JP2015160868A - Carbon dioxide dissolved liquid fuel - Google Patents
Carbon dioxide dissolved liquid fuel Download PDFInfo
- Publication number
- JP2015160868A JP2015160868A JP2014035420A JP2014035420A JP2015160868A JP 2015160868 A JP2015160868 A JP 2015160868A JP 2014035420 A JP2014035420 A JP 2014035420A JP 2014035420 A JP2014035420 A JP 2014035420A JP 2015160868 A JP2015160868 A JP 2015160868A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- liquid fuel
- fuel
- dissolved
- dissolved liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
本発明は、炭酸ガスを液体燃料中に導入して溶解させることにより、燃費が向上するように改質された炭酸ガス溶解液体燃料に関する。 The present invention relates to a carbon dioxide-dissolved liquid fuel that has been modified to improve fuel efficiency by introducing and dissolving carbon dioxide gas into the liquid fuel.
本出願人は、エンジンの燃焼を促進させることにより、出力の増加、エンジンの低燃費化、ならびにエンジンから排出される有害汚染物質の低減を同時に達成することができるようにするため、エジェクター式の微細流体発生装置により気体及び/又は液体の流体を微細化して液体燃料中に混入することができる微細流体混入液体燃料の製造装置を提案した(特許文献1参照)。 The Applicant has developed an ejector-type system to increase engine output, reduce fuel consumption, and reduce harmful pollutants emitted from the engine at the same time by promoting engine combustion. An apparatus for producing a microfluidic mixed liquid fuel has been proposed (see Patent Document 1) in which a gas and / or liquid fluid can be refined by a microfluidic generator and mixed into the liquid fuel.
前記特許文献1に記載された製造装置は、液体燃料中に微細流体を混入分散させた微細流体混入液体燃料の製造装置において、液体燃料中に微細流体のマイクロバブルを混入分散させるエジェクター式の微細流体発生装置と、液体燃料を加圧して前記エジェクター式の微細流体発生装置へ送液するポンプを備え、前記エジェクター式の微細流体発生装置がポンプで加圧された液体燃料を導入する複数本の液体燃料流路とともに液体燃料に混入させる混入流体を導入する混入流体導入流路と、液体燃料流路から吐出する液体燃料中に混入流体導入流路から吐出する混入流体をマイクロバブルに微細化し分散させる液体燃料誘導溝を有する微細流体発生空間および微細流体発生空間で発生した微細流体を混合する微細流体混合室を有する製造装置である。
The manufacturing apparatus described in
前記製造装置に適用可能な液体燃料は、自動車、船舶、動力機械、発電機等のディーゼルエンジン用の軽油、バイオディーゼル油(BDF)、自動車、小型船舶、発電等のガソリンエンジン用のガソリン、さらに暖房、大型船舶、発電のボイラー用の重油、自動車、発電のエタノールエンジン用のエタノールや航空機用の灯油などである。 Liquid fuels applicable to the production apparatus include diesel oil for diesel engines such as automobiles, ships, power machines, and generators, biodiesel oil (BDF), gasoline for gasoline engines such as automobiles, small ships, and power generation, and Heavy oil for heating, large ships, power generation boilers, automobiles, ethanol for power generation ethanol engines, and kerosene for aircraft.
液体燃料に微細化して混入させる混入流体として、気体には空気、酸素、オゾン又は水素、液体として水、液体燃料以外の燃料油が挙げられまた、液体燃料に気体および液体を共に微細化して混入することもできる。 Examples of mixed fluids to be finely mixed with liquid fuel include air, oxygen, ozone or hydrogen, water as water, and fuel oil other than liquid fuel. Also, liquid fuel is mixed with gas and liquid. You can also
しかしながら、エンジンの燃費性能が向上するにつれて、前記特許文献1に記載された従来の微細流体混入液体燃料では、大幅な燃費の向上が得られなくなった。
However, as the fuel efficiency of the engine is improved, the conventional microfluid-mixed liquid fuel described in
そこで、本発明は、前記従来の微細流体混入液体燃料よりも更に燃費を向上させた炭酸ガス溶解液体燃料を提供することにある。 SUMMARY OF THE INVENTION Accordingly, the present invention is to provide a carbon dioxide-dissolved liquid fuel that has further improved fuel efficiency compared to the conventional microfluid-mixed liquid fuel.
