JP2015161675A - Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method - Google Patents

Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method Download PDF

Info

Publication number
JP2015161675A
JP2015161675A JP2014039115A JP2014039115A JP2015161675A JP 2015161675 A JP2015161675 A JP 2015161675A JP 2014039115 A JP2014039115 A JP 2014039115A JP 2014039115 A JP2014039115 A JP 2014039115A JP 2015161675 A JP2015161675 A JP 2015161675A
Authority
JP
Japan
Prior art keywords
cleaving
hard
polarization
brittle material
scribing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014039115A
Other languages
Japanese (ja)
Inventor
森田 昇
Noboru Morita
昇 森田
洋史 比田井
Yoji Hitai
洋史 比田井
壮太 松坂
Sota Matsusaka
壮太 松坂
千葉 明
Akira Chiba
明 千葉
玄太 溝渕
Genta Mizobuchi
玄太 溝渕
信夫 布施
Nobuo Fuse
信夫 布施
隼志 大沼
Hayashi Onuma
隼志 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
PHOTRON Ltd
Original Assignee
Chiba University NUC
PHOTRON Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, PHOTRON Ltd filed Critical Chiba University NUC
Priority to JP2014039115A priority Critical patent/JP2015161675A/en
Publication of JP2015161675A publication Critical patent/JP2015161675A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a scribe surface quality measuring and controlling device that realizes acquisition of a high-quality scribe surface by appropriately applying automatic control to a controlled object such as a scribing wheel, a laser beam or the like in scribing processing.SOLUTION: A scribe surface quality measuring and controlling device that applies scribing to a hard but brittle material by controlling prescribed scribing means comprises: polarization high-speed image sensors 10 and 20 that measure polarization-property spatial distributions of the hard but brittle material at high speed and in real time during scribing of the hard but brittle material; a storage unit that stores a database where a scribing condition for the hard but brittle material is associated with the polarization-property spatial distributions of the hard but brittle material; and a scribing control unit 40 that obtains an optimal scribing condition for the scribing means by referring to the database on the basis of the polarization-property spatial distributions measured by the polarization high-speed image sensors, and uses the obtained scribing condition to control the scribing means in real time.

Description

本発明は、割断品質計測制御装置及び割断品質計測制御方法に係り、特に、ガラス等の硬脆材料の割断品質を、リアルタイムで計測し制御する割断品質計測制御装置及び割断品質計測制御方法に関する。   The present invention relates to a cleaving quality measurement control device and a cleaving quality measurement control method, and more particularly to a cleaving quality measurement control device and a cleaving quality measurement control method for measuring and controlling cleaving quality of hard and brittle materials such as glass in real time.

割断(スクライブ)とは、ガラス等の硬脆材料の表層或いは内部に形成された亀裂を、機械的・熱的応力によって進展させて分割する技術であり、産業界では機械的割断法とレーザ割断法が広く使用されている。機械的割断法は、スクライビングホイールと呼ばれる工具を用いてガラス上に初期亀裂を形成し、この初期亀裂を外力によって進展させるものである。一方、レーザ割断法は2つに分類でき、ガラスに吸収されるレーザ光を用いて局所的に加熱し、熱応力を加えることで割断する方法と、レーザ光をガラス内部で集光することでガラス内部を変質させたり、クラックを生成したりすることで割断する方法とがある。また、近年では、スクライビングホイールによる亀裂生成とレーザ照射による分割を同時に行うハイブリッド割断法も提案されている。   Cleaving is a technology that splits cracks formed in the surface or inside of hard and brittle materials such as glass by mechanical and thermal stress. In the industry, mechanical cleaving and laser cleaving are used. The law is widely used. In the mechanical cleaving method, an initial crack is formed on glass using a tool called a scribing wheel, and the initial crack is propagated by an external force. On the other hand, the laser cleaving method can be classified into two types: a method of cleaving by locally heating and applying thermal stress using laser light absorbed by the glass, and condensing the laser light inside the glass. There is a method of cleaving by altering the inside of the glass or generating cracks. In recent years, a hybrid cleaving method that simultaneously performs crack generation by a scribing wheel and division by laser irradiation has been proposed.

これらの割断方法を用いたガラスの割断加工分野では、加工条件等を経験的に決定することが多く、加工中に割断品質をリアルタイムで計測する技術は見当たらない。   In the glass cleaving field using these cleaving methods, processing conditions are often determined empirically, and no technology for measuring cleaving quality in real time during processing is found.

一方、透明材料の加工品質の良否を判断する手法として、ガラス基板上に形成した液晶配向膜の配向特性を偏光解析によって診断した例がある(特許文献1)。   On the other hand, there is an example in which alignment characteristics of a liquid crystal alignment film formed on a glass substrate are diagnosed by polarization analysis as a method for determining whether the processing quality of a transparent material is good or bad (Patent Document 1).

また、応力によって複屈折を示す物質に負荷応力を加えたときの主応力差と主応力方向を測定する方法として、光弾性法が知られている。   A photoelastic method is known as a method for measuring a main stress difference and a main stress direction when a load stress is applied to a substance exhibiting birefringence due to stress.

