銀粒子接着剤組成物層上に設置し、圧着用サンプルを用意した。ここで、Si p/nダイオードチップは、Siを用いたpn接合ダイオードをいう。以下、「Si p/nダイオードチップ」を、単に「チップ」ということがある。300℃に加熱されたステンレス製ステージとステンレス製ヘッドによって、圧着用サンプルを20MPaで10分間にて加圧し、Si p/nダイオードチップをCuリードフレームの一部であるヒートブロックに接合した。この接合材を、「焼結銀接合材」と呼ぶ。なお、加圧の際にSi p/nダイオードチップの陽極面とステンレス製ヘッドの間にテフロンシート(厚さ1mm、「テフロン」は登録商標)を挟み、Si p/nダイオードチップを保護した。
(Joint process with silver particle adhesive composition layer)
A negative electrode side of a Si p / n diode chip (length 8.5 mm × width 6 mm × thickness 0.6 mm, anode outermost surface: Al, cathode outermost surface: Au), which is a semiconductor element, and a silver particle adhesive composition layer A Si p / n diode chip was placed on the silver particle adhesive composition layer so as to make contact, and a sample for pressure bonding was prepared. Here, the Si p / n diode chip refers to a pn junction diode using Si. Hereinafter, the “Sip / n diode chip” may be simply referred to as “chip”. The crimping sample was pressurized at 20 MPa for 10 minutes with a stainless steel stage and a stainless steel head heated to 300 ° C., and the Si p / n diode chip was joined to a heat block that is a part of the Cu lead frame. This bonding material is referred to as “sintered silver bonding material”. A Teflon sheet (thickness: 1 mm, “Teflon” is a registered trademark) was sandwiched between the anode surface of the Si p / n diode chip and the stainless steel head during pressurization to protect the Si p / n diode chip.

(ワイヤボンディング)
Si p/nダイオードチップの陽極面(リードフレームとの接合面とは反対側の面)と、+側アウターリードを直径400μmのAlワイヤ、18本によって接続した。なお、ワイヤボンダーによって、超音波を加えながらAlワイヤをSi p/nダイオードチップのAl陽極に押し付けることでAlワイヤの接続を行った。
(Wire bonding)
The anode surface (surface opposite to the bonding surface with the lead frame) of the Si p / n diode chip and the positive outer lead were connected by 18 Al wires having a diameter of 400 μm. The Al wire was connected by pressing the Al wire against the Al anode of the Si p / n diode chip while applying ultrasonic waves with a wire bonder.

(プライマー樹脂の形成)
接合後のサンプルにおいて、Si p/nダイオードチップ及びAlワイヤの全ての露出面と、ヒートブロック及びアウターリードの封止される部分に、プライマー樹脂を形成した。プライマー樹脂の塗布液には日立化成株式会社製HIMAL(HL−1210−H0001、ガラス転移温度260℃、ポリアミドイミド系樹脂のN−メチル−2−ピロリドン40質量%/エチレングリコールモノブチルエーテル60質量%混合溶媒溶液)を用い、刷毛によって塗布した。その後、100℃のホットプレート上で5分加熱し、さらに200℃のホットプレート上で1時間加熱し、塗布膜から溶媒を乾燥させて厚さ5μmのプライマー樹脂を形成した。
(Formation of primer resin)
In the sample after bonding, a primer resin was formed on all exposed surfaces of the Si p / n diode chip and the Al wire and on the portion where the heat block and the outer lead were sealed. HIMAL (HL-1210-H0001, glass transition temperature 260 ° C., N-methyl-2-pyrrolidone 40% by mass of polyamidoimide resin / 60% by mass of ethylene glycol monobutyl ether) was used as the primer resin coating solution. Solvent solution) and applied by brush. Then, it heated on a 100 degreeC hotplate for 5 minutes, and also heated on a 200 degreeC hotplate for 1 hour, the solvent was dried from the coating film, and 5 micrometer-thick primer resin was formed.

(封止樹脂の作製)
エポキシ樹脂として三菱化学株式会社(旧ジャパンエポキシレジン株式会社)製エポキシ樹脂(1032H60)を100質量部、フェノール樹脂Aとして新日鐵化学株式会社製(旧東都化成株式会社)フェノール樹脂(SN−395)を65質量部、酸化防止剤として、ヒンダードフェノール系酸化防止剤(ADEKA社製、AO−60)を5質量部、硬化促進剤としてトリフェニルホスフィンと1,4−ベンゾキノンの付加反応物を2質量部、無機充填剤として平均粒径(D50)17.5μm、比表面積3.8m/gの球状溶融シリカを1023質量部、カップリング剤としてエポキシシラン(γ−グリシドキシプロピルトリメトキシシラン)を11質量部、着色剤としてカーボンブラック(三菱化学株式会社製、商品名「MA−100」)を2.6質量部、離型剤としてカルナバワックス(株式会社セラリカNODA製)を1質量部、の配合物を混練温度80℃、混練時間15分の条件でロール混練を行うことによって封止樹脂Aを作製した。
(Preparation of sealing resin)
100 parts by mass of epoxy resin (1032H60) manufactured by Mitsubishi Chemical Corporation (former Japan Epoxy Resin Co., Ltd.) as the epoxy resin, and phenol resin (SN-395) manufactured by Nippon Steel Chemical Co., Ltd. (former Toto Kasei Co., Ltd.) as the phenol resin A ) As an antioxidant, 5 parts by weight of a hindered phenolic antioxidant (manufactured by ADEKA, AO-60), and an addition reaction product of triphenylphosphine and 1,4-benzoquinone as a curing accelerator 2 parts by mass, 1023 parts by mass of spherical fused silica having an average particle size (D50) of 17.5 μm and a specific surface area of 3.8 m 2 / g as an inorganic filler, and epoxysilane (γ-glycidoxypropyltrimethoxy as a coupling agent 11 parts by mass of silane and carbon black as a colorant (manufactured by Mitsubishi Chemical Corporation, trade name “MA-1”) 0 ") and 2.6 parts by weight of carnauba wax (manufactured by Celerica NODA Co., Ltd.) as a release agent, and a kneading temperature of 80 ° C and a kneading time of 15 minutes. Sealing resin A was produced.

(封止樹脂硬化物のガラス転移温度の評価)
長さ80mm×幅10mm×厚さ3mmの試験片を成形する金型を用いて、封止にはトンラスファーモールド装置を用いて、金型温度180℃、成形圧力6.9MPa、硬化加熱時間90秒にて、封止樹脂硬化物の試験片を成形し、さらに200℃で6時間アフターキュアした。次いで、試験片をダイヤモンドカッターを用いて、長さ50mm×幅5mm×厚さ3mmに切断し、粘弾性測定装置RSA3(TAインスツルメンツ社製)を用い、3点曲げモードで昇温速度5℃/分、周波数6.28rad/秒の条件で測定した。tanδが最大となる温度をガラス転移温度として評価し、表1に示した。
(Evaluation of glass transition temperature of cured encapsulated resin)
Using a mold for molding a test piece of length 80 mm × width 10 mm × thickness 3 mm, sealing is performed using a ton-laser mold apparatus, mold temperature 180 ° C., molding pressure 6.9 MPa, curing heating time In 90 seconds, a test piece of the cured encapsulated resin was molded and further after-cured at 200 ° C. for 6 hours. Next, the test piece was cut into a length of 50 mm, a width of 5 mm, and a thickness of 3 mm using a diamond cutter, and a viscoelasticity measuring device RSA3 (manufactured by TA Instruments Co., Ltd.) was used. The measurement was performed under the conditions of a minute and a frequency of 6.28 rad / sec. The temperature at which tan δ was maximized was evaluated as the glass transition temperature, and is shown in Table 1.

(封止樹脂硬化物の弾性率評価)
弾性率測定用サンプルには上記ガラス転移温度の測定サンプルと同様に作製したサンプルを用いた。この試料について粘弾性測定装置RSA3(TAインスツルメンツ社製)を用い、3点曲げモードで昇温速度5℃/分、周波数6.28rad/秒の条件で測定した。そして、50℃時の弾性率(E)の評価結果を表1に示した。
(Evaluation of elastic modulus of cured cured resin)
A sample produced in the same manner as the measurement sample of the glass transition temperature was used as the elastic modulus measurement sample. This sample was measured using a viscoelasticity measuring device RSA3 (TA Instruments Co., Ltd.) in a three-point bending mode under conditions of a temperature rising rate of 5 ° C./min and a frequency of 6.28 rad / sec. The evaluation results of the elastic modulus (E) at 50 ° C. are shown in Table 1.

