JP2015160161A - Method and installation for treating salt solution - Google Patents

Method and installation for treating salt solution Download PDF

Info

Publication number
JP2015160161A
JP2015160161A JP2014035764A JP2014035764A JP2015160161A JP 2015160161 A JP2015160161 A JP 2015160161A JP 2014035764 A JP2014035764 A JP 2014035764A JP 2014035764 A JP2014035764 A JP 2014035764A JP 2015160161 A JP2015160161 A JP 2015160161A
Authority
JP
Japan
Prior art keywords
conductive particles
salt
positive
negative
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014035764A
Other languages
Japanese (ja)
Other versions
JP6278738B2 (en
Inventor
浩二 黒木
Koji Kuroki
浩二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014035764A priority Critical patent/JP6278738B2/en
Publication of JP2015160161A publication Critical patent/JP2015160161A/en
Application granted granted Critical
Publication of JP6278738B2 publication Critical patent/JP6278738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating a salt solution, which enables a treatment of the salt solution to be conducted continuously and is easy to operate, and to provide an installation for treating the salt solution using the treatment method.SOLUTION: The method for treating a salt solution comprises: an electrification step of obtaining positively charged conductive particles and at the same time negatively charged conductive particles from conductive particles by using a slurry of conductive particles; an adsorption step where ions are adsorbed by both of the particles, including an anion adsorption step of obtaining conductive particles having anions adsorbed and a cation adsorption step of obtaining conductive particles having cations adsorbed, the two steps being conducted in order; and an ion separation step where a slurry containing the conductive particles having anions adsorbed and a slurry containing the conductive particles having cations adsorbed are mixed to neutralize the negatively charged conductive ions and the positively charged conductive ions and, at the same time, make the cations and anions which are in adsorbed states are desorbed from the conductive particles, and separating the desorbed ions from the slurry containing the conductive particles.

Description

本発明は、例えば、塩水といった、塩が溶解した塩溶液を電気的に処理する処理方法及び処理設備に関する。   The present invention relates to a treatment method and treatment equipment for electrically treating a salt solution in which a salt is dissolved, for example, salt water.

近年、カチオン交換膜側を正極と、アニオン交換膜側を負極とすることにより、廃水中のイオンをそれぞれの極の吸着材に吸着させ脱塩処理を行う技術が提案されている(特許文献1)。特許文献1に記載の技術は、本明細書の図3に模式的に示すように、脱塩対象の塩溶液(図中、「対象処理液」と記載)が流れる処理路30に、カチオン交換膜31a及びアニオン交換膜31bを介して吸着材の充填部32を設け、正極及び負極に電荷を印加することで、塩の分解により生成している負イオン及び正イオンを、所定部位32に充填されている吸着材33に吸着させて、処理対象の塩溶液から脱塩する技術と言える。この脱塩技術では、吸着材33がイオンで飽和した場合、図3(b)に示すように、電極の極性を逆にすることにより吸着材33に吸着したイオンを脱離させ再生する。
従って、図3(a)で示す運転状態では、処理路30より塩濃度が低下した塩希溶液(図中、「脱塩液」と記載)を得ることができる。図3(b)の状態で、同一の塩溶液を流した場合、塩濃度が上昇した塩濃溶液(図中、「濃縮液」と記載)を得ることとなる。
特許文献1に示す技術を採用することにより、高圧仕様ポンプやポンプ動力などの電気代が不要となり、RO膜処理と比べコストダウンが期待できる。
In recent years, a technique has been proposed in which desalting treatment is performed by adsorbing ions in waste water to adsorbents of each electrode by using the cation exchange membrane side as a positive electrode and the anion exchange membrane side as a negative electrode (Patent Document 1). ). As shown schematically in FIG. 3 of the present specification, the technique described in Patent Document 1 uses a cation exchange in a treatment path 30 through which a salt solution to be desalted (described as “target treatment liquid” in the figure) flows. The adsorbent filling portion 32 is provided via the membrane 31a and the anion exchange membrane 31b, and charges are applied to the positive electrode and the negative electrode, thereby filling the predetermined portion 32 with negative ions and positive ions generated by salt decomposition. It can be said that it is a technique of desalting from the salt solution to be treated by adsorbing the adsorbent 33. In this desalting technique, when the adsorbent 33 is saturated with ions, as shown in FIG. 3B, the ions adsorbed on the adsorbent 33 are desorbed and regenerated by reversing the polarity of the electrodes.
Therefore, in the operation state shown in FIG. 3A, a salt dilute solution (denoted as “demineralized solution” in the figure) having a reduced salt concentration from the treatment path 30 can be obtained. When the same salt solution is flowed in the state of FIG. 3B, a salt concentrated solution (described as “concentrated liquid” in the figure) with an increased salt concentration is obtained.
By adopting the technique shown in Patent Document 1, an electricity bill such as a high-pressure specification pump or pump power becomes unnecessary, and a cost reduction can be expected as compared with the RO membrane treatment.

特許第4135802号公報Japanese Patent No. 4135802

しかしながら、特許文献1においては、技術の作動原理上、吸着材へのイオンの吸着、脱離を基本とするため、再生時に電極極性の切換えを行う必要があり、例えば、塩溶液から塩を除去する脱塩処理と、吸着材の回復を行なう(塩側からみると塩濃度の高い溶液を得る塩濃縮)処理とを、同時に行なうことができない。さらに処理は、脱塩と塩濃縮を異なった時間帯に行なう、所謂、バッチ型の処理となるため、連続的に処理を継続することができない。そのため設備の規模が大きくなる問題が発生する。   However, in Patent Document 1, it is necessary to switch the electrode polarity during regeneration because, for example, the principle of the technology is the adsorption and desorption of ions to the adsorbent. For example, salt is removed from the salt solution. The desalting treatment to be performed and the recovery of the adsorbent (salt concentration to obtain a solution having a high salt concentration when viewed from the salt side) cannot be performed simultaneously. Furthermore, since the treatment is a so-called batch type treatment in which desalting and salt concentration are performed in different time zones, the treatment cannot be continued continuously. Therefore, the problem that the scale of equipment becomes large occurs.

本発明の目的は、塩溶液の処理を連続して行なうことが可能で、運転が容易な塩溶液の処理方法及び、当該処理方法を使用する塩溶液の処理設備を得ることにある。   An object of the present invention is to obtain a salt solution treatment method and a salt solution treatment facility using the treatment method, which are capable of continuously treating the salt solution and are easy to operate.

