JP2015158400A - stress measuring method - Google Patents

stress measuring method Download PDF

Info

Publication number
JP2015158400A
JP2015158400A JP2014032642A JP2014032642A JP2015158400A JP 2015158400 A JP2015158400 A JP 2015158400A JP 2014032642 A JP2014032642 A JP 2014032642A JP 2014032642 A JP2014032642 A JP 2014032642A JP 2015158400 A JP2015158400 A JP 2015158400A
Authority
JP
Japan
Prior art keywords
temperature
load
measured
stress
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014032642A
Other languages
Japanese (ja)
Inventor
朋彦 春山
Tomohiko Haruyama
朋彦 春山
勇佐 大久保
Yusuke Okubo
勇佐 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2014032642A priority Critical patent/JP2015158400A/en
Publication of JP2015158400A publication Critical patent/JP2015158400A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stress measuring method, even in a case of applying a single load to a measurement object, capable of easily and highly accurately measuring stress by excluding influence of thermal diffusion.SOLUTION: The method for measuring the stress generated in a measurement object using thermoelastic effects on the basis of temperature fluctuation of a surface of the measurement object when a single load is applied to the measurement object is disclosed. The stress measuring method includes: calculating first energy based on a difference between a reference temperature as a temperature of the measurement object without any application of the load, and a measurement temperature as a temperature when the load is applied thereto; regulates a virtual temperature fluctuation without any thermal diffusion by a virtual temperature fluctuation history associated to a load history representing time fluctuation of magnitude of the single load; calculates second energy based on the virtual temperature fluctuation history and the reference temperature; on the condition that the first energy is equal to the second energy, calculates an extremal value in the virtual temperature fluctuation history; and multiplies a difference between the calculated extremal value and the reference temperature by a thermoelastic coefficient to calculate the stress generated in the measurement object.

Description

本発明は応力測定方法に関する。さらに詳しくは、熱弾性効果を利用した応力測定方法であって、熱拡散の影響が補正された応力測定方法に関する。   The present invention relates to a stress measurement method. More specifically, the present invention relates to a stress measurement method using a thermoelastic effect, in which the influence of thermal diffusion is corrected.

部材の最適設計を行うためには当該部材にどのような応力が発生しているのかを把握することが重要である。そのために、例えば有限要素法(FEM)や境界要素法(BEM)等の数値解析により応力分布を求める方法、及び、歪ゲージを用いて部材に加わる応力を測定する方法等が知られている。   In order to optimally design a member, it is important to grasp what kind of stress is generated in the member. For this purpose, for example, a method for obtaining a stress distribution by numerical analysis such as a finite element method (FEM) or a boundary element method (BEM), a method for measuring stress applied to a member using a strain gauge, and the like are known.

しかし、部材の形状が複雑である場合や、部材が複数の部品により構成されている場合等では、前述した方法で正確に応力を求めることができないことがある。
そこで、負荷荷重を受ける部材の温度分布を計測し、熱弾性効果を利用して当該温度分布の変化から前記部材の応力分布を推定する赤外線応力測定法が種々提案されている(例えば、特許文献1〜2参照)。
However, when the shape of the member is complicated or when the member is composed of a plurality of parts, the stress may not be accurately obtained by the above-described method.
Therefore, various infrared stress measurement methods have been proposed in which the temperature distribution of a member subjected to a load is measured and the stress distribution of the member is estimated from the change in the temperature distribution using the thermoelastic effect (for example, Patent Documents). 1-2).

赤外線応力測定法は、部材に作用する応力の変化に応じて当該部材に発生する熱(温度)の変化を赤外線カメラで測定する方法であるが、測定に際し、応力により発生する熱が部材内を拡散する。このため、例えば単発的な負荷(繰り返して連続的に付与される負荷と異なり、ハンマリング試験のように単発的に付与される負荷)の場合に、以下に説明するように測定される温度差が本来の値よりも小さくなり、その結果、測定される応力も実際の応力よりも小さくなることがある。   The infrared stress measurement method is a method in which a change in heat (temperature) generated in a member in accordance with a change in stress acting on the member is measured by an infrared camera. Spread. For this reason, for example, in the case of a single load (a load that is applied in a single shot like a hammering test, unlike a load that is repeatedly applied continuously), a temperature difference that is measured as described below. Becomes smaller than the original value, and as a result, the measured stress may also be smaller than the actual stress.