(封止樹脂硬化物の線膨張係数評価)
長さ20mm×幅3mm×厚さ3mmの試験片を成形する金型を用いたこと以外は、上記ガラス転移温度の測定サンプルと同様に作製したサンプルを用いた。熱機械分析(TMA)(セイコーインスツルメント株式会社製、EXSTAR TMA/SS6000)によって昇温速度5℃/min、圧縮モードで測定し、得られたTMA曲線の40〜60℃(ガラス転移温度以下の温度)における傾きから線膨張係数を算出した。得られた結果を表1に示した。
(Evaluation of linear expansion coefficient of cured encapsulated resin)
A sample prepared in the same manner as the measurement sample of the glass transition temperature was used except that a mold for molding a test piece of length 20 mm × width 3 mm × thickness 3 mm was used. Measured by thermal mechanical analysis (TMA) (manufactured by Seiko Instruments Inc., EXSTAR TMA / SS6000) at a heating rate of 5 ° C./min in compression mode, the TMA curve obtained was 40-60 ° C. (below the glass transition temperature) The linear expansion coefficient was calculated from the slope at (temperature). The obtained results are shown in Table 1.

(パッケージ封止工程)
プライマー樹脂形成後のサンプルにおいて、Si p/nダイオードチップとAlワイヤの表面の全てと、ヒートブロックとアウターリードのプライマー樹脂を形成した部分を封止樹脂Aによって封止した。封止にはトンラスファーモールド装置を用いて、金型温度180℃、成形圧力6.9MPa、硬化加熱時間90秒にて、封止を行った。その後、封止後のサンプルを200℃のオーブンにて6時間加熱することで封止樹脂の硬化を完了した。最後にアウターリードを切断し、封止樹脂硬化物の外形が縦50mm×横30mm×厚さ9mmであるSi p/nダイオードパッケージを作製した。これまでの工程を繰り返し2つのSi p/nダイオードパッケージを作製した。図1には作製した半導体装置であるSi p/nダイオードパッケージ1(以下、単に「パッケージ」ということがある。)の断面模式図を示した。
(Package sealing process)
In the sample after forming the primer resin, the entire surface of the Si p / n diode chip and the Al wire, and the portion where the heat block and the outer lead primer resin were formed were sealed with the sealing resin A. Sealing was performed by using a ton-laser mold apparatus at a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing heating time of 90 seconds. Then, hardening of sealing resin was completed by heating the sample after sealing for 6 hours in 200 degreeC oven. Finally, the outer lead was cut, and a Si p / n diode package in which the outer shape of the encapsulated resin cured product was 50 mm long × 30 mm wide × 9 mm thick was produced. By repeating the above steps, two Si p / n diode packages were produced. FIG. 1 shows a schematic cross-sectional view of a Si p / n diode package 1 (hereinafter simply referred to as “package”) which is a manufactured semiconductor device.

(焼結銀接合材の緻密度評価)
一つ目のSi p/nパッケージを切断し、断面を鏡面に研磨した後に、FIB(Focused Ion Beam、株式会社日立製作所製FB−2000A)によって、焼結銀接合材の周辺を断面加工し、同装置のSIM(Scanning Ion Microscope)にて断面観察を行った。得られた焼結銀接合材の断面画像において、画像処理ソフトによって残留空孔を黒く塗りつぶし、画像を2値化した。焼結銀接合材部分の2値化画像の白い部分の面積比率を焼結銀の緻密度として評価した。得られた焼結銀接合材の緻密度を表1に示した。
(Dense density evaluation of sintered silver bonding material)
After cutting the first Sip / n package and polishing the cross section to a mirror surface, the periphery of the sintered silver bonding material is processed by FIB (Focused Ion Beam, FB-2000A manufactured by Hitachi, Ltd.) The cross section was observed with a SIM (Scanning Ion Microscope) of the same apparatus. In the cross-sectional image of the obtained sintered silver bonding material, residual voids were painted black by image processing software, and the image was binarized. The area ratio of the white part of the binarized image of the sintered silver bonding material part was evaluated as the density of the sintered silver. The density of the obtained sintered silver bonding material is shown in Table 1.

(パッケージの微小電圧温度依存性の評価)
二つ目のSi p/nダイオードパッケージを恒温槽に入れ、微小電流Iを1A、1秒間通電し、+側リードフレームと−側リードフレームの間に発生する微小電圧Vを測定した。25℃、50℃、100℃、150℃、200℃の各温度でVを測定し、Vの温度依存性を求めた。
(Evaluation of temperature dependence of package on minute voltage)
Put The second Si p / n diode package in a constant temperature bath, a small current I C is energized 1A, 1 sec, the + side and the lead frame - to measure minute voltage V j to be generated between the side lead frame. V j was measured at each temperature of 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C., and the temperature dependence of V j was determined.

(パッケージの初期特性評価)
25℃の冷却水によって温度調節された銅製冷却ブロック(縦100mm×横100mm×厚さ20mm)に、放熱シート(信越化学工業株式会社製、TC−100TXS、熱伝導率5Wm−1−1、縦60mm×横40mm×厚さ1mm)を貼り、その上に、Si p/nダイオードパッケージのヒートブロックの露出面を放熱シートに接するように、Si p/nダイオードパッケージを設置した。Si p/nダイオードパッケージの上面にガラスエポキシ板(縦80mm×横20mm×厚さ1mm)を配置し、クリップによってガラスエポキシ板と銅製冷却ブロックを挟むことでSi p/nダイオードパッケージを固定した。
(Evaluation of initial package characteristics)
To a copper cooling block (length 100 mm × width 100 mm × thickness 20 mm) adjusted in temperature by cooling water at 25 ° C., a heat radiation sheet (TC-100TXS, manufactured by Shin-Etsu Chemical Co., Ltd., thermal conductivity 5 Wm −1 K −1 , A Si p / n diode package was placed so that the exposed surface of the heat block of the Si p / n diode package was in contact with the heat dissipation sheet. A glass epoxy plate (length 80 mm × width 20 mm × thickness 1 mm) was placed on the top surface of the Si p / n diode package, and the glass epoxy plate and the copper cooling block were sandwiched by clips to fix the Si p / n diode package.

+側アウターリードから−側アウターリードに電流IONを220A通電させ、1.1秒後に通電を停止した。その時に+側アウターリードと−側アウターリードの両側に発生する電圧をオシロスコープにて測定した。通電時間中の電圧を平均し、順方向電圧VONとして評価した。また、IONの通電直前と通電直後に微小電流Iを1A通電し、+側アウターリードと−側アウターリードの両側に発生する微小電圧Vをオシロスコープにて測定した。Vの温度依存性を用いて、通電開始の10ミリ秒前のVから最低ジャンクション温度Tjminを求め、通電停止から1ミリ秒後のVから最低ジャンクション温度Tjmaxを求めた。TjmaxからTjminを差し引いた温度差ΔTによってVONを除算し、熱抵抗Rを求めた。これらSi p/nダイオードパッケージの初期特性を表1に示した。なお、順方向抵抗は、VONをIONで除算して求めた。 + From the side outer lead - is 220A energizing current I ON in the side outer leads, the conduction is stopped after 1.1 seconds. At that time, the voltage generated on both sides of the positive outer lead and the negative outer lead was measured with an oscilloscope. Average voltage during the energization time was evaluated as the forward voltage V ON. Also, the minute current I C and 1A energized immediately after energization and immediately before energization of I ON, + side outer leads and - to measure the minute voltage V j to be generated on both sides of the side outer leads an oscilloscope. Using the temperature dependence of V j, determine the minimum junction temperature T jmin from 10 ms before V j of the start of energization to determine the minimum junction temperature T jmax from V j after 1 millisecond from the energization stopped. V ON was divided by a temperature difference ΔT j obtained by subtracting T jmin from T jmax to obtain a thermal resistance RT . The initial characteristics of these Si p / n diode packages are shown in Table 1. The forward resistance was obtained by dividing V ON by I ON .