上記の目的を達成するため、請求項1に係る発明は、
塩溶液を電気的に処理する処理方法であって、
導電性粒子が水に分散されてなる導電性粒子スラリーを使用し、
(a) 前記導電性粒子を正電極を有する正帯電領域に通過させて正帯電導電性粒子を得るとともに、別途、前記導電性粒子を負電極を有する負帯電領域に通過させて負帯電導電性粒子を得る帯電工程と、
(b) 前記帯電工程で得られた正帯電導電性粒子に前記塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子を得る負イオン吸着工程と、前記帯電工程で得られた負帯電導電性粒子に前記塩のイオン化により生成された正イオンを吸着させて正イオン吸着導電性粒子を得る正イオン吸着工程とを、記載順に又は記載とは逆の順番で行う吸着工程と、
(c) 前記負イオン吸着工程を経て生成される負イオン吸着導電性粒子を含むスラリーと、前記正イオン吸着工程を経て生成される正イオン吸着導電性粒子を含むスラリーとを混合して、負帯電導電性粒子と正帯電導電性粒子を中和させるとともに、吸着状態にある正イオン及び負イオンを導電性粒子から脱離させ、脱離されたイオンを導電性粒子を含むスラリーから分離するイオン分離工程と、
(d) 前記イオン分離工程でイオンを分離後の中和済み導電性粒子を含むスラリーを取り出す中和済み導電性粒子スラリー分離工程とを備えたことにある。
In order to achieve the above object, the invention according to claim 1
A treatment method for electrically treating a salt solution,
Using a conductive particle slurry in which conductive particles are dispersed in water,
(A) Passing the conductive particles through a positively charged region having a positive electrode to obtain positively charged conductive particles, and separately passing the conductive particles through a negatively charged region having a negative electrode to obtain negatively charged conductive A charging step to obtain particles;
(B) a negative ion adsorption step of obtaining negative ion-adsorbing conductive particles by adsorbing negative ions generated by ionization of the salt to the positively charged conductive particles obtained in the charging step; and obtained in the charging step. A positive ion adsorption step of adsorbing positive ions generated by ionization of the salt to the negatively charged conductive particles to obtain positive ion adsorption conductive particles, in an order of description or in an order opposite to the description, ,
(C) A slurry containing negative ion-adsorbing conductive particles produced through the negative ion adsorption step and a slurry containing positive ion-adsorbing conductive particles produced through the positive ion adsorption step are mixed, and negative Ions that neutralize the charged conductive particles and positively charged conductive particles, desorb positive ions and negative ions in the adsorbed state from the conductive particles, and separate the desorbed ions from the slurry containing the conductive particles A separation process;
(D) A neutralized conductive particle slurry separation step for removing slurry containing neutralized conductive particles after separating ions in the ion separation step.

本願に係る塩溶液を電気的に処理する処理方法にあっては、
導電性粒子が水に分散されてなる導電性粒子スラリーを使用する。
そして、本願では導電性粒子スラリーに含有される導電性粒子を、帯電、イオン吸着、イオン脱離用に働かせて所定の処理を行なわせることとなる。即ち、イオン吸着において塩溶液の脱塩を行うことができ、イオン脱離においては、イオン吸着で処理された塩を回収することができる。
In the treatment method for electrically treating the salt solution according to the present application,
A conductive particle slurry in which conductive particles are dispersed in water is used.
In the present application, the conductive particles contained in the conductive particle slurry are used for charging, ion adsorption, and ion desorption to perform a predetermined treatment. That is, the salt solution can be desalted in ion adsorption, and the salt treated by ion adsorption can be recovered in ion desorption.

さらに詳細には、本願方法にあっては、
(a) 帯電工程において、導電性粒子を正電極を有する正帯電領域に通過させて正帯電導電性粒子を得るとともに、別途、導電性粒子を負電極を有する負帯電領域に通過させて負帯電導電性粒子を得る。
このようにして得られた正帯電導電性粒子及び負帯電導電性粒子を、塩がイオン化した塩希溶液と接触させて、脱塩を行うことができる。即ち、
(b) 吸着工程において、帯電工程で得られた正帯電導電性粒子に前記塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子を得る負イオン吸着工程と、前記帯電工程で得られた負帯電導電性粒子に前記塩のイオン化により生成された正イオンを吸着させて正イオン吸着導電性粒子を得る正イオン吸着工程とを、記載順に又は記載とは逆の順番で行う。
More specifically, in the present method,
(A) In the charging step, the electrically conductive particles are passed through a positively charged region having a positive electrode to obtain positively charged electrically conductive particles, and the electrically conductive particles are separately passed through a negatively charged region having a negative electrode to be negatively charged. Conductive particles are obtained.
The positively charged conductive particles and the negatively charged conductive particles thus obtained can be contacted with a salt dilute solution in which the salt is ionized to perform desalting. That is,
(B) In the adsorption step, a negative ion adsorption step for obtaining negative ion adsorption conductive particles by adsorbing negative ions generated by ionization of the salt to the positively charged conductive particles obtained in the charging step; and the charging step The positive ion adsorption step of adsorbing positive ions generated by ionization of the salt to the negatively charged conductive particles obtained in step 1 to obtain positive ion-adsorbing conductive particles is performed in the order of description or in the reverse order of the description. .

次に、このようにして、イオンを吸着した状態にある導電性粒子スラリーから、正帯電導電性粒子スラリー、負帯電導電性粒子スラリーの混合により、イオンの脱離を行うことができる。即ち、
(c) イオン分離工程において、負イオン吸着工程を経て生成される負イオン吸着導電性粒子を含むスラリーと、正イオン吸着工程を経て生成される正イオン吸着導電性粒子を含むスラリーとを混合して、負帯電導電性粒子と正帯電導電性粒子を中和させるとともに、吸着状態にある正イオン及び負イオンを導電性粒子から脱離させ、脱離されたイオンを導電性粒子を含むスラリーから分離する。
このイオン分離工程の実行に伴って、
(d) 導電性粒子スラリー分離工程で、イオン分離工程でイオンを分離後の中和済み導電性粒子を含むスラリーを取り出す。
即ち、脱塩と塩回収(濃塩)を、同時に別工程で行なえる。
Next, ions can be desorbed by mixing the positively charged conductive particle slurry and the negatively charged conductive particle slurry from the conductive particle slurry that has adsorbed ions in this manner. That is,
(C) In the ion separation step, a slurry containing negative ion adsorption conductive particles generated through the negative ion adsorption step and a slurry containing positive ion adsorption conductive particles generated through the positive ion adsorption step are mixed. The negatively charged conductive particles and the positively charged conductive particles are neutralized, and positive ions and negative ions in the adsorbed state are desorbed from the conductive particles, and the desorbed ions are removed from the slurry containing the conductive particles. To separate.
With the execution of this ion separation process,
(D) In the conductive particle slurry separation step, the slurry containing the neutralized conductive particles after the ions are separated in the ion separation step is taken out.
That is, desalting and salt recovery (concentrated salt) can be performed simultaneously in separate steps.

この処理方法は、導電性粒子スラリー分離工程で、イオン分離工程でイオンを分離後の中和済み導電性粒子を含むスラリーを取り出し、このようにして取り出された中和済み導電性粒子を含むスラリーを分けて帯電工程に戻すことにより、導電性粒子スラリーを循環させて、導電性粒子の連続的な使用をしながら、一定の粒子量で脱塩、塩回収(濃塩)処理を実施できる。   This treatment method is a conductive particle slurry separation step in which a slurry containing neutralized conductive particles after separating ions in the ion separation step is taken out, and the slurry containing neutralized conductive particles thus taken out By separating and returning to the charging step, desalting and salt recovery (concentrated salt) treatment can be performed with a constant amount of particles while circulating the conductive particle slurry and continuously using the conductive particles.

