JP2015157243A - Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst - Google Patents

Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst Download PDF

Info

Publication number
JP2015157243A
JP2015157243A JP2014032198A JP2014032198A JP2015157243A JP 2015157243 A JP2015157243 A JP 2015157243A JP 2014032198 A JP2014032198 A JP 2014032198A JP 2014032198 A JP2014032198 A JP 2014032198A JP 2015157243 A JP2015157243 A JP 2015157243A
Authority
JP
Japan
Prior art keywords
oxide catalyst
particles
nickel
catalyst
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014032198A
Other languages
Japanese (ja)
Other versions
JP6211951B2 (en
Inventor
利明 市川
Toshiaki Ichikawa
利明 市川
章喜 福澤
Akiyoshi Fukuzawa
章喜 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2014032198A priority Critical patent/JP6211951B2/en
Publication of JP2015157243A publication Critical patent/JP2015157243A/en
Application granted granted Critical
Publication of JP6211951B2 publication Critical patent/JP6211951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide an oxide catalyst which provides a high yield of unsaturated nitrile in an ammoxidation reaction of an olefin, and can maintain good activity even when it is exposed to repeated reduction load.SOLUTION: Provided is an oxide catalyst used for a gas-phase contact ammoxidation reaction of an olefin, containing molybdenum, bismuth, iron, and nickel, in which the nickel is unevenly distributed in an outer portion of a particle of the oxide catalyst.

Description

本発明は、酸化物触媒及びその製造方法、並びに、酸化物触媒を用いた不飽和ニトリルの製造方法に関する。   The present invention relates to an oxide catalyst, a method for producing the same, and a method for producing an unsaturated nitrile using the oxide catalyst.

プロピレンをアンモニアの存在下に分子状酸素によって気相接触酸化してアクリロニトリルを得る方法は、「アンモ酸化プロセス」として広く知られており、現在広く工業的規模で実施されている。   A method for obtaining acrylonitrile by vapor-phase catalytic oxidation of propylene with molecular oxygen in the presence of ammonia is widely known as an “ammoxidation process” and is currently widely practiced on an industrial scale.

工業的規模で一層効率的にアンモ酸化プロセスを実施するにあたり、本プロセスに用いる触媒について種々の検討が進められており、Mo−Bi−Fe系、Fe−Sb系等の複合酸化物からなる触媒が知られている。例えば、特許文献1及び2には、モリブデン、ビスマス及び鉄に加え、その他の成分を添加した触媒が開示されている。   In order to carry out the ammoxidation process more efficiently on an industrial scale, various studies have been made on the catalyst used in this process, and a catalyst comprising a composite oxide such as Mo—Bi—Fe, Fe—Sb, etc. It has been known. For example, Patent Documents 1 and 2 disclose catalysts in which other components are added in addition to molybdenum, bismuth and iron.

特許第3214984号公報Japanese Patent No. 3214984 特許第5188005号公報Japanese Patent No. 5188005

しかしながら、本発明者らが特許文献1及び2に記載の触媒を調製したところ、これらの触媒は、反応の初期収率を大きく改良できたものの、長時間の運転における還元負荷への耐性に関してはまだ十分満足できるものではなく、より一層の改良が必要であることがわかった。   However, when the present inventors prepared the catalysts described in Patent Documents 1 and 2, these catalysts were able to greatly improve the initial yield of the reaction, but with regard to the resistance to the reduction load during long-time operation. It has not yet been fully satisfactory, and it has been found that further improvements are necessary.

本発明は上記事情に鑑みてなされたものであり、オレフィンのアンモ酸化反応において高い不飽和ニトリル収率を与えると共に、度重なる還元負荷を受けても良好な活性を維持できる酸化物触媒及びその製造方法、並びに、その酸化物触媒を用いた不飽和ニトリルの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an oxide catalyst capable of providing a high unsaturated nitrile yield in an olefin ammoxidation reaction and maintaining good activity even when subjected to repeated reduction loads. It is an object of the present invention to provide a method and a method for producing an unsaturated nitrile using the oxide catalyst.

本発明者らは、上記目的を達成するために種々の検討をしていく中で、仕込みの金属組成が同じ酸化物触媒であっても、触媒中の金属分布が均一とは限らないことを見出した。これは、触媒中で複数の金属酸化物が複合化した状態で存在すること、及び、焼成を含む触媒調製の過程において、金属元素の移動が生じていることに起因すると考えられる。そして、本発明者らが触媒粒子中に存在する金属酸化物粒子の分布状態を検討したところ、触媒を構成する金属元素が特定の状態に分布する場合に、高い不飽和ニトリル収率が得られると共に、度重なる還元負荷を受けても良好な活性を維持できることを見出し、本発明を完成するに至った。   The inventors have made various studies in order to achieve the above object, and that even if the prepared metal composition is the same oxide catalyst, the metal distribution in the catalyst is not always uniform. I found it. This is considered to be due to the presence of a plurality of metal oxides in a complexed state in the catalyst and the movement of the metal element in the process of catalyst preparation including calcination. And when the present inventors examined the distribution state of the metal oxide particle which exists in a catalyst particle, when the metal element which comprises a catalyst distributes to a specific state, a high unsaturated nitrile yield is obtained. At the same time, it has been found that good activity can be maintained even under repeated reduction loads, and the present invention has been completed.

すなわち、本発明は以下のとおりである。
[1]オレフィンの気相接触アンモ酸化反応又はモノオレフィンの気相接触酸化反応に用いられる酸化物触媒であって、モリブデンと、ビスマスと、鉄と、ニッケルとを含み、前記酸化物触媒の粒子の外縁部にニッケルが偏在している、酸化物触媒。
[2]前記外縁部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度が、前記粒子の中心部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度に対して1.2倍以上である、[1]に記載の酸化物触媒。
[3][1]又は[2]に記載の酸化物触媒の製造方法であって、
モリブデンと、ビスマスと、鉄と、ニッケルと、一次粒子の平均粒子径が5nm以上20nm未満のシリカと、一次粒子径の平均粒子径が20nm以上125nm未満であるシリカとを混合し、前駆体スラリーを調製する工程と、
前記前駆体スラリーを噴霧乾燥し、乾燥粒子を得る工程と
前記乾燥粒子を、室温から200℃〜350℃の範囲内に設定した温度まで、1時間以上かけて昇温し、前記乾燥粒子を仮焼成して仮焼成粒子を得る工程と、
前記仮焼成粒子を、前記仮焼成粒子を得る工程で設定した温度から500℃〜750℃の範囲内で設定した温度まで、1時間以上かけて昇温し、前記仮焼成粒子を本焼成して酸化物触媒を得る工程と、を有する、酸化物触媒の製造方法。
[4][1]又は[2]に記載の酸化物触媒を用い、オレフィンと、分子状酸素及びアンモニアとを反応させて不飽和ニトリルを製造する、不飽和ニトリルの製造方法。
That is, the present invention is as follows.
[1] Oxide catalyst used for gas phase catalytic ammoxidation reaction of olefin or gas phase catalytic oxidation reaction of monoolefin, comprising molybdenum, bismuth, iron and nickel, and particles of the oxide catalyst An oxide catalyst in which nickel is unevenly distributed at the outer edge of the catalyst.
[2] A characteristic X-ray generated when an electron beam is irradiated to nickel existing at the center of the particle, when the average intensity of the characteristic X-ray generated when the nickel existing at the outer edge is irradiated with an electron beam The oxide catalyst according to [1], which is 1.2 times or more of the average strength.
[3] A method for producing an oxide catalyst according to [1] or [2],
Mixing molybdenum, bismuth, iron, nickel, silica having an average primary particle diameter of 5 nm or more and less than 20 nm, and silica having an average primary particle diameter of 20 nm or more and less than 125 nm, a precursor slurry A step of preparing
The precursor slurry is spray-dried to obtain dry particles, and the dry particles are heated from room temperature to a temperature set in a range of 200 ° C. to 350 ° C. over 1 hour, and the dry particles are temporarily Calcination to obtain pre-fired particles;
The calcined particles are heated for 1 hour or more from the temperature set in the step of obtaining the calcined particles to a temperature set within a range of 500 ° C. to 750 ° C., and the calcined particles are calcined. Obtaining an oxide catalyst. A method for producing an oxide catalyst.
[4] A method for producing an unsaturated nitrile, wherein the oxide catalyst according to [1] or [2] is used to react an olefin with molecular oxygen and ammonia to produce an unsaturated nitrile.

本発明によれば、オレフィンのアンモ酸化反応において高い不飽和ニトリル収率を与えると共に、度重なる還元負荷を受けても良好な活性を維持できる酸化物触媒及びその製造方法、並びに、その酸化物触媒を用いた不飽和ニトリルの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while giving a high unsaturated nitrile yield in the ammoxidation reaction of an olefin, the oxide catalyst which can maintain favorable activity even if it receives repeated reduction load, its manufacturing method, and its oxide catalyst A method for producing an unsaturated nitrile using can be provided.

本実施形態の酸化物触媒におけるニッケルの偏在について説明するための模式図である。It is a schematic diagram for demonstrating uneven distribution of nickel in the oxide catalyst of this embodiment.

以下に、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施の形態」という。)について説明するが、本発明は下記の本実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described with reference to the drawings as necessary. However, the present invention is limited to the following embodiment. However, various modifications can be made without departing from the scope of the invention. The positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

[1]酸化物触媒
本実施形態の酸化物触媒は、オレフィンの気相接触アンモ酸化反応に用いられる酸化物触媒であって、モリブデンと、ビスマスと、鉄と、ニッケルとを含み、その粒子の外縁部にニッケルが偏在しているものである。
[1] Oxide Catalyst The oxide catalyst of the present embodiment is an oxide catalyst used for a gas phase catalytic ammoxidation reaction of olefin, which contains molybdenum, bismuth, iron, and nickel, Nickel is unevenly distributed at the outer edge.