特開平09−126891号公報Japanese Patent Application Laid-Open No. 09-125891

ガラス等の硬脆材料の強度は、端面の仕上げに大きく影響される。例えば、割断後のガラスの割断面にクラック等があると、わずかに曲がっただけでそのクラックから割れてしまい、強度が著しく低下する。このため、割断面の仕上がりは非常に重要であり、割断面の品質を向上させること、即ち、クラック等の無い滑らかな割断面を得ることが求められている。   The strength of hard and brittle materials such as glass is greatly affected by the finish of the end face. For example, if there is a crack or the like in the fractured surface of the glass after cleaving, the glass is cracked from the crack just by being bent slightly, and the strength is significantly reduced. For this reason, the finish of the fractured surface is very important, and it is required to improve the quality of the fractured surface, that is, to obtain a smooth fractured surface free from cracks.

ガラス等の割断加工は、前述したように、スクライビングホイールやレーザ光を用いて行われる。この場合、スクライビングホイールのガラスに対する荷重や移動速度を適切に制御し、或いはレーザ光の強度を適切に制御することによって、品質の良い割断面を得ることができると考えられる。しかしながら、前述したように、割断加工中に割断品質に関連するデータをリアルタイムで計測する従来技術はなく、また、計測したデータをフィードバックして、スクライビングホイールやレーザ光を制御する従来技術もなかった。   As described above, the cleaving of glass or the like is performed using a scribing wheel or laser light. In this case, it is considered that a high-quality fractured surface can be obtained by appropriately controlling the load and moving speed of the scribing wheel on the glass or appropriately controlling the intensity of the laser beam. However, as described above, there is no prior art for measuring data related to cleaving quality in real time during cleaving, and there is no prior art for controlling the scribing wheel and laser light by feeding back the measured data. .

本発明は上記事情に鑑みてなされたものであり、スクライビングホイールやレーザ光等の割断加工の制御対象を適切に自動制御し、高品質の割断面を得ることができる割断品質計測制御装置及び割断品質計測制御方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a cleaving quality measurement control device and a cleaving device that can appropriately and automatically control an object to be cleaved, such as a scribing wheel or a laser beam, to obtain a high quality cleaved surface. An object is to provide a quality measurement control method.

上記課題を解決するため、本発明に係る割断品質計測制御装置は、所定の割断手段を制御して、硬脆材料を割断する割断品質計測制御装置において、前記硬脆材料の割断中に、前記硬脆材料の偏光特性の空間分布を高速かつリアルタイムで計測する偏光高速イメージセンサと、前記硬脆材料に対する割断条件と、前記硬脆材料の偏光特性の空間分布とが関係付けられたデータベース、を記憶する記憶部と、前記偏光高速イメージセンサで計測された前記偏光特性の空間分布に基づいて前記データベースを参照することによって、前記割断手段に対する最適な割断条件を求め、求めた前記割断条件を用いて前記割断手段をリアルタイムで制御する割断制御部と、を備えたことを特徴とする。   In order to solve the above-mentioned problem, the cleaving quality measurement control device according to the present invention controls a predetermined cleaving means to cleave a hard and brittle material, while cleaving the hard and brittle material, A polarization high-speed image sensor that measures the spatial distribution of polarization characteristics of hard and brittle materials at high speed and in real time, and a database that correlates the cleaving conditions for the hard and brittle materials and the spatial distribution of polarization characteristics of the hard and brittle materials. By storing the storage unit and referring to the database based on the spatial distribution of the polarization characteristics measured by the polarization high-speed image sensor, an optimum cleaving condition for the cleaving means is obtained, and the obtained cleaving condition is used. And a cleaving control unit for controlling the cleaving means in real time.

本発明に係る割断品質計測制御装置及び割断品質計測制御方法によれば、スクライビングホイールやレーザ光等の割断加工の制御対象を適切に自動制御し、高品質の割断面を得ることができる。   According to the cleaving quality measurement control device and the cleaving quality measurement control method according to the present invention, it is possible to appropriately automatically control a cleaving wheel, laser beam, or the like to be cut and to obtain a high quality cleaved surface.

本実施形態に係る割断品質計測制御装置の構成例を示す図。The figure which shows the structural example of the cleaving quality measurement control apparatus which concerns on this embodiment. 割断品質の良否を模式的に示す図。The figure which shows typically the quality of cleaving quality. 位相差像を生成する偏光高速イメージセンサの特徴的な構成を模式的に示す図。The figure which shows typically the characteristic structure of the polarization high-speed image sensor which produces | generates a phase difference image. 2つの位相差像から3次元位相差像が生成される様子を模式的に説明する図。The figure which illustrates typically a mode that a three-dimensional phase difference image is produced | generated from two phase difference images. 割断制御部が行うリアルタイム制御の概念を説明する図。The figure explaining the concept of the real-time control which a cutting control part performs.

以下、本発明の実施形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施形態に係る割断品質計測制御装置1の構成例を示す図である。割断品質計測制御装置1は、偏光高速イメージセンサ(1)、(2)(10、20)、3次元位相差像生成部30、割断制御部40、解析値/実験データベース60を記憶する記憶部50等を備えて構成される。   FIG. 1 is a diagram illustrating a configuration example of a cleaving quality measurement control device 1 according to an embodiment of the present invention. The cleaving quality measurement control device 1 includes a polarization high-speed image sensor (1), (2) (10, 20), a three-dimensional phase difference image generation unit 30, a cleaving control unit 40, and a storage unit that stores an analysis value / experiment database 60. 50 etc. are comprised.

