JP2015162265A - Charged particle beam apparatus using electrostatic type rotation field deflector - Google Patents

Charged particle beam apparatus using electrostatic type rotation field deflector Download PDF

Info

Publication number
JP2015162265A
JP2015162265A JP2014034735A JP2014034735A JP2015162265A JP 2015162265 A JP2015162265 A JP 2015162265A JP 2014034735 A JP2014034735 A JP 2014034735A JP 2014034735 A JP2014034735 A JP 2014034735A JP 2015162265 A JP2015162265 A JP 2015162265A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
field deflector
electrostatic
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014034735A
Other languages
Japanese (ja)
Other versions
JP6267542B2 (en
Inventor
政幸 福本
Masayuki Fukumoto
政幸 福本
泉 山藤
Izumi Santo
泉 山藤
紀道 穴澤
Norimichi Anazawa
紀道 穴澤
彬 米澤
Akira Yonezawa
彬 米澤
建則 神力
Takenori Jinriki
建則 神力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holon Co Ltd
Original Assignee
Holon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holon Co Ltd filed Critical Holon Co Ltd
Priority to JP2014034735A priority Critical patent/JP6267542B2/en
Publication of JP2015162265A publication Critical patent/JP2015162265A/en
Application granted granted Critical
Publication of JP6267542B2 publication Critical patent/JP6267542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a charged particle beam apparatus using an electrostatic type rotation field deflector that can achieve an image having little distortion by scanning a sample with a low distortion over a broad range.SOLUTION: A charged particle beam apparatus has: an objective lens for narrowing a generated charged particle beam and irradiating a sample with the narrowed charged particle beam; an electrostatic type rotation field deflector which is provided between the generated charged particle beam and the objective lens or in the objective lens, has electrodes confronting each other at least in an X-direction and a Y-direction perpendicular to the X-direction in a circumferential direction, and is shaped so that each of the electrodes is rotated in the axial direction by a predetermined angle in at least the range from 30 degrees to 180 degrees, or and then rotated to an original angle position in the opposite direction; and a scan power source for applying a predetermined scanning voltage to each of the confronting electrodes of the electrostatic type rotation field deflector to deflect a charged particle beam, thereby performing surface scanning using the charged particle beam on the sample.

Description

本発明は、静電型回転場偏向器を用いて収差を低減した荷電粒子線装置に関するものである。   The present invention relates to a charged particle beam apparatus in which aberration is reduced using an electrostatic rotating field deflector.

近年、半導体上に形成されるパターンの微細化が進むにつれ、これを描画するマスクのパターンが複雑な形状となり、従来の1次元の寸法検査では不十分で、2次元での精度良い寸法検査が必要とされている。   In recent years, as the pattern formed on the semiconductor has been miniaturized, the mask pattern for drawing the pattern becomes complicated, and the conventional one-dimensional dimensional inspection is insufficient, and the two-dimensional accurate dimensional inspection is performed. is necessary.

この複雑な形状のパターンを有するマスクの2次元検査には、いわゆる“リソグラフィーシミュレーション”という方法等が用いられるが、これには10μm角程度以上の比較的広い視野の歪の小さい画像が必要とされる。このため比較的広い視野で歪が小さくかつ高解像の画像が得られる走査型電子顕微鏡(SEM)が求められている。   A so-called “lithography simulation” method or the like is used for two-dimensional inspection of a mask having a complicated pattern, and this requires an image with a relatively wide field of view of about 10 μm square and a small distortion. The Therefore, there is a need for a scanning electron microscope (SEM) that can obtain a high-resolution image with a small distortion and a relatively wide field of view.

また、静電型の回転場偏向器として、従来、CRTの偏向電極として試みられたパターンヨーク(下記の非特許文献1、非特許文献2)がある。これら非特許文献1,2に記載のパターンヨークは、展開図が三角関数であらわされる曲線からなるパターンを円柱の周りに巻きつけた形状を持ち、偏向感度の向上を目的としている。
裏克己、ナノ電子光学、第147頁、共立出版株式会社(2005) K.Schlesinger:Post-Acceleration and Electrostatic Deflection, PROCEEDINGS OF THE IRE.44.p659-p667(1956)
Further, as an electrostatic rotary field deflector, there is a pattern yoke (Non-patent Document 1 and Non-patent Document 2 below) which has been tried as a deflection electrode of a CRT. These pattern yokes described in Non-Patent Documents 1 and 2 have a shape in which a development pattern is a pattern formed of a curve represented by a trigonometric function and is wound around a cylinder, and is intended to improve deflection sensitivity.
Katsumi Ura, Nano Electron Optics, page 147, Kyoritsu Publishing Co., Ltd. (2005) K. Schlesinger: Post-Acceleration and Electrostatic Deflection, PROCEEDINGS OF THE IRE.44.p659-p667 (1956)

従来、SEMにおいては、対物レンズの手前に、コイルを用いた2段の磁界型偏向器が用いられている。   Conventionally, in a SEM, a two-stage magnetic deflector using a coil is used before an objective lens.

しかし、磁界型偏向器は、コイルを機械的に精度良く巻いて作製することが難しく、偏向器の機械的非対称性などに伴う画像歪を生じ、広視野の歪の小さい画像を取得し難いという問題があった。   However, it is difficult to manufacture a magnetic field deflector by mechanically winding a coil, causing image distortion due to mechanical asymmetry of the deflector, and it is difficult to acquire an image with a wide field of view and small distortion. There was a problem.

また、SEMや集束イオンビーム装置においては、円筒を対称軸方向に4分割あるいは8分割したような4極子あるいは8極子からなる静電型走査偏向器(静電型偏向器)が用いられている。静電型偏向器では、磁界型偏向器に比べより機械的精度を得やすい。しかし、4極子偏向器は、画像歪が大きくなりやすい欠点がある。また、8極子偏向器では、画像歪を比較的小さくすることが可能であるが、走査制御系が4極子偏向器の走査制御系より複雑になるという問題があった。   In SEM and focused ion beam apparatus, an electrostatic scanning deflector (electrostatic deflector) composed of a quadrupole or an octupole in which a cylinder is divided into four or eight in the direction of the axis of symmetry is used. . An electrostatic deflector can easily obtain mechanical accuracy compared to a magnetic deflector. However, the quadrupole deflector has a drawback that image distortion tends to increase. Further, in the octupole deflector, the image distortion can be made relatively small, but there is a problem that the scanning control system becomes more complicated than the scanning control system of the quadrupole deflector.

また、リソグラフィーシミュレーションにはある程度の広視野のデータ(画像)が必要とされる(例えば10μm×10μmないし16μm×16μm程度)。   Further, data (image) having a certain wide field of view is required for lithography simulation (for example, about 10 μm × 10 μm to 16 μm × 16 μm).

しかし、SEMでは、この広視野の画像を歪なく(低歪で)撮影するのが非常に難しい問題がある。そのため、従来は、3μm×3μm程度の狭い領域で分割して画像を取り込み、つなぎ合わせてリソグラフィーシミュレーションに用いているため、効率が悪い問題がある。さらに、欠損がなくつなぎ合うように、画像間に重複するのりしろを持って各画像を取り込むため、効率が更に悪くなってしまうという問題が発生した。   However, in the SEM, there is a problem that it is very difficult to photograph this wide-field image without distortion (with low distortion). Therefore, conventionally, there is a problem that the efficiency is poor because an image is divided and captured in a narrow region of about 3 μm × 3 μm, and the images are connected and used for lithography simulation. Furthermore, since each image is captured with overlapping margins between the images so that there is no defect, the efficiency is further deteriorated.

このため、広い視野を歪なく(低歪で)走査して画像を取得する荷電粒子線装置(例えばSEM)が必要とされている。   Therefore, there is a need for a charged particle beam apparatus (for example, SEM) that scans a wide field of view without distortion (with low distortion) and acquires an image.