(1)組成
本実施形態における酸化物触媒は、モリブデン、ビスマス、鉄及びニッケルを必須成分として含む。一般に、Mo−Bi−Fe系触媒では、各金属元素が下記の機能を有するとされている。すなわち、モリブデンはプロピレン等のオレフィンの吸着サイト及びアンモニアの活性化サイトとしての機能を担ってNH種を生成する。ビスマスは、プロピレン等のオレフィンやn−ブテン等のモノオレフィンの活性化サイトとして作用し、α位水素を引き抜いてπアリル種を生成させる。鉄は、Fe3+/Fe2+のレドックスにより気相から活性サイトへの酸素の授受に寄与する。また、ニッケルは、NiMoO4構造にFe2+を固溶させることでFe2+を安定化すると考えられている。これらの触媒中の各金属元素の機能は、例えば、Grasselli,R.K.,「Handbook of Heterogeneous Catalysis 5」,Wiley VCH,1997,p2302に記載されている。
(1) Composition The oxide catalyst in this embodiment contains molybdenum, bismuth, iron, and nickel as essential components. In general, in a Mo—Bi—Fe-based catalyst, each metal element is assumed to have the following functions. That is, molybdenum plays a role as an adsorption site for olefins such as propylene and an activation site for ammonia to generate NH species. Bismuth acts as an activation site for olefins such as propylene and monoolefins such as n-butene, and draws α-position hydrogen to produce π-allyl species. Iron contributes to the exchange of oxygen from the gas phase to the active site by Fe 3+ / Fe 2+ redox. Moreover, nickel is believed to stabilize the Fe 2+ by causing solid solution of Fe 2+ in NiMoO 4 structure. The function of each metal element in these catalysts is described in, for example, Grasselli, R .; K. , “Handbook of Heterogeneous Catalysis 5”, Wiley VCH, 1997, p2302.

酸化物触媒における、モリブデン、ビスマス、鉄及びニッケルの各金属元素の含有比は、特に限定されず、従来と同様であってもよい。例えば、触媒機能の発現に適正な結晶相構成比とする観点から、モリブデン12原子に対して、ビスマスが0.1〜1、鉄が0.1〜3、ニッケルが2〜10の原子比率であると好ましい。   The content ratio of each metal element of molybdenum, bismuth, iron and nickel in the oxide catalyst is not particularly limited, and may be the same as the conventional one. For example, from the viewpoint of making the crystal phase composition ratio appropriate for the expression of the catalytic function, the atomic ratio of bismuth is 0.1 to 1, iron is 0.1 to 3, and nickel is 2 to 10 with respect to 12 atoms of molybdenum. Preferably there is.

モリブデン、ビスマス、鉄及びニッケルの他に、必要に応じて酸化物触媒中に含まれていてもよい金属成分としては、(a)セリウム、クロム及びマンガンからなる群より選ばれる少なくとも1種の金属元素、(b)コバルト及びマグネシウムからなる群より選ばれる少なくとも1種の金属元素、(c)カリウム、ルビジウム、及びセシウムからなる群より選ばれる少なくとも1種の金属元素が挙げられる。これらのうち、(a)の金属元素は、鉄と同様に酸化物触媒におけるレドックス機能を担うと共に、主触媒の結晶相の高温安定性を増すものと推察される。また、(b)の金属元素は、MIIMoO4構造にFe2+を固溶させ安定化させたりするものと推察される。(c)の金属元素は、触媒表面の酸点を被覆し、副反応を抑制するものと推察される。これらの機能により、触媒性能が更に向上すると考えられる。 In addition to molybdenum, bismuth, iron and nickel, the metal component optionally contained in the oxide catalyst is (a) at least one metal selected from the group consisting of cerium, chromium and manganese An element, (b) at least one metal element selected from the group consisting of cobalt and magnesium, and (c) at least one metal element selected from the group consisting of potassium, rubidium, and cesium. Of these, the metal element (a) is presumed to have a redox function in the oxide catalyst as well as iron, and increase the high-temperature stability of the crystal phase of the main catalyst. In addition, the metal element (b) is presumed to stabilize Fe 2+ in the M II MoO 4 structure. It is presumed that the metal element (c) covers the acid sites on the catalyst surface and suppresses side reactions. These functions are considered to further improve the catalyst performance.

各金属元素の機能をより有効かつ確実に発揮させて、触媒性能の更なる向上を図る観点から、酸化物触媒において、モリブデン12原子に対して、(a)の金属元素は、0〜3原子含まれることが好ましく、(b)の金属元素は、4〜12原子含まれることが好ましく、(c)の金属元素は、0.01〜2原子含まれることが好ましい。   From the viewpoint of further effectively and surely exerting the function of each metal element to further improve the catalyst performance, in the oxide catalyst, the metal element of (a) is 0 to 3 atoms with respect to 12 atoms of molybdenum. The metal element (b) is preferably contained in 4 to 12 atoms, and the metal element (c) is preferably contained in 0.01 to 2 atoms.

(2)ニッケルの分布
本実施態様の酸化物触媒は、ニッケルが触媒粒子の外縁部に高い濃度で存在、すなわち偏在している。ここで、本明細書中、ニッケルの「偏在」とは、触媒粒子のある領域におけるニッケルの存在割合が他の領域に比べて高い状態であることを示す。酸化物触媒に含まれる各種元素の分布は、酸化物触媒試料の各領域に電子線を照射して、そこから発生する特性X線の波長及び強度から確認することができる。より具体的には、例えば、EDX(エネルギー分散X線分光法)、EPMA(電子線マイクロアナリシス)といった分析手法により各種元素の分布を確認することができる。
(2) Distribution of nickel In the oxide catalyst of the present embodiment, nickel is present at a high concentration in the outer edge portion of the catalyst particles, that is, unevenly distributed. Here, in the present specification, the “uneven distribution” of nickel indicates that the presence ratio of nickel in a certain region of catalyst particles is higher than that in other regions. The distribution of various elements contained in the oxide catalyst can be confirmed from the wavelength and intensity of characteristic X-rays generated from each region of the oxide catalyst sample irradiated with an electron beam. More specifically, for example, the distribution of various elements can be confirmed by an analytical technique such as EDX (energy dispersive X-ray spectroscopy) or EPMA (electron beam microanalysis).

また、粒子の「外縁部」とは、粒子断面の外周から粒子直径の20%内側の部分までの領域をいい、後述の粒子の「中心部」とは、外縁部よりも内側の領域をいう。「粒子直径」は、上記粒子断面における重心を通る任意の直線において、その直線が粒子断面の外周と交わる2点間の距離をいう。酸化物触媒の粒子断面の外周及び粒子直径は、電子顕微鏡画像から判別できる。   In addition, the “outer edge” of the particle refers to a region from the outer periphery of the particle cross section to a portion inside 20% of the particle diameter, and the “center” of the particle described later refers to a region inside the outer edge. . “Particle diameter” refers to the distance between two points where an arbitrary straight line passing through the center of gravity of the particle cross section intersects the outer periphery of the particle cross section. The outer periphery and particle diameter of the particle cross section of the oxide catalyst can be discriminated from the electron microscope image.

酸化物触媒におけるニッケルの偏在について、触媒粒子の外縁部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度が、触媒粒子の中心部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度に対して1.05倍以上であるとニッケルがより偏在しているといえる。触媒粒子の外縁部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度が、触媒粒子の中心部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度に対して1.20倍以上であることがより好ましい。このようにニッケルが偏在することで、本発明による効果をより有効且つ確実に奏することができる。   Regarding the uneven distribution of nickel in the oxide catalyst, the average intensity of characteristic X-rays generated when an electron beam is irradiated onto nickel existing at the outer edge of the catalyst particle is irradiated with an electron beam at the center of the catalyst particle. It can be said that nickel is more unevenly distributed when the average intensity of characteristic X-rays generated is 1.05 times or more. The average intensity of the characteristic X-ray generated when the nickel existing in the outer edge portion of the catalyst particle is irradiated with an electron beam is equal to the characteristic X-ray generated when the nickel existing in the central portion of the catalyst particle is irradiated with the electron beam. The average strength is more preferably 1.20 times or more. Thus, nickel is unevenly distributed, so that the effects of the present invention can be more effectively and reliably exhibited.

次に、一例として、酸化物触媒におけるニッケルの分布を、EPMAを用いて測定する場合について説明する。EPMAによる分析条件は下記のとおりである。
装置:日本電子(株)製、製品名「JXA−8500F」
測定条件:加速電圧…15.0kV、照射電流…50nA、倍率…×1000、ビーム径…20μm
Next, as an example, a case where the nickel distribution in the oxide catalyst is measured using EPMA will be described. The analysis conditions by EPMA are as follows.
Equipment: Product name “JXA-8500F” manufactured by JEOL Ltd.
Measurement conditions: Acceleration voltage ... 15.0 kV, irradiation current ... 50 nA, magnification ... * 1000, beam diameter ... 20 [mu] m

前処理として、酸化物触媒の粒子試料を硬化前のエポキシ樹脂(Gatan社製、主剤Resin−G2及び硬化剤Hardener−G2(いずれも商品名)の2種混合)中に浸漬し、130℃に加熱してエポキシ樹脂を硬化することによって、粒子試料をエポキシ樹脂中に包埋する。次いで、得られた包埋物を耐水サンドペーパー(#2000)で粗研磨して、粒子試料の断面を露出させる。次に、粗研磨したものをイオンミリング装置にセットし、Arイオンビームにより、酸化物触媒の粒子試料の断面に対して6時間精密断面加工を施す。こうして得られた測定試料を所定の試料台に載置し、EPMAにより、ニッケルの分布を測定する。   As a pretreatment, the particle sample of the oxide catalyst is immersed in an epoxy resin before curing (manufactured by Gatan Co., Ltd., main resin Resin-G2 and curing agent Hardener-G2 (both are trade names)) and is heated to 130 ° C. The particle sample is embedded in the epoxy resin by heating to cure the epoxy resin. Next, the obtained embedded material is roughly polished with water-resistant sandpaper (# 2000) to expose the cross section of the particle sample. Next, the coarsely polished material is set in an ion milling apparatus, and precision cross-section processing is performed on the cross-section of the oxide catalyst particle sample with an Ar ion beam for 6 hours. The measurement sample thus obtained is placed on a predetermined sample stage, and the nickel distribution is measured by EPMA.