(パッケージのパワーサイクル試験)
初期特性評価と同様にSi p/nダイオードパッケージを固定した。+側アウターリードから−側アウターリードに電流IONを220A、1.7秒間通電し、その後、13秒間通電を停止した。これをパワーサイクルの1回として、通電の開始と停止を上記条件で寿命に達するまで繰り返した。パワーサイクル試験を継続しながら、パワーサイクル100回目の時のTjmaxをとTjminを測定した結果、それぞれ約200℃と約40℃であった。このパワーサイクル試験を継続しながら測定したTjmaxが220℃を超えた時のパワーサイクル回数をパワーサイクル寿命として評価した。得られたパワーサイクル寿命(PC寿命)を表1に示した。
(Package power cycle test)
The Si p / n diode package was fixed as in the initial characteristic evaluation. + From the side outer lead - the current I ON in the side outer leads 220A, energized 1.7 seconds, then de-energized for 13 seconds. This was one power cycle, and the start and stop of energization were repeated until the lifetime was reached under the above conditions. While continuing the power cycle test, the power cycle 100 th the T jmax and results of measurement of T jmin when the were about 200 ° C. and about 40 ° C., respectively. The number of power cycles when T jmax measured while continuing this power cycle test exceeded 220 ° C. was evaluated as the power cycle life. The obtained power cycle life (PC life) is shown in Table 1.

[実施例2]
実施例1の銀粒子接着剤組成物層による接合工程にて、加圧圧力を15MPaにした以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。さらに実施例1と同様に焼結銀接合材の緻密度と、パッケージの初期特性、パワーサイクル寿命を評価し、結果を表1に示した。
[Example 2]
A Si p / n diode package was produced in the same manner as in Example 1 except that the pressurizing pressure was changed to 15 MPa in the joining step using the silver particle adhesive composition layer of Example 1. Further, as in Example 1, the density of the sintered silver bonding material, the initial characteristics of the package, and the power cycle life were evaluated, and the results are shown in Table 1.

[実施例3]
実施例1の銀粒子接着剤組成物層による接合工程にて、加圧圧力を10MPaにした以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。さらに実施例1と同様に焼結銀接合材の緻密度と、パッケージの初期特性、パワーサイクル寿命を評価し、結果を表1に示した。
[Example 3]
A Si p / n diode package was produced in the same manner as in Example 1 except that the pressurizing pressure was changed to 10 MPa in the joining step using the silver particle adhesive composition layer of Example 1. Further, as in Example 1, the density of the sintered silver bonding material, the initial characteristics of the package, and the power cycle life were evaluated, and the results are shown in Table 1.

[実施例4]
実施例1の銀粒子接着剤組成物層による接合工程にて、加圧圧力を5MPaにした以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。さらに実施例1と同様に焼結銀接合材の緻密度と、パッケージの初期特性、パワーサイクル寿命を評価し、結果を表1に示した。
[Example 4]
A Si p / n diode package was produced in the same manner as in Example 1 except that the pressurizing pressure was changed to 5 MPa in the joining step using the silver particle adhesive composition layer of Example 1. Further, as in Example 1, the density of the sintered silver bonding material, the initial characteristics of the package, and the power cycle life were evaluated, and the results are shown in Table 1.

[実施例5]
実施例1の銀粒子接着剤組成物層による接合工程にて、加圧圧力を3MPaにした以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。さらに実施例1と同様に焼結銀接合材の緻密度と、パッケージの初期特性、パワーサイクル寿命を評価し、結果を表1に示した。
[Example 5]
A Si p / n diode package was produced in the same manner as in Example 1 except that the pressurizing pressure was changed to 3 MPa in the joining step using the silver particle adhesive composition layer of Example 1. Further, as in Example 1, the density of the sintered silver bonding material, the initial characteristics of the package, and the power cycle life were evaluated, and the results are shown in Table 1.

[実施例6]
実施例1の銀粒子接着剤組成物層による接合工程にて、加圧圧力を1MPaにした以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。さらに実施例1と同様に焼結銀接合材の緻密度と、パッケージの初期特性、パワーサイクル寿命を評価し、結果を表1に示した。
[Example 6]
A Si p / n diode package was produced in the same manner as in Example 1 except that the pressurizing pressure was changed to 1 MPa in the joining step using the silver particle adhesive composition layer of Example 1. Further, as in Example 1, the density of the sintered silver bonding material, the initial characteristics of the package, and the power cycle life were evaluated, and the results are shown in Table 1.

[実施例7]
実施例1の銀粒子接着剤組成物層による接合工程にて、加圧圧力を15MPaにしたこと、およびプライマー樹脂の形成を省略した以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。さらに実施例1と同様に焼結銀接合材の緻密度と、パッケージの初期特性、パワーサイクル寿命を評価し、結果を表1に示した。
[Example 7]
Si p / n diode package in the same manner as in Example 1 except that, in the joining process using the silver particle adhesive composition layer of Example 1, the pressure was changed to 15 MPa and the formation of the primer resin was omitted. Was made. Further, as in Example 1, the density of the sintered silver bonding material, the initial characteristics of the package, and the power cycle life were evaluated, and the results are shown in Table 1.

[比較例1]
実施例1の銀粒子接着剤組成物の作製、銀粒子接着剤組成物層の形成、銀粒子接着剤組成物層による接合の工程を、以下に示す、はんだ接合工程に変更した以外は、実施例1と同様にしてSi p/nダイオードパッケージを作製した。
[Comparative Example 1]
Except that the production of the silver particle adhesive composition of Example 1, the formation of the silver particle adhesive composition layer, and the joining process using the silver particle adhesive composition layer were changed to the solder joining process shown below. In the same manner as in Example 1, a Si p / n diode package was produced.

(はんだ接合工程)
厚み4μmのNiめっきが形成されたCuリードフレームを用意した。Cuリードフレームの一部のヒートブロック(縦24mm×横19mm×厚さ3mm)に、中心に開口部(縦8.7mm×横6.2mm)を有するカーボンマスク(縦15mm×横15mm×厚さ1.5mm)を設置し、カーボンマスクの開口部に高温はんだのシート(95質量%Pb−3.5質量%Sn−1.5質量%Ag、縦8.5mm×横6mm×厚さ130μ)を入れ、高温はんだのシートの上に、半導体素子であるSi p/nダイオードチップ(縦8.5mm×横6mm×厚さ0.6mm、陽極最表面:Al、陰極最表面:Au)を陰極側と高温はんだとが接触するように置いた。
(Solder joining process)
A Cu lead frame on which a 4 μm thick Ni plating was formed was prepared. Carbon mask (length 15 mm x width 15 mm x thickness) having an opening (length 8.7 mm x width 6.2 mm) in the center on a part of the heat block (length 24 mm x width 19 mm x thickness 3 mm) of the Cu lead frame 1.5mm), and a high-temperature solder sheet (95% by mass Pb-3.5% by mass Sn-1.5% by mass Ag, 8.5 mm long × 6 mm wide × 130 μm thick) at the opening of the carbon mask. And a semiconductor element, a Si p / n diode chip (length 8.5 mm × width 6 mm × thickness 0.6 mm, anode outermost surface: Al, cathode outermost surface: Au) on a high-temperature solder sheet The side and the high temperature solder were placed in contact.