図1の左上に示すように、ガラス201等の硬脆材料を割断する場合、スクライビングホイール200と呼ばれる割断手段によってガラス201の表面に初期亀裂を生成する。初期亀裂を生成した後にガラス201に外力を加えてガラス201を分割する。これがガラス201の割断である。   As shown in the upper left of FIG. 1, when a hard and brittle material such as glass 201 is cleaved, an initial crack is generated on the surface of the glass 201 by a cleaving means called a scribing wheel 200. After generating the initial crack, the glass 201 is divided by applying an external force to the glass 201. This is the cutting of the glass 201.

初期亀裂の生成の仕方によって、割断後のガラス201の断面の品質(以下、割断品質と呼ぶ)は大きく左右される。図2は、割断品質の良否を模式的に示す図である。図2(a)は良好な割断品質の場合であり、割断面は凹凸がなく滑らかな面となっている。これに対して、図2(b)は割断品質が不良の場合であり、割断面にクラック等の凹凸が生じており、強度低下の要因となる。   Depending on how the initial cracks are generated, the quality of the cross section of the glass 201 after the cutting (hereinafter referred to as the cutting quality) greatly depends. FIG. 2 is a diagram schematically showing the quality of the cleaving quality. FIG. 2A shows a case of good cleaving quality, and the cleaved surface has no irregularities and is a smooth surface. On the other hand, FIG. 2B shows a case in which the cleaving quality is poor, and irregularities such as cracks are generated in the cleaved surface, which causes a decrease in strength.

実施形態の割断品質計測制御装置1は、ガラス201の割断中に発生するガラス201の応力の空間分布を、ガラス201の偏光特性の空間分布として計測し、この計測値を用いて、スクライビングホイール200等の割断手段に対する割断条件をリアルタイムに制御し、これによって、良好な割断品質を得ようとするものである。   The cleaving quality measurement control device 1 of the embodiment measures the spatial distribution of the stress of the glass 201 generated during the cleaving of the glass 201 as the spatial distribution of the polarization characteristic of the glass 201, and uses this measurement value to determine the scribing wheel 200. The cleaving conditions for the cleaving means such as the above are controlled in real time, thereby obtaining a satisfactory cleaving quality.

図1に示す偏光高速イメージセンサ(1)10、(2)20は、ガラス201等の硬脆材料の割断中に、ガラスの偏光特性の空間分布を高速かつリアルタイムに計測する撮像カメラである。偏光高速イメージセンサ(1)10は、スクライビングホイール200の進行方向、即ち、割断面に平行な方向から、ガラス201の断面を撮像する。ガラス201を挟んで、偏光高速イメージセンサ(1)10の反対側には、図示しない光源が設置され、同じく図示しない偏光板を介して直線偏光に変換された光がガラス201を透過して偏光高速イメージセンサ(1)10に達する。   Polarization high-speed image sensors (1) 10 and (2) 20 shown in FIG. 1 are imaging cameras that measure the spatial distribution of the polarization characteristics of glass at high speed in real time while cleaving a hard and brittle material such as glass 201. The polarization high-speed image sensor (1) 10 images the cross section of the glass 201 from the traveling direction of the scribing wheel 200, that is, the direction parallel to the split cross section. A light source (not shown) is installed on the opposite side of the polarization high-speed image sensor (1) 10 across the glass 201, and light converted into linearly polarized light through a polarizing plate (not shown) is transmitted through the glass 201 and polarized. The high-speed image sensor (1) 10 is reached.

一方、偏光高速イメージセンサ(2)20は、スクライビングホイール200の進行方向と直交する方向からガラス201の断面を撮像する。同様に、ガラス201を挟んで、偏光高速イメージセンサ(2)20の反対側には、図示しない光源が設置され、直線偏光に変換された光がガラス201を透過して偏光高速イメージセンサ(2)20に達する。   On the other hand, the polarization high-speed image sensor (2) 20 images the cross section of the glass 201 from a direction orthogonal to the traveling direction of the scribing wheel 200. Similarly, a light source (not shown) is installed on the opposite side of the polarization high-speed image sensor (2) 20 with the glass 201 interposed therebetween, and light converted into linearly polarized light passes through the glass 201 and is polarized high-speed image sensor (2 ) 20 is reached.

偏光高速イメージセンサの数は図2に例示した2つに限定されるものではなく、3以上の偏光高速イメージセンサによって、3以上の方向から撮像してもよい。複数の偏光高速イメージセンサを設けるのは、複数の2次元像から3次元像を生成するためであり、2次元像だけを利用する場合は、偏光高速イメージセンサの数は1つでよい。   The number of polarization high-speed image sensors is not limited to two illustrated in FIG. 2, and imaging may be performed from three or more directions by three or more polarization high-speed image sensors. The reason why a plurality of high-speed polarization image sensors are provided is to generate a three-dimensional image from a plurality of two-dimensional images. When only a two-dimensional image is used, the number of high-speed polarization image sensors may be one.

偏光高速イメージセンサ(1)10、(2)20はガラスの偏光特性の空間分布を計測するものであるが、より具体的には、偏光の位相差δの空間分布を計測する。   The polarization high-speed image sensors (1) 10 and (2) 20 measure the spatial distribution of the polarization characteristics of the glass. More specifically, the spatial distribution of the polarization phase difference δ is measured.