イオンミリングの条件は下記のとおりである。
装置:(株)日立ハイテクノロジーズ製、製品名「E−3500」
測定条件:加速電圧…6kV、放電電圧…4kV、ステージコントロール…1、ミリング時間…6時間、導入ガス…Ar
The conditions for ion milling are as follows.
Equipment: Product name “E-3500” manufactured by Hitachi High-Technologies Corporation
Measurement conditions: acceleration voltage ... 6 kV, discharge voltage ... 4 kV, stage control ... 1, milling time ... 6 hours, introduced gas ... Ar

ニッケルの特性X線の平均強度を算出する際には、下記のようにして断面の面分析を行う。まず、酸化物触媒の粒子のうち、所定範囲の粒子径を有する粒子をフィルターにより選別する。次いで、選別した触媒について、上述のようにして測定試料を作製する。次に、測定試料において断面が露出した粒子を測定対象として、その断面の面分析を行う。   When calculating the average intensity of the characteristic X-ray of nickel, the surface analysis of the cross section is performed as follows. First, among the oxide catalyst particles, particles having a particle diameter in a predetermined range are selected by a filter. Next, a measurement sample is prepared as described above for the selected catalyst. Next, surface analysis of the cross section of the measurement sample is performed on particles whose cross section is exposed.

より具体的には、例えば、後述の粒子径分布の測定による粒子径が40〜70μmの範囲にある粒子について、その断面の面分析を行う。かかる粒子は、その粒子の中心又はその付近まで露出したものとみなせる。平均粒子径がこの範囲内にはならない酸化物触媒であっても、粒子径40〜70μmの粒子を含有し、その粒子径を有する粒子をフィルター等により選別し、その粒子径を有する粒子について、ニッケルの特性X線の平均強度を測定してニッケルの分布を分析した場合に、粒子の外縁部にニッケルが偏在していれば、好ましい偏在の状態を満足するといえる。本発明者らの認識によると、流動床反応に用いる酸化物触媒の場合、粒子径40〜70μmの触媒粒子が特に効率的に触媒作用を奏することから、少なくともこの粒子径を有する酸化物触媒においてニッケルが偏在していれば、本発明による効果を奏することができる。   More specifically, for example, a surface analysis of the cross section of particles having a particle size in the range of 40 to 70 μm by measurement of particle size distribution described later is performed. Such particles can be regarded as being exposed to the center of the particles or the vicinity thereof. Even for an oxide catalyst whose average particle size does not fall within this range, the particles having a particle size of 40 to 70 μm are contained, and the particles having the particle size are selected by a filter or the like. When the average intensity of the characteristic X-ray of nickel is measured and the distribution of nickel is analyzed, if nickel is unevenly distributed at the outer edge of the particle, it can be said that a preferable uneven state is satisfied. According to the recognition of the present inventors, in the case of an oxide catalyst used in a fluidized bed reaction, catalyst particles having a particle size of 40 to 70 μm exhibit particularly efficient catalytic action, so at least in the oxide catalyst having this particle size. If nickel is unevenly distributed, the effects of the present invention can be achieved.

ここで、触媒粒子の平均粒子径は、JIS R 1629−1997「ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法」に準拠して粒子径分布を測定し、体積基準で平均して求めたものである。より詳細には、乾燥粉体の一部を空気中、400℃で1時間焼成し、得られた粒子を対象として、レーザー回折散乱法粒度分布測定装置(BECKMAN COULTER社製、型番:LS230)を用いて測定される。ここで、乾燥粉体の一部を「空気中、400℃で1時間焼成」した後で平均粒子径を測定するのは、乾燥粉体が水に溶けるのを防ぐためである。つまり、「空気中、400℃で1時間焼成」は専ら測定のためであって、後述の焼成工程とは関係しない。この焼成の前後で、粒子径はほぼ変化しないと考えてよい。
より具体的には、平均粒子径の測定は、上記レーザー回折散乱法粒度分布測定装置に添付のマニュアルに準じ、以下のように行えばよい。まず、バックグラウンドを、RunSpeed60にて測定する。一方、測定対象となる粒子0.2gを適当な大きさのスクリュー管に秤量し、そこに水10mLを加える。次いで、そのスクリュー管に蓋をして(密閉して)十分に振とうし、粒子を水に分散させる。装置により300Wの超音波を印加し、再度スクリュー管を十分に振とうする。その後、超音波の印加を続けながら、水に分散させた粒子を適切な濃度(濃度10、PIDS60)になるよう装置本体にスポイトを用いて注入する。濃度表示が安定したら、超音波の印加を停止し、10秒間静置した後、測定を開始する(測定時間90秒)。得られた測定結果の中位径の値を平均粒子径とする。
Here, the average particle size of the catalyst particles is determined by measuring the particle size distribution according to JIS R 1629-1997 “Method for measuring particle size distribution of fine ceramic raw material by laser diffraction / scattering method”, and averaging on a volume basis. It is what I have sought. More specifically, a part of the dry powder is baked in air at 400 ° C. for 1 hour, and the obtained particles are subjected to a laser diffraction scattering method particle size distribution measuring device (manufactured by BECKMAN COULTER, model number: LS230). Measured. Here, the reason why the average particle size is measured after “calcining in air at 400 ° C. for 1 hour” is to prevent the dry powder from being dissolved in water. That is, “calcination in air at 400 ° C. for 1 hour” is exclusively for measurement, and is not related to the later-described firing step. It may be considered that the particle diameter does not substantially change before and after the firing.
More specifically, the average particle diameter may be measured as follows according to the manual attached to the laser diffraction scattering particle size distribution measuring apparatus. First, the background is measured with RunSpeed60. On the other hand, 0.2 g of particles to be measured are weighed into an appropriately sized screw tube, and 10 mL of water is added thereto. The screw tube is then capped (sealed) and shaken well to disperse the particles in water. An ultrasonic wave of 300 W is applied by the apparatus and the screw tube is shaken sufficiently again. Thereafter, while continuing to apply ultrasonic waves, the particles dispersed in water are injected into the apparatus main body using a dropper so as to have an appropriate concentration (concentration 10, PIDS60). When the concentration display is stabilized, the application of ultrasonic waves is stopped, and after standing for 10 seconds, measurement is started (measurement time 90 seconds). The median diameter value of the obtained measurement result is defined as the average particle diameter.

断面の面分析は、具体的には、触媒粒子の断面に電子線を照射して、そこから発生した特性X線に基づく反射電子像を得る。その反射電子像に基づいて、粒子断面の中心(重心)を通過する線分析データを抽出して用いる。ここで「平均強度」とは、バックグラウンドを除いた強度の平均値をいい、1個の粒子の1つの線分析データにおける特性X線の強度の平均値を、任意に選択した互いに直交する2本の粒子直径において更に平均し、その平均した値を、更に10個の粒子について平均した値を意味する。データ取り込みの間隔は1μm以下とすることが好ましい。バックグラウンドは、触媒粒子断面の反射電子像より、触媒が存在しないことが確認される箇所での強度を基準に決定される。   Specifically, the cross-sectional surface analysis irradiates the cross section of the catalyst particle with an electron beam and obtains a reflected electron image based on characteristic X-rays generated therefrom. Based on the reflected electron image, line analysis data passing through the center (center of gravity) of the particle cross section is extracted and used. Here, the “average intensity” refers to the average value of the intensity excluding the background, and the average value of the characteristic X-ray intensity in one line analysis data of one particle is arbitrarily selected 2 Further averaged over the particle diameter of the book, the averaged value means the value averaged over 10 particles. The interval of data capture is preferably 1 μm or less. The background is determined based on the intensity at a location where the presence of the catalyst is confirmed from the reflected electron image of the catalyst particle cross section.

(3)担体
不飽和ニトリルの製造を工業的に実施する場合、触媒は十分な強度を有していることが望ましいので、そのような観点から、本実施形態の酸化物触媒は、担体とその担体に担持された、モリブデンと、ビスマスと、鉄と、ニッケルとを含む複合酸化物とを備えることが好ましい。担体の例としては、特に限定されず、例えば、シリカ、アルミナ、チタニア、シリカ/アルミナ及びシリカ/チタニアが挙げられる。これらのうち不飽和ニトリルの収率を高める観点から、シリカが好ましい。シリカを担体として備える酸化物触媒は、流動層アンモ酸化反応において、一層優れた流動性を有する。耐摩耗性の観点から、複合金属酸化物とシリカとの合計量に対して、シリカの含有量が40質量%以上であることが好ましい。また、より十分な触媒活性及びより良好な選択率を得る観点から、シリカ含有量が60質量%以下であることが好ましい。
(3) Support When the production of unsaturated nitrile is carried out industrially, it is desirable that the catalyst has sufficient strength. From such a viewpoint, the oxide catalyst of the present embodiment comprises a support and its It is preferable to include a composite oxide containing molybdenum, bismuth, iron, and nickel supported on a carrier. Examples of the carrier are not particularly limited, and examples thereof include silica, alumina, titania, silica / alumina, and silica / titania. Of these, silica is preferred from the viewpoint of increasing the yield of unsaturated nitrile. An oxide catalyst including silica as a support has a more excellent fluidity in a fluidized bed ammoxidation reaction. From the viewpoint of wear resistance, the silica content is preferably 40% by mass or more based on the total amount of the composite metal oxide and silica. Moreover, it is preferable that a silica content is 60 mass% or less from a viewpoint of obtaining sufficient catalyst activity and a better selectivity.

上記担体としてのシリカは、一次粒子の平均粒子径が20nm以上125nm未満、より好ましくは20nm以上50nm未満であるシリカ(a)と、一次粒子の平均粒子径が5nm以上20nm未満であるシリカ(b)とからなることが好ましい。かかるシリカ原料を用いることにより、触媒強度の低下を抑制すると共に、不飽和ニトリルの製造に用いた場合に副生物の生成が増大するのも抑制することができる。なお、一次粒子の平均粒子径は、触媒粒子の平気粒子径と同様にして測定される。   Silica as the carrier includes silica (a) having an average primary particle diameter of 20 nm or more and less than 125 nm, more preferably 20 nm or more and less than 50 nm, and silica having an average particle diameter of primary particles of 5 nm or more and less than 20 nm (b ). By using such a silica raw material, it is possible to suppress a decrease in catalyst strength and to suppress an increase in the production of by-products when used in the production of an unsaturated nitrile. The average particle size of the primary particles is measured in the same manner as the flat particle size of the catalyst particles.