また、上述した従来のパターンヨークは、偏向感度の向上を目的としたもので、後述する本発明の歪収差の低減を目的としたものではなく、荷電粒子線装置に画像歪の低減を目的として適用した例の記載や示唆の記載はない。   Further, the above-described conventional pattern yoke is intended to improve deflection sensitivity, not to reduce distortion aberration of the present invention described later, but to reduce image distortion in a charged particle beam apparatus. There is no description of the applied examples or suggestions.

本発明は、荷電粒子ビームを静電型偏向器を用いて偏向して試料を走査し、放出、反射、吸収された荷電粒子を検出して画像を生成する荷電粒子線装置において、生成された荷電粒子ビームを細く絞って前記試料に照射する対物レンズと、生成された荷電粒子ビームと対物レンズとの間、あるいは対物レンズ中に設け、円周方向に少なくともX方向とその直角方向のY方向とにそれぞれ対向する電極を設け、かつ各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転する形状、あるいはその後、逆方向に元の角度まで回転する形状を持つ静電型回転場偏向器と、静電型回転場偏向器の対向する電極にそれぞれ所定走査電圧を印加し、荷電粒子ビームを偏向して試料上を当該荷電粒子ビームで面走査する走査電源とを備えるように構成する。   The present invention is generated in a charged particle beam apparatus that scans a sample by deflecting a charged particle beam using an electrostatic deflector and detects an emitted, reflected, or absorbed charged particle to generate an image. An objective lens for finely squeezing the charged particle beam to irradiate the sample, and between the generated charged particle beam and the objective lens or in the objective lens, and at least the X direction in the circumferential direction and the Y direction perpendicular thereto Electrostatic rotation with each electrode facing each other and having a shape in which each electrode rotates at a predetermined angle of at least 30 degrees and within 180 degrees in the axial direction, or then rotates to the original angle in the opposite direction And a scanning power source that applies a predetermined scanning voltage to the opposing electrodes of the electrostatic rotating field deflector, deflects the charged particle beam, and scans the surface of the sample with the charged particle beam. It is configured.

この際、各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転する形状、あるいはその後に逆方向に元の角度まで回転する形状を、それぞれ1つあるいはそれぞれ任意数で組み合わせるようにしている。   At this time, each electrode is combined with a shape that rotates at a predetermined angle of at least 30 degrees and within 180 degrees in the axial direction, or a shape that rotates to the original angle in the opposite direction, one or each in combination. ing.

また、静電型回転場偏向器を軸上に2段設け、1段目で軸上の荷電粒子ビームを軸外に偏向し、2段目で軸外から軸方向に、あるいは対物レンズの中心に向けて逆方向に偏向するようにしている。   In addition, two stages of electrostatic rotating field deflectors are provided on the axis, and the charged particle beam on the axis is deflected off-axis at the first stage, and from the off-axis to the axial direction at the second stage, or at the center of the objective lens. It is designed to deflect in the opposite direction toward

また、静電型回転場偏向器の軸方向の長さを長くしてX方向とY方向との対向する電極にそれぞれ印加する電圧を低減、あるいは静電型回転場偏向器の軸方向の長さを短くしてサイズを小さくするようにしている。   Also, the axial length of the electrostatic rotating field deflector is increased to reduce the voltage applied to the opposing electrodes in the X and Y directions, or the axial length of the electrostatic rotating field deflector. The length is shortened to reduce the size.

また、静電型回転場偏向器を、導電性の円筒状の筒から、円周方向に少なくともX方向とその直角方向のY方向とにそれぞれ対向する電極の形状、かつ各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転する形状、あるいはその後、逆方向に元の角度まで回転する形状になるように切込を入れて作成するようにしている。   In addition, the electrostatic rotary field deflector is formed from a conductive cylindrical tube, in the shape of electrodes facing each other in the circumferential direction at least in the X direction and the Y direction in the direction perpendicular thereto, and each electrode is in the axial direction. It is created by cutting into a shape that rotates at a predetermined angle of at least 30 degrees and within 180 degrees, or a shape that rotates in the opposite direction to the original angle.

また、治具を導電性の円筒に取り付け、切込を入れて静電型回転場偏向器を作成した後に、円筒状の筒の内部に作成した切込を入れた静電型回転場偏向器を絶縁端子を介して固定するようにしている。   In addition, after attaching a jig to a conductive cylinder and making an incision to create an electrostatic rotary field deflector, an electrostatic rotary field deflector with an incision created inside a cylindrical tube Is fixed through an insulating terminal.

また、静電型回転場偏向器を構成する電極の極数を、4極の整数倍(1倍を含む)とするようにしている。   Further, the number of poles of the electrodes constituting the electrostatic rotating field deflector is set to be an integral multiple of 4 poles (including 1).

また、静電型回転場偏向器を構成する各電極が軸方向に所定角度回転する形状、あるいはその後に逆方向に元の角度まで回転する形状を、1周期とした場合に、静電型回転場偏向器の軸方向の長さをその整数倍(1倍を含む)とするようにしている。   In addition, when each electrode constituting the electrostatic rotating field deflector is rotated by a predetermined angle in the axial direction or thereafter rotated to the original angle in the opposite direction, the electrostatic rotating The length of the field deflector in the axial direction is set to be an integral multiple (including 1 time) thereof.

また、対物レンズは、磁界型レンズであって、試料に対して上磁極と下磁極を対面した構造、あるいは下磁極のみを対面した構造とするようにしている。   Further, the objective lens is a magnetic lens, and has a structure in which the upper magnetic pole and the lower magnetic pole face the sample, or a structure in which only the lower magnetic pole faces.

本発明は、静電型回転場偏向器を用いて荷電粒子ビームを偏向して試料を平面走査することにより、広い範囲にわたり低歪で試料を走査して歪の小さい画像を取得することができる。   According to the present invention, a charged particle beam is deflected by using an electrostatic rotating field deflector and the sample is scanned in a plane, whereby the sample can be scanned with a low distortion over a wide range to obtain an image with a small distortion. .

これにより、比較的広い視野(10μm×10μm以上)にて歪1nm以下の高解像の画像が得られ(図7参照)、リソグラフィーシミュレーションに好適なSEMを提供することが可能となる。   As a result, a high resolution image with a strain of 1 nm or less can be obtained with a relatively wide field of view (10 μm × 10 μm or more) (see FIG. 7), and an SEM suitable for lithography simulation can be provided.

図1は、本発明の1実施例構成図を示す。ここで、荷電粒子ビーム(電子ビーム、イオンビームなどの負あるいは正の電荷を有するビーム)として、電子ビームを例に取り挙げ、当該図1以下に示す構成のもとで、実施例構成について詳細に説明する。   FIG. 1 shows a block diagram of an embodiment of the present invention. Here, as a charged particle beam (a beam having a negative or positive charge such as an electron beam or an ion beam), an electron beam is taken as an example, and the configuration of the embodiment is described in detail under the configuration shown in FIG. Explained.

図1において、対物レンズ1は、電子ビームを細く絞って試料5上を照射するものであって、公知のものであり、上極(上磁極)2と下極(下磁極)3との間に、ここでは磁界を印加して図示の点線のようなレンズ(模式的に表現)として作用するものである。図1では、対物レンズ1の上極(上磁極)2は試料5に対面し、下極(下磁極)3も試料5に対面している。下極(下磁極)3を図1の点線で示したように上極(上磁極)2に近づけて試料上面に生ずる対物レンズ磁場を光軸付近に比較的局在化するようにしてもよい。尚、後述する図12に、対物レンズ1の上極(上磁極)2は試料5に対面していないが、下極(下磁極)3は試料5に対面する例を記載する。   In FIG. 1, an objective lens 1 irradiates a sample 5 with a finely focused electron beam, and is a well-known lens, between an upper pole (upper magnetic pole) 2 and a lower pole (lower magnetic pole) 3. Further, here, a magnetic field is applied to act as a lens (schematically expressed) as shown by a dotted line in the figure. In FIG. 1, the upper pole (upper magnetic pole) 2 of the objective lens 1 faces the sample 5, and the lower pole (lower magnetic pole) 3 also faces the sample 5. As shown by the dotted line in FIG. 1, the lower pole (lower magnetic pole) 3 may be brought closer to the upper pole (upper magnetic pole) 2 so that the objective lens magnetic field generated on the upper surface of the sample is relatively localized near the optical axis. . FIG. 12 described later describes an example in which the upper pole (upper magnetic pole) 2 of the objective lens 1 does not face the sample 5 but the lower pole (lower magnetic pole) 3 faces the sample 5.