次の工程により、ギ酸リフロー炉にて高温はんだを溶融させた。まず、サンプルを炉内のヒーター上に設置し、炉内を13Paまで真空排気した。次に、ギ酸容器に窒素を導入し、バブリングさせながら、ギ酸容器から炉内にギ酸ガスを飽和させた窒素を8L/minで導入した。炉内圧力が80000Paに達した後に、ギ酸ガスを飽和させた窒素の導入を停止し、炉内圧力が80000Paを維持するように、真空排気量を調整した。ヒーターを15℃/minで室温から350℃まで昇温させた。昇温過程の230℃の時に排気を開始し、13Pa以下に真空排気した。350℃に達した後、温度を350℃に保持し、保持から5分経過後に窒素を炉内に10L/minで導入した。炉内圧力が大気圧に達した後に、20℃/minで350℃から50℃までヒーターを降温させた。その後、サンプルを炉内から取り出し、はんだ接合工程を完了した。   The high temperature solder was melted in the formic acid reflow furnace by the following process. First, the sample was placed on a heater in the furnace, and the inside of the furnace was evacuated to 13 Pa. Next, nitrogen saturated with formic acid gas was introduced from the formic acid container into the furnace at 8 L / min while introducing nitrogen into the formic acid container and bubbling. After the furnace pressure reached 80000 Pa, the introduction of nitrogen saturated with formic acid gas was stopped, and the vacuum displacement was adjusted so that the furnace pressure was maintained at 80000 Pa. The heater was heated from room temperature to 350 ° C. at 15 ° C./min. Evacuation was started at 230 ° C. in the temperature raising process, and evacuated to 13 Pa or less. After reaching 350 ° C., the temperature was maintained at 350 ° C., and after 5 minutes from the holding, nitrogen was introduced into the furnace at 10 L / min. After the furnace pressure reached atmospheric pressure, the heater was cooled from 350 ° C. to 50 ° C. at 20 ° C./min. Then, the sample was taken out from the furnace and the soldering process was completed.

さらに、実施例1と同様に、焼結銀接合材の緻密度評価と、パッケージの初期特性評価を行ない、結果を表1に示した。また、Si p/nダイオードパッケージのパワーサイクル試験において、ION通電時間を1.1秒としたこと以外は、実施例1と同様にパッケージのパワーサイクル試験にて寿命を評価し、結果を表1に示した。なお、パッケージのパワーサイクル試験において、パッケージのパワーサイクル試験を継続しながら、パワーサイクル100回目の時のTjmaxとTjminを測定した結果、実施例1と同様にそれぞれ約200℃と約40℃であった。 Further, as in Example 1, the density evaluation of the sintered silver bonding material and the initial characteristic evaluation of the package were performed, and the results are shown in Table 1. Table Further, in the power cycle test Si p / n diode package, except that the 1.1 seconds I ON energizing time, similarly evaluate the life in packaging a power cycle test as in Example 1, the results It was shown in 1. In the package power cycle test, T jmax and T jmin at the 100th power cycle were measured while continuing the package power cycle test. As a result, the results were about 200 ° C. and about 40 ° C. as in Example 1. Met.

表1に、Si p/nダイオードパッケージの初期特性とパワーサイクル試験結果を示す。表1中の「焼結銀」は各実施例における「焼結銀接合材」を、「高温はんだ」は比較例1における「95質量%Pb−3.5質量%Sn−1.5質量%Agの高温はんだ」を、「プライマー」は各実施例及び比較例における「プライマー樹脂」を、「封止材」は各実施例及び比較例1における「封止樹脂」を、「初期特性」は各実施例及び比較例1における「パッケージの初期特性」を、「信頼性」の「PC寿命」は各実施例及び比較例1の「パッケージのパワーサイクル試験」における寿命を、「Tg」は「ガラス転移温度」を、「E」は「弾性率」を、「CTE」は「線膨張係数」を表す。   Table 1 shows the initial characteristics and power cycle test results of the Si p / n diode package. “Sintered silver” in Table 1 is “sintered silver bonding material” in each example, and “high temperature solder” is “95 mass% Pb-3.5 mass% Sn-1.5 mass% in Comparative Example 1. “High-temperature solder of Ag”, “Primer” is “Primer resin” in each Example and Comparative Example, “Sealing material” is “Sealing resin” in each Example and Comparative Example 1, “Initial characteristics” is “Initial characteristics of package” in each example and comparative example 1, “PC life” of “reliability” is life in “power cycle test of package” of each example and comparative example 1, “Tg” is “ “Glass transition temperature”, “E” represents “elastic modulus”, and “CTE” represents “linear expansion coefficient”.

Figure 2015164165
Figure 2015164165

表1の初期特性より、同じ電流でSi p/nダイオードパッケージを動作させた場合、焼結銀接合材の熱抵抗と電気抵抗(順方向抵抗)は高温はんだよりも低かった。その結果、Si p/nダイオードチップから熱が逃げやすくなり、Si p/nダイオードチップ周辺で発生するジュール熱が小さくなる。そのため、焼結銀接合材の方が高温はんだよりもTjmaxを約30℃低減できた。一般的に、半導体素子は10℃温度が下がったときに寿命が2倍延びるといわれている。そのため、通常のSi p/nダイオードパッケージの動作環境では、焼結銀接合材の使用によって寿命が高温はんだよりも数倍延びることが予想される。 From the initial characteristics shown in Table 1, when the Si p / n diode package was operated at the same current, the thermal resistance and electrical resistance (forward resistance) of the sintered silver bonding material were lower than that of the high-temperature solder. As a result, heat easily escapes from the Si p / n diode chip, and Joule heat generated around the Si p / n diode chip is reduced. Therefore, the sintered silver bonding material was able to reduce T jmax by about 30 ° C. than the high temperature solder. In general, it is said that the lifetime of a semiconductor element is doubled when the temperature is lowered by 10 ° C. Therefore, in a normal Si p / n diode package operating environment, the use of sintered silver bonding material is expected to extend the life several times that of high temperature solder.

表1のパワーサイクル寿命の数値より、試験初期のTjmaxを同じ条件(200℃)に揃えたパワーサイクル試験でさえも、焼結銀接合材のほうが高温はんだよりも最大2倍程度に寿命が延びた。また、プライマー処理(プライマー樹脂を形成する処理)および焼結銀接合材の緻密度向上によってパワーサイクル寿命が向上することがわかった。 From the power cycle life values shown in Table 1, even in power cycle tests where the initial T jmax is set to the same condition (200 ° C.), the sintered silver joint material has a life that is up to about twice that of high-temperature solder. Extended. It was also found that the power cycle life was improved by the primer treatment (treatment for forming the primer resin) and the improvement in the density of the sintered silver bonding material.

[実施例8]
(銀粒子接着剤組成物の作製)
次に示す工程にて銀粒子接着剤組成物を作製した。まず、DPMA(ダイセル工業株式会社製、ジプロピレングリコールメチルエーテルアセテート)12質量部と、MTPH(日本テルペン化学株式会社製、イソボルニルシクロヘキサノール)12質量部、ステアリン酸0.88質量部をらいかい機にて10分間混練し、液状成分を得た。この液状成分に、リン片状銀粒子(福田金属箔粉工業株式会社製、AgC−239)88質量部を加えてらいかい機にて15分間混練し、銀粒子接着剤組成物を得た。
[Example 8]
(Preparation of silver particle adhesive composition)
A silver particle adhesive composition was prepared by the following steps. First, 12 parts by mass of DPMA (manufactured by Daicel Industries, Ltd., dipropylene glycol methyl ether acetate), 12 parts by mass of MTPH (manufactured by Nippon Terpene Chemical Co., Ltd., isobornylcyclohexanol), and 0.88 parts by mass of stearic acid The mixture was kneaded for 10 minutes with a paddle to obtain a liquid component. To this liquid component, 88 parts by mass of flaky silver particles (AgC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd.) was added and kneaded for 15 minutes with a coarse machine to obtain a silver particle adhesive composition.

(銀粒子接着剤組成物層の形成)
厚み4μmのAgめっきが形成されたCuリードフレームを用意した。Cuブロック(縦24mm×横19mm×厚さ3mm)にギャップ40μmのメタルマスクを設置し、焼結銀ペースト(銀粒子接着剤組成物)を縦10mm×横6mmの範囲にスクリーン印刷した。ついで、銅リードフレームを160℃のホットプレート上で180秒間加熱し、銀粒子接着剤組成物層を形成した。
(Formation of silver particle adhesive composition layer)
A Cu lead frame on which 4 μm thick Ag plating was formed was prepared. A metal mask with a gap of 40 μm was placed on a Cu block (length 24 mm × width 19 mm × thickness 3 mm), and a sintered silver paste (silver particle adhesive composition) was screen-printed in a range of length 10 mm × width 6 mm. Next, the copper lead frame was heated on a hot plate at 160 ° C. for 180 seconds to form a silver particle adhesive composition layer.