図3は、部材1に引張荷重を負荷する荷重負荷試験の説明図であり、図4は、負荷される荷重の時間変動を示す図である。また、図5は、図3に示される荷重負荷試験における部材1の切欠き1a近傍の温度変動を示す図である。帯板形状の部材1の下端は固定されており、図示しない荷重負荷機構により部材1の上端に引張力(白抜き矢印参照)が付与される。部材1には、図4に示されるような放物線状の単発的な変動荷重が付与される。引張力は、瞬間的に付与されて解放されるものではなく、負荷開始から除荷終了まで0.2〜0.5秒程度の時間を要する引張力である。引張力を負荷することにより、部材1の切欠き1a近傍に応力が集中し、この部分での温度変化が他の部分に比べて大きくなる。そして、大きな温度変動に起因して熱拡散による影響も大きくなる。部材1に生じる温度変化は当該部材1に対向して配置された赤外線カメラ2で検出される。   FIG. 3 is an explanatory diagram of a load load test in which a tensile load is applied to the member 1, and FIG. 4 is a diagram illustrating a time variation of the applied load. FIG. 5 is a diagram showing temperature fluctuations in the vicinity of the notch 1a of the member 1 in the load test shown in FIG. The lower end of the strip-shaped member 1 is fixed, and a tensile force (see the white arrow) is applied to the upper end of the member 1 by a load loading mechanism (not shown). The member 1 is given a single parabolic variation load as shown in FIG. The tensile force is not instantaneously applied and released, but is a tensile force that requires a time of about 0.2 to 0.5 seconds from the start of loading to the end of unloading. By applying a tensile force, stress concentrates in the vicinity of the notch 1a of the member 1, and the temperature change in this part becomes larger than in other parts. And the influence by thermal diffusion also becomes large due to a large temperature fluctuation. A temperature change occurring in the member 1 is detected by an infrared camera 2 arranged opposite to the member 1.

図3に示される試験例において、引張力が付与されると、応力が集中する切欠き1a近傍の温度は図5に示されるように基準温度(初期温度)Trefから低下し始める。そして、付与される引張力が保持される状態があると、その間に熱拡散によって温度が上昇し、その上昇した状態から除荷に起因する温度上昇が生じるので、図5において破線の円形Cで示されるように、基準温度Trefを超えて部材1の温度が上昇する現象(以下、かかる現象、及び逆に基準温度を超えて部材の温度が下降する現象を「温度の行き過ぎ」ともいう)が起こる。熱拡散が発生しない理想的な状態では、前述した行き過ぎ量はゼロであり、温度の変動パターンは荷重の変動パターンの逆形状となる。すなわち、基準温度Trefを示す線分を軸として、両パターンはほぼ線対称の形状となる。しかし、現実には熱拡散により「温度の行き過ぎ」が発生するため、測定により得られる温度差(基準温度と測定最少温度又は測定最大温度との差)は本来の値よりも小さくなってしまう。 In the test example shown in FIG. 3, when a tensile force is applied, the temperature in the vicinity of the notch 1a where stress concentrates starts to decrease from the reference temperature (initial temperature) T ref as shown in FIG. And, if there is a state where the applied tensile force is maintained, the temperature rises due to thermal diffusion in the meantime, and a temperature rise due to unloading occurs from the raised state. As shown, the phenomenon in which the temperature of the member 1 rises above the reference temperature T ref (hereinafter, this phenomenon, and conversely, the phenomenon in which the temperature of the member falls below the reference temperature is also referred to as “temperature overshoot”). Happens. In an ideal state where no thermal diffusion occurs, the amount of overshoot described above is zero, and the temperature variation pattern is the inverse of the load variation pattern. That is, both patterns have a substantially line-symmetric shape with a line segment indicating the reference temperature T ref as an axis. However, in reality, since “temperature overshoot” occurs due to thermal diffusion, the temperature difference obtained by measurement (the difference between the reference temperature and the minimum measurement temperature or maximum measurement temperature) becomes smaller than the original value.

このような熱拡散による影響を除去するために、繰り返し負荷を与えた際に発生する負荷応力の波形と赤外線映像装置によって測定された測定応力との間の位相のずれから、測定対象物における熱伝導に起因する測定誤差を計算することが提案されている(特許文献3参照)。   In order to eliminate the influence of such heat diffusion, the thermal stress in the measurement object is determined from the phase shift between the waveform of the load stress generated when the load is repeatedly applied and the measurement stress measured by the infrared imaging device. It has been proposed to calculate a measurement error due to conduction (see Patent Document 3).

また、測定対象部位近傍に歪ゲージを貼付し、この歪ゲージで測定した応力値に基づいて前記赤外線応力測定法により算出した応力値を校正することが考えられる。   It is also conceivable to attach a strain gauge in the vicinity of the measurement target site and calibrate the stress value calculated by the infrared stress measurement method based on the stress value measured with the strain gauge.