本願請求項1の発明は、大気中の炭酸ガス濃度は0.04%と極めて低いことから、液体燃料中に純粋な炭酸ガスを導入して溶解させた炭酸ガス溶解液体燃料である。なお、本発明において、純粋な炭酸ガスは、炭酸ガスボンベに充填されている、99.5%以上純度の炭酸ガスである。
The invention of
本願請求項2の発明は、エジェクター式の微細流体発生装置で液体燃料中に純粋な炭酸ガスが導入されて溶解した炭酸ガス溶解液体燃料が溜められるとともに、前記エジェクター式の微細流体発生装置へ送液して循環させる炭酸ガス液体燃料貯留タンクで得られた炭酸ガス溶解液体燃料である。
The invention of
本発明の炭酸ガス溶解液体燃料は、各種エンジンに利用することが可能であり、自動車、船舶、動力機械、発電機等のディーゼルエンジン用の軽油、バイオディーゼル油(BDF)、自動車、小型船舶、発電等のガソリンエンジン用のガソリン、さらに暖房、大型船舶、発電のボイラー用の重油、自動車、発電のエタノールエンジン用のエタノールや航空機用の灯油などに純粋な炭酸ガスを溶解させて燃費を向上させることが可能となる。 The carbon dioxide-dissolved liquid fuel of the present invention can be used for various engines, such as light oil for diesel engines such as automobiles, ships, power machines, and generators, biodiesel oil (BDF), automobiles, small ships, Improve fuel economy by dissolving pure carbon dioxide in gasoline for power generation and other gasoline engines, fuel oil for heating, large ships, power generation boilers, automobiles, ethanol for power generation ethanol engines, and kerosene for aircraft. It becomes possible.
なお、空気中には二酸化炭素が0.04%含まれているものの、空気を液体燃料に混入させても燃費の向上はさほど期待できず、本発明は空気中の炭酸ガスを溶解させた時より、より多くの量の炭酸ガスを溶解させる必要がある。 Although the air contains 0.04% carbon dioxide, even if air is mixed into the liquid fuel, improvement in fuel efficiency cannot be expected so much, and the present invention is effective when carbon dioxide in the air is dissolved. It is necessary to dissolve a larger amount of carbon dioxide gas.
本発明は、ボンベを使用して純粋な炭酸ガスを液体燃料に混入し溶解させてエンジンの燃焼を促進させることにより、燃費を向上させることができた。 In the present invention, pure carbon dioxide gas is mixed into a liquid fuel and dissolved using a cylinder to promote engine combustion, thereby improving fuel efficiency.
図1において、燃料タンクより送られた液体燃料は、燃料導入管1より燃料ポンプ11に直接送られる。燃料ポンプ11が送液を開始しエンジンが始動すると、燃料はエジェクター式の微細流体発生装置6へ送られ、微細流体発生装置6において炭酸ガスボンベから炭酸ガスが導入され、燃料中に炭酸ガスが溶解した炭酸ガス溶解液体燃料となり、送液管10を通してエンジンへと送られる。
In FIG. 1, the liquid fuel sent from the fuel tank is sent directly to the fuel pump 11 through the
図2において、微細流体発生装置6は、燃料ポンプ11で加圧された液体燃料を導入する液体燃料流路21とともに炭酸ガスを導入する炭酸ガス導入孔23aを備えた炭酸ガス導入流路23と、液体燃料中に炭酸ガスを微細化し溶解させる微細流体発生空間22aおよび微細流体混合室22を有する。なお、5は配管である。
In FIG. 2, the
液体燃料流入孔21aと微細流体発生空間22aとは、複数本(この場合は3本)の液体燃料流路21で連通しており、微細流体発生空間22aは、液体燃料流路21に交わる形で設けられた液体燃料誘導溝21cを有している。液体燃料誘導溝21cを設けることにより、液体燃料流出孔21bから微細流体発生空間22aに吐出された液体は、炭酸ガス導入孔23aを有する吐出面にキャビテーションを伴う剥離域が発生することで、導入した炭酸ガスを効率的に溶解することができる。
The liquid fuel inflow hole 21 a and the fine
炭酸ガス導入孔23aと、微細流体発生装置6の側面に接続される炭酸ガス導入管9 は、微細流体発生装置6内に設けられる炭酸ガス導入流路23によって連通し、炭酸ガス の導入量は炭酸ガス導入管9に設けられ炭酸ガス導入量調整弁8により自在に調整することができる。なお、7は逆止弁である。
The carbon dioxide introduction hole 23a and the carbon
<実施例>
図3において、燃料タンクから導かれた燃料を炭酸ガス溶解液体燃料貯留タンク3に循環させながら炭酸ガス溶解液体燃料3aを生成することができる。
<Example>
In FIG. 3, the carbon dioxide-dissolved liquid fuel 3 a can be generated while circulating the fuel guided from the fuel tank to the carbon dioxide-dissolved liquid
燃料タンクより送られた燃料は、燃料導入管1より炭酸ガス溶解液体燃料貯留タンク3 へ送られる。この時、炭酸ガス溶解液体燃料貯留タンク3の液面は、定水位弁2によって一定に保たれる。燃料ポンプ11が送液を開始しエンジンが始動すると、炭酸ガス溶解液 体燃料貯留タンク3の燃料は循環ポンプ4によりエジェクター式の微細流体発生装置6へ 送られ、微細流体発生装置6において炭酸ガスが導入され、燃料中に炭酸ガスが溶解した炭酸ガス溶解液体燃料3aを生成し、炭酸ガス溶解液体燃料貯留タンク3へ吐出される。
The fuel sent from the fuel tank is sent from the
炭酸ガス溶解液体燃料貯留タンク3の炭酸ガス溶解液体燃料3aは、循環ポンプ4およ び微細流体発生装置6により循環しているので、炭酸ガスの混入量を容易に増やすことができ、生成された炭酸ガス液体燃料3aは、燃料ポンプ11によって、エンジンへ送られる。微細流体発生装置6には、炭酸ガス導入管9が接続され、逆止弁7、混入流体導入量調整弁8が設けられる。
Since the carbon dioxide-dissolved liquid fuel 3a in the carbon dioxide-dissolved liquid
<実験装置>
表1に供試機関の仕様を示す。
<Experimental equipment>
Table 1 shows the specifications of the test organization.