(銀粒子接着剤組成物層による接合工程)
半導体素子であるSiダミーチップ(縦8mm×横4mm×厚さ0.3mm、表面:Al膜、裏面:Ag膜)のAg膜側と銀粒子接着剤組成物層とが接触するように、Siチップを銀粒子接着剤組成物層上に設置し、圧着用サンプルを用意した。ここで、Siダミーチップとは、Siを用いた試験用のTEG(test element group)チップをいう。以下、「Siダミーチップ」を、単に「チップ」ということがある。300℃に加熱されたステンレス製ステージとステンレス製ヘッドによって、圧着用サンプルを15MPaで10分間にて加圧し、チップをヒートブロックに接合した。この接合材を「焼結銀接合材」と呼ぶ。なお、加圧の際にSi p/nダイオードチップの陽極面とステンレス製ヘッドの間にカーボンシート(厚さ3mm)を挟み、Siダミーチップを保護した。
(Joint process with silver particle adhesive composition layer)
The Si particle chip (8 mm long × 4 mm wide × 0.3 mm thick, front surface: Al film, back surface: Ag film), which is a semiconductor element, is in contact with the Ag film side and the silver particle adhesive composition layer. A chip was placed on the silver particle adhesive composition layer, and a sample for pressure bonding was prepared. Here, the Si dummy chip means a test TEG (test element group) chip using Si. Hereinafter, the “Si dummy chip” may be simply referred to as “chip”. The sample for pressure bonding was pressurized at 15 MPa for 10 minutes with a stainless steel stage and a stainless steel head heated to 300 ° C., and the chip was bonded to the heat block. This bonding material is called “sintered silver bonding material”. During pressurization, a carbon sheet (thickness 3 mm) was sandwiched between the anode surface of the Si p / n diode chip and the stainless steel head to protect the Si dummy chip.

(プライマー樹脂の形成)
接合後のサンプルにおいて、Siダミーチップの全ての露出面とヒートブロックの封止される部分にプライマー樹脂を形成した。プライマー樹脂の塗布液には日立化成株式会社製HIMAL(HL−1210−H0001、ガラス転移温度260℃、ポリアミドイミド系樹脂のジエチレングリコールジメチルエーテル溶液)を用い、刷毛によって塗布した。その後、100℃のホットプレート上で5分加熱し、さらに200℃のホットプレート上で1時間加熱し、塗布膜から溶媒を乾燥させて厚さ2μmのプライマー樹脂を形成した。
(Formation of primer resin)
In the sample after bonding, a primer resin was formed on all exposed surfaces of the Si dummy chip and the portion where the heat block was sealed. HIMAL (HL-1210-H0001, glass transition temperature 260 ° C., diethylene glycol dimethyl ether solution of polyamideimide resin) manufactured by Hitachi Chemical Co., Ltd. was used as the primer resin coating solution, and was applied by brush. Then, it heated on the 100 degreeC hotplate for 5 minutes, and also heated on the 200 degreeC hotplate for 1 hour, and dried the solvent from the coating film, and formed 2 micrometer-thick primer resin.

(パッケージ封止工程)
プライマー樹脂形成後のサンプルにおいて、SiダミーチップとCuブロックのプライマー樹脂を形成した部分を封止樹脂によって封止した。封止樹脂には日立化成株式会社製固形封止材(CEL−420HFC、ガラス転移温度211℃、無機充填剤含有エポキシ系樹脂、弾性率14.2GPa、線膨張係数11.9×10−6/℃)を用いた。封止にはトンラスファーモールド装置を用いて、金型温度180℃、成形圧力6.9MPa、硬化加熱時間90秒にて、封止を行った。その後、封止後のサンプルを200℃のオーブンにて6時間加熱することで封止樹脂の硬化を完了し、封止樹脂硬化物の外形が縦50mm×横30mm×厚さ9mmであるSi TEGパッケージを作製した。これまでの工程を繰り返し、2つのSi TEGパッケージを作製した。図2には作製した半導体装置であるSi TEGパッケージ8(以下、単に「パッケージ」ということがある。)の断面模式図を示した。
(Package sealing process)
In the sample after the formation of the primer resin, the portion where the Si dummy chip and the Cu block primer resin were formed was sealed with a sealing resin. As the sealing resin, a solid sealing material manufactured by Hitachi Chemical Co., Ltd. (CEL-420HFC, glass transition temperature 211 ° C., inorganic filler-containing epoxy resin, elastic modulus 14.2 GPa, linear expansion coefficient 11.9 × 10 −6 / ° C) was used. Sealing was performed by using a ton-laser mold apparatus at a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing heating time of 90 seconds. Thereafter, the sealed sample is heated in an oven at 200 ° C. for 6 hours to complete the curing of the sealing resin, and the Si TEG in which the outer shape of the cured resin is 50 mm long × 30 mm wide × 9 mm thick A package was produced. The above steps were repeated to produce two Si TEG packages. FIG. 2 shows a schematic cross-sectional view of a Si TEG package 8 (hereinafter sometimes simply referred to as “package”) which is a manufactured semiconductor device.

封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。   The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured resin product were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(焼結銀接合材の緻密度評価)
一つ目のパッケージを切断し、断面を鏡面に研磨した後に、FIB(Focused Ion Beam、株式会社日立製作所製FB−2000A)によって接合材の周辺を断面加工し、同装置のSIM(Scanning Ion Microscope)にて断面観察を行った。得られた焼結銀接合材の断面画像において、画像処理ソフトによって残留空孔を黒く塗りつぶし、画像を2値化した。焼結銀接合材部分の2値化画像の白い部分の面積比率を焼結銀の緻密度として評価した。得られた焼結銀接合材の緻密度を表1に示した。
(Dense density evaluation of sintered silver bonding material)
After cutting the first package and polishing the cross section to a mirror surface, the periphery of the bonding material is processed by FIB (Focused Ion Beam, FB-2000A manufactured by Hitachi, Ltd.), and the SIM (Scanning Ion Microscope) of the apparatus ) Was used for cross-sectional observation. In the cross-sectional image of the obtained sintered silver bonding material, residual voids were painted black by image processing software, and the image was binarized. The area ratio of the white part of the binarized image of the sintered silver bonding material part was evaluated as the density of the sintered silver. The density of the obtained sintered silver bonding material is shown in Table 1.

(焼結銀接合材の密着面積率評価)
二つ目のSi TEGパッケージをSAM(Scanning Acoustic Microscope)によって観察し、次のようにして温度サイクル試験前の密着面積率Sを評価した。まず、Si TEGパッケージのCuブロック側から15MHzの超音波を照射し、接合材で反射された超音波を測定し、SAM画像を観察した。次に温度サイクル400回後に同様に接合材のSAM画像を観察した。温度サイクル試験前のSAM画像よりもコントラストが明るくなった箇所の面積Sを評価した。Sを接合材の面積SDBで除算し、接合材の密着面積率S400(%)を評価した。次に温度サイクル1000回後に同様に接合材のSAM画像を観察した。温度サイクル試験前のSAM画像よりもコントラストが明るくなった箇所の面積Sを評価した。Sを接合材の面積SDBで除算し、接合材の密着面積率S1000(%)を評価した。得られた結果を表2に示した。
(Evaluation of adhesion area ratio of sintered silver bonding material)
The second of Si TEG package was observed by SAM (Scanning Acoustic Microscope), it was evaluated the adhesion area ratio S 0 before the temperature cycle test in the following manner. First, a 15 MHz ultrasonic wave was irradiated from the Cu block side of the Si TEG package, the ultrasonic wave reflected by the bonding material was measured, and a SAM image was observed. Next, the SAM image of the bonding material was similarly observed after 400 temperature cycles. Than SAM image before the temperature cycle test was evaluated area S A of the portion where the contrast becomes brighter. Dividing the S A in the area S DB of the bonding material was evaluated the adhesion area ratio S 400 of the bonding material (%). Next, the SAM image of the bonding material was similarly observed after 1000 temperature cycles. Than SAM image before the temperature cycle test was evaluated area S A of the portion where the contrast becomes brighter. Dividing the S A in the area S DB of the bonding material was evaluated the adhesion area ratio S 1000 (%) of the bonding material. The obtained results are shown in Table 2.

(パッケージの温度サイクル試験)
二つ目のSi TEGパッケージの温度サイクル試験を実施した。試験槽内にてパッケージには温風と冷風によって温度サイクルが与えられた。まず、試験槽内の温度が200℃±5℃を5分以上保持するように、温風を15分送風した。次に、試験槽内の温度が−40℃±5℃を5分以上保持するように、冷風を15分送風した。これを温度サイクル1回とし、1000回まで温度サイクル試験を実施した。温度サイクル400回の時点と、1000回において、SAM観察を行い、接合材の密着面積率を評価した。
(Package temperature cycle test)
A temperature cycle test of the second Si TEG package was performed. Within the test chamber, the package was subjected to a temperature cycle by hot and cold air. First, warm air was blown for 15 minutes so that the temperature in the test tank was maintained at 200 ° C. ± 5 ° C. for 5 minutes or more. Next, cold air was blown for 15 minutes so that the temperature in the test tank was maintained at −40 ° C. ± 5 ° C. for 5 minutes or more. This was regarded as one temperature cycle, and the temperature cycle test was conducted up to 1000 times. SAM observation was performed at the time of 400 temperature cycles and 1000 times, and the adhesion area ratio of the bonding material was evaluated.

[実施例9]
パッケージ封止工程にて、封止樹脂硬化物に日立化成製固形封止材(CEL−420HFB(V6)、ガラス転移温度210℃、無機充填剤含有エポキシ系樹脂、弾性率15.1GPa、線膨張係数11.8×10−6/℃)を用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 9]
In the package sealing process, a solid sealing material made by Hitachi Chemical (CEL-420HFB (V6), glass transition temperature 210 ° C., inorganic filler-containing epoxy resin, elastic modulus 15.1 GPa, linear expansion) A Si TEG package was produced in the same manner as in Example 8 except that the coefficient was 11.8 × 10 −6 / ° C.). The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例10]
パッケージ封止工程にて、封止樹脂に、次に製造方法を示す封止樹脂B(ガラス転移温度217℃、無機充填剤含有エポキシ系樹脂、弾性率17.9GPa、線膨張係数17.4×10−6/℃)を用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの焼結銀接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 10]
In the package sealing step, the sealing resin B (glass transition temperature 217 ° C., inorganic filler-containing epoxy resin, elastic modulus 17.9 GPa, coefficient of linear expansion 17.4 × A Si TEG package was produced in the same manner as in Example 8 except that 10 −6 / ° C. was used. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the sintered silver bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

(封止樹脂の作製)
エポキシ樹脂として、トリスフェノールメタン型エポキシ樹脂(三菱化学株式会社(旧ジャパンエポキシレジン株式会社)製、1032H60)を100質量部、フェノール樹脂Aとして新日鐵化学株式会社製(旧東都化成株式会社)フェノール樹脂(SN−375)を59質量部、酸化防止剤として、ヒンダードフェノール系酸化防止剤(ADEKA社製、AO−60)を5質量部、硬化促進剤としてトリフェニルホスフィンと1,4−ベンゾキノンの付加反応物を2質量部、無機充填剤として平均粒径(D50)17.5μm、比表面積3.8m/gの球状溶融シリカを1023質量部、カップリング剤としてエポキシシラン(γ−グリシドキシプロピルトリメトキシシラン)を11質量部、着色剤としてカーボンブラック(三菱化学株式会社製、商品名「MA−100」)を2.6質量部、離型剤としてカルナバワックス(株式会社セラリカNODA製)を1質量部、の配合物を混練温度80℃、混練時間15分の条件でロール混練を行うことによって封止樹脂Bを作製した。
(Preparation of sealing resin)
As an epoxy resin, 100 parts by mass of trisphenolmethane type epoxy resin (Mitsubishi Chemical Corporation (former Japan Epoxy Resin Co., Ltd.), 1032H60) and phenol resin A made by Nippon Steel Chemical Co., Ltd. (former Toto Kasei Co., Ltd.) 59 parts by mass of phenol resin (SN-375), as an antioxidant, 5 parts by mass of hindered phenolic antioxidant (manufactured by ADEKA, AO-60), triphenylphosphine and 1,4- 2 parts by mass of an addition reaction product of benzoquinone, 1023 parts by mass of spherical fused silica having an average particle diameter (D50) of 17.5 μm and a specific surface area of 3.8 m 2 / g as an inorganic filler, and epoxysilane (γ- 11 parts by weight of glycidoxypropyltrimethoxysilane and carbon black as a colorant (Mitsubishi Chemical) A product of a commercial company, trade name "MA-100") 2.6 parts by mass, and 1 part by mass of carnauba wax (manufactured by Celerica NODA Co., Ltd.) as a release agent. The sealing resin B was produced by roll kneading under the conditions described above.