シリカ(a)及びシリカ(b)は、本発明による効果をより有効且つ確実に奏する観点から、その原料がシリカゾルであることが好ましい。また、同様の観点から、シリカの総量におけるシリカ(a)の含有割合は20質量%以上80質量%以下であり、シリカ(b)の含有割合は80質量%以下20質量%以上であることが好ましい。シリカ(a)及びシリカ(b)は、それぞれ1種を単独で又は2種以上を組み合わせて用いられる。   The raw material of silica (a) and silica (b) is preferably silica sol from the viewpoint of more effectively and reliably achieving the effects of the present invention. From the same viewpoint, the content of silica (a) in the total amount of silica is 20% by mass or more and 80% by mass or less, and the content of silica (b) is 80% by mass or less and 20% by mass or more. preferable. Silica (a) and silica (b) are used individually by 1 type or in combination of 2 or more types, respectively.

本実施形態における酸化物触媒の粒子形状は、反応器内での流動性を好ましい状態にする等の観点から、球状であることが好ましい。   The particle shape of the oxide catalyst in the present embodiment is preferably spherical from the viewpoint of making fluidity in the reactor favorable.

図1は、本実施形態の酸化物触媒における上記のニッケルの偏在について説明するための模式図である。この図1では、1個の触媒粒子の断面における1つの線分析データを示しており、その線分析データにおいて、粒子の外縁部及び中心部に存在するニッケルの特性X線の強度及びその平均値を示している。図1において、粒子の外縁部に存在するニッケルの特性X線の強度の平均値が、粒子の中心部に存在するニッケルの特性X線の強度の平均値よりも大きくなっている。   FIG. 1 is a schematic diagram for explaining the uneven distribution of nickel in the oxide catalyst of the present embodiment. In FIG. 1, one line analysis data in a cross section of one catalyst particle is shown. In the line analysis data, the characteristic X-ray intensity of nickel existing at the outer edge and the center of the particle and the average value thereof. Is shown. In FIG. 1, the average value of the characteristic X-ray intensity of nickel existing at the outer edge of the particle is larger than the average value of the characteristic X-ray intensity of nickel existing at the center of the particle.

[2]酸化物触媒の製造方法
本実施態様の酸化物触媒の製造方法は、上記酸化物触媒の製造方法であって、(i)モリブデンと、ビスマスと、鉄と、ニッケルとを含む前駆体スラリーを調製する工程と、(ii)前駆体スラリーを噴霧乾燥し、乾燥粒子を得る工程と、(iii)乾燥粒子を焼成する工程とを有するものである。
[2] Method for Producing Oxide Catalyst The method for producing an oxide catalyst according to this embodiment is a method for producing the above oxide catalyst, and includes (i) a precursor containing molybdenum, bismuth, iron, and nickel. A step of preparing a slurry, (ii) a step of spray drying the precursor slurry to obtain dry particles, and (iii) a step of firing the dry particles.

[工程(i)]
工程(i)は、上述の金属元素を含有する触媒の前駆体スラリーを調製する工程であり、酸化物触媒が担体を備える場合は、担体の供給源となる成分をこの工程において混合してもよい。工程(i)においては、例えば、モリブデンの供給源となる成分を含む溶液を調製した後、この溶液とその他の金属元素及び必要に応じて担体の供給源となる成分とを混合し、前駆体スラリーを得る。以下、酸化物触媒がシリカ担体を備える場合を例にして、前駆体スラリーを調製する方法を説明するが、本実施形態の酸化物触媒の製造方法はこれに限定されない。
[Step (i)]
Step (i) is a step of preparing a catalyst precursor slurry containing the above-mentioned metal element, and when the oxide catalyst includes a support, the components serving as the support source may be mixed in this step. Good. In the step (i), for example, after preparing a solution containing a component that becomes a supply source of molybdenum, this solution is mixed with other metal elements and, if necessary, a component that becomes a supply source of a carrier, and a precursor A slurry is obtained. Hereinafter, the method for preparing the precursor slurry will be described by taking the case where the oxide catalyst includes a silica carrier as an example, but the method for manufacturing the oxide catalyst of the present embodiment is not limited thereto.

前駆体スラリーに含まれる各金属元素の供給源(原料)は、水又は硝酸に可溶な塩であることが好ましい。モリブデン、ビスマス、鉄及びニッケルの各金属元素、並びに必要に応じて更に酸化物触媒に添加されるその他の金属元素の供給源としては、例えば、水又は硝酸に可溶なアンモニウム塩、硝酸塩、塩酸塩、硫酸塩、有機酸塩及び無機酸が挙げられる。特にモリブデンの供給源としてはアンモニウム塩が、ビスマス、鉄及びニッケル、並びにその他の金属元素の供給源としては、それぞれの硝酸塩が好ましい。硝酸塩は、取扱いが容易であることに加え、塩酸塩を使用した場合に生じる塩素の残留や、硫酸塩を使用した場合に生じる硫黄の残留を生じない点でも好ましい。各金属元素の供給源の具体例としては、パラモリブデン酸アンモニウム、硝酸ビスマス、硝酸第二鉄及び硝酸ニッケルが挙げられる。また、担体であるシリカの供給源としては、本発明による効果をより有効且つ確実に奏する観点から、シリカゾルが好適である。さらに、同様の観点から、シリカゾルにおけるシリカの好ましい濃度は10〜50質量%である。後述する前駆体スラリーの噴霧乾燥に適した濃度になるように、添加する水溶液等の濃度を適宜調整することもできる。   The supply source (raw material) of each metal element contained in the precursor slurry is preferably a salt that is soluble in water or nitric acid. Sources of molybdenum, bismuth, iron and nickel metal elements, and other metal elements added to the oxide catalyst as needed, include ammonium salts, nitrates, hydrochloric acid soluble in water or nitric acid. Examples include salts, sulfates, organic acid salts and inorganic acids. In particular, an ammonium salt is preferable as a supply source of molybdenum, and a nitrate is preferable as a supply source of bismuth, iron, nickel, and other metal elements. In addition to being easy to handle, nitrates are also preferred in that they do not cause residual chlorine that occurs when hydrochloride is used or residual sulfur that occurs when sulfate is used. Specific examples of the supply source of each metal element include ammonium paramolybdate, bismuth nitrate, ferric nitrate, and nickel nitrate. Further, as a supply source of silica as a carrier, silica sol is preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention. Furthermore, from the same viewpoint, the preferable concentration of silica in the silica sol is 10 to 50% by mass. The concentration of the aqueous solution to be added can be appropriately adjusted so that the concentration is suitable for spray drying of the precursor slurry described later.

前駆体スラリーは配位性有機化合物を含んでもよい。ここで「配位性有機化合物」とは、孤立電子対を有し、金属に配位結合する有機化合物を指す。配位様式は、単座、多座を問わない。配位性有機化合物の具体例としては、酒石酸、リンゴ酸、クエン酸及びエチレンジアミンが挙げられる。   The precursor slurry may contain a coordinating organic compound. Here, the “coordinating organic compound” refers to an organic compound having a lone electron pair and coordinated to a metal. The coordination style may be single or multi-seat. Specific examples of the coordinating organic compound include tartaric acid, malic acid, citric acid and ethylenediamine.

配位性有機化合物の含有量の上限は特に限定されないが、工業的には、最終的に得られる酸化物触媒の質量に対して15質量%以下になるように含有させるのが好ましい。配位性有機化合物の含有量を15質量%以下とすることにより、触媒製造の段階における有機物の分解、放散により発熱や触媒粒子のひび割れが生じるのを抑制することができる。   Although the upper limit of content of a coordination organic compound is not specifically limited, It is preferable to make it contain so that it may become 15 mass% or less with respect to the mass of the oxide catalyst finally obtained industrially. By setting the content of the coordinating organic compound to 15% by mass or less, it is possible to suppress the generation of heat and cracking of the catalyst particles due to the decomposition and diffusion of organic substances in the catalyst production stage.

配位性有機化合物は、酸又は水に溶解させて前駆体スラリー中に添加する他、鉄との錯化合物として添加してもよい。   The coordinating organic compound may be dissolved in an acid or water and added to the precursor slurry, or may be added as a complex compound with iron.

前駆体スラリーの調製において、各供給源を混合する順序は特に限定されない。一例を挙げると、シリカゾルを撹拌しながら、そこにモリブデンの供給源となる成分を含む水溶液を添加し、次いで、モリブデン以外の金属元素の供給源、例えば金属成分の化合物(好ましくは硝酸塩)、を水性溶媒(好ましくは硝酸水溶液)に溶解した液を添加し、最後に、配位性有機化合物を含む水溶液を添加する。また、シリカゾルに混合するのに先立ち、(a)鉄以外の金属元素の供給源と配位性有機化合物とを先に混合し、そこに鉄の供給源を混合してもよく、(b)鉄の供給源と配位性有機化合物とを先に混合し、そこにその他の金属元素の供給源を混合してもよく、(c)配位性有機化合物の水溶液に順に金属元素の供給源を添加してもよい。これら(a)〜(c)のいずれの場合であっても、配位性有機化合物の含有量は上記のとおりであることが好ましい。モリブデン以外の金属元素の供給源は、それぞれ水性溶媒中で溶解した後、予め混合しないでシリカゾルに添加してもよいし、モリブデン以外の金属元素の供給源の水溶液と、配位性有機化合物の水溶液とを混合してからシリカゾルに添加してもよい。   In the preparation of the precursor slurry, the order of mixing the sources is not particularly limited. For example, while stirring the silica sol, an aqueous solution containing a component that is a source of molybdenum is added thereto, and then a source of a metal element other than molybdenum, such as a compound of a metal component (preferably a nitrate), is added. A solution dissolved in an aqueous solvent (preferably an aqueous nitric acid solution) is added, and finally an aqueous solution containing a coordinating organic compound is added. Prior to mixing with silica sol, (a) a metal element supply source other than iron and a coordinating organic compound may be mixed first, and then an iron supply source may be mixed therewith, (b) An iron supply source and a coordinating organic compound may be mixed first, and another metal element supply source may be mixed therewith. (C) A metal element supply source in order to an aqueous solution of the coordinating organic compound May be added. In any of these cases (a) to (c), the content of the coordinating organic compound is preferably as described above. The metal element supply source other than molybdenum may be added to the silica sol without being mixed in advance after being dissolved in an aqueous solvent, or the aqueous solution of the metal element supply source other than molybdenum and the coordinating organic compound. The aqueous solution may be mixed before adding to the silica sol.