今、光の進行方向をZとし、進行方向に垂直な面内での直交2方向を夫々X方向、Y方向とする。このとき、X方向、Y方向の偏光成分を夫々E、Eとすると、E、Eは夫々次式で表すことができる。 Now, let the traveling direction of light be Z, and let the two orthogonal directions in the plane perpendicular to the traveling direction be the X direction and the Y direction, respectively. At this time, assuming that the polarization components in the X direction and the Y direction are E X and E Y , respectively, E X and E Y can be expressed by the following equations, respectively.

=Acos(kz-ωt) (式1)
=Acos(kz-ωt+δ) (式2)
ここで、A、Acは、夫々X成分、Y成分の振幅、kは波数(=2π/λ)、λは波長、ωは光の周波数、tは時間である。また、δは位相差であり、リタデーション(retardation)とも呼ばれる。
E X = A X cos (kz−ωt) (Formula 1)
E Y = A Y cos (kz−ωt + δ) (Formula 2)
Here, A X and A Y c are the amplitudes of the X component and the Y component, k is the wave number (= 2π / λ), λ is the wavelength, ω is the frequency of light, and t is time. Further, δ is a phase difference and is also called retardation.

偏光高速イメージセンサ(1)10、(2)20は、上記の位相差δの空間分布、即ち、位相差像を生成する。   The polarization high-speed image sensors (1) 10 and (2) 20 generate the spatial distribution of the phase difference δ, that is, a phase difference image.

図3は、位相差像を生成する偏光高速イメージセンサ(1)10、(2)20の特徴的な構成を模式的に示したものである。偏光高速イメージセンサ(1)10、(2)20は、図3の右下に示すような、CCD、あるはCMOSの画素アレイ101を有している。そして、各画素の上に、例えば、フォトニック結晶で生成されるフォトニック結晶偏光子102が設けられている。各フォトニック結晶偏光子102には、微細な溝状のパターンが形成されている。図3に示す例では、フォトニック結晶偏光子102は、45度ずつパターンの向きを変えた4つの偏光子によって1組を構成している。   FIG. 3 schematically shows a characteristic configuration of the polarization high-speed image sensors (1) 10 and (2) 20 that generate a phase difference image. The polarization high-speed image sensors (1) 10 and (2) 20 have a pixel array 101 of CCD or CMOS as shown in the lower right of FIG. On each pixel, for example, a photonic crystal polarizer 102 generated by a photonic crystal is provided. Each photonic crystal polarizer 102 is formed with a fine groove-like pattern. In the example shown in FIG. 3, the photonic crystal polarizer 102 constitutes one set of four polarizers whose pattern directions are changed by 45 degrees.

偏光子としての透過軸はパターンの向きで決まる。したがって、パターンの向きが異なる4つの偏光子に対応する画素の4つの出力に対して所定の演算を施すことによって、位相差δを求めることができる。位相差δは、4画素ごとに算出されるため、偏光高速イメージセンサ(1)10、(2)20の出力として、位相差δの空間分布、即ち、位相差像を得ることができる。   The transmission axis as a polarizer is determined by the direction of the pattern. Accordingly, the phase difference δ can be obtained by performing a predetermined calculation on the four outputs of the pixels corresponding to the four polarizers having different pattern directions. Since the phase difference δ is calculated every four pixels, a spatial distribution of the phase difference δ, that is, a phase difference image can be obtained as the output of the polarization high-speed image sensors (1) 10 and (2) 20.

図1に示すように、2つの偏光高速イメージセンサ(1)10、(2)20から出力された位相差像は、3次元位相差像生成部30に入力され、ここで3次元位相差像が生成される。   As shown in FIG. 1, the phase difference images output from the two polarization high-speed image sensors (1) 10 and (2) 20 are input to a three-dimensional phase difference image generation unit 30, where a three-dimensional phase difference image is obtained. Is generated.

図4は、2つの位相差像から3次元位相差像が生成される様子を模式的に説明する図である。図4において、左下に示す図は、スクライビングホイール200の進行方向に配置された偏光高速イメージセンサ(1)10から出力される位相差像(1)を示す図であり、左上に示す図は、スクライビングホイール200の進行方向と直交する方向に配置された偏光高速イメージセンサ(2)20から出力される位相差像(2)を示す図である。各位相差像(1)、(2)の濃淡のパターンは、位相差δの大きさを模式的に示すものである。   FIG. 4 is a diagram schematically illustrating how a three-dimensional phase difference image is generated from two phase difference images. In FIG. 4, the diagram shown in the lower left is a diagram showing the phase difference image (1) output from the polarization high-speed image sensor (1) 10 arranged in the traveling direction of the scribing wheel 200, and the diagram shown in the upper left is It is a figure which shows the phase difference image (2) output from the polarization high-speed image sensor (2) 20 arrange | positioned in the direction orthogonal to the advancing direction of the scribing wheel 200. FIG. The shading patterns of the phase difference images (1) and (2) schematically show the magnitude of the phase difference δ.