<実験条件>
実験条件は、次のとおりである。
燃料:JIS2号軽油
燃料循環ポンプ圧力:0.31 MPa
燃料循環ポンプ供給量:0.7 L/min
炭酸ガス供給量:17cm3/min
エンジン回転速度 1800rpm
炭酸ガス溶解液体燃料貯留タンク容量
縦48mm×横118mm×深さ112mm 容量0.68L
炭酸ガス純度:炭酸ガスボンベ(純度99.5%)
負荷を100kPaおきに500kPaまで計測
<Experimental conditions>
The experimental conditions are as follows.
Fuel: JIS No. 2 diesel oil Fuel circulation pump pressure: 0.31 MPa
Fuel circulation pump supply: 0.7 L / min
Carbon dioxide supply rate: 17 cm 3 / min
Engine speed 1800rpm
Carbon dioxide dissolved liquid fuel storage tank capacity 48mm long x 118mm wide x 112mm deep capacity 0.68L
Carbon dioxide purity: Carbon dioxide cylinder (purity 99.5%)
Measure load up to 500 kPa every 100 kPa
<実験結果>
実験結果は、図4及び表2のとおりである。
<Experimental result>
The experimental results are as shown in FIG.
表1、表2から、最大燃料消費量の7倍以上の燃料循環ポンプを使い、燃料循環量に対し約2.4%の純粋な炭酸ガスを供給した炭酸ガス溶解液体燃料で燃費が向上することが確認された。空気中の二酸化炭素の濃度は0.04%であるが、本試験においては、空気を混入させても燃費の向上は期待できないので、使用する炭酸ガス濃度は、空気中に含まれる炭酸ガス濃度を超える量が必要であることを確認することができた。 From Tables 1 and 2, fuel consumption is improved with a carbon dioxide-dissolved liquid fuel that uses a fuel circulation pump that is more than seven times the maximum fuel consumption and supplies approximately 2.4% pure carbon dioxide to the fuel circulation. It was confirmed. The concentration of carbon dioxide in the air is 0.04%, but in this test, improvement in fuel efficiency cannot be expected even if air is mixed in. Therefore, the carbon dioxide concentration used is the concentration of carbon dioxide contained in the air. It was possible to confirm that an amount in excess of was required.
本発明において、炭酸ガスを液体燃料に溶解させることにより燃費性能が向上する。しかしながらそのメカニズムについては不明であるが、次のことが推論される。すなわち、炭酸ガスが溶解した液体燃料が燃焼室に噴射されると、噴射された燃料は溶解した炭酸ガスが瞬時に析出するため微粒化が促進する。これにより、燃料と空気の接触する単位体積当たりの比表面積が増大するため燃焼時間が短縮され燃費性能が向上すると考えられる。 In the present invention, the fuel efficiency is improved by dissolving carbon dioxide gas in the liquid fuel. However, although the mechanism is unknown, the following is inferred. That is, when liquid fuel in which carbon dioxide gas is dissolved is injected into the combustion chamber, atomization of the injected fuel is facilitated because the dissolved carbon dioxide is instantly deposited. As a result, the specific surface area per unit volume where the fuel and air are in contact with each other increases, so that the combustion time is shortened and the fuel efficiency is improved.
したがって、溶解させる炭酸ガスとしては、必ずしも純粋な炭酸ガスを使う必要はなく、空気より二酸化炭素濃度が高いガス、例えば内燃機関で使用されているEGR(排気再循環)ガスを使用することも可能である。また、炭酸ガスに限らず、液体燃料に対して溶解度の高いガスであれば可燃性、不燃性を問わず内燃機関に腐食等の不具合を及ぼす問題が生じなければ使う事が可能である。 Therefore, it is not always necessary to use pure carbon dioxide as the carbon dioxide to be dissolved, and it is also possible to use gas having a higher carbon dioxide concentration than air, for example, EGR (exhaust gas recirculation) gas used in internal combustion engines. It is. In addition to carbon dioxide gas, any gas that has high solubility in liquid fuel can be used as long as it does not cause problems such as corrosion in the internal combustion engine regardless of flammability or nonflammability.