[工程(ii)]
本実施形態の酸化物触媒の製造方法における工程(ii)は、前駆体スラリーを噴霧乾燥する工程である。本工程においては、前駆体スラリーを噴霧乾燥することによって流動層反応に適した球形微粒子である乾燥粒子を得ることができる。噴霧乾燥装置としては、回転円盤式、ノズル式等の一般的なものでよく、運転条件を調節することで、流動層触媒として好適な粒径の酸化物触媒が得られるように噴霧乾燥を行う。流動層触媒として好適な粒径とは、平均粒子径で25〜180μmである。好適な粒径を有する触媒粒子を得るための噴霧乾燥の一例としては、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置(例えば、大川原化工機社製、OC−16型スプレードライヤ)を用い、乾燥器の入口空気温度を240℃、出口温度を140℃に保持して行う噴霧乾燥が挙げられる。
[Step (ii)]
Step (ii) in the method for producing an oxide catalyst of the present embodiment is a step of spray drying the precursor slurry. In this step, dry particles which are spherical fine particles suitable for fluidized bed reaction can be obtained by spray drying the precursor slurry. The spray drying apparatus may be a general one such as a rotary disk type or a nozzle type, and spray drying is performed so as to obtain an oxide catalyst having a particle size suitable as a fluidized bed catalyst by adjusting operating conditions. . The particle size suitable as a fluidized bed catalyst is 25 to 180 μm in average particle size. As an example of spray drying to obtain catalyst particles having a suitable particle size, a centrifugal atomizing apparatus (for example, manufactured by Okawara Kako Co., Ltd.) equipped with a dish-shaped rotor installed in the center of the upper part of the dryer. Spray drying performed using an OC-16 type spray dryer) while maintaining the inlet air temperature of the dryer at 240 ° C and the outlet temperature at 140 ° C.

[工程(iii)]
本実施形態の酸化物触媒の製造方法における工程(iii)は、噴霧乾燥により得られた乾燥粒子を焼成する工程である。この工程は、本実施形態の酸化物触媒をより容易に得る観点から、下記の各焼成工程を有することが好ましく、特に、各金属元素の供給源のうち少なくとも1種が硝酸イオンを含有する場合に下記の各焼成工程を有することが好ましい。
[Step (iii)]
Step (iii) in the method for producing an oxide catalyst of the present embodiment is a step of firing the dried particles obtained by spray drying. This step preferably has the following firing steps from the viewpoint of more easily obtaining the oxide catalyst of the present embodiment, and in particular, when at least one of the metal element supply sources contains nitrate ions. It is preferable to have each of the following firing steps.

[A]仮焼成
仮焼成の工程においては、乾燥粒子を好ましくは室温から200℃〜350℃の範囲内で設定した温度まで昇温し、好ましくは280℃〜350℃の範囲、より好ましくは上記設定した温度で保持することにより仮焼成して(以下、仮焼成において保持する温度を「仮焼成温度」という。)、仮焼成粒子を得る。上記設定した温度及び仮焼成温度は、より好ましくは280℃〜350℃、更に好ましくは300℃〜330℃の温度である。また、昇温時間は、好ましくは1時間以上、より好ましくは1〜10時間、更に好ましくは2〜5時間である。この際、昇温速度は一定である必要はない。仮焼成は、乾燥粒子中に残存している各金属元素の供給源に含まれる成分、例えば、硝酸アンモニウムや金属硝酸塩由来の硝酸、を徐々に燃焼させることを目的としている。上記保持での保持時間は、好ましくは1時間以上、より好ましくは2〜10時間、更に好ましくは2〜5時間である。設定した温度及び仮焼成温度を上記範囲にしたり、昇温時間及び保持する時間を上記範囲にしたりすることにより、粒子内での金属元素の移動が所望の程度となるため、本焼成の工程において、ニッケル元素を所望の領域により偏在させやすくなる。すなわち、仮焼成における上記設定した温度及び仮焼成温度の上限、並びに昇温時間及び保持時間の下限は、金属元素の移動の自由度を損ねない程度に設定するのが好ましい。
[A] Temporary calcination In the preliminary calcination step, the temperature of the dried particles is preferably raised from room temperature to a temperature set in the range of 200 ° C to 350 ° C, preferably in the range of 280 ° C to 350 ° C, more preferably the above. Pre-baking is carried out by holding at the set temperature (hereinafter, the temperature held in the pre-baking is referred to as “pre-baking temperature”) to obtain pre-baked particles. The set temperature and pre-baking temperature are more preferably 280 ° C to 350 ° C, and even more preferably 300 ° C to 330 ° C. The temperature raising time is preferably 1 hour or longer, more preferably 1 to 10 hours, and further preferably 2 to 5 hours. At this time, the rate of temperature rise need not be constant. The pre-baking is intended to gradually burn components contained in the supply source of each metal element remaining in the dry particles, for example, ammonium nitrate or nitric acid derived from metal nitrate. The holding time in the above holding is preferably 1 hour or more, more preferably 2 to 10 hours, and further preferably 2 to 5 hours. By setting the set temperature and pre-baking temperature within the above range, or setting the temperature raising time and holding time within the above range, the movement of the metal element within the particles becomes a desired level. The nickel element is easily distributed in a desired region. That is, it is preferable to set the set temperature and the upper limit of the preliminary firing temperature, and the lower limit of the temperature raising time and the holding time in the preliminary firing so as not to impair the freedom of movement of the metal element.

[B]本焼成
本焼成の工程においては、仮焼成において得られた仮焼成粒子を、好ましくは500℃〜750℃の範囲内で設定した温度に加熱して酸化物触媒を得る。本焼成における加熱温度(本焼成温度)は、仮焼成温度よりも高い温度であり、より好ましくは550℃〜700℃、更に好ましくは580℃〜650℃である。本焼成は、仮焼成で得られた仮焼成粒子におけるニッケル元素の分布を維持しつつ、粒子の結晶を成長させることを目的とする。かかる観点から、本焼成における上記加熱温度での保持時間は、好ましくは2〜12時間、より好ましくは2〜10時間、更に好ましくは2〜6時間である。保持時間は、触媒の比表面積が小さくなって活性が低下するのを防ぐ観点から、調整することが好ましい。また、同様の観点から、仮焼成における仮焼成温度よりも本焼成温度の方が高い場合、仮焼成温度から本焼成温度まで1時間以上かけて昇温することが好ましく、より好ましくは1〜10時間、更に好ましくは1〜5時間、特に好ましくは1〜3時間かけて昇温する。
[B] Main calcination In the main calcination step, the calcined particles obtained in the preliminary calcination are preferably heated to a temperature set within a range of 500 ° C. to 750 ° C. to obtain an oxide catalyst. The heating temperature (main baking temperature) in the main baking is higher than the temporary baking temperature, more preferably 550 ° C to 700 ° C, and further preferably 580 ° C to 650 ° C. The purpose of the main firing is to grow the crystal of the particles while maintaining the distribution of the nickel element in the temporarily fired particles obtained by the preliminary firing. From this viewpoint, the holding time at the heating temperature in the main baking is preferably 2 to 12 hours, more preferably 2 to 10 hours, and further preferably 2 to 6 hours. It is preferable to adjust the holding time from the viewpoint of preventing the specific surface area of the catalyst from decreasing and the activity from decreasing. Further, from the same viewpoint, when the main baking temperature is higher than the temporary baking temperature in the temporary baking, it is preferable to increase the temperature from the temporary baking temperature to the main baking temperature over 1 hour, and more preferably 1 to 10 The temperature is increased over a period of time, more preferably 1 to 5 hours, particularly preferably 1 to 3 hours.

以上の工程を経ることで、得られた酸化物触媒において、粒子の外縁部にニッケルが偏在し、上述の本実施形態の酸化物触媒を得ることができる。   By passing through the above process, in the obtained oxide catalyst, nickel is unevenly distributed in the outer edge part of particle | grains, and the above-mentioned oxide catalyst of this embodiment can be obtained.

[3]不飽和ニトリルの製造方法
本実施形態の不飽和ニトリルの製造方法は、上記酸化物触媒を用いて、プロピレン、イソブテン等のオレフィンをアンモニア及び分子状酸素と反応(すなわち、気相接触アンモ酸化反応)させて、アクリロニトリル、メタクリロニトリル等の不飽和ニトリルを製造するものである。
[3] Method for Producing Unsaturated Nitrile The method for producing an unsaturated nitrile of the present embodiment uses the above oxide catalyst to react olefins such as propylene and isobutene with ammonia and molecular oxygen (that is, gas phase catalytic ammonia). Oxidation reaction) to produce unsaturated nitriles such as acrylonitrile and methacrylonitrile.

アンモ酸化反応の原料であるプロピレン等のオレフィン及びアンモニアは、必ずしも高純度である必要はなく、工業グレードのものを使用することもできる。分子状酸素の酸素源としては通常空気を用いる。プロピレン等のオレフィンに対するアンモニア及び空気の容積比は、オレフィン:アンモニア:空気として、好ましくは1:0.9〜1.7:7〜11、より好ましくは1:1.0〜1.5:8〜10の範囲である。   Olefins such as propylene and ammonia, which are raw materials for the ammoxidation reaction, do not necessarily have high purity, and industrial grade ones can also be used. Usually, air is used as the oxygen source of molecular oxygen. The volume ratio of ammonia and air to olefins such as propylene is preferably 1: 0.9 to 1.7: 7 to 11, more preferably 1: 1.0 to 1.5: 8, as olefin: ammonia: air. Is in the range of -10.

また、反応温度は好ましくは400〜460℃、より好ましくは410〜440℃の範囲である。反応圧力は好ましくは常圧〜3気圧の範囲である。オレフィン、アンモニア及び分子状酸素を含む原料混合ガスと触媒との接触時間は、好ましくは1〜8秒、より好ましくは2〜6秒である。   Moreover, reaction temperature becomes like this. Preferably it is 400-460 degreeC, More preferably, it is the range of 410-440 degreeC. The reaction pressure is preferably in the range of normal pressure to 3 atmospheres. The contact time between the raw material mixed gas containing olefin, ammonia and molecular oxygen and the catalyst is preferably 1 to 8 seconds, more preferably 2 to 6 seconds.