この処理方法の実施は、以下の処理設備において、実現できる。
本願に係る塩溶液を電気的に処理する処理設備は、
導電性粒子が水に分散されてなる導電性粒子スラリーの循環路を備え、
(a) 前記導電性粒子を正電極を有する正帯電領域に通過させて正帯電導電性粒子を得る正帯電処理部(正帯電処理工程を実行)と、前記導電性粒子を負電極を有する負帯電領域に通過させて負帯電導電性粒子を得る負帯電処理部(負帯電処理工程を実行)とを備え、
(b) 前記正帯電処理部で得られた正帯電導電性粒子に前記塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子を得る負イオン吸着部(負イオン吸着工程を実行)と、前記負帯電処理部で得られた負帯電導電性粒子に前記塩のイオン化により生成された正イオンを吸着させて正イオン吸着導電性粒子を得る正イオン吸着部(正イオン吸着工程を実行)とを備え、
(c) 処理対象の前記塩を含む溶液を前記負イオン吸着部及び前記正イオン吸着部を、記載順に又は記載とは逆の順番に通過される溶液送り手段を備え、
(d) 前記負イオン吸着部を経て生成される負イオン吸着導電性粒子を含むスラリーと、前記正イオン吸着部を経て生成される正イオン吸着導電性粒子を含むスラリーとが混合される混合部を備えるとともに、
(e) 前記混合部において、負帯電導電性粒子から脱離される正イオン及び前記正帯電導電性粒子から脱離される負イオンを、混合部外に分離・導出するイオン分離導出手段(混合部において、イオン分離工程と導電性粒子分離工程を実行)と、
(f) 前記混合部で中和済み導電性粒子を含むスラリーを取り出し、前記正帯電処理部及び前記負帯電処理部に送りスラリーを循環させるスラリー循環手段(スラリーの循環を実行)とを備える。
Implementation of this processing method can be realized in the following processing equipment.
The treatment equipment for electrically treating the salt solution according to the present application is:
Provided with a conductive particle slurry circulation path in which conductive particles are dispersed in water,
(A) a positive charge processing section (performs a positive charge processing step) for obtaining positively charged conductive particles by passing the conductive particles through a positively charged region having a positive electrode; and a negative charge having a negative electrode. A negative charge processing section (execution of a negative charge processing step) for obtaining negatively charged conductive particles by passing through a charging region;
(B) A negative ion adsorbing unit (negative ion adsorbing step) for obtaining negative ion adsorbing conductive particles by adsorbing negative ions generated by ionization of the salt to the positively charged conductive particles obtained by the positive charging unit. Execution) and a positive ion adsorption unit (positive ion adsorption step) for obtaining positive ion adsorption conductive particles by adsorbing positive ions generated by ionization of the salt to the negatively charged conductive particles obtained in the negative charge processing unit Run)
(C) a solution feeding means for passing the negative ion adsorbing unit and the positive ion adsorbing unit through the solution containing the salt to be treated in the order of description or in the reverse order of the description;
(D) A mixing unit in which a slurry containing negative ion adsorption conductive particles generated through the negative ion adsorption unit and a slurry containing positive ion adsorption conductive particles generated through the positive ion adsorption unit are mixed. With
(E) In the mixing unit, ion separation deriving means (in the mixing unit) for separating and deriving positive ions desorbed from the negatively charged conductive particles and negative ions desorbed from the positively charged conductive particles out of the mixing unit. , Execute ion separation step and conductive particle separation step),
(F) The slurry containing the neutralized conductive particles is taken out in the mixing unit, and is provided with a slurry circulating means (running slurry circulation) for sending the slurry to the positive charging unit and the negative charging unit.

前記吸着工程では、負イオン吸着工程及び正イオン吸着工程を経て、塩のイオン吸着除去された塩希溶液を得る処理方法を実行することができる。   In the adsorption step, a treatment method for obtaining a salt dilute solution from which salt ions are adsorbed and removed through a negative ion adsorption step and a positive ion adsorption step can be executed.

この目的から、処理設備には、
前記負イオン吸着部及び前記正イオン吸着部を経て、塩のイオンが吸着除去された塩希溶液が導かれる塩希溶液路を備えておけばよい。
For this purpose, the processing equipment includes
A salt dilute solution path through which a salt dilute solution from which salt ions have been adsorbed and removed through the negative ion adsorbing unit and the positive ion adsorbing unit may be provided.

さらに、前記イオン分離工程を経て、前記スラリーから脱離された正イオン及び負イオンを溶液内で混合して塩濃溶液を得る処理方法を実行することができる。   Furthermore, it is possible to carry out a processing method for obtaining a salt-concentrated solution by mixing positive ions and negative ions desorbed from the slurry through the ion separation step in the solution.

この目的から、処理設備には、
前記混合部を経て、前記スラリーから脱離された正イオン及び負イオンを溶液内で混合して生成される塩濃溶液が導かれる塩濃溶液路を備えておけばよい。
For this purpose, the processing equipment includes
A salt concentrated solution path through which a salt concentrated solution generated by mixing positive ions and negative ions desorbed from the slurry in the solution through the mixing unit may be provided.

結果、脱塩処理及び濃塩処理を同時的に行なうことが可能となり、
更に、導電性粒子スラリーを中和させた状態で、個別に取り分け、工程を循環させると連続操作が可能となる。また、このシステムでは電極面積を小さくすることができる
さらに、導電性粒子が劣化した場合に、その交換を、循環路からの分離、追加の形態でおこなうことができ交換が容易となる。
As a result, it becomes possible to perform desalting treatment and concentrated salt treatment simultaneously,
Furthermore, continuous operation is possible when the conductive particle slurry is individually neutralized and the process is circulated. Further, in this system, the electrode area can be reduced. Further, when the conductive particles deteriorate, the replacement can be performed by separating from the circulation path and in an additional form, thereby facilitating the replacement.

本願に係る連続式脱塩設備の構成模式図Schematic diagram of a continuous desalination facility according to the present application イオン吸着部に於ける滞留時間(印加時間)とイオン除去率の関係を示す図A graph showing the relationship between residence time (application time) and ion removal rate in the ion adsorption section 従来型の脱塩設備の構成模式図Schematic diagram of conventional desalination equipment

以下、図面に基づいて、本願に係る塩溶液を電気的に処理する技術について説明する。
本願では、例えば、水に塩(NaCl)が溶解した塩水が処理対象液の例となる。
本願に係る技術では、処理対象液から塩を除去する脱塩が主な処理となるが脱塩に伴って塩がイオン状態で回収されるため、後に示すように、一方では、回収された塩による増塩処理も行うこととなる。
以下、本願に係る処理設備、処理方法の順に説明するとともに、引き続いて処理設備の所定部で行なう処理に関して、発明者が行なった実験について説明する。
Hereinafter, a technique for electrically treating a salt solution according to the present application will be described with reference to the drawings.
In the present application, for example, salt water in which salt (NaCl) is dissolved in water is an example of the treatment target liquid.
In the technology according to the present application, desalting that removes salt from the liquid to be treated is the main treatment, but since salt is recovered in an ionic state along with desalting, as shown later, on the other hand, the recovered salt The salt increase treatment by is also performed.
Hereinafter, the processing facility and the processing method according to the present application will be described in this order, and the experiment performed by the inventor regarding the processing performed in a predetermined part of the processing facility will be described.