2つの位相差像(1)、(2)が得られれば、例えば、ステレオ法等の手法により、3次元位相差像を生成することができる。なお、ここで生成される3次元位相差像は、偏光高速イメージセンサ(1)10、(2)20による計測によって得られるものであり、後述する解析によって求められる3次元位相差像と区別するため、3次元位相差像(計測値)と呼ぶものとする。   If two phase difference images (1) and (2) are obtained, a three-dimensional phase difference image can be generated by a method such as a stereo method. Note that the three-dimensional phase difference image generated here is obtained by measurement by the polarization high-speed image sensors (1) 10 and (2) 20, and is distinguished from the three-dimensional phase difference image obtained by analysis described later. Therefore, it shall be called a three-dimensional phase difference image (measurement value).

3次元位相差像(計測値)は、位相差δの3次元の空間分布として表現されるが、この空間分布の解像度は、偏光高速イメージセンサ(1)10、(2)20の画素数を増加させることによって増加させることができる。また、3次元位相差像(計測値)は、偏光高速イメージセンサ(1)10、(2)20の撮像フレーム毎に得られる。したがって、偏光高速イメージセンサ(1)10、(2)20のフレームレートを高速にすれば、それだけ時間分解能の高い3次元位相差像(計測値)が得られる。例えば、50,000fps(frame per second)以上の高速度撮像カメラの技術をベースにして偏光高速イメージセンサ(1)10、(2)20を構成することにより、20マイクロ秒以下の高い時間分解で、3次元位相差像(計測値)を得ることができる。   The three-dimensional phase difference image (measured value) is expressed as a three-dimensional spatial distribution of the phase difference δ. The resolution of this spatial distribution is the number of pixels of the polarization high-speed image sensors (1) 10 and (2) 20. It can be increased by increasing. A three-dimensional phase difference image (measured value) is obtained for each imaging frame of the polarization high-speed image sensors (1) 10 and (2) 20. Therefore, if the frame rate of the polarization high-speed image sensors (1) 10 and (2) 20 is increased, a three-dimensional phase difference image (measurement value) with higher time resolution can be obtained. For example, by constructing the polarization high-speed image sensors (1) 10, (2) 20 based on the technology of a high-speed imaging camera of 50,000 fps (frame per second) or more, high time resolution of 20 microseconds or less is achieved. A three-dimensional phase difference image (measurement value) can be obtained.

このように、高い時間分解能の3次元位相差像(計測値)が、ガラス201の割断中に得られることにより、3次元位相差像(計測値)に基づいた、スクライビングホイール200のリアルタイム制御が可能となる。このリアルタイム制御は、図1に示す割断制御部40が、3次元位相差像(計測値)と解析値/実験データベース60とに基づいて実行する。   As described above, since a three-dimensional phase difference image (measurement value) with high time resolution is obtained during the cleaving of the glass 201, real-time control of the scribing wheel 200 based on the three-dimensional phase difference image (measurement value) is achieved. It becomes possible. This real-time control is executed by the cleaving control unit 40 shown in FIG. 1 based on the three-dimensional phase difference image (measured value) and the analysis value / experiment database 60.

図5は、割断制御部40が行うリアルタイム制御の概念を説明する図である。まず、解析値/実験データベース60について説明する。解析値/実験データベース60は、解析値データベース601と、実験データベース602によって構成される。   FIG. 5 is a diagram for explaining the concept of real-time control performed by the cleaving control unit 40. First, the analysis value / experiment database 60 will be described. The analysis value / experiment database 60 includes an analysis value database 601 and an experiment database 602.

解析値データベース601は、割断条件と材料条件とに基づく解析によって作成される。割断条件として、例えば、スクライビングホイール200のガラス201に対する荷重と、スクライビングホイール200の移動速度が設定される。また、材料条件として、例えば、ガラス201の厚みや大きさ、ガラス201の弾性係数等の物理定数が設定される。次に、これらの割断条件や材料条件の設定条件に基づき、有限要素法などを用いた応力・歪解析が行われる。その後、解析で算出された応力分布等から、3次元位相差像(解析値)が算出される。周知のように、偏光による位相差δと応力との間には、以下の式で表されるブリュースタの法則が存在する。   The analysis value database 601 is created by analysis based on the cleaving condition and the material condition. As the cleaving condition, for example, a load on the glass 201 of the scribing wheel 200 and a moving speed of the scribing wheel 200 are set. As material conditions, for example, physical constants such as the thickness and size of the glass 201 and the elastic coefficient of the glass 201 are set. Next, stress / strain analysis using a finite element method or the like is performed based on these cleaving conditions and material condition setting conditions. Thereafter, a three-dimensional phase difference image (analyzed value) is calculated from the stress distribution calculated by the analysis. As is well known, Brewster's law expressed by the following equation exists between the phase difference δ due to polarized light and the stress.

δ=(2π/λ)C・h・(σ1−σ2) (式3)
ここで、λは波長、Cは光弾性定数、hは、荷重を受けている透明平板(ガラス201等)の厚さ、(σ1−σ2)は主応力差である。(式3)によって、解析によって算出された応力の空間分布等から主応力差の空間分布を求めることができ、さらに、位相差δの空間分布(3次元位相差像(解析値))を算出することができる。
δ = (2π / λ) C · h · (σ1-σ2) (Formula 3)
Here, λ is a wavelength, C is a photoelastic constant, h is a thickness of a transparent flat plate (such as glass 201) receiving a load, and (σ1−σ2) is a main stress difference. By (Equation 3), the spatial distribution of the main stress difference can be obtained from the spatial distribution of the stress calculated by analysis, and the spatial distribution of the phase difference δ (three-dimensional phase difference image (analyzed value)) is calculated. can do.