本実施形態によると、プロピレン等のオレフィンのアンモ酸化反応において高い不飽和ニトリル収率を与えると共に、長時間の運転においても反応の安定性が良好であり、とりわけ度重なる還元負荷を受けても良好な活性を維持可能な酸化物触媒を提供できる。また、本実施形態の酸化物触媒は、モノオレフィンの酸化反応による不飽和アルデヒド又は共役ジオレフィンの製造にも好適に用いることができる可能性がある。   According to the present embodiment, a high unsaturated nitrile yield is provided in the ammoxidation reaction of olefins such as propylene, and the stability of the reaction is good even during a long operation, and particularly good even when subjected to repeated reduction loads. It is possible to provide an oxide catalyst capable of maintaining a high activity. Moreover, the oxide catalyst of this embodiment may be suitably used also for manufacture of the unsaturated aldehyde or conjugated diolefin by the oxidation reaction of a monoolefin.

以下、実施例により本実施形態を更に具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例の各酸化物触媒の組成及び製造条件を表1に示す。   Hereinafter, the present embodiment will be described more specifically by way of examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist thereof. In addition, Table 1 shows compositions and production conditions of the oxide catalysts of Examples and Comparative Examples.

(触媒粒子の断面におけるニッケルの分布解析)
触媒粒子の断面におけるニッケルの分布を、上記「(2)ニッケルの分布」において説明した日本電子(株)製、製品名「JXA−8500F」を用いたEPMAによる測定に準じて分析した。得られたニッケルに由来する特性X線の平均強度について、触媒粒子の外縁部と中心部との比を、(外縁部の強度/中心部の強度)として、表1に示す。
(Distribution analysis of nickel in the cross section of catalyst particles)
The nickel distribution in the cross section of the catalyst particles was analyzed according to the measurement by EPMA using the product name “JXA-8500F” manufactured by JEOL Ltd. described in “(2) Nickel distribution”. Regarding the average intensity of the characteristic X-rays derived from the obtained nickel, the ratio of the outer edge part to the center part of the catalyst particles is shown in Table 1 as (the intensity of the outer edge part / the strength of the center part).

(プロピレンのアンモ酸化反応)
10メッシュの金網を1cm間隔で12枚内蔵した内径25mmのパイレックス(登録商標)ガラス製流動層反応管に、実施例1で得られた酸化物触媒50mLを収容した。その反応管に、反応温度を430℃、反応圧力を常圧として、プロピレン9容積%の混合ガス(プロピレン:アンモニア:酸素:ヘリウムの容積比が1:1.2:1.85:7.06)を毎秒3.64mL(NTP換算)の流速で通過させ、酸化物触媒と接触させてプロピレンのアンモ酸化反応を進行させた。この反応の結果を、下記式で定義されるプロピレン転化率、アクリロニトリル選択率、及びアクリロニトリル収率によって評価した。それらの結果を表2に示す。
(Ammoxidation reaction of propylene)
50 mL of the oxide catalyst obtained in Example 1 was accommodated in a Pyrex (registered trademark) glass fluidized bed reaction tube having an inner diameter of 25 mm in which 12 pieces of 10-mesh wire mesh were incorporated at intervals of 1 cm. In the reaction tube, the reaction temperature was 430 ° C., the reaction pressure was normal pressure, and a mixed gas of 9% by volume of propylene (the volume ratio of propylene: ammonia: oxygen: helium was 1: 1.2: 1.85: 7.06). ) At a flow rate of 3.64 mL (converted to NTP) per second and contacted with the oxide catalyst to proceed the ammoxidation reaction of propylene. The results of this reaction were evaluated by propylene conversion, acrylonitrile selectivity, and acrylonitrile yield defined by the following formula. The results are shown in Table 2.

Figure 2015157243
Figure 2015157243

実施例2〜7で得られた酸化物触媒及び比較例1〜5で得られた酸化物触媒についても、実施例1で得られた酸化物触媒と同様にして、プロピレンのアンモ酸化反応に用いた。ただし、原料混合ガスのプロピレンを9容積%、プロピレンに対するアンモニアの容積比を1:1.2に固定した上でプロピレンに対する酸素の容積比を1.8〜1.9の範囲から適宜選択した。また、各酸化物触媒の反応活性に応じて、下記式で定義される接触時間を適宜変更した。プロピレン転化率、アクリロニトリル選択率、及びアクリロニトリル収率の結果を表2に示す。   The oxide catalysts obtained in Examples 2 to 7 and the oxide catalysts obtained in Comparative Examples 1 to 5 were also used for the ammoxidation reaction of propylene in the same manner as the oxide catalyst obtained in Example 1. It was. However, after fixing the volume of propylene in the raw material mixed gas to 9% by volume and the volume ratio of ammonia to propylene at 1: 1.2, the volume ratio of oxygen to propylene was appropriately selected from the range of 1.8 to 1.9. Moreover, the contact time defined by the following formula was appropriately changed according to the reaction activity of each oxide catalyst. The results of propylene conversion, acrylonitrile selectivity, and acrylonitrile yield are shown in Table 2.

Figure 2015157243
ここで、Vは触媒量(mL)、Fは原料混合ガスの流量(mL−NTP/秒)、Tは反応温度(℃)を示す。
Figure 2015157243
Here, V represents the catalyst amount (mL), F represents the flow rate of the raw material mixed gas (mL-NTP / sec), and T represents the reaction temperature (° C.).

(触媒の耐還元性試験)
内径10mmのSUS製反応管に酸化物触媒を秤取し、反応温度を440℃、反応圧力を常圧として、プロピレン5.4容積%の混合ガス(プロピレン:アンモニア:酸素:ヘリウム:水の容積比が3.24:3.89:6.12:40.75:6.00)を毎分60.0cc(NTP換算)の流速でその反応管に通過させた。この反応条件下、5分毎に60回、酸素の供給を断続的に遮断しヘリウムに置き換えて反応を継続した。最初に酸素を遮断する前のプロピレン転化率(表中、「試験前のプロピレン転化率」と表記。)に対する、最後にヘリウムに置き換えた後に再び酸素を供給した際のプロピレン転化率(表中、「試験後のプロピレン転化率」と表記。)の比を求めた。結果を表2に示す。この数値が高いほど、触媒の耐還元性が高いことを意味する。
(Reduction resistance test of catalyst)
The oxide catalyst was weighed in a SUS reaction tube having an inner diameter of 10 mm, the reaction temperature was 440 ° C., the reaction pressure was normal pressure, and a propylene: ammonia: oxygen: helium: water volume of 5.4% by volume of propylene. A ratio of 3.24: 3.89: 6.12: 40.75: 6.00) was passed through the reaction tube at a flow rate of 60.0 cc (converted to NTP) per minute. Under this reaction condition, the oxygen supply was intermittently interrupted 60 times every 5 minutes and replaced with helium, and the reaction was continued. Propylene conversion rate before the oxygen was shut off for the first time (in the table, expressed as “propylene conversion rate before test”). The ratio of “Propylene conversion after test” is calculated. The results are shown in Table 2. The higher this value, the higher the reduction resistance of the catalyst.