〔塩溶液の処理設備〕
図1からも判るように、本願に係る塩溶液を電気的に処理する処理設備100は、導電性粒子pが水wに分散されてなる導電性粒子スラリーが循環する循環路1を備え、この循環路1に沿って、以下に説明する各機能部2,3,4を備えて構成されている。この循環路1における導電性粒子スラリーの循環は、循環路に設けられた一対の循環ポンプ5により行われる。
[Salt solution treatment equipment]
As can be seen from FIG. 1, a treatment facility 100 for electrically treating a salt solution according to the present application includes a circulation path 1 through which a conductive particle slurry in which conductive particles p are dispersed in water w circulates. Along the circulation path 1, each functional unit 2, 3, 4 described below is provided. The conductive particle slurry is circulated in the circulation path 1 by a pair of circulation pumps 5 provided in the circulation path.

処理設備100は循環路1の上流側から、対となる帯電処理部2(正帯電処理部2a及び負帯電処理部2b)、対となるイオン吸着部3(負イオン吸着部3a及び正イオン吸着部3b)、混合部4を備えて構成されている。各イオン吸着部3は、図示する例ではイオン吸着槽として構成されている。混合部4には混合槽が備えられている。
図示する実施形態では、負イオン吸着部3a及び正イオン吸着部3bに対して、溶液送り手段である第1溶液ポンプ6を備えた塩希溶液路7を備えるとともに、混合槽である混合部4に対して、イオン分離導出手段としての第2溶液ポンプ8を備えた塩濃溶液路9が備えられている。
From the upstream side of the circulation path 1, the processing facility 100 includes a pair of charging processing units 2 (positive charging processing unit 2 a and negative charging processing unit 2 b) and a pair of ion adsorption units 3 (negative ion adsorption unit 3 a and positive ion adsorption). Part 3 b) and a mixing part 4. Each ion adsorption part 3 is comprised as an ion adsorption tank in the example to show in figure. The mixing unit 4 is provided with a mixing tank.
In the illustrated embodiment, the negative ion adsorbing unit 3a and the positive ion adsorbing unit 3b are provided with a salt dilute solution path 7 provided with a first solution pump 6 serving as a solution feeding means, and a mixing unit 4 serving as a mixing tank. On the other hand, a salt-concentrated solution path 9 including a second solution pump 8 as an ion separation and derivation means is provided.

図示するように、イオン吸着部3には塩希溶液路7を介して、脱塩処理の対象となる塩濃溶液が送り込まれ、負イオン吸着部3a、正イオン吸着部3bを記載順に経て、脱塩処理がされた脱塩水である塩希溶液を得ることができる。   As shown in the drawing, a salt concentrated solution to be desalted is fed into the ion adsorbing unit 3 via a salt dilute solution path 7, and after passing through a negative ion adsorbing unit 3a and a positive ion adsorbing unit 3b, A salt dilute solution that is desalted water subjected to desalting treatment can be obtained.

一方、図示すように、混合部4には塩濃溶液路9を介して、洗浄液(例えば水)が送り込まれ、その混合部4から塩のイオンが導出され、塩濃度(イオン濃度)が増した塩濃溶液を得ることができる。   On the other hand, as shown in the figure, a cleaning liquid (for example, water) is fed into the mixing unit 4 through the salt concentration solution path 9, and salt ions are derived from the mixing unit 4 to increase the salt concentration (ion concentration). A concentrated salt solution can be obtained.

以下、順に各部について説明する。
帯電処理部2(正帯電処理部2a及び負帯電処理部2b)
帯電処理部2は、ともに、内部に導電性粒子スラリーが流れる帯電領域を備えて構成されており、帯電領域に接する状態で電極20がそれぞれ設けられている。
正帯電処理部2aは、正帯電領域に対して電極20を備え、この領域で、導電性粒子pを正の電荷を有する正帯電導電性粒子を得るように構成されている。
負帯電処理部2bは、負帯電領域に対して電極20を備え、この領域で、導電性粒子pを負の電荷を有する負帯電導電性粒子を得るように構成されている。
Hereinafter, each part is demonstrated in order.
Charging processor 2 (positive charging processor 2a and negative charging processor 2b)
Each of the charging processing units 2 is configured to include a charging region through which conductive particle slurry flows, and an electrode 20 is provided in contact with the charging region.
The positive charging processing unit 2a includes an electrode 20 with respect to a positively charged region, and is configured to obtain positively charged conductive particles having a positive charge from the conductive particles p in this region.
The negative charging processing unit 2b includes an electrode 20 with respect to a negatively charged region, and the conductive particle p is configured to obtain negatively charged conductive particles having a negative charge in this region.

イオン吸着部3(負イオン吸着部3a及び正イオン吸着部3b)
イオン吸着部3は、処理対象の塩濃溶液が部内に導入される構成が採用されており、この部位で所定のイオンが除去された残余の成分が、導出されるように構成されている。
即ち、イオン吸着部3は、導電性粒子スラリーが貯留されるとともに、右方向に流れる吸着領域を備えて構成され、その溶液導出側(槽底部)に、導電性粒子pを透過することなく、塩のイオン化により生成されるイオン及び溶質(具体的には水)を透過する透過膜部35を備えている。
結果、処理対象の溶液を吸着領域内に導入し、所定のイオンを吸着した状態で、領域外に導出することが可能となっている。
Ion adsorption unit 3 (negative ion adsorption unit 3a and positive ion adsorption unit 3b)
The ion adsorbing unit 3 is configured such that a salt-concentrated solution to be treated is introduced into the unit, and a residual component from which predetermined ions are removed at this site is derived.
That is, the ion adsorbing unit 3 is configured to include an adsorption region in which the conductive particle slurry is stored and flows in the right direction, and does not pass through the conductive particles p to the solution outlet side (the tank bottom). A permeable membrane portion 35 that permeates ions and solute (specifically water) generated by ionization of the salt is provided.
As a result, it is possible to introduce the solution to be treated into the adsorption region and lead it out of the region while adsorbing predetermined ions.

さらに詳細には、負イオン吸着部3aでは、正帯電処理部2aで得られた正帯電導電性粒子pに塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子を得る。
一方、正イオン吸着部3bでは、負帯電処理部2bで得られた負帯電導電性粒子に塩のイオン化により生成された正イオンを吸着させて負イオン吸着導電性粒子を得る。
In more detail, in the negative ion adsorption part 3a, the negative ion produced | generated by ionization of salt is made to adsorb | suck to the positively charged electroconductive particle p obtained by the positive charge process part 2a, and a negative ion adsorption electroconductive particle is obtained.
On the other hand, in the positive ion adsorbing unit 3b, negative ions adsorbing conductive particles are obtained by adsorbing positive ions generated by salt ionization to the negatively charged conductive particles obtained in the negative charging processing unit 2b.

図示する例では、処理対象の塩を含む溶液を負イオン吸着部3aから正イオン吸着部3bに導いて、当該部位から塩希溶液を取り出す構成を採用しているが、イオン吸着部3a,3bの順は、逆であっても一向に構わない。   In the example shown in the figure, a configuration is adopted in which a solution containing a salt to be treated is guided from the negative ion adsorption unit 3a to the positive ion adsorption unit 3b, and the salt dilute solution is taken out from the site, but the ion adsorption units 3a and 3b are employed. The order of can be reversed or reversed.