1:燃料導入管
2:定水位弁
3:炭酸ガス溶解液体燃料貯留タンク
3a:炭酸ガス溶解液体燃料
4:循環ポンプ
5:配管
6:微細流体発生装置
7:逆止弁
8:炭酸ガス導入量調整弁
9:炭酸ガス導入管
10:送液管
11:燃料ポンプ
21:液体燃料流路
21a:液体燃料流入孔
21b:液体燃料流出孔
21c:液体燃料誘導溝
22:微細流体混合室
22a:微細流体発生空間
23:炭酸ガス導入流路
23a:炭酸ガス導入孔
1: Fuel introduction pipe 2: Constant water level valve 3: Carbon dioxide dissolved liquid fuel storage tank 3a: Carbon dioxide dissolved liquid fuel tank 4: Circulation pump 5: Piping 6: Fine fluid generator 7: Check valve 8: Carbon dioxide introduction amount Adjustment valve 9: Carbon dioxide introduction pipe 10: Liquid supply pipe 11: Fuel pump 21: Liquid fuel flow path 21a: Liquid
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014035420A JP2015160868A (en) | 2014-02-26 | 2014-02-26 | Carbon dioxide dissolved liquid fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014035420A JP2015160868A (en) | 2014-02-26 | 2014-02-26 | Carbon dioxide dissolved liquid fuel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015160868A true JP2015160868A (en) | 2015-09-07 |
Family
ID=54184208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014035420A Pending JP2015160868A (en) | 2014-02-26 | 2014-02-26 | Carbon dioxide dissolved liquid fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015160868A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU180161U1 (en) * | 2017-07-19 | 2018-06-05 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Военная академия Ракетных войск стратегического назначения имени Петра Великого МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ | DIESEL FUEL SUPPLY SYSTEM |
-
2014
- 2014-02-26 JP JP2014035420A patent/JP2015160868A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU180161U1 (en) * | 2017-07-19 | 2018-06-05 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Военная академия Ракетных войск стратегического назначения имени Петра Великого МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ | DIESEL FUEL SUPPLY SYSTEM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5124145B2 (en) | Production equipment for fine fluid mixed liquid fuel | |
JP6232543B2 (en) | Gas-liquid mixed fuel production equipment | |
JP2019521284A (en) | Hydrogenated liquid fuel generation and high pressure fuel injection system for gasoline and diesel combustion engines | |
JP4733711B2 (en) | Mixed fuel supply device and mixed fuel supply method | |
JP2018044549A (en) | HHO gas mixed liquid fuel supply device | |
JP5021550B2 (en) | Emulsion production equipment | |
JP2015160868A (en) | Carbon dioxide dissolved liquid fuel | |
JP2016112477A (en) | Microbubble generator | |
RU143472U1 (en) | DEVICE FOR PREPARING A WATER-FUEL EMULSION | |
JP2014129805A (en) | Hho gas supply device for internal combustion engine | |
RU2007139864A (en) | SYSTEM FOR PREPARING AND SUBMITTING WATER-FUEL EMULSION TO THE INTERNAL COMBUSTION ENGINE | |
KR101864789B1 (en) | Manufacturing apparatus for high-efficiency hybrid fuel with nano gas bubble and manufacturing method using thereof | |
WO2012115048A1 (en) | Mixed fuel generation method, mixed fuel generation device and fuel supply device | |
KR20200074499A (en) | Manufacturing of mixed fuel by dissolving gas produced by electrolysis of water in the form of a microbubble in liquid fuel | |
JP2009257175A (en) | Fuel injection device | |
WO2019180796A1 (en) | Hho gas-mixed liquid fuel supply device and method for manufacturing hho gas-mixed liquid fuel | |
KR101527152B1 (en) | Engine system for oil tank ship | |
JP5119409B2 (en) | Fuel supply device | |
JP2015075091A (en) | Gas-liquid mixture fuel manufacturing device | |
JP2014051901A (en) | Fuel supply system | |
RU2013142717A (en) | METHOD FOR OPERATION OF OXYGEN-KEROSIN LIQUID ROCKET ENGINES (LRE) AND ROCKET ENGINE INSTALLATION | |
KR20150112467A (en) | Brown gas supply apparatus | |
JP2010065653A (en) | Mixer for fuel supply device | |
WO2024204179A1 (en) | Internal combustion engine | |
JP7465985B2 (en) | Fuel Reformer |