特開2001−188028号公報Japanese Patent Laid-Open No. 2001-188028 特開2012−103124号公報JP2012-103124A 特開2006−153865号公報JP 2006-153865 A

しかし、特許文献3記載の補正方法は繰り返し負荷を付与することを前提としており、例えば1回だけの荷重を付与する単発負荷の場合には適用することができず、その適用対象は限定的である。   However, the correction method described in Patent Document 3 is based on the premise that repeated loads are applied. For example, the correction method cannot be applied in the case of a single load that applies a load only once, and its application target is limited. is there.

また、歪ゲージはある程度の面積を有していることから、当該歪ゲージで得られる応力値は平均化した値となり、その結果、校正の精度には限界がある。また、歪ゲージは、応力集中が予測される、形状が急変する部位や複雑な形状の部位には貼付することが難しく、適用することができない。   Further, since the strain gauge has a certain area, the stress value obtained by the strain gauge is an averaged value, and as a result, the accuracy of calibration is limited. In addition, the strain gauge is difficult to apply to a part where the stress concentration is predicted, a part whose shape changes suddenly, or a part having a complicated shape, and cannot be applied.

本発明は、このような事情に鑑みてなされたものであり、被計測物に対し単発的に荷重を付与する場合においても熱拡散の影響を排除して簡単かつ高精度に応力測定を行うことができる応力測定方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and it is possible to easily and accurately measure stress by eliminating the influence of thermal diffusion even when a load is applied to an object to be measured only once. The object is to provide a stress measurement method capable of

(1)本発明の応力測定方法は、被計測物に単発負荷を作用させたときの当該被計測物表面の温度変動に基づき、熱弾性効果を利用して前記被計測物に発生する応力を測定する方法であって、
被計測物の荷重無負荷時の温度である基準温度と、荷重負荷時の温度である測定温度との差に基づいて第1エネルギーを算出し、
熱拡散がない場合の仮想温度変動を、前記単発負荷の大きさの時間変動を示す荷重履歴に対応させた仮想温度変動履歴で規定し、
この仮想温度変動履歴と基準温度とに基づいて第2エネルギーを算出し、
前記第1エネルギーと第2エネルギーとが等しいものとして、前記仮想温度変動履歴における極値を求め、
求めた極値と前記基準温度との差に熱弾性係数を乗じて被計測物に発生する応力を求めることを特徴としている。
(1) In the stress measuring method of the present invention, the stress generated in the object to be measured using the thermoelastic effect is based on the temperature fluctuation of the surface of the object to be measured when a single load is applied to the object to be measured. A method of measuring,
Calculating the first energy based on the difference between the reference temperature, which is the temperature when the object is not loaded, and the measured temperature, which is the temperature when the load is loaded,
A virtual temperature fluctuation when there is no thermal diffusion is defined by a virtual temperature fluctuation history corresponding to a load history indicating a time fluctuation of the magnitude of the one-shot load,
The second energy is calculated based on the virtual temperature fluctuation history and the reference temperature,
Assuming that the first energy and the second energy are equal, an extreme value in the virtual temperature fluctuation history is obtained,
The difference between the obtained extreme value and the reference temperature is multiplied by a thermoelastic coefficient to obtain the stress generated in the object to be measured.

本発明の応力測定方法では、被計測物に対し繰り返して荷重を負荷する必要がなく、1回の試験だけで応力を推定することができるので、部材(被計測物)の評価を簡単に且つ短時間で行うことができる。また、ハンマリング試験や衝撃試験等のように単発的な荷重が部材に負荷される場合でも当該部材に発生する応力を推定することができる。また、被計測物の温度を測定することで熱拡散の影響を補正することができ、歪ゲージを利用した従来技術のように場所の制約(歪ゲージの配設箇所の制約)がないので、高精度な応力測定の適用箇所を広げることができる。   In the stress measurement method of the present invention, it is not necessary to repeatedly apply a load to the object to be measured, and the stress can be estimated by only one test. Therefore, the evaluation of the member (object to be measured) can be easily performed. It can be done in a short time. Further, even when a single load is applied to a member such as a hammering test or an impact test, the stress generated in the member can be estimated. In addition, the influence of thermal diffusion can be corrected by measuring the temperature of the object to be measured, and there is no place restriction (restriction of the place where the strain gauge is placed) as in the prior art using a strain gauge. Applications for high-precision stress measurement can be expanded.

なお、本明細書において「被計測物」とは、熱弾性効果を利用して、その応力分布を計測する対象物のことであり、形状やサイズについて特に限定されるものではないが、例えばリブの付いたアルミハウジング等を例示することができる。
また、「単発負荷」とは、繰り返して連続的に付与される負荷と異なり、ハンマリング試験や衝撃試験等のように被計測物に対し単発的に付与される負荷のことである。
また、「荷重履歴」とは、被計測物に付与される荷重の大きさの時間変動を表しており、横軸に時間、縦軸に荷重の大きさをとった場合に、曲線若しくは直線又はそれらの混合で示すことができる。曲線の例としては、二次曲線、三次曲線、及び正弦曲線を挙げることができる。また、荷重履歴は連続的に取得されるデータだけでなく、離散的に取得されるデータに基づいて描かれるものであってもよい。
In the present specification, the “object to be measured” is an object for measuring the stress distribution using the thermoelastic effect, and is not particularly limited in shape or size. An aluminum housing or the like with can be exemplified.
The “single load” is a load that is applied to the object to be measured, such as a hammering test and an impact test, unlike a load that is repeatedly and continuously applied.
The “load history” represents the time variation of the magnitude of the load applied to the object to be measured. When the horizontal axis represents time and the vertical axis represents the load magnitude, a curve or straight line or It can be shown in their mixture. Examples of curves include quadratic curves, cubic curves, and sine curves. Further, the load history may be drawn based on not only continuously acquired data but also discretely acquired data.

本発明の応力測定方法によれば、被計測物に対し単発的に荷重を付与する場合においても熱拡散の影響を排除して簡単かつ高精度に応力測定を行うことができる。   According to the stress measurement method of the present invention, even when a load is applied to an object to be measured, the stress measurement can be performed easily and with high accuracy by eliminating the influence of thermal diffusion.

本発明の応力測定方法の原理を説明する図であり、(a)は被計測物に負荷される荷重変動曲線の一例を示す図であり、(b)は熱拡散がない場合の仮想温度変動曲線の一例を示す図であり、(c)は熱拡散がある実測定に係る温度変動曲線の一例を示す図である。It is a figure explaining the principle of the stress measuring method of this invention, (a) is a figure which shows an example of the load fluctuation curve loaded on a to-be-measured object, (b) is a virtual temperature fluctuation | variation when there is no thermal diffusion It is a figure which shows an example of a curve, (c) is a figure which shows an example of the temperature fluctuation curve concerning the actual measurement with thermal diffusion. 部材に負荷される荷重変動の他の例を示す図である。It is a figure which shows the other example of the load fluctuation | variation loaded on a member. 部材に引張荷重を負荷する荷重負荷試験の説明図である。It is explanatory drawing of the load load test which applies a tensile load to a member. 図3の荷重負荷試験で部材に負荷される荷重の時間変動を示す図である。It is a figure which shows the time fluctuation of the load loaded on a member by the load load test of FIG. 図3に示される荷重負荷試験における部材の切欠き近傍の温度変動を示す図である。It is a figure which shows the temperature fluctuation of the notch vicinity of the member in the load load test shown by FIG.

以下、添付図面を参照しつつ、本発明の応力測定方法の実施形態を詳細に説明する。
図1は、本発明の応力測定方法の原理を説明する図であり、(a)は被計測物に負荷される荷重変動曲線の一例を示す図であり、(b)は熱拡散がない場合の仮想温度変動曲線の一例を示す図であり、(c)は熱拡散がある実測定に係る温度変動曲線の一例を示す図である。
Hereinafter, embodiments of the stress measurement method of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram for explaining the principle of the stress measurement method of the present invention, where (a) is a diagram showing an example of a load fluctuation curve loaded on an object to be measured, and (b) is a case where there is no thermal diffusion. It is a figure which shows an example of this virtual temperature fluctuation curve, (c) is a figure which shows an example of the temperature fluctuation curve which concerns on an actual measurement with thermal diffusion.

本発明の応力測定方法では、測定対象物である被計測物の表面温度に基づき、熱弾性効果を利用して当該被計測物に発生する応力を測定する。したがって、被計測物に応力を負荷したときの当該被計測物の表面温度を測定する必要がある。この表面温度は、例えば熱電対を用いて測定することも可能であるが、本実施形態では、応答性や面情報として温度を測定できること(熱電対は点計測)を考慮して赤外線カメラを採用している。この赤外線カメラは、被計測物の表面から放出される赤外線を検出し、赤外線センサにより電気信号に変換し、画像信号として出力する。赤外線カメラは、被計測物に向けて配置されており(図3参照)、荷重無負荷時の被計測物の温度分布である基準温度画像及び荷重負荷時の被計測物の温度分布である温度変動画像を取得する。取得された温度変動画像の各画素について、熱拡散の影響を除去するために後述する補正処理を行い、補正後の温度と、基準温度画像から得られる基準温度との差に材料固有の値である熱弾性係数(温度と応力との比例定数)を乗ずることで当該画素に対応する箇所に発生した応力を求めることができる。そして、温度変動画像のすべて又は所望の画素について同様の処理を行うことで、補正された温度に基づいて算出された応力分布を取得することができる。   In the stress measurement method of the present invention, based on the surface temperature of the measurement object that is the measurement object, the stress generated in the measurement object is measured using the thermoelastic effect. Therefore, it is necessary to measure the surface temperature of the measurement object when stress is applied to the measurement object. This surface temperature can be measured using, for example, a thermocouple, but in this embodiment, an infrared camera is used in consideration of the ability to measure temperature as responsiveness and surface information (thermocouple is a point measurement). doing. This infrared camera detects infrared rays emitted from the surface of an object to be measured, converts the infrared rays into an electrical signal by an infrared sensor, and outputs the signal as an image signal. The infrared camera is arranged toward the object to be measured (see FIG. 3), and a reference temperature image that is a temperature distribution of the object to be measured when no load is applied and a temperature that is a temperature distribution of the object to be measured when a load is applied. Get a fluctuating image. For each pixel of the obtained temperature fluctuation image, correction processing described later is performed to remove the influence of thermal diffusion, and the difference between the corrected temperature and the reference temperature obtained from the reference temperature image is a value specific to the material. By multiplying a certain thermoelastic coefficient (proportional constant between temperature and stress), the stress generated at the location corresponding to the pixel can be obtained. Then, the stress distribution calculated based on the corrected temperature can be acquired by performing the same processing for all of the temperature variation images or desired pixels.

本実施形態において被計測物に負荷される単発負荷の荷重は、図1の(a)で示される正弦関数で規定されるように変化(変動)する。負荷開始から当該負荷が解放される除荷終了までの時間はtである。なお、本実施形態では、この除荷終了までの時間tは予め規定された時間である。 In this embodiment, the single load applied to the object to be measured changes (varies) as defined by the sine function shown in FIG. Time from the load start dividing up the load ends where the load is released is t 1. In the present embodiment, the time t 1 until the end of unloading is a predetermined time.

熱拡散がない理想的な状態では、図1の(b)に示されるように、被計測物の表面温度は、図1の(a)で示される、荷重履歴である荷重変動曲線(正弦関数で規定される曲線)に対応する仮想変動曲線(仮想変動履歴)にしたがって変化する。すなわち、温度変動を表す曲線は当該荷重変動を表す曲線と逆のパターンの形状であり、基準温度Trefを示す線分を軸として、荷重変動を表す曲線と線対称である。本実施形態では、被計測物に引張力が付与されることから、荷重が大きくなるにしたがい温度が低下する下に凸の正弦曲線にしたがって被計測物の表面温度が変化する。基準温度Trefから低下した表面温度Tは、荷重が最大値となる時間tで最小値(極値)Tmin´となり、負荷が解放される除荷終了時t1で基準温度Trefに戻る。 In an ideal state where there is no thermal diffusion, as shown in FIG. 1B, the surface temperature of the object to be measured is a load fluctuation curve (sine function) which is a load history shown in FIG. In accordance with a virtual fluctuation curve (virtual fluctuation history) corresponding to In other words, the curve representing the temperature fluctuation has a shape opposite to that of the curve representing the load fluctuation, and is symmetrical with the curve representing the load fluctuation about the line segment indicating the reference temperature Tref . In the present embodiment, since a tensile force is applied to the object to be measured, the surface temperature of the object to be measured changes according to a convex sine curve as the load increases, and the temperature decreases. Surface temperature T decreases from the reference temperature T ref, the minimum value at time t 3 when the load becomes the maximum value (extreme value) T MIN ', and the flow returns to the reference temperature T ref in unloading end t1 the load is released .

実際の測定時には被計測物に熱拡散が発生する。このため、負荷時の被計測物の温度変動は、図1の(c)に模式的に示されるように、「温度の行き過ぎ」現象が生じる。すなわち、熱拡散によって温度が上昇し、その上昇した状態から除荷に起因する温度上昇が生じるので、基準温度Trefを超えて被計測物の温度が上昇する。熱拡散がある場合は、負荷が完全に解放される時間tよりも早い時間tで被計測物の表面温度は基準温度Trefに戻り、さらに上昇を続け、ピークを迎えたのちに徐々に低下して、前記時間tよりも遅い時間tで基準温度Trefに戻る。 During actual measurement, thermal diffusion occurs in the object to be measured. For this reason, the temperature fluctuation of the measurement object at the time of load causes a “temperature overshoot” phenomenon as schematically shown in FIG. That is, the temperature rises due to thermal diffusion, and a temperature rise due to unloading occurs from the raised state, so that the temperature of the object to be measured rises above the reference temperature Tref . When there is thermal diffusion, the surface temperature of the object to be measured returns to the reference temperature T ref at a time t 0 that is earlier than the time t 1 at which the load is completely released, and further increases and gradually reaches a peak. And returns to the reference temperature T ref at a time t 2 later than the time t 1 .

本発明では、熱拡散がある場合と熱拡散がない場合とで、温度変動曲線と基準温度Trefとで囲まれる面積で表されるエネルギーは、投入されるエネルギーが等しいことから、互いに等しいという前提に基づいている。 In the present invention, the energy expressed by the area surrounded by the temperature variation curve and the reference temperature T ref in the case where there is thermal diffusion and in the case where there is no thermal diffusion is said to be equal to each other because the input energy is equal. Based on assumptions.

熱拡散がある場合の温度変動曲線と基準温度とで囲まれる面積で表されるエネルギー(第1エネルギー)Sは、測定した表面温度をT、基準温度をTrefとすると、次の式(1)で示される。式(1)の右辺の第1項は面積Sを表しており、第2項は面積Sを表している。すなわち、熱拡散がある場合のエネルギー(第1エネルギー)S=S+Sである。 The energy (first energy) S 1 represented by the area surrounded by the temperature variation curve and the reference temperature when there is thermal diffusion is expressed by the following equation (T) where the measured surface temperature is T and the reference temperature is T ref : 1). The first term of the right side of the expression (1) represents the area S a, the second term represents the area S b. That is, energy (first energy) S 1 = S a + S b when there is thermal diffusion.

一方、本実施形態において熱拡散がない場合の温度変動曲線は正弦関数で規定されることから、この場合の温度変動曲線と基準温度とで囲まれる面積で表されるエネルギー(第2エネルギー)Sは、正弦曲線の振幅をAとすると次の式(2)で示される。 On the other hand, since the temperature fluctuation curve in the present embodiment when there is no thermal diffusion is defined by a sine function, the energy (second energy) S represented by the area surrounded by the temperature fluctuation curve and the reference temperature in this case. 2 is expressed by the following equation (2), where A is the amplitude of the sine curve.

S1=S2であるので、式(1)と式(2)とから、次の式(3)で示される振幅Aが求められる。   Since S1 = S2, the amplitude A represented by the following equation (3) is obtained from the equations (1) and (2).

補正後の温度Tmin´は、Tref+Aである。すなわち、補正後の温度Tmin´は、次の式(4)で求めることができる。 The corrected temperature Tmin ′ is T ref + A. That is, the corrected temperature Tmin ′ can be obtained by the following equation (4).

補正後の温度Tmin´と基準温度との差、すなわち、本実施形態では式(3)で表される振幅Aに被計測物を構成する材料特有の既知の熱弾性係数を乗ずることで応力を推定することができる。   The stress is calculated by multiplying the difference between the corrected temperature Tmin ′ and the reference temperature, that is, the amplitude A represented by Equation (3) in this embodiment by a known thermoelastic coefficient specific to the material constituting the object to be measured. Can be estimated.

〔その他の変形例〕
なお、今回開示された実施の形態はすべての点において単なる例示であって制限的なものではないと考えられるべきである。本発明の範囲は、前記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内のすべての変更が含まれることが意図される。
[Other variations]
It should be noted that the embodiment disclosed this time is merely an example in all respects and is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、前述した実施形態では、被計測物に付与される荷重が正弦関数に規定される曲線にしたがって変動しているが、本発明における荷重の変動履歴は、かかる正弦曲線のように負荷時と除荷時との変動パターンが同じものに限定されない。例えば、図2に示されるように、負荷時の荷重変動履歴が直線状であり、除荷時の荷重変動履歴が曲線状であるように、負荷時と除荷時の変動パターンが異なっていてもよい。ハンマリング試験や衝撃試験においては、負荷時の荷重変動パターンと除荷時の荷重変動パターンは同じではない。   For example, in the above-described embodiment, the load applied to the object to be measured fluctuates according to a curve defined by a sine function. The fluctuation pattern at the time of unloading is not limited to the same pattern. For example, as shown in FIG. 2, the load fluctuation history at the time of loading is different from that at the time of unloading so that the load fluctuation history at the time of loading is linear and the load fluctuation history at the time of unloading is curved. Also good. In the hammering test and the impact test, the load variation pattern during loading and the load variation pattern during unloading are not the same.

また、前述した実施形態では、応力除荷が終了するまでの時間tは予め規定された時間であったが、かかる時間tは規定された時間に限定されるものではなく、例えば加速度ピックアップを用いて測定された時間であってもよい。すなわち、例えば加速度ピックアップを用いて加速度を測定し、加速時を負荷、減速時を除荷とすることで、除荷終了までの時間tを測定することができる。 Further, in the embodiment described above, the time t 1 to stress unloading ends were predefined time, the time t 1 is not intended to be limited to the time specified, for example, accelerometer It may be the time measured using. That is, for example, to measure the acceleration by using the acceleration pickups, load during acceleration, by the deceleration and unloading, it is possible to measure the time t 1 until unloading ends.

また、前述した実施形態では、被計測物の或る点について温度補正を行っているが、この温度補正の範囲は線状、さらには面状に拡げることができる。すなわち、被計測物の温度を測定する温度測定手段として赤外線カメラを用いる場合、被計測物を撮影して得られる温度画像のすべて又は所望の画素について、前述した温度補正を行うことで、被計測物の補正された温度分布を取得することができる。   In the above-described embodiment, the temperature correction is performed for a certain point of the object to be measured. However, the temperature correction range can be expanded to a linear shape or a planar shape. That is, when an infrared camera is used as a temperature measuring means for measuring the temperature of the object to be measured, the temperature correction is performed by performing the above-described temperature correction on all or a desired pixel of the temperature image obtained by photographing the object to be measured. A corrected temperature distribution of the object can be obtained.

また、前述した実施形態では、被計測物の温度が正弦関数に規定される曲線にしたがって変化しているが、現実の負荷荷重が他の関数にしたがって変化する場合は、温度も当該他の関数にしたがって変化するものとすることにより、応力推定の精度を向上させることができる。   In the above-described embodiment, the temperature of the object to be measured changes according to the curve defined by the sine function. However, when the actual load changes according to another function, the temperature is also changed to the other function. Therefore, the accuracy of stress estimation can be improved.

また、前述した実施形態では、被計測物に荷重を一度だけ付与しているが、周期的に荷重を付与する場合においても、本発明を適用して各荷重付与時における温度補正を行うことができる。   In the above-described embodiment, the load is applied only once to the object to be measured. However, even when the load is periodically applied, the present invention can be applied to perform temperature correction at the time of applying each load. it can.

また、本発明では、熱拡散がある場合とない場合の最大温度変化量(基準温度からの最大変化量であり、熱拡散がない場合における振幅A)をそれぞれ取得することができる。換言すれば、熱拡散により逃げるエネルギーを推定することができるので、このエネルギー量と被計測物に付与された応力(所定の応力を付与すると仮定)とから、熱弾性係数を利用して当該被計測物の熱伝導特性(熱伝導率)を推定し、さらにこの熱伝導率から被計測物の材料を推定することも可能である。   In the present invention, the maximum temperature change amount with and without thermal diffusion (the maximum change amount from the reference temperature and the amplitude A when there is no thermal diffusion) can be acquired. In other words, it is possible to estimate the energy that escapes due to thermal diffusion. Therefore, based on this amount of energy and the stress applied to the object to be measured (assuming that a predetermined stress is applied), the thermoelastic coefficient is used to determine the energy to be applied. It is also possible to estimate the thermal conductivity characteristics (thermal conductivity) of the measurement object and further estimate the material of the measurement object from this thermal conductivity.

1:部材、2:赤外線カメラ
1: Member 2: Infrared camera

Claims (4)

被計測物に単発負荷を作用させたときの当該被計測物表面の温度変動に基づき、熱弾性効果を利用して前記被計測物に発生する応力を測定する方法であって、
被計測物の荷重無負荷時の温度である基準温度と、荷重負荷時の温度である測定温度との差に基づいて第1エネルギーを算出し、
熱拡散がない場合の仮想温度変動を、前記単発負荷の大きさの時間変動を示す荷重履歴に対応させた仮想温度変動履歴で規定し、
この仮想温度変動履歴と基準温度とに基づいて第2エネルギーを算出し、
前記第1エネルギーと第2エネルギーとが等しいものとして、前記仮想温度変動履歴における極値を求め、
求めた極値と前記基準温度との差に熱弾性係数を乗じて被計測物に発生する応力を求めることを特徴とする、応力測定方法。
Based on the temperature variation of the surface of the object to be measured when a single load is applied to the object to be measured, a method of measuring stress generated in the object to be measured using a thermoelastic effect,
Calculating the first energy based on the difference between the reference temperature, which is the temperature when the object is not loaded, and the measured temperature, which is the temperature when the load is loaded,
A virtual temperature fluctuation when there is no thermal diffusion is defined by a virtual temperature fluctuation history corresponding to a load history indicating a time fluctuation of the magnitude of the one-shot load,
The second energy is calculated based on the virtual temperature fluctuation history and the reference temperature,
Assuming that the first energy and the second energy are equal, an extreme value in the virtual temperature fluctuation history is obtained,
A stress measurement method characterized in that a stress generated in an object to be measured is obtained by multiplying a difference between the obtained extreme value and the reference temperature by a thermoelastic coefficient.
前記仮想温度変動履歴は、振幅がAの正弦関数で規定される曲線であり、
前記第1エネルギーは、前記基準温度と前記測定温度との差を積分することで算出され、
前記第2エネルギーは、前記正弦関数で規定される曲線と前記基準温度との差を積分することで算出され、
前記第1エネルギーと第2エネルギーとが等しいものとして求めた振幅Aに熱弾性係数を乗じて被計測物に発生する応力を求める、請求項1に記載の応力測定方法。
The virtual temperature fluctuation history is a curve defined by a sine function with an amplitude of A,
The first energy is calculated by integrating the difference between the reference temperature and the measured temperature,
The second energy is calculated by integrating the difference between the curve defined by the sine function and the reference temperature,
The stress measurement method according to claim 1, wherein the stress generated in the object to be measured is obtained by multiplying the amplitude A obtained by assuming that the first energy and the second energy are equal to each other by a thermoelastic coefficient.
前記温度変動は、前記被計測物に対向して配置された赤外線カメラで撮像した赤外線画像から得られる、請求項1又は請求項2に記載の応力測定方法。   The stress measurement method according to claim 1, wherein the temperature variation is obtained from an infrared image captured by an infrared camera arranged to face the object to be measured. 前記赤外線画像の画素毎に前記極値が求められ、この極値と前記基準温度との差に熱弾性係数を乗じて被計測物の応力分布を求める、請求項3に記載の応力測定方法。   The stress measurement method according to claim 3, wherein the extreme value is obtained for each pixel of the infrared image, and a stress distribution of the measurement object is obtained by multiplying a difference between the extreme value and the reference temperature by a thermoelastic coefficient.
JP2014032642A 2014-02-24 2014-02-24 stress measuring method Pending JP2015158400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032642A JP2015158400A (en) 2014-02-24 2014-02-24 stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032642A JP2015158400A (en) 2014-02-24 2014-02-24 stress measuring method

Publications (1)

Publication Number Publication Date
JP2015158400A true JP2015158400A (en) 2015-09-03

Family

ID=54182487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032642A Pending JP2015158400A (en) 2014-02-24 2014-02-24 stress measuring method

Country Status (1)

Country Link
JP (1) JP2015158400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029269B2 (en) 2016-04-08 2021-06-08 Denso Corporation Monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029269B2 (en) 2016-04-08 2021-06-08 Denso Corporation Monitoring device

Similar Documents

Publication Publication Date Title
US9410798B2 (en) Strain measurement apparatus, linear expansion coefficient measurement method, and correction coefficient measurement method for temperature distribution detector
Tay et al. Digital image correlation for whole field out-of-plane displacement measurement using a single camera
JP6240206B2 (en) Displacement field and strain field measurement method and material testing machine
JP5082941B2 (en) Mark position measurement device, mark position measurement program, and mark mark
JP6077042B2 (en) Notch coefficient estimation method, notch coefficient estimation system, and notch coefficient estimation device
JP6142074B2 (en) Fatigue testing equipment
JP2018128431A (en) Stress measurement system and stress measurement method
JP2015158400A (en) stress measuring method
JP2017036978A (en) Stress measurement device and stress measurement method
WO2018123129A1 (en) Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
JP6248706B2 (en) Stress distribution measuring apparatus and stress distribution measuring method
JP6223294B2 (en) Correction method of stress value in infrared stress measurement system and infrared stress measurement system using the method
HajiRassouliha et al. Subpixel measurement of living skin deformation using intrinsic features
Yu et al. Digital image correlation analysis and numerical simulation of aluminum alloys under quasi-static tension after necking using the Bridgman’s correction method
US10718607B2 (en) Determining geometric characteristics of reflective surfaces
JP2006250683A (en) Fatigue destruction specifying system and fatigue destruction specifying method
KR101431244B1 (en) Measurement system of dynamic strain by image processing and method thereof
KR101161775B1 (en) Device and method for measurement of hardness and tensile properties
Van Mieghem et al. Benchmarking of depth of field for large out-of-plane deformations with single camera digital image correlation
JP2014126482A (en) Vehicle weight measurement apparatus and vehicle weight measurement method
JP7122670B2 (en) Fatigue limit stress identification system, fatigue limit stress identification device, and fatigue limit stress identification method
JP6872324B2 (en) Measurement system, measurement method and measurement program
Lava et al. Sources of systematic errors in the determination of heterogeneous strain fields obtained via DIC
Badaloni et al. Out-of-plane motion evaluation and correction in 2D DIC
KR101310345B1 (en) Recoding media saving program for displacement measurement by image intensity and apparatus therefor