混合部4
この混合部4は図示するように混合槽で構成されており、負イオン吸着部3aを経て生成される負イオン吸着導電性粒子を含むスラリーと、正イオン吸着部3bを経て生成される正イオン吸着導電性粒子を含むスラリーとが混合される混合部とされており、この混合部4においては、負帯電導電性粒子から脱離される正イオン及び正帯電導電性粒子から脱離される負イオンが、塩濃溶液路9を介して供給される洗浄液cにより洗浄されるとともに、混合部4外に取り出されて、塩濃度が上昇した塩濃溶液を取り出すことができるように構成されている。
Mixing unit 4
The mixing unit 4 is composed of a mixing tank as shown in the figure, and includes slurry containing negative ion-adsorbing conductive particles generated through the negative ion adsorption unit 3a and positive ions generated through the positive ion adsorption unit 3b. In this mixing unit 4, positive ions desorbed from the negatively charged conductive particles and negative ions desorbed from the positively charged conductive particles are mixed with the slurry containing the adsorbed conductive particles. In addition, it is configured to be washed with the washing liquid c supplied via the salt concentrated solution path 9 and to be taken out of the mixing unit 4 to take out the salt concentrated solution having an increased salt concentration.

導電性粒子pのスラリーは、混合部4で正帯電導電性粒子及び負帯電導電性粒子が混合されることで、中和され、イオンが脱離されて再生されることとなる。   The slurry of the conductive particles p is neutralized by mixing the positively charged conductive particles and the negatively charged conductive particles in the mixing unit 4, and ions are desorbed and regenerated.

この目的から、混合部4は、処理対象の洗浄液(塩希溶液の一例)が部内に導入される構成が採用されており、この部位で所定のイオンが除去された残余の成分が、導出されるように構成されている。
即ち、混合部4は、導電性スラリーが流れる混合領域を備えて構成され、その洗浄液導出側(槽底部)に、導電性粒子pを透過することなく、洗浄液及び塩を成すイオンを透過する透過膜部37を備えている。
結果、処理対象の溶液を混合領域内に導入し、中和により導電性粒子pから放出されるイオンを洗浄液により領域外に導出することが可能となっている。結果、導電性粒子pの再生を可能としている。このようにして、中和再生された導電性粒子pは、循環路1をして、別々に正帯電処理部2a及び負帯電処理部2bに戻され、循環される構成が採用されている。
For this purpose, the mixing unit 4 employs a configuration in which a cleaning liquid to be treated (an example of a salt dilute solution) is introduced into the unit, and the remaining components from which predetermined ions are removed at this site are derived. It is comprised so that.
That is, the mixing unit 4 is configured to include a mixing region through which the conductive slurry flows, and the permeation through which the cleaning liquid and the ions forming the salt are transmitted to the cleaning liquid outlet side (tank bottom) without transmitting the conductive particles p. A film part 37 is provided.
As a result, the solution to be treated can be introduced into the mixing region, and ions released from the conductive particles p by neutralization can be led out of the region by the cleaning liquid. As a result, it is possible to regenerate the conductive particles p. In this manner, the neutralized and regenerated conductive particles p are returned to the positive charging processing unit 2a and the negative charging processing unit 2b through the circulation path 1, and are circulated.

〔塩溶液の処理方法〕
結果、本願に係る処理設備では、以下の方法で塩溶液の処理を電気的に行っていることとなる。
即ち、導電性粒子が水に分散されてなる導電性粒子スラリーを使用し、
(a) 正帯電処理部2aにおいて、導電性粒子pを正電極20を有する正帯電領域に通過させて正帯電導電性粒子を得るとともに、別途、負帯電処理部2bで、導電性粒子pを負電極20を有する負帯電領域に通過させて負帯電導電性粒子を得る帯電工程を実行し、
(b) 負イオン吸着部3aにおいて、帯電工程で得られた正帯電導電性粒子に前記塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子pを得る負イオン吸着工程と、正イオン吸着部3bにおいて、帯電工程で得られた負帯電導電性粒子pに塩のイオン化により生成された正イオンを吸着させて正イオン吸着導電性粒子pを得る正イオン吸着工程とを、記載順に又は記載とは逆の順番で行う吸着工程を実行し、
(c) 混合部4において、負イオン吸着工程を経て生成される負イオン吸着導電性粒子を含むスラリーと、正イオン吸着工程を経て生成される正イオン吸着導電性粒子を含むスラリーとを混合して、負帯電導電性粒子pと正帯電導電性粒子pを中和させるとともに、吸着状態にある正イオン及び負イオンを導電性粒子から脱離させ、脱離されたイオンを導電性粒子を含むスラリーから分離するイオン分離工程と、
(d) 前記イオン分離工程でイオンを分離後の中和済み導電性粒子を含むスラリーを取り出す中和済み導電性粒子スラリー分離工程とを実行する。
[Method of treating salt solution]
As a result, in the treatment facility according to the present application, the salt solution is electrically treated by the following method.
That is, using a conductive particle slurry in which conductive particles are dispersed in water,
(A) In the positive charge processing unit 2a, the conductive particles p are passed through a positive charge region having the positive electrode 20 to obtain positively charged conductive particles. Separately, in the negative charge processing unit 2b, the conductive particles p Performing a charging step of passing through a negatively charged region having the negative electrode 20 to obtain negatively charged conductive particles;
(B) In the negative ion adsorption unit 3a, a negative ion adsorption step of obtaining negative ion adsorption conductive particles p by adsorbing negative ions generated by ionization of the salt to the positively charged conductive particles obtained in the charging step; In the positive ion adsorbing portion 3b, a positive ion adsorption step of adsorbing positive ions generated by ionization of the salt to the negatively charged conductive particles p obtained in the charging step to obtain positive ion adsorption conductive particles p, Execute adsorption steps in the order of description or in the reverse order of description,
(C) In the mixing unit 4, a slurry containing negative ion adsorption conductive particles generated through a negative ion adsorption step and a slurry containing positive ion adsorption conductive particles produced through a positive ion adsorption step are mixed. The negatively charged conductive particles p and the positively charged conductive particles p are neutralized, and positive ions and negative ions in the adsorbed state are desorbed from the conductive particles, and the desorbed ions are included in the conductive particles. An ion separation step for separating from the slurry;
(D) The neutralized electroconductive particle slurry separation process which takes out the slurry containing the electroconductive particle after neutralization after ion separation by the ion separation process is performed.

イオン吸着部3(正イオン吸着部3a及び負イオン吸着部3b)には、この部位に、塩希溶液路7及び溶液送り手段6を備えることにより、イオン吸着部3において、塩がイオン化した状態で溶液から塩が脱離され、負イオン吸着工程及び正イオン吸着工程を経て、塩のイオンが吸着除去された塩希溶液を得ることができる。   The ion adsorbing unit 3 (positive ion adsorbing unit 3a and negative ion adsorbing unit 3b) is provided with the salt dilute solution path 7 and the solution feeding means 6 at this site, so that the salt is ionized in the ion adsorbing unit 3. Thus, the salt is desorbed from the solution, and a salt dilute solution from which salt ions are adsorbed and removed through the negative ion adsorption step and the positive ion adsorption step can be obtained.