3次元位相差像(解析値)は、割断条件や材料条件を変えた解析によって多数求めることができる。求められた3次元位相差像(解析値)は、割断条件や材料条件に関連付けられた解析値データベース601として、記憶部50に予め保存しておく。   A large number of three-dimensional phase difference images (analysis values) can be obtained by analysis with different cleaving conditions and material conditions. The obtained three-dimensional phase difference image (analysis value) is stored in advance in the storage unit 50 as an analysis value database 601 associated with the cleaving condition or material condition.

一方、実験データベース602は、割断条件と割断品質とを関連付けるデータベースである。割断条件を様々に変えながら割断実験を行う。そして、それぞれの割断条件に対応する割断品質を求め、これらをデータベースとして記憶部50に予め保存しておく。割断品質の決定は、何らかの評価指標に基づいて決定すればよく、特に限定するものではない。例えば、割断面のクラックの有無や量を測定し、測定結果に基づいて多段階のランクに分類するような手法でもよい。   On the other hand, the experiment database 602 is a database that associates the cleaving condition with the cleaving quality. Cleaving experiments are performed with various cleaving conditions. And the cutting quality corresponding to each cutting condition is calculated | required and these are preserve | saved beforehand at the memory | storage part 50 as a database. The determination of the cleaving quality may be determined based on some evaluation index, and is not particularly limited. For example, a method may be used in which the presence / absence and amount of cracks in the fractured surface are measured and classified into multi-stage ranks based on the measurement results.

割断制御部40は、3次元位相差像生成部30から出力される3次元位相差像(計測値)に基づいて、解析値データベース601及び実験データベース602を参照し、スクライビングホイール200に対する最適な割断条件(最適な荷重、最適な移動速度)を求め、求めた割断条件を用いて、スクライビングホイール200をリアルタイムに制御する。   The cleaving control unit 40 refers to the analysis value database 601 and the experiment database 602 based on the three-dimensional phase difference image (measured value) output from the three-dimensional phase difference image generation unit 30, and performs the optimum cleaving for the scribing wheel 200. Conditions (optimum load, optimum moving speed) are obtained, and the scribing wheel 200 is controlled in real time using the obtained cleaving conditions.

たとえば、3次元位相差像(計測値)と解析値データベース601の中の3次元位相差像(解析値)とを照合し、3次元位相差像(計測値)に最も近似する3次元位相差像(解析値)に関連付けられている割断条件が、現在割断中のガラス201に印加されている割断条件であると推定する。一方、実験データベースを参照することにより、所望の割断品質を得るための所望の割断条件を知ることができる。そこで、割断制御部40は、推定した現在の割断条件を、所望の割断条件に近づけるべく、割断条件を修正し、修正した割断条件をフィードバックしてスクライビングホイール200を制御する。3次元位相差像(計測値)は高い時間分解能で得られるため、フードバックループを短時間で回すことができ、最適な割断条件(最適な荷重、最適な移動速度)に短時間で到達させることができる。また、割断条件が最適な状態からずれた場合にも、短時間で最適な状態に復帰させることができる。   For example, the three-dimensional phase difference image (measurement value) is compared with the three-dimensional phase difference image (analysis value) in the analysis value database 601, and the three-dimensional phase difference closest to the three-dimensional phase difference image (measurement value) is obtained. The cleaving condition associated with the image (analysis value) is estimated to be the cleaving condition applied to the glass 201 that is currently being cleaved. On the other hand, by referring to the experimental database, it is possible to know a desired cleaving condition for obtaining a desired cleaving quality. Therefore, the cleaving control unit 40 corrects the cleaving condition so as to bring the estimated current cleaving condition closer to the desired cleaving condition, and controls the scribing wheel 200 by feeding back the corrected cleaving condition. Since the three-dimensional phase difference image (measurement value) can be obtained with high time resolution, the hood back loop can be turned in a short time, and the optimum cleaving condition (the optimum load and the optimum moving speed) can be reached in a short time. be able to. Even when the cleaving condition deviates from the optimum state, it can be restored to the optimum state in a short time.

上述したデータベースに基づく制御方法は、あくまで一例であってこれに限定されるものではなく、データベースに基づく制御方法として、種々の最適化手法を取り得る。   The above-described control method based on the database is merely an example and is not limited to this, and various optimization methods can be taken as the control method based on the database.

また、撮像方向を1方向のみとし、1台の偏光高速イメージセンサから生成される2次元の位相差像(計測値)とデータベースとを用いた制御方向も考えられる。この場合、有限要素法に基づいて算出された3次元位相差像(解析値)を、上記1つの撮像方向に積分して、2次元位相差像(解析値)を求め、この2次元位相差像(解析値)を解析値データベースとして保有しておけばよい。   A control direction using a two-dimensional phase difference image (measured value) generated from one polarization high-speed image sensor and a database is also conceivable with only one imaging direction. In this case, a three-dimensional phase difference image (analysis value) calculated based on the finite element method is integrated in the one imaging direction to obtain a two-dimensional phase difference image (analysis value). An image (analysis value) may be held as an analysis value database.

この他、データベースを用いることなく、2次元位相差像(計測値)、或いは3次元位相差像(計測値)の挙動のみに基づく制御方法も考えられる。例えば、2次元位相差像(計測値)、或いは3次元位相差像(計測値)内の特定点や特定線分上の観測位相差δと、所定の閾値とを比較し、観測位相差δが閾値を超えたときに、これを引き戻して閾値内に入るように、スクライビングホイール200の印加荷重や位相速度を制御するようにしてもよい。   In addition, a control method based only on the behavior of a two-dimensional phase difference image (measurement value) or a three-dimensional phase difference image (measurement value) without using a database is also conceivable. For example, a two-dimensional phase difference image (measurement value) or a specific point in a three-dimensional phase difference image (measurement value) or an observation phase difference δ on a specific line segment is compared with a predetermined threshold, and the observation phase difference δ When the value exceeds the threshold value, the applied load and the phase speed of the scribing wheel 200 may be controlled so as to return the value to fall within the threshold value.

また、ここまでは、割断手段として、スクライビングホイール200を例に挙げて説明してきたが、レーザ光を用いた割断手段に対しても同様の方法で制御することができる。この場合、レーザ光の強度や、レーザ光源の移動速度が制御対象となる。   So far, the scribing wheel 200 has been described as an example of the cleaving means, but the cleaving means using laser light can be controlled in the same manner. In this case, the intensity of the laser light and the moving speed of the laser light source are controlled.

また、ここまでは、割断対象としての硬脆材料がガラス201であるとして説明してきたが、これに限らず、SiC等のウェハ材料のダイシングにも適用することができる。   In the above description, the hard and brittle material to be cleaved has been described as being glass 201. However, the present invention is not limited to this, and the present invention can be applied to dicing of a wafer material such as SiC.

以上説明してきたように、実施形態に係る割断品質計測制御装置1及び割断品質計測制御方法によれば、スクライビングホイールやレーザ光等の割断加工の制御対象を適切に自動制御し、高品質の割断面を得ることができる。   As described above, according to the cleaving quality measurement control device 1 and the cleaving quality measurement control method according to the embodiment, the control target of cleaving processing such as a scribing wheel and a laser beam is appropriately automatically controlled, and a high quality cleaving control is performed. A cross section can be obtained.

なお、本発明は上記の実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements over different embodiments may be appropriately combined.

1 割断品質計測制御装置
10、20 偏光高速イメージセンサ
30 3次元位相差像生成部
40 割断制御部
50 記憶部
60 解析値/実験データベース
200 スクライビングホイール
201 ガラス
DESCRIPTION OF SYMBOLS 1 Cleaving quality measurement control apparatus 10, 20 Polarization high-speed image sensor 30 Three-dimensional phase difference image generation part 40 Cleavage control part 50 Storage part 60 Analytical value / experiment database 200 Scribing wheel 201 Glass

Claims (4)

所定の割断手段を制御して、硬脆材料を割断する割断品質計測制御装置において、
前記硬脆材料の割断中に、前記硬脆材料の偏光特性の空間分布を高速かつリアルタイムで計測する偏光高速イメージセンサと、
前記硬脆材料に対する割断条件と、前記硬脆材料の偏光特性の空間分布とが関係付けられたデータベース、を記憶する記憶部と、
前記偏光高速イメージセンサで計測された前記偏光特性の空間分布に基づいて前記データベースを参照することによって、前記割断手段に対する最適な割断条件を求め、求めた前記割断条件を用いて前記割断手段をリアルタイムで制御する割断制御部と、
を備えたことを特徴とする割断品質計測制御装置。
In the cleaving quality measurement control device for controlling a predetermined cleaving means to cleave a hard and brittle material,
A polarization high-speed image sensor that measures the spatial distribution of the polarization characteristics of the hard and brittle material at high speed and in real time during the cleaving of the hard and brittle material;
A storage unit for storing a cleaving condition for the hard and brittle material and a database in which a spatial distribution of polarization characteristics of the hard and brittle material is related,
By referring to the database based on the spatial distribution of the polarization characteristics measured by the polarization high-speed image sensor, an optimum cleaving condition for the cleaving means is obtained, and the cleaving means is determined in real time using the cleaving condition obtained. A cleaving control unit controlled by
A cleaving quality measurement control device characterized by comprising:
前記硬脆材料はガラスであり、
前記割断手段は前記ガラスを割断するスクライビングホイールであり、
前記割断条件は、前記スクライビングホイールの速度、及び前記ガラスに対する前記スクライビングホイールの印加荷重であり、
前記割断制御部は、前記スクライビングホイールの速度、及び前記ガラスに対する前記スクライビングホイールの印加荷重をリアルタイムに制御する、
ことを特徴とする請求項1に記載の割断品質計測制御装置。
The hard and brittle material is glass;
The cleaving means is a scribing wheel that cleaves the glass,
The cleaving condition is the speed of the scribing wheel and the applied load of the scribing wheel to the glass,
The cleaving control unit controls the speed of the scribing wheel and the applied load of the scribing wheel on the glass in real time.
The cleaving quality measurement control apparatus according to claim 1.
前記偏光特性は、偏光の直交2方向成分間の位相差であり、
前記偏光特性の空間分布は、前記位相差の3次元分布である、
ことを特徴とする請求項1又は2に記載の割断品質計測制御装置。
The polarization characteristic is a phase difference between orthogonal two-direction components of polarized light,
The spatial distribution of the polarization characteristics is a three-dimensional distribution of the phase difference.
The cleaving quality measurement control device according to claim 1 or 2.
所定の割断手段を制御して、硬脆材料を割断する割断品質計測制御方法において、
前記硬脆材料の割断中に、偏光高速イメージセンサを用いて前記硬脆材料の偏光特性の空間分布を高速かつリアルタイムで計測し、
前記硬脆材料に対する割断条件と、前記硬脆材料の偏光特性の空間分布とが関係付けられたデータベースを、前記偏光高速イメージセンサで計測された前記偏光特性の空間分布に基づいて参照し、前記割断手段に対する最適な割断条件を求め、
求めた前記割断条件を用いて前記割断手段をリアルタイムで制御する、
ことを特徴とする割断品質計測制御方法。
In the cleaving quality measurement control method for cleaving hard and brittle materials by controlling a predetermined cleaving means,
During the cleaving of the hard and brittle material, the polarization high-speed image sensor is used to measure the spatial distribution of the polarization characteristics of the hard and brittle material at high speed and in real time.
A database in which the cleaving condition for the hard and brittle material and the spatial distribution of the polarization characteristics of the hard and brittle material are referred to based on the spatial distribution of the polarization characteristics measured by the polarization high-speed image sensor, and Find the optimal cleaving condition for the cleaving means
Control the cleaving means in real time using the obtained cleaving condition,
A cleaving quality measurement control method characterized by the above.
JP2014039115A 2014-02-28 2014-02-28 Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method Pending JP2015161675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039115A JP2015161675A (en) 2014-02-28 2014-02-28 Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039115A JP2015161675A (en) 2014-02-28 2014-02-28 Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method