ここで、図1の対物レンズ1は、試料5の上面に大きな磁界を発生させ球面収差や色収差を小さくするようにしたイマージョンレンズとして構成されている。その際、試料5の上面にて回転場偏向器(1)11、回転場偏向器(2)12、および対物レンズ1による歪収差が発生して画像が歪む。しかし、歪収差の量は、走査偏向系を本発明の静電型の回転場偏向器(1)11、回転場偏向器(2)12で構成することにより、従来の磁界型の偏向器よりも大幅に小さくすることができた(図5から図7を用いて後述する)。   Here, the objective lens 1 of FIG. 1 is configured as an immersion lens in which a large magnetic field is generated on the upper surface of the sample 5 to reduce spherical aberration and chromatic aberration. At this time, distortion aberration occurs due to the rotational field deflector (1) 11, the rotational field deflector (2) 12, and the objective lens 1 on the upper surface of the sample 5, and the image is distorted. However, the amount of distortion aberration is less than that of the conventional magnetic field type deflector by configuring the scanning deflection system with the electrostatic rotating field deflector (1) 11 and the rotating field deflector (2) 12 of the present invention. Can be significantly reduced (to be described later with reference to FIGS. 5 to 7).

2次電子検出器4は、電子ビーム10が試料5を平面走査したときに放出された2次電子を検出するものであって、MCPなどの2次電子検出器である。尚、2次電子検出器4で、あるいは他の検出器を取り付けて、反射電子、X線、光などを検出するようにしてもよい。   The secondary electron detector 4 detects secondary electrons emitted when the electron beam 10 scans the sample 5 in a plane, and is a secondary electron detector such as MCP. The secondary electron detector 4 or another detector may be attached to detect reflected electrons, X-rays, light, and the like.

試料5は、対物レンズ1により細く絞られた電子ビーム10を照射しつつ、回転場偏向器(1)11、回転場偏向器(2)12で偏向して走査し、放出された2次電子を2次電子検出器で検出して画像を取得する対象の試料であって、例えばマスク、ウェハなどである。   The sample 5 is deflected and scanned by the rotating field deflector (1) 11 and the rotating field deflector (2) 12 while irradiating the electron beam 10 narrowed down by the objective lens 1, and emitted secondary electrons. Is a target sample for acquiring an image by detecting with a secondary electron detector, such as a mask or a wafer.

電子ビーム10は、図示外の電子銃、集束レンズで発生・集束された電子ビームである。   The electron beam 10 is an electron beam generated and focused by an electron gun and a focusing lens (not shown).

回転場偏向器(1)11、回転場偏向器(2)12は、広視野を低歪で電子ビーム10を平面走査する静電型の回転場偏向器であって、静電型の4極(あるいは4極の整数倍)の電極を回転させた形状をもつ偏向器である(図2から図11を用いて後述する)。   The rotating field deflector (1) 11 and the rotating field deflector (2) 12 are electrostatic rotating field deflectors that scan the electron beam 10 in a plane with low distortion over a wide field of view, and are electrostatic quadrupoles. A deflector having a shape obtained by rotating an electrode (or an integer multiple of 4 poles) (described later with reference to FIGS. 2 to 11).

ここで、図1の構成のもとで、画像を取得する動作について簡単に説明する。   Here, an operation of acquiring an image under the configuration of FIG. 1 will be briefly described.

(1)電子ビーム10を対物レンズ1で細く絞って試料5、例えばマスクの上に照射した状態で、静電型の回転場偏向器(1)11、回転場偏向器(2)12に図示外の電源から走査用の偏向電圧を印加し、試料5の表面を平面走査する。   (1) The electron beam 10 is narrowed down by the objective lens 1 and irradiated on the sample 5, for example, a mask, and is shown in the electrostatic rotating field deflector (1) 11 and rotating field deflector (2) 12. A scanning deflection voltage is applied from an external power source, and the surface of the sample 5 is planarly scanned.

(2)試料5から例えば放出された2次電子は対物レンズ1の磁界中を螺旋しながら電子ビーム10の来た方向に戻る方向に走行して当該磁界が小さくなった領域で図示の2次電子検出器4に印加された正電圧に吸引されて当該2次電子検出器4の検出面を照射し検出・増幅し、公知の2次電子画像を生成する。   (2) The secondary electrons emitted from the sample 5, for example, travel in the direction returning to the direction in which the electron beam 10 comes while spiraling in the magnetic field of the objective lens 1, and the secondary shown in the region where the magnetic field is reduced. It is attracted to a positive voltage applied to the electron detector 4 and irradiates and detects and amplifies the detection surface of the secondary electron detector 4 to generate a known secondary electron image.

以下、図2から図11を用いて図1の構成および効果などを詳細に説明する。   Hereinafter, the configuration and effects of FIG. 1 will be described in detail with reference to FIGS.

図2は、本発明の回転場偏向器の説明図を示す。図2は4極の回転場偏向器が1組の場合の形状例を示す。ここで、図2の(a)はX及びY方向の回転場偏向器の電極例を示し、図2の(b)はX方向のみの回転場偏向器の電極例を示す。   FIG. 2 is an explanatory diagram of the rotary field deflector according to the present invention. FIG. 2 shows an example of the shape in the case of one set of four-pole rotary field deflectors. Here, FIG. 2A shows an example of an electrode of a rotating field deflector in the X and Y directions, and FIG. 2B shows an example of an electrode of a rotating field deflector only in the X direction.

図2の(a)において、
・+Vxと記載した電極がX方向に偏向する電極であり、ここでは、正の電圧を印加する電極である。
In FIG. 2A,
The electrode described as + Vx is an electrode that deflects in the X direction, and here, a positive voltage is applied to the electrode.

・−Vxと記載した電極がX方向に偏向する電極であり、ここでは、負の電圧を印加する電極である。     -The electrode described as -Vx is an electrode which deflects to a X direction, and is an electrode which applies a negative voltage here.

・+Vyと記載した電極がY方向に偏向する電極であり、ここでは、正の電圧を印加する電極である。     -The electrode described as + Vy is an electrode which deflects in a Y direction, and is an electrode which applies a positive voltage here.

・−Vyと記載した電極がY方向に偏向する電極であり、ここでは、正の電圧を印加する電極である。     -The electrode described as -Vy is an electrode which deflects in a Y direction, and is an electrode which applies a positive voltage here.

図示のように、+Vxと−VxとにX方向に偏向する電圧(走査偏向電圧)を印加すると共に、+Vyと−VyとにY方向に偏向する電圧(走査偏向電圧)を印加することにより、図1の電子ビーム10を、回転場偏向器(1)11、および回転場偏向器(2)12でそれぞれ偏向(2段偏向)し、結果として、試料5の表面をX方向およびY方向に走査(平面走査)することが可能となる。以下更に順次詳細に説明する。   As shown in the figure, by applying a voltage deflecting in the X direction (scanning deflection voltage) to + Vx and −Vx, and applying a voltage deflecting in the Y direction (scanning deflection voltage) to + Vy and −Vy, The electron beam 10 of FIG. 1 is deflected (two-stage deflection) by the rotating field deflector (1) 11 and the rotating field deflector (2) 12, respectively. As a result, the surface of the sample 5 is made to be in the X direction and the Y direction. Scanning (planar scanning) can be performed. The details will be described in detail below.