[実施例1]
Mo12.0Bi0.45Ce0.90Co3.0Fe1.70.09Ni2.0Mg2.0Rb0.04で表される組成を有する酸化物を、触媒の総量に対して50質量%のシリカに担持した酸化物触媒を下記のようにして調製した。
16.6質量%濃度の硝酸水溶液395.1gに43.1gの硝酸ビスマス〔Bi(NO33・5H2O〕、76.2gの硝酸セリウム〔Ce(NO33・6H2O〕、133.9gの硝酸鉄〔Fe(NO33・9H2O〕、114.6gの硝酸ニッケル〔Ni(NO32・6H2O〕、171.8gの硝酸コバルト〔Co(NO32・6H2O〕、101.4gの硝酸マグネシウム〔Mg(NO32・6H2O〕、1.77gの硝酸カリウム〔KNO3〕及び1.15gの硝酸ルビジウム〔RbNO3〕を溶解させた液を一次粒子の平均粒子径が12nmのSiO2を30質量%含む水性シリカゾル833.3gと一次粒子の平均粒子径が41nmのSiO2を30質量%含む水性シリカゾル833.3gとの混合物に添加した。そこに、水738.7gに413.8gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を添加し混合撹拌して、前駆体スラリーを得た。次いで、得られた前駆体スラリーを、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用いて噴霧乾燥した。乾燥器の入口空気温度を240℃に、出口温度を140℃に保持して前駆体スラリーを噴霧乾燥した。こうして得られた乾燥粒子をキルンに移し、空気雰囲気下で焼成した。具体的には、まず、室温から320℃まで2時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
[Example 1]
An oxide catalyst in which an oxide having a composition represented by Mo 12.0 Bi 0.45 Ce 0.90 Co 3.0 Fe 1.7 K 0.09 Ni 2.0 Mg 2.0 Rb 0.04 is supported on 50% by mass of silica based on the total amount of the catalyst is as follows. It was prepared as follows.
43.1 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 76.2 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] in 395.1 g of a 16.6% by mass nitric acid aqueous solution 133.9 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 114.6 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 171.8 g of cobalt nitrate [Co (NO 3 2 · 6H 2 O], 101.4 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], 1.77 g of potassium nitrate [KNO 3 ] and 1.15 g of rubidium nitrate [RbNO 3 ] average particle diameter of primary particles of SiO 2 12nm liquid in a mixture of aqueous silica sol 833.3g average particle diameter of aqueous silica sol 833.3g primary particles containing SiO 2 of 41 nm 30 wt% containing 30 wt% Added. A solution in which 413.8 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 738.7 g of water was added and mixed and stirred to obtain a precursor slurry. . Subsequently, the obtained precursor slurry was spray-dried using a centrifugal atomizer equipped with a dish-shaped rotor installed in the center of the upper part of the dryer. The precursor slurry was spray-dried while maintaining the dryer inlet air temperature at 240 ° C and the outlet temperature at 140 ° C. The dry particles thus obtained were transferred to a kiln and fired in an air atmosphere. Specifically, first, the temperature was raised from room temperature to 320 ° C. over 2 hours, held at 320 ° C. for 2 hours and pre-baked to obtain pre-fired particles. Subsequently, the temperature was raised to 580 ° C. over 3 hours, and the calcined particles were finally calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[実施例2]
Mo12.0Bi0.50Ce1.01Fe1.01Ni5.61Mg2.24Rb0.11で表される組成を有する酸化物を、触媒の総量に対して40質量%のシリカに担持した酸化物触媒を下記のようにして調製した。一次粒子の平均粒子径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと一次粒子の平均粒子径が41nmのSiO2を30質量%含む水性シリカゾル666.7gとの混合物に、予め水875.8gに490.6gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を混合し溶解させた液を撹拌下で添加し、さらに、予め16.6質量%の硝酸水溶液396.1gに56.8gの硝酸ビスマス〔Bi(NO33・5H2O〕、101.4gの硝酸セリウム〔Ce(NO33・6H2O〕、94.3gの硝酸鉄〔Fe(NO33・9H2O〕、381.2gの硝酸ニッケル〔Ni(NO32・6H2O〕、134.7gの硝酸マグネシウム〔Mg(NO32・6H2O〕及び3.73gの硝酸ルビジウム〔RbNO3〕を溶解させた液を添加し混合撹拌して、前駆体スラリーを得た。得られた前駆体スラリーを、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用いて噴霧乾燥した。乾燥器の入口空気温度を240℃に、出口温度を140℃に保持して前駆体スラリーを噴霧乾燥した。こうして得られた乾燥粒子をキルンに移し、空気雰囲気下で焼成した。具体的には、まず、室温から320℃まで2時間かけて昇温し、320℃で3時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
[Example 2]
An oxide catalyst in which an oxide having a composition represented by Mo 12.0 Bi 0.50 Ce 1.01 Fe 1.01 Ni 5.61 Mg 2.24 Rb 0.11 was supported on 40% by mass of silica based on the total amount of the catalyst was prepared as follows. . To a mixture of aqueous silica sol 666.7g average particle diameter of aqueous silica sol 666.7g primary particles containing SiO 2 of 41 nm 30 wt% mean particle diameter of primary particles comprising SiO 2 of 12 nm 30 wt%, water in advance A solution in which 490.6 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was mixed and dissolved in 875.8 g was added with stirring. 396.8 g of aqueous nitric acid solution with 56.8 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O], 101.4 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O], 94.3 g of iron nitrate [Fe (NO 3 ) 3 · 9H 2 O], 381.2 g of nickel nitrate [Ni (NO 3 ) 2 · 6H 2 O], 134.7 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O] And 3.73 g of nitric acid Rubidium [RbNO 3] added to and mixed stirring to a solution prepared by dissolving, to obtain a precursor slurry. The obtained precursor slurry was spray-dried using a centrifugal atomizer equipped with a dish-shaped rotor installed in the center of the upper part of the dryer. The precursor slurry was spray-dried while maintaining the dryer inlet air temperature at 240 ° C and the outlet temperature at 140 ° C. The dry particles thus obtained were transferred to a kiln and fired in an air atmosphere. Specifically, first, the temperature was raised from room temperature to 320 ° C. over 2 hours, held at 320 ° C. for 3 hours and pre-baked to obtain pre-fired particles. Subsequently, the temperature was raised to 580 ° C. over 3 hours, and the calcined particles were finally calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[実施例3]
実施例2で得られた前駆体スラリーに更に、酒石酸50.0gを水150gに溶解させた水溶液を添加して撹拌混合し、それを前駆体スラリーとして用いたこと、及び、本焼成における焼成温度を580℃から620℃に変更したこと以外は実施例2と同様にして、酸化物触媒を調製した。
[Example 3]
Further, an aqueous solution in which 50.0 g of tartaric acid was dissolved in 150 g of water was added to the precursor slurry obtained in Example 2 and mixed by stirring. This was used as the precursor slurry, and the firing temperature in the main firing. An oxide catalyst was prepared in the same manner as in Example 2 except that the temperature was changed from 580 ° C. to 620 ° C.

[実施例4]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から210℃まで2時間かけて昇温し、210℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
[Example 4]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln, heated from room temperature to 210 ° C. in an air atmosphere over 2 hours, held at 210 ° C. for 2 hours and calcined to obtain temporarily calcined particles. Subsequently, the temperature was raised to 580 ° C. over 3 hours, and the calcined particles were finally calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[実施例5]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から340℃まで2時間かけて昇温し、340℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで3時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
[Example 5]
Dry particles were obtained in the same manner as in Example 1. The obtained dry particles were transferred to a kiln, heated in an air atmosphere from room temperature to 340 ° C. over 2 hours, held at 340 ° C. for 2 hours and pre-fired to obtain pre-fired particles. Subsequently, the temperature was raised to 580 ° C. over 3 hours, and the calcined particles were finally calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[実施例6]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から320℃まで4時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで2時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
[Example 6]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln, heated from room temperature to 320 ° C. over 4 hours in an air atmosphere, held at 320 ° C. for 2 hours, and temporarily fired to obtain temporarily fired particles. Subsequently, the temperature was raised to 580 ° C. over 2 hours, and the calcined particles were calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[実施例7]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から320℃まで2時間かけて昇温し、320℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで5時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成して、酸化物触媒を得た。
[Example 7]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln, heated from room temperature to 320 ° C. over 2 hours in an air atmosphere, and held at 320 ° C. for 2 hours to be pre-fired to obtain pre-fired particles. Subsequently, the temperature was raised to 580 ° C. over 5 hours, and the calcined particles were calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[比較例1]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子を350℃に保持したキルンに移し、空気雰囲気下、350℃で1時間仮焼成した後、580℃まで1時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成し、酸化物触媒を得た。
[Comparative Example 1]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln maintained at 350 ° C., calcined at 350 ° C. for 1 hour in an air atmosphere, heated to 580 ° C. over 1 hour, and the calcined particles were heated at 580 ° C. for 2 hours. Calcination gave an oxide catalyst.

[比較例2]
シリカ原料であるシリカゾルを、一次粒子の平均粒子径が12nmであるSiO2を30質量%含む水性シリカゾル1333.3gのみに変更したこと、及び、本焼成における焼成温度を580℃から610℃に変更したこと以外は実施例1と同様にして、酸化物触媒を調製した。
[Comparative Example 2]
The silica sol as a silica raw material was changed to only 1333.3 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average primary particle diameter of 12 nm, and the firing temperature in the main firing was changed from 580 ° C. to 610 ° C. Except that, an oxide catalyst was prepared in the same manner as in Example 1.

[比較例3]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から400℃まで2時間かけて昇温し、400℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで2時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成し、酸化物触媒を得た。
[Comparative Example 3]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln, heated from room temperature to 400 ° C. in an air atmosphere over 2 hours, held at 400 ° C. for 2 hours and calcined to obtain temporarily calcined particles. Subsequently, the temperature was raised to 580 ° C. over 2 hours, and the calcined particles were calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[比較例4]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から300℃まで2時間かけて昇温し、300℃で1時間保持して仮焼成し、仮焼成粒子を得た。続けて、580℃まで0.5時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成し、酸化物触媒を得た。
[Comparative Example 4]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln, heated from room temperature to 300 ° C. in an air atmosphere over 2 hours, held at 300 ° C. for 1 hour and temporarily fired to obtain temporarily fired particles. Subsequently, the temperature was raised to 580 ° C. over 0.5 hours, and the calcined particles were calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

[比較例5]
実施例1と同様にして乾燥粒子を得た。得られた乾燥粒子をキルンに移し、空気雰囲気下、室温から190℃まで2時間かけて昇温し、190℃で2時間保持して仮焼成し、仮焼成粒子を得た。続けて、仮焼成粒子を空気雰囲気下、580℃まで2時間かけて昇温し、仮焼成粒子を580℃で2時間本焼成し、酸化物触媒を得た。
[Comparative Example 5]
Dry particles were obtained in the same manner as in Example 1. The obtained dried particles were transferred to a kiln, heated from room temperature to 190 ° C. over 2 hours in an air atmosphere, held at 190 ° C. for 2 hours, and calcined to obtain temporarily calcined particles. Subsequently, the calcined particles were heated to 580 ° C. in an air atmosphere over 2 hours, and the calcined particles were finally calcined at 580 ° C. for 2 hours to obtain an oxide catalyst.

Figure 2015157243
Figure 2015157243

Figure 2015157243
Figure 2015157243

表1及び2に示された結果から、本実施形態における酸化物触媒は、オレフィンの気相接触アンモ酸化反応において、高い収率で不飽和ニトリルを与えると共に、長時間の運転においても反応の安定性が良好であり、とりわけ度重なる還元負荷を受けても良好な活性を維持できることがわかった。   From the results shown in Tables 1 and 2, the oxide catalyst in the present embodiment gives an unsaturated nitrile in a high yield in the gas-phase catalytic ammoxidation reaction of olefin, and also stabilizes the reaction even in a long time operation. It was found that the activity was good, and particularly good activity could be maintained even under repeated reduction loads.

本発明は、オレフィンと、分子状酸素及びアンモニアとを反応させて不飽和ニトリルを製造する際、あるいは、オレフィンと分子状酸素とを反応させて不飽和アルデヒド又は共役ジオレフィンを製造する際に用いられる酸化物触媒として、産業上利用可能性を有する。   The present invention is used when an unsaturated nitrile is produced by reacting an olefin with molecular oxygen and ammonia, or when an unsaturated aldehyde or a conjugated diolefin is produced by reacting an olefin with molecular oxygen. As an oxide catalyst to be used, it has industrial applicability.