Publications (1)

Publication Number Publication Date
JP2015161675A true JP2015161675A (en) 2015-09-07

Family

ID=54184842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039115A Pending JP2015161675A (en) 2014-02-28 2014-02-28 Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method

Country Status (1)

Country Link
JP (1) JP2015161675A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021616A (en) * 2015-07-15 2015-11-04 中国石油大学(华东) High-speed cutting deformation field transient measurement device and application method thereof
JP2017125770A (en) * 2016-01-14 2017-07-20 株式会社ディスコ Stress inspection device
CN112318752A (en) * 2020-11-11 2021-02-05 银川隆基光伏科技有限公司 Silicon rod cutting system
WO2023248459A1 (en) * 2022-06-24 2023-12-28 株式会社ニコン Microscope device and data generation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021616A (en) * 2015-07-15 2015-11-04 中国石油大学(华东) High-speed cutting deformation field transient measurement device and application method thereof
CN105021616B (en) * 2015-07-15 2016-08-17 中国石油大学(华东) A kind of high-speed cutting deformation field instantaneous measurement device and using method
CN106018150A (en) * 2015-07-15 2016-10-12 中国石油大学(华东) Using method of high-speed cutting deformation field transient measurement device
JP2017125770A (en) * 2016-01-14 2017-07-20 株式会社ディスコ Stress inspection device
CN112318752A (en) * 2020-11-11 2021-02-05 银川隆基光伏科技有限公司 Silicon rod cutting system
WO2023248459A1 (en) * 2022-06-24 2023-12-28 株式会社ニコン Microscope device and data generation method

Similar Documents

Publication Publication Date Title
JP5914455B2 (en) System and method for polarimetry
US10371668B2 (en) Apparatus and methods for probing a material as a function of depth using depth-dependent second harmonic generation
JP2015161675A (en) Scribe surface quality measuring and controlling device and scribe surface quality measuring and controlling method
JP5582515B2 (en) Glass plate manufacturing method and glass plate strain measuring apparatus
US11309191B2 (en) Method for modifying substrates based on crystal lattice dislocation density
KR101903248B1 (en) Polarization inspection device
CN104792798A (en) Total internal reflection illumination technology-based subsurface damage measuring apparatus and method thereof
US9658150B2 (en) System and method for semiconductor wafer inspection and metrology
US20140210946A1 (en) Non-destructive inspection apparatus and method for toughened composite materials
JPWO2006051766A1 (en) Optical measurement evaluation method and optical measurement evaluation apparatus
US8976360B2 (en) Surface plasmon sensor and method of measuring refractive index
TWI429877B (en) Photoelastic measuring method and apparatus
Huang et al. Anisotropic imaging for the highly efficient crystal orientation determination of two-dimensional materials
JP2016533496A5 (en)
US9857319B2 (en) Method of measuring depth of damage of wafer
JP5873742B2 (en) Laser processing equipment
JP5825635B2 (en) Optical measuring apparatus and optical measuring method
Wong et al. Direct measurement of negative optical Goos-Hänchen shift from photonic crystal
Zhang et al. Precise Identification of Principal Stress Directions Induced in Laser Cleaving Process
CN112219096A (en) Method and system for measuring optical shear of a birefringent device beyond the diffraction limit
KR20150101110A (en) Amorphous Silicon Thin Film Crystallizing Method and Silicon Thin Film Crystallizing Duplicate Monitoring System for the same
Mandal et al. Dynamic shear stress evaluation on micro-turning tool using photoelasticity
JP6940552B2 (en) Article inspection equipment and article inspection method
KR101113109B1 (en) Apparatus for measuring of aligning state of alignment layer and method for measuring tht same
TWI472715B (en) An interferometric configuration based of synchronous measurement of dynamic surface profile