また、混合部4においては、この部位に、塩濃溶液路9(洗浄液路)及びイオン分離導出手段8を備えることにより、イオン分離工程を経て、スラリーから脱離された正イオン及び負イオンを溶液内で混合して塩濃溶液を得ることができる。   Further, in the mixing unit 4, the salt concentration solution path 9 (washing liquid path) and the ion separation / derivation means 8 are provided at this portion, so that positive ions and negative ions desorbed from the slurry through the ion separation step can be obtained. It can be mixed in the solution to obtain a salt-concentrated solution.

以下、本願処理設備の運転状況に関して説明する。なお、脱塩する塩溶液として1050mg/L−NaCl水溶液を用いた。   Hereinafter, the operation status of the present processing facility will be described. In addition, 1050 mg / L-NaCl aqueous solution was used as a salt solution to desalinate.

〔導電性粒子スラリー〕
実証実験に際しては、導電性粒子pとして平均粒子径が30nmの粒子を、水に4g/60mlに割合で混合した導電性粒子スラリーを使用した。この導電性粒子スラリーでは、導電性粒子pが、水中で凝集するため、実質的に0.45μm以上となっていた。
従って、先に紹介した透過膜35,37は、0.45μmの粒子を透過しない例えばPES製(ポリエーテルスルフォン製)の限界濾過膜とした。
[Conductive particle slurry]
In the demonstration experiment, a conductive particle slurry in which particles having an average particle diameter of 30 nm were mixed with water at a ratio of 4 g / 60 ml as the conductive particles p was used. In this electroconductive particle slurry, since electroconductive particle p aggregates in water, it was 0.45 micrometer or more substantially.
Therefore, the permeable membranes 35 and 37 introduced above are ultrafiltration membranes made of, for example, PES (made of polyethersulfone) that do not transmit 0.45 μm particles.

〔導電性粒子スラリーの循環〕
図1に示すように、帯電処理部2、イオン吸着部3及び混合部4を介して、各部位での滞留時間が5〜30分となるように循環路1での導電性粒子スラリーの循環を制御した。
[Circulation of conductive particle slurry]
As shown in FIG. 1, the conductive particle slurry is circulated in the circulation path 1 through the electrification processing unit 2, the ion adsorption unit 3, and the mixing unit 4 so that the residence time at each part is 5 to 30 minutes. Controlled.

〔帯電〕
帯電処理部における帯電は、導電性粒子スラリーを、実質有効面積が36cm2で、離間距離2cmの銅電極間に、1.0Vの電圧を印加して導電性粒子を帯電させた。
この帯電処理による移動電荷量〔C〕は、2.52Cであった。
帯電電荷量は、帯電処理を実行する処理時間(導電性粒子スラリーが電極に沿って移流する構成の場合は、電極の接触長さ)によって制御可能であることは、別途、発明者による検討で明らかとなった。
この処理時間〔min〕と移動電荷量〔C〕との関係を、表1に示した。
同表1に示す除去量〔mmol/g−導電性粒子〕は、この移動電荷量を塩溶液に加えた際のイオンの除去量である。
[Charging]
For charging in the charging processing section, the conductive particles were charged by applying a voltage of 1.0 V between copper electrodes having a substantially effective area of 36 cm 2 and a separation distance of 2 cm.
The amount of mobile charge [C] by this charging treatment was 2.52C.
The charge amount can be controlled by the processing time for performing the charging process (in the case where the conductive particle slurry is advected along the electrode, the contact length of the electrode). It became clear.
Table 1 shows the relationship between the processing time [min] and the mobile charge amount [C].
The removal amount [mmol / g-conductive particles] shown in Table 1 is the removal amount of ions when this mobile charge amount is added to the salt solution.

Figure 2015160161
Figure 2015160161

〔イオン吸着〕
上記帯電により生成された導電性粒子スラリーを使用して、イオン吸着部でそれぞれ除去できたイオン量を、表2に示した。この表には、この処理時間〔min〕とイオン濃度〔mg/L(Lはリットルを示す)〕との関係を示した。この表からも判明するように、イオン吸着開始時のNa+濃度は410〔mg/L〕であり、30分後に200〔mg/L〕となった。一方、イオン吸着開始時のCl-濃度は610〔mg/L〕であり、30分後に340〔mg/L〕となった。
同表に示す除去率〔%〕は、濃度変化から求めた実際のイオン除去率を示している。
[Ion adsorption]
Table 2 shows the amount of ions that can be removed by the ion adsorption unit using the conductive particle slurry generated by the above charging. This table shows the relationship between the treatment time [min] and the ion concentration [mg / L (L represents liter)]. As can be seen from this table, the Na + concentration at the start of ion adsorption was 410 [mg / L], and after 30 minutes was 200 [mg / L]. On the other hand, the Cl concentration at the start of ion adsorption was 610 [mg / L], and was 340 [mg / L] after 30 minutes.
The removal rate [%] shown in the table represents the actual ion removal rate obtained from the concentration change.

Figure 2015160161
Figure 2015160161

以上より、帯電部2及びイオン吸着部3での処理時間を、それぞれ30分とした場合の帯電による移動電荷量と、イオン吸着量との関係は、以下の関係に整理できた。   From the above, the relationship between the amount of charge transferred by charging and the amount of ion adsorption when the processing time in the charging unit 2 and the ion adsorbing unit 3 is 30 minutes can be arranged as follows.

30分の帯電処理で移動した移動電荷量は2.52Cであり、これは16.5μmolのイオン量に相当する。
1[C]=1.04×10−5[mol]
2.52[C]=16.5[μmol]
The amount of mobile charge transferred by charging for 30 minutes is 2.52C, which corresponds to an ion amount of 16.5 μmol.
1 [C] = 1.04 × 10 −5 [mol]
2.52 [C] = 16.5 [μmol]

一方、30分のイオン吸着処理で吸着したNa+イオン量及びCl−イオン量はそれぞれ、
Na+イオン量 1080[μmol]
Cl-イオン量 1000[μmol]
であった。
よって、イオン吸着処理で移動電荷量のおよそ40倍のイオンを吸着除去していることが判明した。
以上より、イオン吸着処理により、所謂、脱塩処理を行なえることが判る。
On the other hand, the amount of Na + ions and Cl− ions adsorbed by the ion adsorption treatment for 30 minutes are respectively
Na + ion amount 1080 [μmol]
Cl ion amount 1000 [μmol]
Met.
Therefore, it has been found that ions of about 40 times the moving charge amount are adsorbed and removed by the ion adsorption treatment.
From the above, it can be seen that the so-called desalting treatment can be performed by the ion adsorption treatment.

〔混合部における中和〕
一方、イオン除去に投入したNaCl溶液の濃度が1050mg/Lの場合の、混合部4で中和後に回収できたNaCl濃溶液の濃度は1260mg/Lであった。
この状態を、除去の対象となった塩のモル数及びイオン回収率から整理したのが、以下に示す表3である。
[Neutralization in the mixing section]
On the other hand, when the concentration of the NaCl solution charged for ion removal was 1050 mg / L, the concentration of the NaCl concentrated solution recovered after neutralization in the mixing unit 4 was 1260 mg / L.
Table 3 below summarizes this state based on the number of moles of the salt to be removed and the ion recovery rate.