図2の(b)において、+Vxと−Vxの電極は、図2の(a)の+Vxと−Vxの電極を取り出したものである。図示の電極の形状は、軸方向(図1の対物レンズ1の軸方向(下方向))に向かって図示のように、時計方向に0度からここでは、120度まで回転し、反時計方向に120度から0度まで戻り、これを2回繰り返した形状を持つ電極である(詳細は、図3、図11など参照)。   In FIG. 2B, the + Vx and −Vx electrodes are obtained by extracting the + Vx and −Vx electrodes in FIG. The shape of the illustrated electrode rotates in the clockwise direction (the axial direction (downward direction) of the objective lens 1 in FIG. 1) from 0 degrees in the clockwise direction to 120 degrees in this case, and counterclockwise. This is an electrode having a shape that is returned from 120 degrees to 0 degrees and is repeated twice (for details, see FIGS. 3 and 11).

ここで、(1)図2の(a),(b)は各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転(時計方向あるいは反時計方向のいずれか)し、その後に逆方向に元の角度まで回転する形状(「形状A」という)を持つものである。しかし、(2)形状はこれに限られることなく、各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転(時計方向あるいは反時計方向のいずれか)する形状(「形状B」という)であってもよい(その後に逆方向に元の角度まで回転する形状を、必ずしも持たなくてもよい)。   Here, (1) (a) and (b) in FIG. 2 show that each electrode rotates at a predetermined angle of at least 30 degrees and within 180 degrees in the axial direction (either clockwise or counterclockwise), and thereafter It has a shape that rotates in the opposite direction to the original angle (referred to as “shape A”). However, (2) the shape is not limited to this, and each electrode rotates in a predetermined angle (either clockwise or counterclockwise) within at least 30 degrees and within 180 degrees in the axial direction (“shape B”). (It is not always necessary to have a shape that rotates in the opposite direction to the original angle).

更に、(3)前記形状Aと形状Bとをそれぞれ1つ組み合わせたり、(4)前記形状Aと形状Bとをそれぞれ任意数で組み合わせてもよい。   Further, (3) the shape A and the shape B may be combined one by one, or (4) the shape A and the shape B may be combined in an arbitrary number.

図3は、本発明の回転場偏向器の説明図(その2)を示す。   FIG. 3 is an explanatory diagram (part 2) of the rotary field deflector according to the present invention.

図3の(a)は、回転場偏向器の全体の構成例を示す。ここでは、反時計方向に0度から120度まで回転し120度から0度まで戻る1周期を、2回繰り返した様子を模式的に示す。このように電極が回転しているので、それに伴って、電子ビーム10が通過する際には、異なった方向の偏向電界により偏向されることとなる。   FIG. 3A shows an example of the overall configuration of the rotating field deflector. Here, a state is schematically shown in which one cycle of rotating from 0 to 120 degrees counterclockwise and returning from 120 to 0 degrees is repeated twice. Since the electrode rotates in this way, when the electron beam 10 passes therewith, it is deflected by a deflection electric field in a different direction.

図3の(b)から(f)は、図3の(a)の0度、60度、120度、60度、0度における電極+Vxと−Vxとに印加したときの各電界(+Vyと−Vyとには0Vを印加)の様子のシミュレーション結果例をそれぞれ示す。全体の偏向方向は、これらの電界による合成した方向に電子ビーム10が偏向されることとなる。   3 (b) to 3 (f) show the electric fields (+ Vy and V +) applied to the electrodes + Vx and −Vx at 0 °, 60 °, 120 °, 60 °, and 0 ° in FIG. -Vy is a simulation result example of a state of 0V applied). As a whole deflection direction, the electron beam 10 is deflected in a direction synthesized by these electric fields.

図4は、本発明の回転場偏向器の説明図(その3)を示す。   FIG. 4 is an explanatory diagram (part 3) of the rotary field deflector according to the present invention.

図4の(a)は従来の4極子偏向器(円筒を軸方向に4分割した構造を持つ)のシミュレーションによる電界の様子を模式的に示し、図4の(b)は従来の8極子偏向器(円筒を軸方向に8分割した構造を持つ)のシミュレーションによる電界の様子を模式的に示し、図4の(c)は本発明の4極子回転場偏向器のシミュレーションによる電界の様子を模式的に示す。   FIG. 4 (a) schematically shows the state of an electric field by simulation of a conventional quadrupole deflector (having a structure in which a cylinder is divided into four in the axial direction), and FIG. 4 (b) is a conventional octupole deflection. FIG. 4 (c) schematically shows the state of the electric field by the simulation of the quadrupole rotating field deflector of the present invention. Indicate.

図4の(a)の従来の4極子偏向器は、構造が簡単で、制御電圧の印加も簡単であるが、電界(電位)分布があまりよくなく、画像の歪曲歪を生じ易い。   The conventional quadrupole deflector shown in FIG. 4A has a simple structure and simple application of a control voltage, but the electric field (potential) distribution is not so good and image distortion tends to occur.

図4の(b)の従来の8極子偏向器は、図4の(a)の従来の4極子偏向器よりも電界分布を比較的広範囲に平行性を持たせやすく、図示の電界分布から画像の歪曲歪を少なくし易い。しかし、既述したように、走査制御系が4極子偏向器の走査制御系より複雑になるという問題があった。   The conventional octupole deflector shown in FIG. 4B has a relatively wide electric field distribution parallel to the conventional quadrupole deflector shown in FIG. 4A. It is easy to reduce distortion. However, as described above, there is a problem that the scanning control system is more complicated than the scanning control system of the quadrupole deflector.

図4の(c)の本発明の4極子回転場偏向器は、10μm×10μm以上の広範囲に渡って画像の歪曲歪を低減し得る(図5から図7参照)。尚、8極子回転場偏向器は、更に電界分布が広範囲に平行性を持たせることができる。   The quadrupole rotating field deflector of the present invention shown in FIG. 4C can reduce image distortion over a wide range of 10 μm × 10 μm or more (see FIGS. 5 to 7). In addition, the octupole rotating field deflector can further have a parallel electric field distribution over a wide range.

図5は、本発明の回転場偏向器の説明図(その4)を示す。これは、歪収差の要因となる各偏向電極の6極子成分のシミュレーション結果を示す。ここで、横軸は中心軸からの距離mmであり、縦軸の左側は(a)、(c)の、右側は(b)の、電界(V/m)である。 FIG. 5 is an explanatory diagram (part 4) of the rotary field deflector according to the present invention. This shows a simulation result of the hexapole component of each deflection electrode that causes distortion aberration. Here, the horizontal axis is the distance mm from the central axis, the left side of the vertical axis is the electric field (V / m 3 ) of (a), (c), and the right side of (b).

図5において、(a)4極子偏向器は、(b)8極子偏向器よりも6極子成分が大きく、(c)回転場偏向器では正負があり平均すればゼロであり、歪収差が小さくなる。   In FIG. 5, (a) a quadrupole deflector has a larger hexapole component than (b) an octupole deflector, and (c) a rotating field deflector has positive and negative values, which is zero on average, and has low distortion. Become.

図6は、従来の偏向器の説明図を示す。これは、図1に示した回転場偏向器(1)−回転場偏向器(2)−OL(対物レンズ1)の代わりに、既述した図4の(a)、(b)の従来の静電型の4極子、8極子の偏向器(1)、偏向器(2)を用いた場合のシミュレーション結果例を示す。ここで、横軸は12μm□視野(12μm×12μmの視野)における歪(nm)を示す。縦軸は、偏向器の構成例を示す。   FIG. 6 is an explanatory diagram of a conventional deflector. This is different from the rotating field deflector (1) -rotating field deflector (2) -OL (objective lens 1) shown in FIG. 1 in the conventional (a) and (b) of FIG. An example of a simulation result in the case of using an electrostatic type quadrupole or octupole deflector (1) or deflector (2) is shown. Here, the horizontal axis indicates the strain (nm) in a 12 μm square field (12 μm × 12 μm field). The vertical axis represents a configuration example of the deflector.

図6の(a)は、4極DEF1(図4の(a))−4極DEF2(図4の(a))−OL(対物レンズ1)を組み合わせた場合のシミュレーション結果例を示す。   FIG. 6A shows an example of a simulation result in the case of combining 4-pole DEF1 (FIG. 4A) and 4-pole DEF2 (FIG. 4A) -OL (objective lens 1).