[実施例11]
パッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(GE−5000、ガラス転移温度217℃、無機充填剤含有エポキシ系樹脂、弾性率17.1GPa、線膨張係数12.8×10−6/℃)を用いたこと、封止樹脂を175℃6時間の条件で硬化させたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 11]
In the package sealing process, the solid resin (GE-5000, glass transition temperature 217 ° C., inorganic filler-containing epoxy resin, elastic modulus 17.1 GPa, linear expansion coefficient 12) manufactured by Hitachi Chemical Co., Ltd. .8 × 10 −6 / ° C.) and a Si TEG package was produced in the same manner as in Example 8 except that the sealing resin was cured at 175 ° C. for 6 hours. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例12]
パッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(CEL−400ZHF16、ガラス転移温度204℃、無機充填剤含有エポキシ系樹脂、弾性率17.1GPa、線膨張係数10.2×10−6/℃)を用いたこと、封止樹脂を175℃6時間の条件で硬化させたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 12]
In the package sealing process, a solid sealing material manufactured by Hitachi Chemical Co., Ltd. (CEL-400ZHF16, glass transition temperature 204 ° C., inorganic filler-containing epoxy resin, elastic modulus 17.1 GPa, linear expansion coefficient 10) .2 × 10 −6 / ° C.) and a Si TEG package was produced in the same manner as in Example 8 except that the sealing resin was cured at 175 ° C. for 6 hours. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例13]
銀粒子接着剤組成物層の形成工程にてギャップ20μmのメタルマスクを用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 13]
A Si TEG package was produced in the same manner as in Example 8 except that a metal mask having a gap of 20 μm was used in the step of forming the silver particle adhesive composition layer. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例14]
銀粒子接着剤組成物層の形成工程にてギャップ70μmのメタルマスクを用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 14]
A Si TEG package was produced in the same manner as in Example 8 except that a metal mask having a gap of 70 μm was used in the step of forming the silver particle adhesive composition layer. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例15]
銀粒子接着剤組成物層の形成工程にてギャップ70μmのメタルマスクを用いたこと、および銀粒子接着材組成物層の接合工程にて5MPaで加圧したこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 15]
Except that a metal mask having a gap of 70 μm was used in the formation process of the silver particle adhesive composition layer and that the pressure was applied at 5 MPa in the bonding process of the silver particle adhesive composition layer, the same as in Example 8. Thus, a Si TEG package was produced. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例16]
プライマー樹脂の形成工程にて、プライマー樹脂の塗布液には日立化成株式会社製HIMAL(HL−1210、ガラス転移温度220℃、ポリアミドイミド系樹脂のジエチレングリコールジメチルエーテル溶液)を用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 16]
Example except that HIMAL (HL-1210, glass transition temperature 220 ° C., diethylene glycol dimethyl ether solution of polyamide-imide resin) manufactured by Hitachi Chemical Co., Ltd. was used as the primer resin coating solution in the primer resin forming step. In the same manner as in Example 8, a Si TEG package was produced. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例17]
プライマー樹脂の形成工程を省略したこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 17]
A Si TEG package was produced in the same manner as in Example 8 except that the step of forming the primer resin was omitted. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例18]
プライマー樹脂の形成工程を省略したこと、およびパッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(CEL−420HFB(V6)、ガラス転移温度210℃、無機充填剤含有エポキシ系樹脂、弾性率15.1GPa、線膨張係数11.8×10−6/℃)を用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 18]
In the process of forming the primer resin, and in the package sealing process, the sealing resin includes a solid sealing material manufactured by Hitachi Chemical Co., Ltd. (CEL-420HFB (V6), glass transition temperature 210 ° C., containing inorganic filler) A Si TEG package was produced in the same manner as in Example 8 except that an epoxy resin, an elastic modulus of 15.1 GPa, and a linear expansion coefficient of 11.8 × 10 −6 / ° C. were used. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例19]
プライマー樹脂の形成工程を省略したこと、およびパッケージ封止工程にて、封止樹脂B(ガラス転移温度217℃、無機充填剤含有エポキシ系樹脂、弾性率17.9GPa、線膨張係数17.4×10−6/℃)を用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 19]
The sealing resin B (glass transition temperature 217 ° C., inorganic filler-containing epoxy resin, elastic modulus 17.9 GPa, linear expansion coefficient 17.4 × in the step of forming the primer resin and in the package sealing step) A Si TEG package was produced in the same manner as in Example 8 except that 10 −6 / ° C. was used. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例20]
プライマー樹脂の形成工程を省略したこと、およびパッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(GE−5000、ガラス転移温度217℃、無機充填剤含有エポキシ系樹脂、弾性率17.1GPa、線膨張係数12.8×10−6/℃)を用いたこと、封止樹脂を175℃6時間の条件で硬化させたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 20]
In the process of forming the primer resin and in the package sealing process, a solid sealing material manufactured by Hitachi Chemical Co., Ltd. (GE-5000, glass transition temperature 217 ° C., inorganic filler-containing epoxy resin) , Elastic modulus 17.1 GPa, linear expansion coefficient 12.8 × 10 −6 / ° C.) and sealing resin was cured at 175 ° C. for 6 hours in the same manner as in Example 8. A Si TEG package was produced. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[実施例21]
プライマー樹脂の形成工程を省略したこと、およびパッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(CEL−400ZHF16、ガラス転移温度204℃、無機充填剤含有エポキシ系樹脂、弾性率17.1GPa、線膨張係数10.2×10−6/℃)を用いたこと、封止樹脂を175℃6時間の条件で硬化させたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Example 21]
In the process of forming the primer resin and in the package sealing process, a solid sealing material (CEL-400ZHF16, glass transition temperature 204 ° C., inorganic filler-containing epoxy resin manufactured by Hitachi Chemical Co., Ltd.) is used as the sealing resin. , Elastic modulus 17.1 GPa, linear expansion coefficient 10.2 × 10 −6 / ° C.), and sealing resin was cured under conditions of 175 ° C. for 6 hours. A Si TEG package was produced. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[比較例2]
プライマー樹脂の形成工程を省略したこと、およびパッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(CEL−20CF、ガラス転移温度190℃、無機充填剤含有エポキシ系樹脂、弾性率13.5GPa、線膨張係数12.0×10−6/℃)を用いたこと、封止樹脂を175℃6時間の条件で硬化させたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Comparative Example 2]
In the process of forming the primer resin, and in the package sealing process, the sealing resin is a solid sealing material manufactured by Hitachi Chemical Co., Ltd. (CEL-20CF, glass transition temperature 190 ° C., inorganic filler-containing epoxy resin) , Elastic modulus 13.5 GPa, linear expansion coefficient 12.0 × 10 −6 / ° C.), and the sealing resin was cured at 175 ° C. for 6 hours in the same manner as in Example 8. A Si TEG package was produced. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[比較例3]
プライマー樹脂の形成工程を省略したこと、およびパッケージ封止工程にて、封止樹脂に、日立化成株式会社製固形封止材(CEL−420HFB(V7)、ガラス転移温度221℃、無機充填剤含有エポキシ系樹脂、弾性率21.8GPa、線膨張係数8.0×10−6/℃)を用いたこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Comparative Example 3]
In the process of forming the primer resin, and in the package sealing process, the sealing resin includes a solid sealing material made by Hitachi Chemical Co., Ltd. (CEL-420HFB (V7), glass transition temperature 221 ° C., inorganic filler contained) A Si TEG package was produced in the same manner as in Example 8 except that an epoxy resin, an elastic modulus of 21.8 GPa, and a linear expansion coefficient of 8.0 × 10 −6 / ° C. were used. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

[比較例4]
プライマー樹脂の形成工程を省略したこと、パッケージ封止工程を省略したこと以外は、実施例8と同様にして、Si TEGパッケージを作製した。なお、封止樹脂硬化物のガラス転移温度と弾性率、線膨張係数は実施例1と同様にして評価し、その結果を表2に示した。さらに、実施例8と同様にして、パッケージの接合材の密着面積率評価とパッケージの温度サイクル試験を実施し、結果を表2に示した。
[Comparative Example 4]
A Si TEG package was produced in the same manner as in Example 8 except that the primer resin forming step and the package sealing step were omitted. The glass transition temperature, elastic modulus, and linear expansion coefficient of the cured sealing resin were evaluated in the same manner as in Example 1, and the results are shown in Table 2. Further, in the same manner as in Example 8, the adhesion area ratio evaluation of the bonding material of the package and the temperature cycle test of the package were performed, and the results are shown in Table 2.

表2に、Si TEGパッケージの信頼性試験結果を示す。表2中の「焼結銀」は各実施例及び各比較例における「焼結銀接合材」を、「プライマー」は各実施例における「プライマー樹脂」を、「封止材」は各実施例及び各比較例における「封止樹脂」を、「信頼性」の「接合面積率」は各実施例及び各比較例の温度サイクル試験における「焼結銀接合材の密着面積率」を、「Tg」は「ガラス転移温度」を、「E」は「弾性率」を、「CTE」は「線膨張係数」を表す。   Table 2 shows the reliability test results of the Si TEG package. In Table 2, “sintered silver” is “sintered silver bonding material” in each example and each comparative example, “primer” is “primer resin” in each example, and “sealing material” is in each example. And “sealing resin” in each comparative example, “bonding area ratio” of “reliability” is “adhesion area ratio of sintered silver bonding material” in the temperature cycle test of each example and each comparative example, “Tg” “Glass transition temperature”, “E” represents “elastic modulus”, and “CTE” represents “linear expansion coefficient”.

Figure 2015164165
Figure 2015164165

表2より、パッケージ中の接合材の温度サイクル耐性(温度サイクル試験における各温度サイクルでの焼結銀接合材の密着面積率)を向上させるためには、封止樹脂硬化物によって封止すること、封止樹脂硬化物のガラス転移温度が200℃以上であること、封止樹脂硬化物の弾性率が20GPa以下であること、線膨張係数が10×10−6/℃以上であること、が有効であった。 According to Table 2, in order to improve the temperature cycle resistance of the bonding material in the package (the adhesion area ratio of the sintered silver bonding material at each temperature cycle in the temperature cycle test), it is sealed with a cured resin product. The glass transition temperature of the encapsulated resin cured product is 200 ° C. or more, the elastic modulus of the encapsulated resin cured product is 20 GPa or less, and the linear expansion coefficient is 10 × 10 −6 / ° C. or more. It was effective.

さらに、プライマー樹脂を形成させること、プライマー樹脂のガラス転移温度を高めること、銀粒子焼結体を厚くすること、がパッケージ中の接合材の温度サイクル耐性を向上させるために有効であった。   Furthermore, forming the primer resin, increasing the glass transition temperature of the primer resin, and increasing the thickness of the silver particle sintered body were effective for improving the temperature cycle resistance of the bonding material in the package.

本発明の半導体装置は、高温環境下での信頼性に優れた半導体装置を提供できるので、産業上有用である。   The semiconductor device of the present invention is industrially useful because it can provide a semiconductor device with excellent reliability in a high temperature environment.

1.半導体装置、又はSi p/nダイオードパッケージ
2.半導体素子、又はSi p/nダイオードチップ、又はSiダミーチップ
3.リードフレーム、又はCuリードフレーム、又はCuブロック
3a.+側アウターフレーム
3b.−側アウターフレーム
3c.ヒートブロック
4.接合材
5.封止樹脂硬化物
6.プライマー樹脂
7.Alワイヤ
8.半導体装置、又はSi TEGパッケージ
1. 1. Semiconductor device or Si p / n diode package 2. Semiconductor element, Si p / n diode chip, or Si dummy chip Lead frame or Cu lead frame or Cu block 3a. + Side outer frame 3b. -Side outer frame 3c. Heat block 4. 4. Bonding material 5. Sealed resin cured product Primer resin7. 7. Al wire Semiconductor device or Si TEG package

Claims (10)

半導体素子と、この半導体素子と接合されるリードフレームと、前記半導体素子とリードフレームとを接合する接合材と、前記半導体素子と接合材と一部のリードフレームとを封止する封止樹脂硬化物と、を有する半導体装置であって、前記接合材は銀粒子焼結体を含み、前記封止樹脂硬化物のガラス転移温度は195℃以上、50℃での弾性率は10〜20GPa、ガラス領域における線膨張係数は9×10−6〜24×10−6/℃である
半導体装置。
Semiconductor element, lead frame bonded to the semiconductor element, bonding material for bonding the semiconductor element and the lead frame, and sealing resin curing for sealing the semiconductor element, the bonding material, and a part of the lead frame The bonding material includes a silver particle sintered body, the glass transition temperature of the encapsulated resin cured product is 195 ° C. or higher, and the elastic modulus at 50 ° C. is 10 to 20 GPa. A semiconductor device whose linear expansion coefficient in the region is 9 × 10 −6 to 24 × 10 −6 / ° C.
銀粒子焼結体を含む接合材の緻密度は50〜100%である、請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the density of the bonding material including the silver particle sintered body is 50 to 100%. 銀粒子焼結体を含む接合材の厚さは5〜50μmである、請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the bonding material including the silver particle sintered body has a thickness of 5 to 50 μm. 封止樹脂硬化物がエポキシ樹脂と無機フィラーとを含有する熱硬化性樹脂の硬化物である、請求項1〜3のいずれか一項に記載の半導体装置。   The semiconductor device as described in any one of Claims 1-3 whose sealing resin hardened | cured material is a hardened | cured material of the thermosetting resin containing an epoxy resin and an inorganic filler. 封止樹脂硬化物がトランスファーモールド工程によって封止されてなる、請求項1〜4のいずれか一項に記載の半導体装置。   The semiconductor device as described in any one of Claims 1-4 by which sealing resin hardened | cured material is sealed by the transfer mold process. プライマー樹脂をさらに含む半導体装置であって、半導体素子のリードフレームとの接合面とは反対側の表面にプライマー樹脂が形成されている請求項1〜5のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, further comprising a primer resin, wherein the primer resin is formed on a surface of the semiconductor element opposite to a bonding surface with the lead frame. プライマー樹脂のガラス転移温度が200℃以上である、請求項1〜6のいずれか一項に記載の半導体装置。   The semiconductor device as described in any one of Claims 1-6 whose glass transition temperature of primer resin is 200 degreeC or more. プライマー樹脂の厚さが0.1〜20μmである、請求項1〜7のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the primer resin has a thickness of 0.1 to 20 μm. プライマー樹脂がポリアミド樹脂またはポリアミドイミド樹脂である、請求項1〜8のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the primer resin is a polyamide resin or a polyamideimide resin. プライマー樹脂が熱可塑性樹脂である、請求項1〜9のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the primer resin is a thermoplastic resin.
JP2014084564A 2014-01-30 2014-04-16 Semiconductor device Active JP6349903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084564A JP6349903B2 (en) 2014-01-30 2014-04-16 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014015512 2014-01-30
JP2014015512 2014-01-30
JP2014084564A JP6349903B2 (en) 2014-01-30 2014-04-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015164165A true JP2015164165A (en) 2015-09-10
JP6349903B2 JP6349903B2 (en) 2018-07-04

Family

ID=54186995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084564A Active JP6349903B2 (en) 2014-01-30 2014-04-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6349903B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154635A1 (en) * 2017-02-21 2018-08-30 三菱電機株式会社 Semiconductor device
WO2019026799A1 (en) * 2017-07-31 2019-02-07 バンドー化学株式会社 Composition for metal bonding, metal bonded laminate and electric control device
WO2019123562A1 (en) * 2017-12-20 2019-06-27 日立化成株式会社 Polyamide imide resin, polyamide imide resin composition, and semiconductor device using same
JP2021034527A (en) * 2019-08-22 2021-03-01 株式会社デンソー Manufacturing method of semiconductor module
JP7505607B2 (en) 2018-11-16 2024-06-25 株式会社レゾナック Resin composition for semiconductor devices, semiconductor device and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041143A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Optical semiconductor device
JP2010171271A (en) * 2009-01-23 2010-08-05 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP2011165871A (en) * 2010-02-09 2011-08-25 Denso Corp Electronic device, and method of manufacturing the same
JP2012204366A (en) * 2011-03-23 2012-10-22 Mitsubishi Electric Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041143A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Optical semiconductor device
JP2010171271A (en) * 2009-01-23 2010-08-05 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP2011165871A (en) * 2010-02-09 2011-08-25 Denso Corp Electronic device, and method of manufacturing the same
JP2012204366A (en) * 2011-03-23 2012-10-22 Mitsubishi Electric Corp Semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309231B2 (en) 2017-02-21 2022-04-19 Mitsubishi Electric Corporation Semiconductor device
JP6394810B1 (en) * 2017-02-21 2018-09-26 三菱電機株式会社 Semiconductor device
KR20190102082A (en) 2017-02-21 2019-09-02 미쓰비시덴키 가부시키가이샤 Semiconductor devices
CN110392924A (en) * 2017-02-21 2019-10-29 三菱电机株式会社 Semiconductor device
KR102232994B1 (en) * 2017-02-21 2021-03-26 미쓰비시덴키 가부시키가이샤 Semiconductor device
WO2018154635A1 (en) * 2017-02-21 2018-08-30 三菱電機株式会社 Semiconductor device
CN110392924B (en) * 2017-02-21 2022-11-15 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
WO2019026799A1 (en) * 2017-07-31 2019-02-07 バンドー化学株式会社 Composition for metal bonding, metal bonded laminate and electric control device
JPWO2019026799A1 (en) * 2017-07-31 2019-08-08 バンドー化学株式会社 Metal bonding composition
WO2019123562A1 (en) * 2017-12-20 2019-06-27 日立化成株式会社 Polyamide imide resin, polyamide imide resin composition, and semiconductor device using same
JP7505607B2 (en) 2018-11-16 2024-06-25 株式会社レゾナック Resin composition for semiconductor devices, semiconductor device and its manufacturing method
JP2021034527A (en) * 2019-08-22 2021-03-01 株式会社デンソー Manufacturing method of semiconductor module
JP7295532B2 (en) 2019-08-22 2023-06-21 株式会社デンソー Semiconductor module manufacturing method

Also Published As

Publication number Publication date
JP6349903B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP6349903B2 (en) Semiconductor device
JP7119817B2 (en) semiconductor equipment
EP3121210A1 (en) Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.
KR20170131355A (en) Film-shaped adhesive composition, film-shaped adhesive, method of producing film-shaped adhesive, semiconductor package using film-shaped adhesive, and manufacturing method thereof
WO2015056555A1 (en) Metal substrate, metal-based circuit board, electronic device, and method for manufacturing metal-based circuit board
JP2014146704A (en) Semiconductor device
JPWO2018181600A1 (en) Epoxy resin composition for sealing and electronic component device
JPH0873621A (en) Resin sheet
TWI820139B (en) Resin composition, resin member, resin sheet, b-stage sheet, c-stage sheet, metal foil with resin, metal substrate and power semiconductor device
JP2018148168A (en) Semiconductor device
KR20190125897A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP4281104B2 (en) Resin composition and electronic component device
JP2018104603A (en) Curable resin composition and electronic component device
JP7390995B2 (en) Power module manufacturing method
EP4129664A1 (en) Metal base substrate, electronic component mounting substrate
JP2024000325A (en) Semiconductor device
EP3854832A1 (en) Resin composition
JPH0693085A (en) Resin composition
EP4166593A1 (en) Heat-conductive sheet and semiconductor module including said heat-conductive sheet
JP2007009227A (en) Epoxy resin molding compound for sealing electric component and electric component
EP3901191A1 (en) Resin composition
JP2004244556A (en) Resin composition for encapsulation and encapsulated semiconductor device
JP2023093108A (en) Resin composition, electronic component device, method for manufacturing electronic component device, and method for producing resin composition
JPH05331260A (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6349903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350