Figure 2015160161
Figure 2015160161

以上より、混合部4において、導電性粒子スラリーの中和を経て、塩の回収が可能なことが判る。   From the above, it can be seen that the salt can be recovered in the mixing section 4 through neutralization of the conductive particle slurry.

〔別実施形態〕
(1)
上記の実施形態においては、帯電部2、イオン吸着部3及び混合部4を経る循環路1内に導電性粒子スラリーを循環させ、一定量の導電性粒子スラリーを継続的に使用する形態とした。しかしながら、本願発明の要点は、導電性粒子スラリーを使用して脱塩を行う点にあり、帯電部2、イオン吸着部3、混合部4を備えたシステム構成を採用すれば、塩が脱離される塩希溶液、塩が濃縮された塩濃溶液を得ることができる。
即ち、導電性粒子スラリーを、処理対象の濃塩溶液に対して充分な量確保できるのであれば、導電性粒子スラリーの循環を必ずしも必要とするものではない。
[Another embodiment]
(1)
In the above embodiment, the conductive particle slurry is circulated in the circulation path 1 passing through the charging unit 2, the ion adsorption unit 3 and the mixing unit 4, and a certain amount of the conductive particle slurry is continuously used. . However, the gist of the present invention is that desalting is performed using a conductive particle slurry. If a system configuration including the charging unit 2, the ion adsorption unit 3, and the mixing unit 4 is adopted, the salt is desorbed. Salt-diluted solution and salt-concentrated salt-concentrated solution can be obtained.
That is, the conductive particle slurry is not necessarily required to be circulated as long as a sufficient amount of the conductive particle slurry can be secured with respect to the concentrated salt solution to be treated.

1 :循環路
2 :帯電処理部
2a :正帯電処理部
2b :負帯電処理部
3 :イオン吸着部
3a :負イオン吸着部
3b :正イオン吸着部
4 :混合部
5 :循環ポンプ(スラリー循環手段)
6 :第1溶液ポンプ(溶液送り手段)
7 :塩希溶液路(溶液送り手段)
8 :第2溶液ポンプ(イオン分離導出手段)
9 :塩濃溶液路(イオン分離導出手段)
20 :電極
35 :透過膜部
37 :透過膜部
p :導電性粒子
w :水
DESCRIPTION OF SYMBOLS 1: Circulation path 2: Charging process part 2a: Positive charge process part 2b: Negative charge process part 3: Ion adsorption part 3a: Negative ion adsorption part 3b: Positive ion adsorption part 4: Mixing part 5: Circulation pump (slurry circulation means )
6: First solution pump (solution feeding means)
7: Salt dilute solution path (solution feeding means)
8: Second solution pump (ion separation derivation means)
9: Salt concentration solution path (ion separation derivation means)
20: Electrode 35: Permeation membrane part 37: Permeation membrane part p: Conductive particle w: Water

Claims (7)

塩溶液を電気的に処理する処理方法であって、
導電性粒子が水に分散されてなる導電性粒子スラリーを使用し、
(a) 前記導電性粒子を正電極を有する正帯電領域に通過させて正帯電導電性粒子を得るとともに、別途、前記導電性粒子を負電極を有する負帯電領域に通過させて負帯電導電性粒子を得る帯電工程と、
(b) 前記帯電工程で得られた正帯電導電性粒子に塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子を得る負イオン吸着工程と、前記帯電工程で得られた負帯電導電性粒子に前記塩のイオン化により生成された正イオンを吸着させて正イオン吸着導電性粒子を得る正イオン吸着工程とを、記載順に又は記載とは逆の順番で行う吸着工程と、
(c) 前記負イオン吸着工程を経て生成される負イオン吸着導電性粒子を含むスラリーと、前記正イオン吸着工程を経て生成される正イオン吸着導電性粒子を含むスラリーとを混合して、負帯電導電性粒子と正帯電導電性粒子を中和させるとともに、吸着状態にある正イオン及び負イオンを導電性粒子から脱離させ、脱離されたイオンを導電性粒子を含むスラリーから分離するイオン分離工程と、
(d) 前記イオン分離工程でイオンを分離後の中和済み導電性粒子を含むスラリーを取り出す中和済み導電性粒子スラリー分離工程とを備えた処理方法。
A treatment method for electrically treating a salt solution,
Using a conductive particle slurry in which conductive particles are dispersed in water,
(A) Passing the conductive particles through a positively charged region having a positive electrode to obtain positively charged conductive particles, and separately passing the conductive particles through a negatively charged region having a negative electrode to obtain negatively charged conductive A charging step to obtain particles;
(B) a negative ion adsorption step of adsorbing negative ions generated by ionization of salt to the positively charged conductive particles obtained in the charging step to obtain negative ion adsorbing conductive particles; and obtained in the charging step A positive ion adsorption step of obtaining positive ion adsorption conductive particles by adsorbing positive ions generated by ionization of the salt to the negatively charged conductive particles, an adsorption step performed in the order of description or in the reverse order of the description;
(C) A slurry containing negative ion-adsorbing conductive particles produced through the negative ion adsorption step and a slurry containing positive ion-adsorbing conductive particles produced through the positive ion adsorption step are mixed, and negative Ions that neutralize the charged conductive particles and positively charged conductive particles, desorb positive ions and negative ions in the adsorbed state from the conductive particles, and separate the desorbed ions from the slurry containing the conductive particles A separation process;
(D) The processing method provided with the neutralized electroconductive particle slurry separation process which takes out the slurry containing the neutralized electroconductive particle after isolate | separating ion by the said ion separation process.
前記吸着工程において、負イオン吸着工程及び正イオン吸着工程を経て、塩のイオンが吸着除去された塩希溶液を得る請求項1記載の処理方法。   The processing method according to claim 1, wherein in the adsorption step, a salt dilute solution from which salt ions are adsorbed and removed is obtained through a negative ion adsorption step and a positive ion adsorption step. 前記イオン分離工程を経て、前記スラリーから脱離された正イオン及び負イオンを溶液内で混合して塩濃溶液を得る請求項1記載の処理方法。   The processing method according to claim 1, wherein the positive ions and negative ions desorbed from the slurry through the ion separation step are mixed in the solution to obtain a salt-concentrated solution. 前記導電性粒子スラリー分離工程を経て得られた導電性スラリーを分けて、前記正帯電領域及び前記負帯電領域にそれぞれ戻し、前記帯電工程を実行する請求項1〜3の何れか一項に記載された処理方法。   The conductive slurry obtained through the conductive particle slurry separation step is divided and returned to the positive charging region and the negative charging region, respectively, and the charging step is executed. Processing method. 塩溶液を電気的に処理する処理設備であって、
導電性粒子が水に分散されてなる導電性粒子スラリーの循環路を備え、
(a) 前記導電性粒子を正電極を有する正帯電領域に通過させて正帯電導電性粒子を得る正帯電処理部と、前記導電性粒子を負電極を有する負帯電領域に通過させて負帯電導電性粒子を得る負帯電処理部とを備え、
(b) 前記正帯電処理部で得られた正帯電導電性粒子に塩のイオン化により生成された負イオンを吸着させて負イオン吸着導電性粒子を得る負イオン吸着部と、前記負帯電処理部で得られた負帯電導電性粒子に前記塩のイオン化により生成された正イオンを吸着させて正イオン吸着導電性粒子を得る正イオン吸着部とを備え、
(c) 処理対象の前記塩を含む溶液を前記負イオン吸着部及び前記正イオン吸着部を、記載順に又は記載とは逆の順番に通過される溶液送り手段を備え、
(d) 前記負イオン吸着部を経て生成される負イオン吸着導電性粒子を含むスラリーと、前記正イオン吸着部を経て生成される正イオン吸着導電性粒子を含むスラリーとが混合される混合部を備えるとともに、
(e) 前記混合部において、負帯電導電性粒子から脱離される正イオン及び前記正帯電導電性粒子から脱離される負イオンを、混合部外に分離・導出するイオン分離導出手段と、
(f) 前記混合部で中和済み導電性粒子を含むスラリーを取り出し、前記正帯電処理部及び前記負帯電処理部に送りスラリーを循環させるスラリー循環手段とを備えた処理設備。
A treatment facility for electrically treating a salt solution,
Provided with a conductive particle slurry circulation path in which conductive particles are dispersed in water,
(A) A positively charged processing unit that obtains positively charged conductive particles by passing the conductive particles through a positively charged region having a positive electrode; and negatively charged by passing the conductive particles through a negatively charged region having a negative electrode. A negatively charged processing unit for obtaining conductive particles,
(B) a negative ion adsorbing unit that obtains negative ion adsorbing conductive particles by adsorbing negative ions generated by ionization of salt to the positively charged conductive particles obtained by the positive charging processing unit; and the negative charging processing unit A positive ion adsorbing part that adsorbs positive ions generated by ionization of the salt to the negatively charged conductive particles obtained in step 1 to obtain positive ion adsorbed conductive particles;
(C) a solution feeding means for passing the negative ion adsorbing unit and the positive ion adsorbing unit through the solution containing the salt to be treated in the order of description or in the reverse order of the description;
(D) A mixing unit in which a slurry containing negative ion adsorption conductive particles generated through the negative ion adsorption unit and a slurry containing positive ion adsorption conductive particles generated through the positive ion adsorption unit are mixed. With
(E) an ion separation and derivation means for separating and deriving positive ions desorbed from the negatively charged conductive particles and negative ions desorbed from the positively charged conductive particles in the mixing unit and out of the mixing unit;
(F) A processing facility comprising a slurry circulating means for taking out the slurry containing conductive particles neutralized in the mixing section and sending the slurry to the positive charging processing section and the negative charging processing section.
前記負イオン吸着部及び前記正イオン吸着部を経て、塩のイオンが吸着除去された塩希溶液が導かれる塩希溶液路を備える請求項5記載の処理設備。   The processing equipment according to claim 5, further comprising a salt dilute solution path through which the salt dilute solution from which salt ions are adsorbed and removed is passed through the negative ion adsorbing unit and the positive ion adsorbing unit. 前記混合部を経て、前記スラリーから脱離された正イオン及び負イオンを溶液内で混合して生成される塩濃溶液が導かれる塩濃溶液路を備えた請求項5又は6記載の処理設備。   The processing equipment according to claim 5 or 6, further comprising a salt concentration solution path through which a salt concentration solution generated by mixing positive ions and negative ions desorbed from the slurry in the solution through the mixing unit is guided. .
JP2014035764A 2014-02-26 2014-02-26 Salt solution processing method and equipment Expired - Fee Related JP6278738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035764A JP6278738B2 (en) 2014-02-26 2014-02-26 Salt solution processing method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035764A JP6278738B2 (en) 2014-02-26 2014-02-26 Salt solution processing method and equipment