Claims (4)

オレフィンの気相接触アンモ酸化反応又はモノオレフィンの気相接触酸化反応に用いられる酸化物触媒であって、モリブデンと、ビスマスと、鉄と、ニッケルとを含み、前記酸化物触媒の粒子の外縁部にニッケルが偏在している、酸化物触媒。   An oxide catalyst used in a gas phase catalytic ammoxidation reaction of an olefin or a gas phase catalytic oxidation reaction of a monoolefin, comprising molybdenum, bismuth, iron, and nickel, and an outer edge of the oxide catalyst particles An oxide catalyst in which nickel is unevenly distributed. 前記外縁部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度が、前記粒子の中心部に存在するニッケルに電子線を照射した際に発生する特性X線の平均強度に対して1.2倍以上である、請求項1に記載の酸化物触媒。   The average intensity of characteristic X-rays generated when an electron beam is applied to nickel existing at the outer edge is the average intensity of characteristic X-rays generated when an electron beam is applied to nickel existing at the center of the particle The oxide catalyst of Claim 1 which is 1.2 times or more with respect to. 請求項1又は2に記載の酸化物触媒の製造方法であって、
モリブデンと、ビスマスと、鉄と、ニッケルと、一次粒子の平均粒子径が5nm以上20nm未満のシリカと、一次粒子径の平均粒子径が20nm以上125nm未満であるシリカとを混合し、前駆体スラリーを調製する工程と、
前記前駆体スラリーを噴霧乾燥し、乾燥粒子を得る工程と
前記乾燥粒子を、室温から200℃〜350℃の範囲内に設定した温度まで、1時間以上かけて昇温し、前記乾燥粒子を仮焼成して仮焼成粒子を得る工程と、
前記仮焼成粒子を、前記仮焼成粒子を得る工程で設定した温度から500℃〜750℃の範囲内で設定した温度まで、1時間以上かけて昇温し、前記仮焼成粒子を本焼成して酸化物触媒を得る工程と、を有する、酸化物触媒の製造方法。
A method for producing an oxide catalyst according to claim 1 or 2,
Mixing molybdenum, bismuth, iron, nickel, silica having an average primary particle diameter of 5 nm or more and less than 20 nm, and silica having an average primary particle diameter of 20 nm or more and less than 125 nm, a precursor slurry A step of preparing
The precursor slurry is spray-dried to obtain dry particles, and the dry particles are heated from room temperature to a temperature set in a range of 200 ° C. to 350 ° C. over 1 hour, and the dry particles are temporarily Calcination to obtain pre-fired particles;
The calcined particles are heated for 1 hour or more from the temperature set in the step of obtaining the calcined particles to a temperature set within a range of 500 ° C. to 750 ° C., and the calcined particles are calcined. Obtaining an oxide catalyst. A method for producing an oxide catalyst.
請求項1又は2に記載の酸化物触媒を用い、オレフィンと、分子状酸素及びアンモニアとを反応させて不飽和ニトリルを製造する、不飽和ニトリルの製造方法。   A method for producing an unsaturated nitrile, wherein an unsaturated nitrile is produced by reacting an olefin with molecular oxygen and ammonia using the oxide catalyst according to claim 1.
JP2014032198A 2014-02-21 2014-02-21 Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst Active JP6211951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032198A JP6211951B2 (en) 2014-02-21 2014-02-21 Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032198A JP6211951B2 (en) 2014-02-21 2014-02-21 Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst

Publications (2)

Publication Number Publication Date
JP2015157243A true JP2015157243A (en) 2015-09-03
JP6211951B2 JP6211951B2 (en) 2017-10-11

Family

ID=54181729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032198A Active JP6211951B2 (en) 2014-02-21 2014-02-21 Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst

Country Status (1)

Country Link
JP (1) JP6211951B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012920A1 (en) * 2017-07-14 2019-01-17 旭化成株式会社 Method for producing catalyst and method for producing unsaturated nitrile
WO2020213361A1 (en) * 2019-04-15 2020-10-22 旭化成株式会社 Catalyst, method for manufacturing catalyst, and method for manufacturing acrylonitrile
RU2781388C1 (en) * 2019-04-15 2022-10-11 Асахи Касеи Кабусики Кайся Catalyst, method for producing the catalyst and method for producing acrylonitrile

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840149A (en) * 1981-09-03 1983-03-09 Ube Ind Ltd Preparation of catalyst for oxidizing olefin
JPH11319562A (en) * 1998-05-12 1999-11-24 Mitsubishi Rayon Co Ltd Method for regenerating molybdenum-containing oxide fluidizerd bed catalyst
JP2002502699A (en) * 1998-02-13 2002-01-29 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Solid catalyst of core shell catalyst phase and method for producing the same
JP2004105951A (en) * 2002-08-27 2004-04-08 Daiyanitorikkusu Kk Catalyst for synthesizing acrylonitrile and production method for the same and production method for acrylonitrile
JP2004313992A (en) * 2003-04-18 2004-11-11 Daiyanitorikkusu Kk Catalyst for synthesizing acrylonitrile
JP2009255026A (en) * 2008-03-27 2009-11-05 Idemitsu Kosan Co Ltd Method of preparing hydrocarbon reformation catalyst, and method of reforming hydrocarbon
JP2010131575A (en) * 2008-12-08 2010-06-17 Daiyanitorikkusu Kk Method of producing catalyst for synthesizing acrylonitrile, and method of producing acrylonitrile
JP2012245484A (en) * 2011-05-30 2012-12-13 Asahi Kasei Chemicals Corp Catalyst for ammoxidation, method for producing the same, and method for producing acrylonitrile or methacrylonitrile

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840149A (en) * 1981-09-03 1983-03-09 Ube Ind Ltd Preparation of catalyst for oxidizing olefin
JP2002502699A (en) * 1998-02-13 2002-01-29 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Solid catalyst of core shell catalyst phase and method for producing the same
US6924387B1 (en) * 1998-02-13 2005-08-02 Korea Research Institute Of Chemical Technology Solid catalyst with core-shell catalytic phase and a method of preparation thereof
JPH11319562A (en) * 1998-05-12 1999-11-24 Mitsubishi Rayon Co Ltd Method for regenerating molybdenum-containing oxide fluidizerd bed catalyst
JP2004105951A (en) * 2002-08-27 2004-04-08 Daiyanitorikkusu Kk Catalyst for synthesizing acrylonitrile and production method for the same and production method for acrylonitrile
JP2004313992A (en) * 2003-04-18 2004-11-11 Daiyanitorikkusu Kk Catalyst for synthesizing acrylonitrile
US20060194693A1 (en) * 2003-04-18 2006-08-31 Dia-Nitrix Co., Ltd. Catalyst for acrylonitrile synthesis
JP2009255026A (en) * 2008-03-27 2009-11-05 Idemitsu Kosan Co Ltd Method of preparing hydrocarbon reformation catalyst, and method of reforming hydrocarbon
JP2010131575A (en) * 2008-12-08 2010-06-17 Daiyanitorikkusu Kk Method of producing catalyst for synthesizing acrylonitrile, and method of producing acrylonitrile
JP2012245484A (en) * 2011-05-30 2012-12-13 Asahi Kasei Chemicals Corp Catalyst for ammoxidation, method for producing the same, and method for producing acrylonitrile or methacrylonitrile

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012920A1 (en) * 2017-07-14 2019-01-17 旭化成株式会社 Method for producing catalyst and method for producing unsaturated nitrile
JPWO2019012920A1 (en) * 2017-07-14 2020-04-09 旭化成株式会社 Method for producing catalyst and method for producing unsaturated nitrile
US11446643B2 (en) 2017-07-14 2022-09-20 Asahi Kasei Kabushiki Kaisha Method for producing catalyst and method for producing unsaturated nitrile
TWI757721B (en) * 2019-04-15 2022-03-11 日商旭化成股份有限公司 Catalyst, method for producing catalyst, method for producing acrylonitrile
JPWO2020213361A1 (en) * 2019-04-15 2021-11-11 旭化成株式会社 Catalyst, catalyst manufacturing method, acrylonitrile manufacturing method
CN113727778A (en) * 2019-04-15 2021-11-30 旭化成株式会社 Catalyst, method for producing catalyst, and method for producing acrylonitrile
KR20210122834A (en) * 2019-04-15 2021-10-12 아사히 가세이 가부시키가이샤 Catalyst, catalyst preparation method, acrylonitrile preparation method
JP7101310B2 (en) 2019-04-15 2022-07-14 旭化成株式会社 Catalyst, catalyst manufacturing method, acrylonitrile manufacturing method
WO2020213361A1 (en) * 2019-04-15 2020-10-22 旭化成株式会社 Catalyst, method for manufacturing catalyst, and method for manufacturing acrylonitrile
RU2781388C1 (en) * 2019-04-15 2022-10-11 Асахи Касеи Кабусики Кайся Catalyst, method for producing the catalyst and method for producing acrylonitrile
US11772080B2 (en) 2019-04-15 2023-10-03 Asahi Kasei Kabushiki Kaisha Catalyst, method for producing catalyst, and method for producing acrylonitrile
KR102605977B1 (en) * 2019-04-15 2023-11-23 아사히 가세이 가부시키가이샤 Catalyst, method for producing catalyst, method for producing acrylonitrile
CN113727778B (en) * 2019-04-15 2024-02-06 旭化成株式会社 Catalyst, method for producing catalyst, and method for producing acrylonitrile

Also Published As

Publication number Publication date
JP6211951B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
EP2902105B1 (en) Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
JP6722284B2 (en) Method for producing ammoxidation catalyst and method for producing acrylonitrile
JP5794862B2 (en) Oxides containing molybdenum, bismuth, iron and cobalt
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP6118016B2 (en) Ammoxidation catalyst and method for producing acrylonitrile using the same
JP2013169482A (en) Catalyst for producing acrylonitrile, method of producing the same, and method of producing acrylonitrile using the same
JP6212407B2 (en) Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using oxide catalyst
JP6247561B2 (en) Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using oxide catalyst
JP6968182B2 (en) Catalyst, catalyst manufacturing method, acrylonitrile manufacturing method
JP6211951B2 (en) Oxide catalyst and method for producing the same, and method for producing unsaturated nitrile using the oxide catalyst
CN103769161A (en) Acrolein catalyst and preparation method thereof
JP5409100B2 (en) Catalyst for producing acrylonitrile and method for producing the same
CN105813747A (en) Oxide catalyst, production method therefor, and unsaturated-nitrile production method
JP6439819B2 (en) Method for producing acrylonitrile
JP6896858B2 (en) Method for producing catalyst and method for producing unsaturated nitrile
JP2008194634A (en) Production method of catalyst for producing acrylonitrile and production method of acrylonitrile
JP7101310B2 (en) Catalyst, catalyst manufacturing method, acrylonitrile manufacturing method
JP7102286B2 (en) A method for producing an ammoxidation catalyst and a method for producing acrylonitrile.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350