図6の(b)は、4極DEF1(図4の(a))−8極DEF2(図4の(b))−OL(対物レンズ1)を組み合わせた場合のシミュレーション結果例を示す。   FIG. 6B shows an example of a simulation result in the case of combining 4-pole DEF1 (FIG. 4A) -8-pole DEF2 (FIG. 4B) -OL (objective lens 1).

図6の(c)は、8極DEF1(図4の(b))−8極DEF2(図4の(b))−OL(対物レンズ1)を組み合わせた場合のシミュレーション結果例を示す。   FIG. 6C shows an example of a simulation result in the case of combining 8-pole DEF1 (FIG. 4B) −8-pole DEF2 (FIG. 4B) —OL (objective lens 1).

ここで、図6の(c)の(DEF1;8極子)−(DEF2;8極子)−(OL)からなる系が最も歪み収差が小さい。次に、図6の(b)では若干大きく、図6の(a)では10倍以上歪収差が大きい。図6の(b)より分かるように、図6の(a)の構成からDEF1のみを4極子で構成しても歪はあまり増加しないことが分かる。すなわちビームが光軸から離れるDEF2に歪収差の小さいDEFを用いると歪収差低減に効果的である。   Here, the system composed of (DEF1; octupole)-(DEF2; octupole)-(OL) in FIG. 6C has the smallest distortion aberration. Next, in FIG. 6B, the distortion is slightly large, and in FIG. 6A, the distortion aberration is 10 times or more. As can be seen from FIG. 6 (b), it can be seen from the configuration of FIG. 6 (a) that even if only DEF1 is configured by a quadrupole, the distortion does not increase so much. That is, if DEF with small distortion is used for DEF2 where the beam is away from the optical axis, it is effective in reducing distortion.

以上のことから、本発明に係わる回転場偏向器での歪収差のシミュレーションは容易でないが、図3〜図5、および実験結果の図7から小さい歪収差が得られた(後述する)。   From the above, although it is not easy to simulate distortion aberration with the rotary field deflector according to the present invention, small distortion aberration was obtained from FIGS. 3 to 5 and the experimental result FIG. 7 (described later).

図7は、本発明の結果例を示す。これは、図1の構成における歪収差の実測例を示す。   FIG. 7 shows an example of the results of the present invention. This shows an actual measurement example of distortion aberration in the configuration of FIG.

図7の(a)は、7.2μm×7.2μmの全視野を、7×7で分割し、各点の合計49点の歪によるズレ量を50倍した値を黒丸でそれぞれ表示したものである。各格子点あるいはその近傍に示す歪によるズレ量を50倍した値の黒丸は、図示の各黒丸から判明するように、そのズレ量が極めて小さく、1nm以下であった。ズレ量の数値(最大と最小の数値)は、後述する図7の(b)に示す。   (A) in FIG. 7 is a diagram in which the entire visual field of 7.2 μm × 7.2 μm is divided by 7 × 7, and the values obtained by multiplying the amount of deviation due to distortion of 49 points in total by 50 times are indicated by black circles, respectively. It is. The black circle having a value obtained by multiplying the shift amount due to the distortion shown at each lattice point or its vicinity by 50 times was extremely small as shown in the illustrated black circles and was 1 nm or less. The numerical values of the deviation amounts (maximum and minimum numerical values) are shown in FIG.

図7の(b)は、ズレ量(SHIFT)の最大と最小を示したものである。ズレ量は、図示の下記のように実験結果として得られた。   FIG. 7B shows the maximum and minimum deviation amounts (SHIFT). The amount of deviation was obtained as an experimental result as shown below.

Shift(ズレ量) X(nm) Y(nm)
Max 0.66 0.42
Min −0.63 −0.45
ここで、
・図7の(a)の格子間隔は1.2μm、格子点の最外郭は7.2μm角(1.2×6=7.2μm角)である。
Shift (deviation amount) X (nm) Y (nm)
Max 0.66 0.42
Min -0.63 -0.45
here,
In FIG. 7A, the lattice spacing is 1.2 μm, and the outermost contour of the lattice points is 7.2 μm square (1.2 × 6 = 7.2 μm square).

・格子1点は、10chipの平均であり、図7の(b)の表は49点についての最大と最小を表す。     One grid point is an average of 10 chips, and the table in FIG. 7B shows the maximum and minimum values for 49 points.

図8は、本発明の回転場偏向器の作製フローチャートを示す。   FIG. 8 shows a flowchart for manufacturing the rotating field deflector of the present invention.

図8において、S1は、切込を除く加工をする。これは、例えば図2、図3に記載の4極子の回転場偏向器を作成する際に、当該回転場偏向器の切込を除いた加工、即ち、図9に示す回転場偏向器の切込を除いた円筒状の円筒状電極素材(切込無し)21を加工する。   In FIG. 8, S1 performs the process except a cut. This is because, for example, when the quadrupole rotating field deflector shown in FIGS. 2 and 3 is formed, the processing except the notch of the rotating field deflector is performed, that is, the cutting of the rotating field deflector shown in FIG. The cylindrical cylindrical electrode material (no cut) 21 excluding the cut is processed.

S2は、治具にセットする。これは、S1で加工した切込を除いた例えば図9の円筒状電極素材(切込無)21をフランジ22、シャフト23などからなる治具にセットする(ビスで円筒状電極素材(切込無)21を治具に固定する)。   S2 is set on a jig. For example, the cylindrical electrode material (without cutting) 21 shown in FIG. 9 excluding the cut processed in S1 is set on a jig composed of a flange 22, a shaft 23, etc. No) 21 is fixed to a jig).

S3は、切込を入れる。これは、S2で治具にセットした状態で、図9に示すように、円筒状電極素材21に所定の切込を機械加工で入れ、回転場偏向器の各極(ここでは、4極子であるので、4つの極(+Vx,−Vx、+Vy,−Vy)になるように切込を入れる(治具に固定されているので、バラバラにはならない)。   S3 makes a notch. As shown in FIG. 9, in a state where the jig is set in S2, a predetermined cut is made in the cylindrical electrode material 21 by machining, and each pole of the rotary field deflector (here, a quadrupole is used). Therefore, cuts are made so that there are four poles (+ Vx, -Vx, + Vy, -Vy) (because they are fixed to the jig, they do not fall apart).

S4は、治具は外して洗浄する。   In S4, the jig is removed for cleaning.

S5は、治具にセットする。   S5 is set on a jig.

S6は、ピーク部品で絶縁し導電性円筒状部材の内側にセットする(図10参照)。これは、図10を用いて後述する。   S6 is insulated by the peak component and set inside the conductive cylindrical member (see FIG. 10). This will be described later with reference to FIG.

S7は、治具を外す。   In S7, the jig is removed.

以上によって、円筒状電極素材(切込無)21に切込を入れて回転場偏向器を作製し、洗浄、治具に再セット、導電性円筒状部材の内側にセット、治具を外すことにより、図1の回転場偏向器(1)10、回転場偏向器(2)11を対物レンズ1の図示の位置に取り付けることが可能となる。   As described above, the cylindrical electrode material (without incision) 21 is cut to produce a rotating field deflector, cleaned, reset to the jig, set inside the conductive cylindrical member, and the jig is removed. Thus, the rotating field deflector (1) 10 and the rotating field deflector (2) 11 of FIG. 1 can be attached to the illustrated position of the objective lens 1.

図9は、本発明の回転場偏向器の構造例を示す。ここでは、4極子の回転場偏向器の斜視図を説明および図面を簡単にするために示す。尚、4極子以外の8極子も同様に作製できる。実験では、4極子の回転場偏向器を作製し、その実験結果を求めた(図7参照)。   FIG. 9 shows a structural example of the rotary field deflector of the present invention. Here, a perspective view of a quadrupole rotating field deflector is shown for ease of explanation and drawing. Note that octupoles other than quadrupoles can be similarly produced. In the experiment, a quadrupole rotating field deflector was fabricated and the experimental result was obtained (see FIG. 7).

図9において、円筒状電極素材21は、回転場偏向器の素材となる導電性の円筒状素材であって、例えばアルミニウムなどの導電性で切込の入れやすい素材であればどのような素材でもよい。円筒状電極素材21は、治具となるフランジ22、シャフト23とビスで固定され、該円筒状電極素材21に所定の切込を機械加工などで入れても各電極がバラバラにならないようにビスで治具に固定されている。   In FIG. 9, the cylindrical electrode material 21 is a conductive cylindrical material that is a material of the rotating field deflector, and is any material as long as it is a conductive and easy-to-cut material such as aluminum. Good. The cylindrical electrode material 21 is fixed to a flange 22 and a shaft 23 serving as jigs with screws, and screws are used so that the respective electrodes do not fall apart even if a predetermined cut is made in the cylindrical electrode material 21 by machining or the like. It is fixed to the jig.

フランジ22、シャフト23は、円筒状電極素材21を固定し、該円筒状電極素材21に切込を入れて各電極に分離してもバラバラにならないように保持(固定)するものである。   The flange 22 and the shaft 23 hold the cylindrical electrode material 21 and hold (fix) the cylindrical electrode material 21 so that the cylindrical electrode material 21 does not fall apart even if it is cut and separated into each electrode.

図10は、本発明の回転場偏向器の詳細セット説明図を示す。これは、既述した図8のS6の詳細フローチャートおよびその説明図である。   FIG. 10 shows a detailed set explanatory diagram of the rotary field deflector of the present invention. This is the detailed flowchart of S6 in FIG. 8 and the explanatory diagram thereof.

図10の(a)において、S11は、外側にネジを切ったピーク部品(円筒状)を円筒状部材(導電性)に固定する。これは、右側に記載した図10の(b)に示すように、外側にネジを切ったピーク部品(絶縁性、円筒状)31を円筒状部材(導電性)34に固定する。   In FIG. 10A, S11 fixes a peak component (cylindrical shape) whose outer side is threaded to a cylindrical member (conductive). As shown in FIG. 10B on the right side, this fixes a peak component (insulating, cylindrical) 31 having an external thread to a cylindrical member (conductive) 34.

S12は、円筒状部材の内側に回転場偏向器を挿入する。これは、右側に記載した図10の(b)に示すように、円筒状部材34の内側に回転場偏向器35を挿入する。   In S12, the rotating field deflector is inserted inside the cylindrical member. This is done by inserting a rotating field deflector 35 inside the cylindrical member 34 as shown in FIG.

S13は、ネジ(導電性)によりピーク部品を介して回転場偏向器を引っ張り固定する。接続端子をネジで共締めする。これは、右側に記載した図10の(b)に示すように、ネジ(導電性)32によりピーク部品31を介して回転場偏向器35を引っ張り固定すると共に、接続端子33をネジ32で共締めする。   In step S13, the rotary field deflector is pulled and fixed through the peak part with a screw (conductive). Tighten the connection terminals with screws. This is because, as shown in FIG. 10B on the right side, the rotating field deflector 35 is pulled and fixed via the peak component 31 by the screw (conductive) 32 and the connection terminal 33 is shared by the screw 32. Tighten.

以上によって、作製した回転場偏向器を図10の(b)に示すように、円筒状部材(導電性)34の内側の所定位置に高精度に取り付けることにより、既述した図1の対物レンズ1の内側に図示の回転場偏向器(1)11、回転場偏向器(2)12を所定の位置に高精度に固定することが可能となる。そして、接続端子33から所定の走査電圧を外部の電源から供給し、図1の点線で示すように電子ビーム10を2段偏向し、試料5上の広視野を低歪(10から16μm角の全視野について1nm以下の歪(図7参照))で平面走査することが可能となる。   As described above, the produced rotating field deflector is attached to a predetermined position inside the cylindrical member (conductive) 34 with high accuracy as shown in FIG. It becomes possible to fix the rotary field deflector (1) 11 and the rotary field deflector (2) 12 shown in FIG. Then, a predetermined scanning voltage is supplied from an external power source through the connection terminal 33, the electron beam 10 is deflected in two stages as shown by a dotted line in FIG. 1, and the wide field of view on the sample 5 is reduced in distortion (10 to 16 μm square). It is possible to scan the entire field of view with a distortion of 1 nm or less (see FIG. 7).

図11は、本発明の回転場偏向器の形状説明図を示す。これは、説明を簡単にするために4極子の回転場偏向器の例を示す。   FIG. 11 is a diagram illustrating the shape of the rotary field deflector according to the present invention. This shows an example of a quadrupole rotating field deflector for ease of explanation.

図11の(a)は斜視図を示し、図11の(b)は展開図を示す。   11A shows a perspective view, and FIG. 11B shows a developed view.

図11の(a)において、円筒状電極素材21は、導電性の円筒状の電極素材であって、図示の切り込み26を入れることにより、本例では、4極子であるから、4つの電極にそれぞれ分断されるものである(図9のフランジ22、シャフト23などからなる治具で固定されているので、切り込み26を入れても各電極はバラバラにはならない)。   In FIG. 11A, the cylindrical electrode material 21 is a conductive cylindrical electrode material, and is a quadrupole in this example by making the notch 26 shown in the figure. Each of the electrodes is divided (because it is fixed with a jig made up of the flange 22, the shaft 23, etc. in FIG. 9, the electrodes do not fall apart even if the cuts 26 are made).

タップ(治具取付用)24は、図9のフランジ22、シャフト23などからなる治具に取り付けるためのタップである。   The tap (for jig attachment) 24 is a tap for attaching to a jig comprising the flange 22 and the shaft 23 in FIG.

タップ(回転場偏向器固定用)25は、既述した図10の(b)の回転場偏向器35をネジ32で固定するためのものである。   The tap (for rotating field deflector fixing) 25 is for fixing the rotating field deflector 35 of FIG.

図11の(b)において、図示の展開した円筒状電極素材(切込有り)21は、図11の(a)の斜視図に示す円筒状電極素材(切込有り)21を展開した様子を模式的に示す。横軸は回転方向(円周方向)であって、1周は2πR(Rは半径)である。縦軸は、図1の対物レンズ1の軸方向である。   In FIG. 11B, the developed cylindrical electrode material (with cut) 21 shown in FIG. 11 is a state where the cylindrical electrode material (with cut) 21 shown in the perspective view of FIG. This is shown schematically. The horizontal axis is the rotational direction (circumferential direction), and one round is 2πR (R is a radius). The vertical axis is the axial direction of the objective lens 1 of FIG.

ここで、図11の(b)の円筒状電極素材(切込有り)21は、4極子であるので円周方向(回転方向)の2πRを4分割し、各電極は、軸方向に、ここでは、0度−120度((2/3)πR)−0度を1周期として、2周期分を展開したものである。   Here, since the cylindrical electrode material (with cut) 21 in FIG. 11B is a quadrupole, 2πR in the circumferential direction (rotation direction) is divided into four, and each electrode is here in the axial direction. Then, 0 degree-120 degrees ((2/3) πR) -0 degree is one period, and two periods are developed.

尚(1)軸方向の長さは、任意でよく、偏向感度を高くするには軸方向のサイズを長くし、一方、軸方向のサイズを小さくするには軸方向のサイズを短くする。   (1) The length in the axial direction may be arbitrary. To increase the deflection sensitivity, the axial size is lengthened. On the other hand, to reduce the axial size, the axial size is shortened.

(2)また、軸方向の周期は、ここでは、0度ー120度ー0度を1周期としたが、0度ー120度を1周期とし、その整数倍としてもよい。   (2) In addition, the period in the axial direction is 0 degree-120 degrees-0 degree here as one period, but 0 degree-120 degrees may be one period, and may be an integer multiple thereof.

(3)また、0度ー120度で折り返すとしたが、この120度に限られず、30度から180度の範囲のいずれでもよい。   (3) Although the folding is performed at 0 to 120 degrees, the folding is not limited to 120 degrees, and may be in the range of 30 to 180 degrees.

図12は、本発明の他の実施例構成図を示す。図1から図11は、該図1の対物レンズ1の上極(上磁極)と、下極(下磁極)とがともに試料5に対面していたが、これに限らず、下極(下磁極)のみが試料5に対面した本図12のようにしてもよい。   FIG. 12 is a block diagram showing another embodiment of the present invention. In FIGS. 1 to 11, the upper pole (upper magnetic pole) and the lower pole (lower magnetic pole) of the objective lens 1 of FIG. 1 are both facing the sample 5. Only the magnetic pole) may face the sample 5 as shown in FIG.

図12において、本構成は、試料5面の対物レンズによる磁場の発生を小さくした対物レンズ1−1とその前方の2段の回転場偏向器11,12、2次電子検出器4から構成されている。図12のアウトレンズ方式OLでは、焦点距離が比較的大きく回転場偏向器11,12における電子ビーム10の軸(光軸)からの距離を小さくできるため偏向による画像歪をより小さくすることができるという特徴がある。   In FIG. 12, this configuration is composed of an objective lens 1-1 in which the generation of a magnetic field by the objective lens on the surface of the sample 5 is reduced and two stages of rotary field deflectors 11 and 12 and a secondary electron detector 4 in front of the objective lens 1-1. ing. In the out-lens system OL of FIG. 12, the focal length is relatively large, and the distance from the axis (optical axis) of the electron beam 10 in the rotary field deflectors 11 and 12 can be reduced, so that image distortion due to deflection can be further reduced. There is a feature.

本発明の1実施例構成図である。1 is a configuration diagram of one embodiment of the present invention. 本発明の回転場偏向器の説明図である。It is explanatory drawing of the rotation field deflector of this invention. 本発明の回転場偏向器の説明図(その2)である。It is explanatory drawing (the 2) of the rotation field deflector of this invention. 本発明の回転場偏向器の説明図(その3)である。It is explanatory drawing (the 3) of the rotation field deflector of this invention. 本発明の回転場偏向器の説明図(その4)である。It is explanatory drawing (the 4) of the rotation field deflector of this invention. 従来の偏向器の説明図である。It is explanatory drawing of the conventional deflector. 本発明の結果例である。It is an example of a result of the present invention. 本発明の回転場偏向器の作製フローチャートである。It is a preparation flowchart of the rotation field deflector of the present invention. 本発明の回転場偏向器の構造例である。It is a structural example of the rotary field deflector of this invention. 本発明の回転場偏向器の詳細セット説明図である。It is detailed set explanatory drawing of the rotation field deflector of this invention. 本発明の回転場偏向器の形状説明図である。It is shape explanatory drawing of the rotation field deflector of this invention. 本発明の他の実施例構成図である。It is another Example block diagram of this invention.

1、1−1:対物レンズ
2,2−1:上極(上磁極)
3、3−1:下極(下磁極)
4:2次電子検出器
5:試料
10:電子ビーム
11,12、35:回転場偏向器
21:円筒状電極素材
22:フランジ
23:シャフト
24、25:タップ
26:切込み
31:ピーク部品(円筒状)
32:ネジ
33:接続端子
34:円筒状部材
1, 1-1: Objective lens 2, 2-1: Upper pole (upper pole)
3, 3-1: Lower pole (lower pole)
4: Secondary electron detector 5: Sample 10: Electron beams 11, 12, 35: Rotating field deflector 21: Cylindrical electrode material 22: Flange 23: Shaft 24, 25: Tap 26: Cut 31: Peak component (cylindrical) Status)
32: Screw 33: Connection terminal 34: Cylindrical member

Claims (10)

荷電粒子ビームを静電型偏向器を用いて偏向して試料を走査し、放出、反射、吸収された荷電粒子を検出して画像を生成する荷電粒子線装置において、
生成された荷電粒子ビームを細く絞って前記試料に照射する対物レンズと、
前記生成された荷電粒子ビームと前記対物レンズとの間、あるいは対物レンズ中に設け、円周方向に少なくともX方向とその直角方向のY方向とにそれぞれ対向する電極を設け、かつ当該各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転する形状、あるいはその後、逆方向に元の角度まで回転する形状を持つ静電型回転場偏向器と、
前記静電型回転場偏向器の対向する電極にそれぞれ所定走査電圧を印加し、前記荷電粒子ビームを偏向して前記試料上を当該荷電粒子ビームで面走査する走査電源と
を備えたことを特徴とする静電型回転場偏向器を用いた荷電粒子線装置。
In a charged particle beam apparatus that scans a sample by deflecting a charged particle beam using an electrostatic deflector and detects an emitted, reflected, or absorbed charged particle to generate an image,
An objective lens for narrowing the generated charged particle beam and irradiating the sample;
Provided between the generated charged particle beam and the objective lens or in the objective lens, electrodes provided in the circumferential direction are opposed to at least the X direction and the Y direction perpendicular thereto, respectively, An electrostatic rotary field deflector having a shape that rotates at a predetermined angle of at least 30 degrees and within 180 degrees in the axial direction, or a shape that rotates to the original angle in the opposite direction;
A scanning power source for applying a predetermined scanning voltage to the opposing electrodes of the electrostatic rotating field deflector, deflecting the charged particle beam, and scanning the surface of the sample with the charged particle beam. A charged particle beam apparatus using an electrostatic rotating field deflector.
前記各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転する形状、あるいはその後に逆方向に元の角度まで回転する形状を、それぞれ1つあるいはそれぞれ任意数で組み合わせたことを特徴とする請求項1記載の静電型回転場偏向器。  Each electrode has a shape that rotates at a predetermined angle of at least 30 degrees and within 180 degrees in the axial direction, or a shape that rotates to the original angle in the opposite direction, each one or a combination of any number. The electrostatic rotary field deflector according to claim 1. 前記静電型回転場偏向器を軸上に2段設け、1段目で軸上の荷電粒子ビームを軸外に偏向し、2段目で軸外から軸方向に、あるいは対物レンズの中心に向けて逆方向に偏向することを特徴とする請求項1あるいは請求項2記載の静電型回転場偏向器を用いた荷電粒子線装置。   The electrostatic rotary field deflector is provided in two stages on the axis, and the charged particle beam on the axis is deflected off-axis in the first stage, and from the off-axis to the axial direction or on the center of the objective lens in the second stage. 3. A charged particle beam device using an electrostatic rotating field deflector according to claim 1, wherein the charged particle beam device deflects in a reverse direction. 請求項3において、1段目を4極子偏向器、2段目を回転場偏向器したことを特徴とする静電型回転場偏向器を用いた荷電粒子線装置。   4. A charged particle beam apparatus using an electrostatic rotary field deflector according to claim 3, wherein the first stage is a quadrupole deflector and the second stage is a rotary field deflector. 前記静電型回転場偏向器の軸方向の長さを長くしてX方向とY方向との対向する電極にそれぞれ印加する電圧を低減、あるいは前記静電型回転場偏向器の軸方向の長さを短くしてサイズを小さくしたことを特徴とする請求項1から請求項4のいずれかに記載の静電型回転場偏向器を用いた荷電粒子線装置。   The axial length of the electrostatic rotary field deflector is increased to reduce the voltage applied to the opposing electrodes in the X and Y directions, or the axial length of the electrostatic rotary field deflector. The charged particle beam apparatus using the electrostatic rotating field deflector according to claim 1, wherein the size is reduced by reducing the length. 前記静電型回転場偏向器を、導電性の円筒状の筒から、円周方向に少なくともX方向とその直角方向のY方向とにそれぞれ対向する電極の形状、かつ当該各電極が軸方向に少なくとも30度以上で180度以内の所定角度回転する形状、あるいはその後、逆方向に元の角度まで回転する形状になるように切込を入れて作成したことを特徴とする請求項1から請求項5のいずれかに記載の静電型回転場偏向器を用いた荷電粒子線装置。   The electrostatic rotary field deflector is formed from a conductive cylindrical tube, in the shape of an electrode facing the circumferential direction at least in the X direction and the Y direction in the direction perpendicular thereto, and each electrode is in the axial direction. 2. The device according to claim 1, wherein the cut is made so as to form a shape that rotates at a predetermined angle of at least 30 degrees and within 180 degrees, or a shape that rotates in the reverse direction to the original angle. A charged particle beam apparatus using the electrostatic rotating field deflector according to claim 5. 請求項6において、治具を前記導電性の円筒に取り付け、前記切込を入れて静電型回転場偏向器を作成した後に、円筒状の筒の内部に当該作成した切込を入れた静電型回転場偏向器を絶縁材を介して固定したことを特徴とする静電型回転場偏向器を用いた荷電粒子線装置。   In Claim 6, after attaching a jig | tool to the said conductive cylinder and making the said notch | incision and producing an electrostatic rotary field deflector, the static in which the said notch | incision made into the inside of a cylindrical cylinder was put in A charged particle beam apparatus using an electrostatic rotating field deflector, wherein the electric rotating field deflector is fixed via an insulating material. 前記静電型回転場偏向器を構成する電極の極数を、4極の整数倍(1倍を含む)としたことを特徴とする請求項1から請求項7のいずれかに記載の静電型回転場偏向器を用いた荷電粒子線装置。   8. The electrostatic according to claim 1, wherein the number of poles of the electrode constituting the electrostatic rotating field deflector is an integral multiple of 4 poles (including 1 times). 9. Charged particle beam device using a rotating field deflector. 前記静電型回転場偏向器を構成する各電極が軸方向に所定角度回転する形状、あるいはその後に逆方向に元の角度まで回転する形状を、1周期とした場合に、当該静電型回転場偏向器の軸方向の長さをその整数倍(1倍を含む)としたことを特徴とする請求項1から請求項8のいずれかに記載の静電型回転場偏向器を用いた荷電粒子線装置。   When each electrode constituting the electrostatic rotating field deflector is rotated by a predetermined angle in the axial direction or thereafter rotated in the opposite direction to the original angle as one cycle, the electrostatic rotating 9. The charge using the electrostatic rotating field deflector according to claim 1, wherein the axial length of the field deflector is an integral multiple (including 1) thereof. Particle beam device. 前記対物レンズは、磁界型レンズであって、上磁極と下磁極を前記試料に対面した構造、あるいは下磁極のみが前記試料に対面した構造としたことを特徴とする請求項1から請求項9のいずれかに記載の静電型回転場偏向器を用いた荷電粒子線装置。   10. The objective lens according to claim 1, wherein the objective lens is a magnetic lens and has a structure in which an upper magnetic pole and a lower magnetic pole face the sample, or a structure in which only the lower magnetic pole faces the sample. A charged particle beam apparatus using the electrostatic rotating field deflector according to any one of the above.
JP2014034735A 2014-02-25 2014-02-25 Charged particle beam device using electrostatic rotating field deflector Active JP6267542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034735A JP6267542B2 (en) 2014-02-25 2014-02-25 Charged particle beam device using electrostatic rotating field deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034735A JP6267542B2 (en) 2014-02-25 2014-02-25 Charged particle beam device using electrostatic rotating field deflector

Publications (2)

Publication Number Publication Date
JP2015162265A true JP2015162265A (en) 2015-09-07
JP6267542B2 JP6267542B2 (en) 2018-01-24

Family

ID=54185266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034735A Active JP6267542B2 (en) 2014-02-25 2014-02-25 Charged particle beam device using electrostatic rotating field deflector

Country Status (1)

Country Link
JP (1) JP6267542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086332A (en) * 2020-09-27 2020-12-15 北京中科科仪股份有限公司 Electrostatic deflection device and deflection method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271735A (en) * 1985-05-27 1986-12-02 Hitachi Ltd Image pick-up tube
JPS6396844A (en) * 1986-10-13 1988-04-27 Matsushita Electronics Corp Electrostatic deflection type cathode-ray tube
JP2000057985A (en) * 1998-08-04 2000-02-25 Hitachi Ltd Device and method of inspecting pattern
JP2002184336A (en) * 2000-12-12 2002-06-28 Hitachi Ltd Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
JP2002231170A (en) * 2000-12-01 2002-08-16 Toshiba Corp Static deflector and method for manufacturing the same, static lens and method for manufacturing the same, and electron beam radiation device and method for cleaning the same
US20040061067A1 (en) * 2002-08-02 2004-04-01 Leo Elecktronenmikroskopie Gmbh Particle-optical apparatus and method for operating the same
WO2011108368A1 (en) * 2010-03-02 2011-09-09 株式会社日立ハイテクノロジーズ Scanning electron microscope and inspection method using same
JP2012079700A (en) * 2010-10-01 2012-04-19 Carl Zeiss Nts Gmbh Ion beam system and method of manipulating the same
JP2013229104A (en) * 2012-04-24 2013-11-07 Hitachi High-Technologies Corp Charged particle beam apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271735A (en) * 1985-05-27 1986-12-02 Hitachi Ltd Image pick-up tube
JPS6396844A (en) * 1986-10-13 1988-04-27 Matsushita Electronics Corp Electrostatic deflection type cathode-ray tube
JP2000057985A (en) * 1998-08-04 2000-02-25 Hitachi Ltd Device and method of inspecting pattern
JP2002231170A (en) * 2000-12-01 2002-08-16 Toshiba Corp Static deflector and method for manufacturing the same, static lens and method for manufacturing the same, and electron beam radiation device and method for cleaning the same
JP2002184336A (en) * 2000-12-12 2002-06-28 Hitachi Ltd Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
US20040061067A1 (en) * 2002-08-02 2004-04-01 Leo Elecktronenmikroskopie Gmbh Particle-optical apparatus and method for operating the same
WO2011108368A1 (en) * 2010-03-02 2011-09-09 株式会社日立ハイテクノロジーズ Scanning electron microscope and inspection method using same
JP2012079700A (en) * 2010-10-01 2012-04-19 Carl Zeiss Nts Gmbh Ion beam system and method of manipulating the same
JP2013229104A (en) * 2012-04-24 2013-11-07 Hitachi High-Technologies Corp Charged particle beam apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086332A (en) * 2020-09-27 2020-12-15 北京中科科仪股份有限公司 Electrostatic deflection device and deflection method thereof

Also Published As

Publication number Publication date
JP6267542B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
KR102211668B1 (en) Device of multiple charged particle beams
US8378299B2 (en) Twin beam charged particle column and method of operating thereof
US5146090A (en) Particle beam apparatus having an immersion lens arranged in an intermediate image of the beam
TW201527745A (en) Multi-beam system for high throughput EBI
KR20070116260A (en) Electron beam device
JP5041260B2 (en) Ion implanter
JP5964055B2 (en) Particle beam apparatus and method for processing and / or analyzing a sample
JP2014220241A5 (en)
KR20190008140A (en) Charged particle beam device, charged particle beam influencing device, and method of operating a charged particle beam device
JP7098766B2 (en) High-performance inspection scanning electron microscope device and its operation method
JP2017517119A (en) Electron beam imaging using a double Wien filter monochromator
KR20220146593A (en) Particle beam system having a multipolar lens sequence for independently focusing a plurality of individual particle beams, their use and related methods
JP2023110072A (en) Scanning electron microscope and secondary electron detection method for scanning electron microscope
JP5767818B2 (en) Particle beam device and method of operating particle beam device
US9620328B1 (en) Electrostatic multipole device, electrostatic multipole arrangement, charged particle beam device, and method of operating an electrostatic multipole device
JP6138454B2 (en) Charged particle beam equipment
JP2014183047A (en) High throughput scan deflector and method of manufacturing thereof
JP6267542B2 (en) Charged particle beam device using electrostatic rotating field deflector
TWI819505B (en) Method of influencing a charged particle beam, multipole device, and charged particle beam apparatus
US11804355B2 (en) Apparatus for multiple charged-particle beams
TWI748379B (en) A beam splitter for a charged particle device and a method of generating charged particle beamlets
JP2022521057A (en) Charged particle devices with multiple beamlets and how to operate the devices
WO2021001935A1 (en) Charged particle beam device
KR20140015834A (en) Electron microscopes with electric field-forming lenses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6267542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250