Publications (2)

Publication Number Publication Date
JP2015160161A true JP2015160161A (en) 2015-09-07
JP6278738B2 JP6278738B2 (en) 2018-02-14

Family

ID=54183641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035764A Expired - Fee Related JP6278738B2 (en) 2014-02-26 2014-02-26 Salt solution processing method and equipment

Country Status (1)

Country Link
JP (1) JP6278738B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106062U (en) * 1977-02-01 1978-08-25
JPS57180479A (en) * 1981-04-30 1982-11-06 Ikuno Suiko Kenkyusho:Kk Removing method for ionic bodies existing in water
JP2010000418A (en) * 2008-06-18 2010-01-07 Sekisui Chem Co Ltd Device and system for desalinating seawater
US20120186980A1 (en) * 2011-01-26 2012-07-26 Sundara Ramaprabhu Methods and systems for separating ions from fluids
JP2013541407A (en) * 2010-08-13 2013-11-14 コリア インスティチュート オブ エナジー リサーチ Fluid system and large capacity power storage and water treatment method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106062U (en) * 1977-02-01 1978-08-25
JPS57180479A (en) * 1981-04-30 1982-11-06 Ikuno Suiko Kenkyusho:Kk Removing method for ionic bodies existing in water
JP2010000418A (en) * 2008-06-18 2010-01-07 Sekisui Chem Co Ltd Device and system for desalinating seawater
JP2013541407A (en) * 2010-08-13 2013-11-14 コリア インスティチュート オブ エナジー リサーチ Fluid system and large capacity power storage and water treatment method using the same
US20120186980A1 (en) * 2011-01-26 2012-07-26 Sundara Ramaprabhu Methods and systems for separating ions from fluids

Also Published As

Publication number Publication date
JP6278738B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP5189255B2 (en) Iodine recovery from polarizing film manufacturing wastewater
KR102011115B1 (en) capacitive deionization system for concentrated water saving type
KR20100099227A (en) Systems and methods for water treatment
JP2007528781A (en) Continuous electrodeionization apparatus and method
CN105417635B (en) Device for purifying a fluid and method for purifying a fluid by means of the same
US11040896B2 (en) System for removing bromide from a wastewater stream
TW201335077A (en) Electrodialysis with ion exchange and bi-polar electrodialysis
KR20170002047A (en) Purification system for potable water and ultra pure water
TW202200508A (en) Ultrapure water production system and ultrapure water production method
WO2014163094A1 (en) Water treatment system
CN108178253A (en) The operation method of desalting processing device and desalting processing device
KR101669361B1 (en) System and method for generating fresh water
JP2005000828A (en) Pure water production apparatus
TW201825405A (en) System for producing ultrapure water and method for producing ultrapure water
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
CN112400039A (en) Acid liquid regeneration device and regeneration method
JP2021517511A (en) Deionization devices and methods for at least partially deionizing the electrolyte-dissolved feed solution and devices using such devices.
KR101533978B1 (en) Combined CDI and EDI System for Liquid Radioactive Waste Treatment
JP6148675B2 (en) Desalination system and method
JP6278738B2 (en) Salt solution processing method and equipment
KR20140100601A (en) Water treatment apparatus
JP4135802B2 (en) Desalination equipment
JP2008081791A (en) Method and apparatus for recovering phosphoric acid from phosphoric ion-containing water
JP3729349B2 (en) Electric regenerative desalination equipment
JP2012149001A (en) Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180116

R150 Certificate of patent or registration of utility model

Ref document number: 6278738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees