JP2015155785A - radiator - Google Patents

radiator Download PDF

Info

Publication number
JP2015155785A
JP2015155785A JP2014031650A JP2014031650A JP2015155785A JP 2015155785 A JP2015155785 A JP 2015155785A JP 2014031650 A JP2014031650 A JP 2014031650A JP 2014031650 A JP2014031650 A JP 2014031650A JP 2015155785 A JP2015155785 A JP 2015155785A
Authority
JP
Japan
Prior art keywords
cooling water
heat
integrated
internal combustion
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014031650A
Other languages
Japanese (ja)
Other versions
JP6354198B2 (en
Inventor
俊貴 民部
Toshitaka Tamibe
俊貴 民部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014031650A priority Critical patent/JP6354198B2/en
Publication of JP2015155785A publication Critical patent/JP2015155785A/en
Application granted granted Critical
Publication of JP6354198B2 publication Critical patent/JP6354198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integral heat exchanger capable of improving mountability by making thickness in an air blow direction smaller, and ensuring the cooling of cooler cooling water which is lower in temperature zone than internal combustion engine cooling water to a target temperature zone.
SOLUTION: One upper tank 23 and one lower tank 24 fixedly caulked to both sides of an integral core section 20 are provided, respectively, partitions 25a and 25b are provided in the upper tank 23 and the lower tank 24, respectively to divide interiors of the upper tank 23 and the lower tank 24 into a cooler cooling water segment 23A and 24A and an internal combustion engine cooling water segment 23B and 24B, respectively, and furthermore, meander partitions 26a and 26b are provided in the cooler cooling water segments 23A and 24A, respectively so that a channel of cooler cooling water Wc meanders via a first core section 21 while reciprocating an interval between the cooler cooling water segments 23A and 24A a plurality of times.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、ラジエータに関し、より詳細には、内燃機関の気筒へ供給される吸気を冷却する吸気用冷却器に使用された冷却器用冷却水と、内燃機関の冷却に使用された内燃機関用冷却水を冷却することができるラジエータに関する。   The present invention relates to a radiator, and more particularly, cooling water for a cooler used for an intake air cooler for cooling intake air supplied to a cylinder of the internal combustion engine, and cooling for the internal combustion engine used for cooling the internal combustion engine. The present invention relates to a radiator capable of cooling water.

ターボチャージャーやスーパーチャージャーなどの過給器付きのエンジンには、エンジンの充填効率を上げて燃費を向上させるために、空冷又は水冷のインタークーラーを設け、過給器で圧縮された吸気を冷却している。   Engines with turbochargers such as turbochargers and superchargers are equipped with air-cooled or water-cooled intercoolers in order to increase engine charging efficiency and improve fuel efficiency, and cool the intake air compressed by the turbocharger. Yes.

空冷式のインタークーラーはインタークーラー自身を、水冷式のインタークーラーはその冷却水を冷却するラジエータをエンジン用のラジエータの上流側に配置する構造のため、車両への搭載性が問題となっている。但し、水冷式のインタークーラーのラジエータは、水と空気の熱容量の差により、空冷式のインタークーラーに比べてコア部(熱交換部)を薄くできるので、搭載性がよい。   The air-cooled intercooler has a structure in which the intercooler itself is disposed, and the water-cooled intercooler has a structure in which a radiator for cooling the cooling water is disposed on the upstream side of the radiator for the engine. However, the radiator of the water-cooled intercooler can be mounted more easily because the core portion (heat exchange portion) can be made thinner than the air-cooled intercooler due to the difference in heat capacity between water and air.

しかし、限られた空間のエンジンルームでは、多数の部品用のスペースの確保が必要となるためにより一層、各部品の搭載性の向上が求められている。   However, in an engine room with a limited space, it is necessary to secure a space for a large number of parts, and further improvement of the mountability of each part is required.

そこで、ラジエータと冷房用コンデンサ、ラジエータ、インタークーラーなどのように、相互に近接して配置される複数種類の熱交換器を、予め連結一体化した一体型熱交換器が提案されている。この一体型熱交換器において、相互に使用温度を異にする第一熱交換器と第二熱交換器とをフィンを共有して一体に構成すると共に、フィンの幅方向の中間部に両熱交換器間での熱伝導を遮断する切欠部を形成して構成したものがある(例えば、特許文献1参照)。   Therefore, an integrated heat exchanger in which a plurality of types of heat exchangers arranged close to each other, such as a radiator, a cooling condenser, a radiator, and an intercooler, are connected and integrated in advance has been proposed. In this integrated heat exchanger, the first heat exchanger and the second heat exchanger, which have different operating temperatures, are configured integrally by sharing fins, and both heats are formed in the intermediate portion in the width direction of the fins. There is one formed by forming a cutout portion that blocks heat conduction between the exchangers (see, for example, Patent Document 1).

また、一体型熱交換器において、第一熱交換器と第二熱交換器との間に所定の隙間を設けると共に、各熱交換器を結合するサイドプレートを設けて構成するものもある(例えば、特許文献2参照)。   In addition, in an integrated heat exchanger, there is a configuration in which a predetermined gap is provided between the first heat exchanger and the second heat exchanger, and a side plate that couples the heat exchangers is provided (for example, , See Patent Document 2).

これらの装置は、第一熱交換器と第二熱交換器との間の熱伝導を遮断することで、温度帯の異なる冷媒を冷却し、且つ搭載性を向上している。   These devices cool the refrigerants in different temperature zones and improve the mountability by blocking the heat conduction between the first heat exchanger and the second heat exchanger.

しかし、これらの装置には、第一熱交換器と第二熱交換器のそれぞれに別々のアッパータンクとロアータンクが設けられている。これは、第一交換器(ラジエータ)と第二交換器(コンデンサ)における使用圧力が異なっているからである。   However, these apparatuses are provided with separate upper tanks and lower tanks for the first heat exchanger and the second heat exchanger, respectively. This is because the working pressures in the first exchanger (radiator) and the second exchanger (capacitor) are different.

通常、このアッパータンク及びロアータンクは、それぞれに備えたカシメ部をかしめることで熱交換器に接合されている。従って、二つのアッパータンク、あるいはロアータンクを並べることで二つ分のタンク幅が必要になると共に、そのタンクをかしめるカシメ部の厚さを考慮する必要があるので、その分、一体型熱交換器としての厚みが厚くなっていた。   Usually, the upper tank and the lower tank are joined to the heat exchanger by caulking a caulking portion provided for each of them. Therefore, by arranging two upper tanks or lower tanks, it is necessary to have two tank widths, and it is necessary to consider the thickness of the caulking part that caulks the tanks. The thickness as a vessel was thick.

一方、前述した水冷式のインタークーラーの冷却水を冷却するラジエータとエンジンのラジエータにそれらの装置を利用すると、水冷式のインタークーラーの冷却水の冷却が不十分となり、吸気を高過給化することができないという問題もある。   On the other hand, if these devices are used for the radiator that cools the cooling water of the water-cooled intercooler and the radiator of the engine, the cooling water of the water-cooled intercooler becomes insufficiently cooled and the intake air can be supercharged. There is also a problem that it cannot be done.

特開平3−177795号公報JP-A-3-17795 特開平9−210591号公報JP-A-9-210591

本発明は、上記の問題を鑑みてなされたものであり、その課題は、送風方向の厚みをより薄くして搭載性を向上することができると共に、内燃機関用冷却水よりも低い温度帯の冷却器用冷却水を確実に目的の温度帯まで冷却することができる一体型熱交換器を提供することである。   The present invention has been made in view of the above-mentioned problems, and the problem is that the thickness in the blowing direction can be made thinner to improve the mountability, and the temperature range is lower than that of the cooling water for internal combustion engines. An object of the present invention is to provide an integrated heat exchanger capable of reliably cooling the cooling water for the cooler to a target temperature range.

上記の課題を解決するための本発明の一体型熱交換器は、使用圧力範囲が同じでそれぞれ異なる温度帯の冷却水の熱交換を行う第一熱交換部と第二熱交換部とを風上側から順に配置して構成された一体型熱交換部を備える一体型熱交換器において、前記一体型熱交換部の両側にかしめて固定される流入用容器と流出用容器を一つずつ設けると共に、前記流入用容器と前記流出用容器のそれぞれに区画仕切りを設け、前記流入用容器と前記流出用容器のそれぞれの内部を、前記区画仕切りにより、前記第一熱交換部で熱交換される低温冷却水を貯留する低温冷却水区画と、前記第二熱交換部で熱交換される高温冷却水を貯留する高温冷却水区画とに区画し、更に、前記流入用容器の前記低温冷却水区画と前記流出用容器の前記低温冷却水区画のそれぞれに蛇行用仕切りを設け、前記低温冷却水の流路を前記蛇行用仕切りにより、前記第一熱交換部を経由して前記流入用容器の前記低温冷却水区画と前記流出用容器の前記低温冷却水区画との間を往復させて蛇行させるように構成することを特徴とする。   In order to solve the above problems, an integrated heat exchanger according to the present invention includes a first heat exchanging unit and a second heat exchanging unit that exchange heat of cooling water in different temperature zones with the same operating pressure range. In the integrated heat exchanger provided with an integrated heat exchange unit arranged in order from the upper side, an inflow container and an outflow container fixed by caulking on both sides of the integrated heat exchange unit are provided one by one A partition wall is provided in each of the inflow container and the outflow container, and the inside of each of the inflow container and the outflow container is heat-exchanged by the first heat exchange section by the partition partition. Partitioning into a low-temperature cooling water section for storing cooling water and a high-temperature cooling water section for storing high-temperature cooling water heat-exchanged in the second heat exchange section; and further, the low-temperature cooling water section of the inflow vessel Of the low temperature cooling water compartment of the effluent container. A meandering partition is provided for each, and the flow path of the low-temperature cooling water is divided between the low-temperature cooling water section of the inflow container and the outflow container by the meandering partition via the first heat exchange section. It is configured to meander by reciprocating between the low-temperature cooling water section.

この構成によれば、区画仕切りを設けることにより、内部に低温冷却水区画と高温冷却水区画に区画された一つの流入用容器と、同様に低温冷却水区画と高温冷却水区画に区画された一つの流出用容器を、一体型熱交換部の両側にかしめて固定することで、各熱交換部にそれぞれ別々の流入用容器と流出用容器を設けた、つまり合計四つの容器を設けた従来技術の一体型熱交換器と比較して、送風方向の厚みを薄くすることができる。また、各容器を一つずつにすることで、各容器を固定するときのカシメ部を少なくして、送風方向の厚みをより一層薄くすることができる。従って、一体型熱交換器の送風方向の厚みが薄くなるため、一体型熱交換器の搭載性をより向上することができる。   According to this configuration, by providing the partition partition, one inflow container partitioned into the low-temperature cooling water partition and the high-temperature cooling water partition inside, and similarly partitioned into the low-temperature cooling water partition and the high-temperature cooling water partition. Conventionally, one outflow container is fixed by caulking on both sides of the integrated heat exchange section, so that each heat exchange section has a separate inflow container and outflow container, that is, a total of four containers are provided. Compared with the technical integrated heat exchanger, the thickness in the blowing direction can be reduced. Moreover, by setting each container one by one, the caulking part when fixing each container can be decreased, and the thickness of a ventilation direction can be made still thinner. Therefore, since the thickness of the integrated heat exchanger in the air blowing direction is reduced, the mountability of the integrated heat exchanger can be further improved.

また、低温冷却水を冷却する第一熱交換部を風上側に配置すると共に、低温冷却水区画に設けた蛇行用仕切りにより、低温冷却水の流路のみを蛇行させる。これにより、第一熱交換部を経由させて低温冷却水を低温冷却水区画の間で複数回往復させて、低温冷却水を高温冷却水よりも長い時間を掛けて第一熱交換部で冷却することができる。これにより、高温冷却水よりも低い温度帯まで冷却する必要のある低温冷却水を確実にその温度帯まで冷却することができる。   Moreover, while arrange | positioning the 1st heat exchange part which cools low temperature cooling water on the windward side, only the flow path of low temperature cooling water is made to meander by the meandering partition provided in the low temperature cooling water division. As a result, the low-temperature cooling water is reciprocated several times between the low-temperature cooling water sections via the first heat exchange section, and the low-temperature cooling water is cooled by the first heat exchange section over a longer time than the high-temperature cooling water. can do. Thereby, the low temperature cooling water which needs to be cooled to a temperature zone lower than that of the high temperature cooling water can be reliably cooled to that temperature zone.

加えて、低温冷却水の流路を蛇行させる蛇行用仕切りを流入用容器と流出用容器のそれぞれの低温冷却水区画に設けるだけの簡易な構成のため、安価に製造することができる。   In addition, since the meandering partition for meandering the flow path of the low-temperature cooling water is simply provided in each of the low-temperature cooling water compartments of the inflow container and the outflow container, it can be manufactured at low cost.

また、上記の一体型熱交換器において、前記低温冷却水を、内燃機関の気筒へ供給される吸気を水冷により冷却する吸気用冷却器を循環する冷却器用冷却水とし、前記高温冷却水を、前記内燃機関を冷却する内燃機関用冷却水とすることが望ましい。   Further, in the above integrated heat exchanger, the low-temperature cooling water is a cooling water for cooling circulating through an intake air cooling device that cools intake air supplied to a cylinder of an internal combustion engine by water cooling, and the high-temperature cooling water is Desirably, the internal combustion engine cooling water is used to cool the internal combustion engine.

特に、内燃機関の吸気の充填効率を上げて燃費を向上させるために、過給器で圧縮され
た吸気を冷却することが必要となっており、その吸気を冷却する水冷式の吸気用冷却器の冷却器用冷却水を冷却する熱交換器を別途設ける場合には、その搭載性が問題となる。しかし、上記の構成によれば、水冷式の吸気用冷却器の冷却器用冷却水を冷却する第熱交換部と、内燃機関を冷却する内燃機関用冷却水を冷却する第二熱交換部を一体型とすることで、各容器と一体型熱交換部をかしめるためのカシメ部を少なくできるので、搭載性の悪化を回避することができる。
In particular, in order to increase the charging efficiency of the intake air of the internal combustion engine and improve fuel efficiency, it is necessary to cool the intake air compressed by the supercharger, and a water-cooled intake air cooler that cools the intake air When a heat exchanger for cooling the cooling water for the cooler is separately provided, its mountability becomes a problem. However, according to the above configuration, the first heat exchange unit that cools the cooling water for the cooler of the water-cooled intake air cooler and the second heat exchange unit that cools the cooling water for the internal combustion engine that cools the internal combustion engine are combined. By adopting a body shape, the caulking portion for caulking each container and the integral heat exchange portion can be reduced, so that deterioration in mountability can be avoided.

加えて、上記の一体型熱交換器において、前記流入用容器と前記流出用容器の前記低温冷却水区画に設けられた外部の配管との連通口の開口面積が、前記流入用容器と前記流出用容器の前記高温冷却水区画に設けられた外部の配管との連通口の開口面積よりも小さく形成されると、低温冷却水の一体型熱交換器への流入量と流出量を内燃機関用冷却水よりも減らして、高温冷却水よりも流量の小さい低温冷却水に適した、及び蛇行するように構成した低温冷却水の流路に適した流量を流入及び流出することができる。   In addition, in the integrated heat exchanger described above, an opening area of a communication port between the inflow container and an external pipe provided in the low-temperature cooling water section of the outflow container is the inflow container and the outflow If it is formed smaller than the opening area of the communication port with the external pipe provided in the high-temperature cooling water section of the container for cooling, the amount of inflow and outflow to the integrated heat exchanger for low-temperature cooling water is used for the internal combustion engine. The flow rate suitable for the low-temperature cooling water having a flow rate smaller than that of the high-temperature cooling water and suitable for the flow path of the low-temperature cooling water configured to meander can be reduced.

更に、上記の一体型熱交換器において、前記第一熱交換部と前記第二熱交換部が、熱を放熱する複数の放熱部材を共有するように構成されると共に、前記放熱部材のそれぞれの前記第一熱交換部側と前記第二熱交換部側の間に各冷却水の流れ方向に並ぶ複数の隙間を設けると、第一熱交換部と第二熱交換部との間の伝熱面積を減らすことができるので、高温冷却水の影響により低温冷却水の温度が上昇してしまうことを抑制することができる。また、第一熱交換部と第二熱交換部とを完全に離間する構成と比較して、放熱部材を共有化していることにより、一体型熱交換器の強度を向上することができる。   Furthermore, in the integrated heat exchanger, the first heat exchange unit and the second heat exchange unit are configured to share a plurality of heat radiation members that radiate heat, and each of the heat radiation members Heat transfer between the first heat exchange part and the second heat exchange part is provided between the first heat exchange part side and the second heat exchange part side by providing a plurality of gaps arranged in the flow direction of each cooling water. Since the area can be reduced, it is possible to suppress an increase in the temperature of the low-temperature cooling water due to the influence of the high-temperature cooling water. Moreover, compared with the structure which separates a 1st heat exchange part and a 2nd heat exchange part completely, the intensity | strength of an integrated heat exchanger can be improved by sharing the heat radiating member.

一方、上記の一体型熱交換器において、前記第一熱交換部と前記第二熱交換部との間に所定の隙間を設けると、第一熱交換部と第二交換部とが完全に離間するので、第一熱交換部と第二熱交換部との間の熱伝導を遮断することができる。これにより、高温冷却水の影響により低温冷却水の温度が上昇してしまうことを回避することができる。   On the other hand, in the integrated heat exchanger, when the predetermined gap is provided between the first heat exchange part and the second heat exchange part, the first heat exchange part and the second exchange part are completely separated from each other. Therefore, the heat conduction between the first heat exchange part and the second heat exchange part can be cut off. Thereby, it can avoid that the temperature of low temperature cooling water rises under the influence of high temperature cooling water.

本発明の一体型熱交換器によれば、区画仕切りを設けることにより、内部に低温冷却水区画と高温冷却水区画に区画された一つの流入用容器と、同様に低温冷却水区画と高温冷却水区画に区画された一つの流出用容器を、一体型熱交換部の両側にかしめて固定することで、送風方向の厚みを薄くすることができる。また、各容器を一つずつにすることで、各容器を固定するときのカシメ部を少なくして、送風方向の厚みをより一層薄くすることができる。従って、一体型熱交換器の送風方向の厚みが薄くなるため、一体型熱交換器の搭載性をより向上することができる。   According to the integrated heat exchanger of the present invention, by providing a partition partition, one inflow container partitioned into a low-temperature cooling water section and a high-temperature cooling water section inside, as well as a low-temperature cooling water section and a high-temperature cooling By caulking and fixing one outflow container divided into water compartments on both sides of the integrated heat exchange section, the thickness in the blowing direction can be reduced. Moreover, by setting each container one by one, the caulking part when fixing each container can be decreased, and the thickness of a ventilation direction can be made still thinner. Therefore, since the thickness of the integrated heat exchanger in the air blowing direction is reduced, the mountability of the integrated heat exchanger can be further improved.

また、低温冷却水を冷却する第一熱交換部を風上側に配置すると共に、低温冷却水区画に設けた蛇行用仕切りにより、低温冷却水の流路のみを蛇行させる。これにより、低温冷却水を高温冷却水よりも長い時間を掛けて第一熱交換部で冷却することができる。これにより、高温冷却水よりも低い温度帯まで冷却する必要のある低温冷却水を確実にその温度帯まで冷却することができる。   Moreover, while arrange | positioning the 1st heat exchange part which cools low temperature cooling water on the windward side, only the flow path of low temperature cooling water is made to meander by the meandering partition provided in the low temperature cooling water division. Thereby, low temperature cooling water can be cooled in a 1st heat exchange part over time longer than high temperature cooling water. Thereby, the low temperature cooling water which needs to be cooled to a temperature zone lower than that of the high temperature cooling water can be reliably cooled to that temperature zone.

本発明に係る第一の実施の形態の一体型熱交換器を備える内燃機関の構成の一例を示す図である。It is a figure which shows an example of a structure of an internal combustion engine provided with the integrated heat exchanger of 1st embodiment which concerns on this invention. 図1の一体型熱交換器を風上側から見た正面構成図である。It is the front block diagram which looked at the integrated heat exchanger of FIG. 1 from the windward side. 図1の一体型熱交換器を風上側の反対側から見た背面構成図である。It is the back surface block diagram which looked at the integrated heat exchanger of FIG. 1 from the opposite side of the windward side. 図1の一体型熱交換器の一部の断面を示した斜視断面図である。It is the perspective sectional view which showed the cross section of a part of integrated heat exchanger of FIG. 本発明に係る第二の実施の形態の一体型熱交換器を備える内燃機関の構成の一例を示す図である。It is a figure which shows an example of a structure of an internal combustion engine provided with the integrated heat exchanger of 2nd embodiment which concerns on this invention. 図5の一体型熱交換器を風上側から見た正面構成図である。It is the front block diagram which looked at the integrated heat exchanger of FIG. 5 from the windward side.

以下、本発明に係る実施の形態の一体型熱交換器について説明する。なお、図面毎に矢印の意味が異なるため、先に説明しておく。まず、図1において白抜きの矢印は吸気、塗り潰しの矢印は排気、一点鎖線の矢印は冷却器用冷却水Wc、二点鎖線の矢印は内燃機関用冷却水Weを示している。また、図2及び図3において白抜きの矢印は各冷却水の流れる方向を示している。   Hereinafter, an integrated heat exchanger according to an embodiment of the present invention will be described. In addition, since the meaning of an arrow differs for every drawing, it demonstrates previously. First, in FIG. 1, a white arrow indicates intake air, a solid arrow indicates exhaust, an alternate long and short dash line arrow indicates the cooling water Wc for the cooler, and a double dotted line arrow indicates the cooling water We for the internal combustion engine. In FIGS. 2 and 3, white arrows indicate the directions in which the cooling water flows.

また、図1〜図3、並びに図5及び図6における一体型熱交換器への送風方向をx1方向とし、図2及び図3における鉛直方向で各冷却水が下向きに流れる方向をy1方向、上向きに流れる方向をy2方向とする。   Moreover, let the ventilation direction to the integrated heat exchanger in FIGS. 1-3, FIG.5 and FIG.6 be x1, and let the direction which each cooling water flows downward in the perpendicular direction in FIG.2 and FIG.3, y1 direction, The direction that flows upward is the y2 direction.

まず、第一及び第二の実施の形態の一体型ラジエータ(一体型熱交換器)1A及び1Bを搭載したエンジン(内燃機関)2の一例について説明する。図1及び図5に示すように、このエンジン2は、排ガスを、気筒が設けられたエンジン本体3のエキゾーストマニホールド4から、第一ターボチャージャー5の第一タービン5a、第二ターボチャージャー6の第二タービン6a、及び図示しない排ガス浄化装置を経由させて排出するように構成されている。一方、このエンジン2は、気筒に供給される吸気を、エアクリーナー7、第二ターボチャージャー6の第二コンプレッサ6b、及び第一ターボチャージャー5の第一コンプレッサ5bを経由させてインテークマニホールド8から吸入するように構成されている。更に、このエンジン2は、排ガスの一部を、EGRクーラー9を経由させて吸気として循環するように構成されている。   First, an example of an engine (internal combustion engine) 2 equipped with integrated radiators (integrated heat exchangers) 1A and 1B according to the first and second embodiments will be described. As shown in FIGS. 1 and 5, the engine 2 sends exhaust gas from the exhaust manifold 4 of the engine body 3 provided with cylinders to the first turbine 5a of the first turbocharger 5 and the second of the second turbocharger 6. The two turbines 6a and an exhaust gas purification device (not shown) are configured to discharge. On the other hand, the engine 2 sucks intake air supplied to the cylinders from the intake manifold 8 via the air cleaner 7, the second compressor 6 b of the second turbocharger 6, and the first compressor 5 b of the first turbocharger 5. Is configured to do. Further, the engine 2 is configured to circulate a part of the exhaust gas as intake air via the EGR cooler 9.

そして、このエンジン2は、第一及び第二の実施の形態の一体型ラジエータ1A及び1Bを備える冷却システム10を備えている。この冷却システム10は、エンジン本体3を冷却するエンジン用冷却流路11と、第一コンプレッサ5b及び第二コンプレッサ6bで圧縮された吸気を冷却する冷却器用冷却流路12を備えている。   The engine 2 includes a cooling system 10 including the integrated radiators 1A and 1B according to the first and second embodiments. The cooling system 10 includes an engine cooling channel 11 that cools the engine body 3 and a cooler cooling channel 12 that cools the intake air compressed by the first compressor 5b and the second compressor 6b.

エンジン用冷却流路11は、エンジン本体3の温度が低い場合は、第一サーモスタット13により一体型ラジエータ1A及び1Bを経由させずに、内燃機関用冷却水Weを第一ポンプ14でエンジン本体3に送り、エンジン本体3のウォータジャケット内とEGRクーラー9を経由させて循環するように構成される。一方、エンジン本体3の温度が高い場合は、第一サーモスタット13により一体型ラジエータ1A及び1Bを経由させて、内燃機関用冷却水Weを冷却するように構成される。   When the temperature of the engine main body 3 is low, the engine cooling passage 11 does not pass through the integrated radiators 1A and 1B by the first thermostat 13, and the engine main body 3 And is circulated through the water jacket of the engine body 3 and the EGR cooler 9. On the other hand, when the temperature of the engine body 3 is high, the first thermostat 13 is configured to cool the cooling water We for the internal combustion engine via the integrated radiators 1A and 1B.

冷却器用冷却流路12は、第一コンプレッサ5bと第二コンプレッサ6bとの間に設けた第一吸気用冷却器15aと、第一コンプレッサ5bの下流側に設けた第二吸気用冷却器15bとで温度が上昇した冷却器用冷却水Wcを第二サーモスタット16aと第三サーモスタット16bにより第二ポンプ17に送り、第二ポンプ17で一体型ラジエータ1A及び1Bを経由させて冷却するように構成される。   The cooler cooling channel 12 includes a first intake air cooler 15a provided between the first compressor 5b and the second compressor 6b, and a second intake air cooler 15b provided on the downstream side of the first compressor 5b. The cooling water Wc for the cooler whose temperature has risen in the above is sent to the second pump 17 by the second thermostat 16a and the third thermostat 16b, and is cooled by the second pump 17 via the integrated radiators 1A and 1B. .

そして、この冷却システム10は、一体型ラジエータ1A及び1Bの下流側にファン18と備えると共に、エンジン用冷却流路11と冷却器用冷却流路12とで共用のサブタンク19を備えている。   The cooling system 10 includes a fan 18 on the downstream side of the integrated radiators 1A and 1B, and a sub-tank 19 shared by the engine cooling channel 11 and the cooler cooling channel 12.

次に、本発明に係る第一の実施の形態の一体型ラジエータ1Aについて説明する。   Next, the integrated radiator 1A according to the first embodiment of the present invention will be described.

図1に示すように、この一体型ラジエータ1Aは、一体型コア部(一体型熱交換部)20を備えて構成される。その一体型コア部20は、冷却器用冷却水Wcの熱交換を行う第一コア部(第一熱交換部)21と内燃機関用冷却水Weの熱交換を行う第二コア部(第二熱交換部)22とを風上側から順に配置して構成される。   As shown in FIG. 1, the integrated radiator 1 </ b> A includes an integrated core part (integrated heat exchange part) 20. The integrated core portion 20 includes a first core portion (first heat exchange portion) 21 that performs heat exchange of the cooling water Wc for the cooler and a second core portion (second heat portion) that performs heat exchange of the cooling water We for the internal combustion engine. The replacement part) 22 is arranged in order from the windward side.

また、一体型ラジエータ1Aは、一体型コア部20の両側にかしめて固定されるアッパータンク(流入用容器)23とロアータンク(流出用容器)24を一つずつ設けて構成される。   The integrated radiator 1 </ b> A is configured by providing one upper tank (inflow container) 23 and one lower tank (outflow container) 24 that are caulked and fixed to both sides of the integrated core part 20.

加えて、図2に示すように、アッパータンク23に区画仕切り25aを設け、アッパータンク23の内部の第一コア部21側を冷却器用冷却水Wcを貯留する冷却器用冷却水区画23Aとし、第二コア部22側を内燃機関用冷却水Weを貯留する内燃機関用冷却水区画23Bとする。同様に、図3に示すように、ロアータンク24に区画仕切り25bを設け、ロアータンク24の内部の第一コア部21側を冷却器用冷却水Wcを貯留する冷却器用冷却水区画24Aとし、第二コア部22側を内燃機関用冷却水Weを貯留する内燃機関用冷却水区画24Bとする。   In addition, as shown in FIG. 2, a partition partition 25a is provided in the upper tank 23, and the first core portion 21 side inside the upper tank 23 is a cooler cooling water compartment 23A for storing the cooler cooling water Wc, The two core part 22 side is defined as an internal combustion engine cooling water section 23B for storing the internal combustion engine cooling water We. Similarly, as shown in FIG. 3, a partition partition 25b is provided in the lower tank 24, and the first core portion 21 side inside the lower tank 24 is used as a cooling water partition 24A for storing the cooling water Wc for the cooler, and the second core. The portion 22 side is defined as an internal combustion engine cooling water section 24B for storing the internal combustion engine cooling water We.

更に、図2に示すように、一体型ラジエータ1Aは、冷却器用冷却水区画23Aと冷却器用冷却水区画24Aのそれぞれの内部に蛇行用仕切り26a及び26bを設け、冷却器用冷却水Wcの流路を、第一コア部21を経由して冷却器用冷却水区画23Aと冷却器用冷却水区画24Aとの間を蛇行させるように構成される。   Further, as shown in FIG. 2, the integrated radiator 1A is provided with meandering partitions 26a and 26b in each of the cooling water compartment 23A and the cooling water compartment 24A, and the flow path of the cooling water Wc for the cooling device. Is configured to meander between the cooling water compartment 23A and the cooling water compartment 24A via the first core portion 21.

第一コア部21は、図4に示すように、放熱性に優れた金属から形成され、アッパータンク23とロアータンク24を連通して冷却器用冷却水Wcが流れる第一チューブT1と、その第一チューブT1の熱を放熱するように波型に形成された放熱フィン(放熱部材)Fとを、z方向に積層して形成される。第二コア部22は、内燃機関用冷却水Weが流れる第二チューブT2と、その第二チューブT2の熱を放熱する放熱フィンFとを、z方向に積層して形成される。そして、この第一コア部21と第二コア部22は、放熱フィンFを共有するように構成される。   As shown in FIG. 4, the first core portion 21 is formed of a metal having excellent heat dissipation, and communicates the upper tank 23 and the lower tank 24 with the first tube T1 through which the cooling water Wc flows. A heat radiation fin (heat radiation member) F formed in a wave shape so as to dissipate the heat of the tube T1 is laminated in the z direction. The second core portion 22 is formed by laminating a second tube T2 through which the cooling water We for the internal combustion engine flows and a radiation fin F that radiates heat of the second tube T2 in the z direction. And this 1st core part 21 and the 2nd core part 22 are comprised so that the radiation fin F may be shared.

この放熱フィンFは、放熱フィンFの第一コア部21側と第二コア部22側の間に、y1方向に一列に並べて配置された複数のスリット(隙間)27を設けて構成される。このスリット27は完全に放熱フィンFを切り離さずに、放熱フィンFの一部は放熱フィンFの第一コア部21側と第二コア部22側が繋がるように設けられる。このように、放熱フィンFの第一コア部21側と第二コア部22側の間に複数のスリット27を設けることで、第一コア部21側と第二コア部22側の伝熱面積を減らしている。   The radiation fin F is configured by providing a plurality of slits (gap) 27 arranged in a line in the y1 direction between the first core portion 21 side and the second core portion 22 side of the radiation fin F. The slit 27 is provided so that the first fin portion 21 side and the second core portion 22 side of the radiating fin F are connected to each other without completely separating the radiating fin F. Thus, by providing the some slit 27 between the 1st core part 21 side and the 2nd core part 22 side of the radiation fin F, the heat-transfer area of the 1st core part 21 side and the 2nd core part 22 side is provided. Is reduced.

アッパータンク23は、合成樹脂で形成され、カシメ部Cを備えている。このアッパータンク23は、そのカシメ部Cがかしめられることで一体型コア部20に固定されている。なお、ロアータンク24も同様に合成樹脂で形成され、カシメ部Cを備えている。   The upper tank 23 is formed of a synthetic resin and includes a caulking portion C. The upper tank 23 is fixed to the integrated core portion 20 by caulking the caulking portion C thereof. Similarly, the lower tank 24 is formed of a synthetic resin and includes a caulking portion C.

アッパータンク23に設けられた区画仕切り25aは、アッパータンク23の内部をアッパータンク23の幅方向であるx1方向を二つに区画する仕切りである。この区画仕切り25aは、合成樹脂で形成され、その厚さは、例えば3mm〜6mm程度である。この区画仕切り25aにより、アッパータンク23の内部には、冷却器用冷却水区画23Aと内燃機関用冷却水区画23Bが形成される。ロアータンク24に設けられた区画仕切り25bも同様の構成であり、この区画仕切り25bにより、ロアータンク24の内部には、冷却器用冷却水区画24Aと内燃機関用冷却水区画24Bが形成される。   The partition 25a provided in the upper tank 23 is a partition that divides the inside of the upper tank 23 into two in the x1 direction, which is the width direction of the upper tank 23. The partition partition 25a is formed of a synthetic resin and has a thickness of, for example, about 3 mm to 6 mm. Due to the partition 25a, a cooling water section 23A for the cooler and a cooling water section 23B for the internal combustion engine are formed inside the upper tank 23. The partition partition 25b provided in the lower tank 24 has the same configuration, and a cooling water partition 24A for the cooler and a cooling water partition 24B for the internal combustion engine are formed inside the lower tank 24 by the partition partition 25b.

蛇行用仕切り26aは、図2に示すように、アッパータンク23の冷却器用冷却水区画23Aの冷却器用冷却水Wcの流入側に設けられる。一方、蛇行用仕切り26bは、ロアータンク24の冷却器用冷却水区画24Aの冷却器用冷却水Wcの流出側に設けられる。   As shown in FIG. 2, the meandering partition 26 a is provided on the inflow side of the cooling water Wc for the cooler cooling water section 23 </ b> A of the upper tank 23. On the other hand, the meandering partition 26b is provided on the outflow side of the cooling water Wc for the cooling water in the cooling water section 24A for the cooling water in the lower tank 24.

この蛇行用仕切り26aによりアッパータンク23の冷却器用冷却水区画23Aには、流入側に区画A1、その反対側に区画A3が形成され、蛇行用仕切り26bによりロアータンク24の冷却器用冷却水区画24Aには、流出側に区画A4、その判定側に区画A2が形成される。   The meandering partition 26a forms a section A1 on the inflow side and a section A3 on the opposite side of the cooling water section 23A for the cooler of the upper tank 23. The meandering partition 26b forms a section A3 on the cooler cooling water section 24A of the lower tank 24. The section A4 is formed on the outflow side, and the section A2 is formed on the determination side.

また、アッパータンク23の冷却器用冷却水区画23Aには、冷却器用冷却水連通口28aを設け、内燃機関用冷却水区画23Bには、内燃機関用冷却水連通口29aを設け、各連通口28a及び29aには、配管Pが接続されている。同様にロアータンク24の冷却器用冷却水区画24Aには、冷却器用冷却水連通口28bを設け、内燃機関用冷却水区画24Bには、内燃機関用冷却水連通口29bを設け、各連通口28b及び29bには、配管Pが接続されている。   The cooling water compartment 23A for the cooler of the upper tank 23 is provided with a cooling water communication port 28a, and the cooling water compartment 23B for the internal combustion engine is provided with a cooling water communication port 29a for the internal combustion engine. And 29a, the piping P is connected. Similarly, the cooling water compartment 24A for the cooler of the lower tank 24 is provided with a cooling water communication port 28b, and the cooling water compartment 24B for the internal combustion engine is provided with a cooling water communication port 29b for the internal combustion engine. A pipe P is connected to 29b.

このアッパータンク23に設けられた冷却器用冷却水連通口28aの開口面積は、アッパータンク23に設けられた内燃機関用冷却水連通口29aの開口面積よりも小さく形成され、同様にロアータンク24に設けられた冷却器用冷却水連通口28bの開口面積は、ロアータンク24に設けられた内燃機関用冷却水連通口29bの開口面積よりも小さく形成されている。これは、第一に冷却器用冷却水Wcと内燃機関用冷却水Weの流量が異なるからであり、第二に前述したように冷却器用冷却水Wcの流路を蛇行させるからである。   The opening area of the cooling water communication port 28a provided in the upper tank 23 is smaller than the opening area of the cooling water communication port 29a provided for the internal combustion engine provided in the upper tank 23, and similarly provided in the lower tank 24. The opening area of the cooling water communication port 28 b thus formed is smaller than the opening area of the cooling water communication port 29 b for the internal combustion engine provided in the lower tank 24. This is because the flow rates of the cooling water Wc for the cooler and the cooling water We for the internal combustion engine are different from each other, and secondly, the flow path of the cooling water Wc for the cooling device is meandered as described above.

次に、上記の一体型ラジエータ1Aの動作について説明する。なお、ここではエンジン本体3の温度が十分に高くなっている状態を例に説明する。また、アッパータンク23へ流入する冷却器用冷却水Wcの流入温度を100℃、アッパータンク23へ流入する内燃機関用冷却水Weの流入温度を100℃、ロアータンク24から流出する冷却器用冷却水Wcの流出温度を50℃、ロアータンク24から流出する内燃機関用冷却水Weの流出温度を90℃とする。   Next, the operation of the integrated radiator 1A will be described. Here, a case where the temperature of the engine body 3 is sufficiently high will be described as an example. The inflow temperature of the cooling water Wc flowing into the upper tank 23 is 100 ° C., the inflow temperature of the cooling water We for internal combustion engine flowing into the upper tank 23 is 100 ° C., and the cooling water Wc of the cooling water flowing out from the lower tank 24 is The outflow temperature is 50 ° C., and the outflow temperature of the cooling water We for the internal combustion engine flowing out from the lower tank 24 is 90 ° C.

まず、冷却器用冷却水Wcの流れについて、図2を参照しながら説明する。   First, the flow of the cooling water Wc for the cooler will be described with reference to FIG.

冷却器用冷却水Wcは、流入温度100℃から流出温度50℃まで冷却する必要があるため、一体型コア部20の風上側に配置される第一コア部21に流入する。冷却器用冷却水Wcは、外部の配管Pからアッパータンク23の冷却器用冷却水連通口28aに流入し、アッパータンク23の冷却器用冷却水区画23Aの蛇行用仕切り26aにより仕切られた区画A1からロアータンク24の冷却器用冷却水区画24Aの蛇行用仕切り26bにより仕切られた区画A2へ流れる。このときの流れの向きはy1方向となる。   The cooling water Wc for the cooler needs to be cooled from the inflow temperature 100 ° C. to the outflow temperature 50 ° C., and therefore flows into the first core portion 21 disposed on the windward side of the integrated core portion 20. The cooling water Wc for the cooler flows from the external pipe P into the cooling water communication port 28a of the upper tank 23, and the lower tank from the section A1 partitioned by the meandering partition 26a of the cooling water section 23A of the upper tank 23. It flows to the section A2 partitioned by the meandering partition 26b of the cooling water section 24A for the 24 coolers. The direction of the flow at this time is the y1 direction.

次に、冷却器用冷却水Wcは、区画A2からアッパータンク23の冷却器用冷却水区画23Aの蛇行用仕切り26aにより仕切られた区画A3へ流れる。このときの流れの向きはy2方向となる。   Next, the cooling water Wc flows from the section A2 to the section A3 partitioned by the meandering partition 26a of the cooling water section 23A of the upper tank 23. The direction of the flow at this time is the y2 direction.

次に、冷却器用冷却水Wcは、区画A3からロアータンク24の冷却器用冷却水区画24Aの蛇行用仕切り26bにより仕切られた区画A4へ流れる。このときの流れの向きはy1方向となる。そして、冷却器用冷却水Wcは区画A4からロアータンク24の冷却器用冷却水連通口28bから外部の配管Pへ流出する。   Next, the cooling water Wc flows from the section A3 to the section A4 partitioned by the meandering partition 26b of the cooling water section 24A of the lower tank 24. The direction of the flow at this time is the y1 direction. Then, the cooling water Wc flows out from the section A4 to the external piping P from the cooling water communication port 28b of the lower tank 24.

次に、内燃機関用冷却水Weの流れについて、図3を参照しながら説明する。   Next, the flow of the cooling water We for the internal combustion engine will be described with reference to FIG.

内燃機関用冷却水Weは、必要以上にエンジン本体3を冷却しないように流入温度100℃から流出温度90℃まで冷却できればよいため、一体型コア部20の風上側の反対側に配置された第二コア部22に流入する。内燃機関用冷却水Weは、外部の配管Pからアッパータンク23の内燃機関用冷却水連通口29aに流入し、アッパータンク23の内燃機関用冷却水区画23Bからロアータンク24の内燃機関用冷却水区画24Bに流れる。このときの流れの向きはy1方向となる。そして、内燃機関用冷却水Weはロアータンク24の内燃機関用冷却水連通口29bから外部の配管Pへ流出する。   The cooling water We for the internal combustion engine only needs to be cooled from the inflow temperature 100 ° C. to the outflow temperature 90 ° C. so as not to cool the engine body 3 more than necessary. It flows into the two core part 22. The cooling water We for the internal combustion engine flows into the cooling water communication port 29a for the internal combustion engine of the upper tank 23 from the external pipe P, and the cooling water compartment for the internal combustion engine of the lower tank 24 from the cooling water compartment 23B for the internal combustion engine of the upper tank 23. It flows to 24B. The direction of the flow at this time is the y1 direction. Then, the cooling water We for the internal combustion engine flows out from the cooling water communication port 29b for the internal combustion engine of the lower tank 24 to the external pipe P.

上記の一体型ラジエータ1Aによれば、区画仕切り25aにより内部に冷却器用冷却水区画23Aと内燃機関用冷却水区画24Bに区画されたアッパータンク23と、区画仕切り25bにより内部に冷却器用冷却水区画23Aと内燃機関用冷却水区画24Bに区画されたロアータンク24を一体型コア部20の両側にかしめて固定することで、各コア部21及び22にそれぞれ別々のアッパータンクとロアータンクを設ける、つまり一体型ラジエータに合計四つのタンクを設けた従来技術の一体型ラジエータと比較して、送風方向であるx1方向の厚みを薄くすることができる。また、各タンク23及び24を一つずつにすることで、各タンク23及び24を固定するときのカシメ部Cを少なくして、送風方向の厚みをより一層薄くすることができる。従って、一体型ラジエータ1Aの送風方向であるx1方向の厚みが薄くなることで、一体型ラジエータ1Aの車両への搭載性をより向上することができる。   According to the above-described integrated radiator 1A, the cooling water compartment 23A for the cooler and the upper tank 23 partitioned into the cooling water compartment 24B for the internal combustion engine by the partition 25a, and the cooling water compartment for the cooler by the partition 25b. 23A and the lower tank 24 divided into the cooling water compartment 24B for the internal combustion engine are fixed by caulking on both sides of the integrated core portion 20, thereby providing separate upper tanks and lower tanks for the core portions 21 and 22, respectively. The thickness in the x1 direction, which is the blowing direction, can be reduced as compared with a conventional integrated radiator in which a total of four tanks are provided in the body radiator. Further, by using one each of the tanks 23 and 24, the caulking portion C when the tanks 23 and 24 are fixed can be reduced, and the thickness in the blowing direction can be further reduced. Accordingly, the thickness of the integral radiator 1A in the x1 direction, which is the blowing direction, is reduced, so that the mountability of the integral radiator 1A on the vehicle can be further improved.

また、第一に、冷却器用冷却水Wcを冷却する第一コア部21を風上側に配置することで、内燃機関用冷却水Weよりも低い温度帯まで冷却する必要がある冷却器用冷却水Wcを目的の温度帯まで冷却することができる。第二に、アッパータンク23の冷却器用冷却水区画23Aに設けた蛇行用仕切り26aとロアータンク24の冷却器用冷却水区画24Aに設けた蛇行用仕切り26bにより、冷却器用冷却水Wcの流路のみを蛇行させることで、冷却器用冷却水Wcを内燃機関用冷却水Weよりも長い時間を掛けて冷却することができる。これにより、内燃機関用冷却水Weよりも低い温度帯まで冷却する必要のある冷却器用冷却水Wcを確実にその温度帯まで冷却することができる。   First, the cooling water Wc for the cooler that needs to be cooled to a temperature range lower than the cooling water We for the internal combustion engine by disposing the first core portion 21 that cools the cooling water Wc for the cooling device on the windward side. Can be cooled to a target temperature range. Secondly, only the flow path of the cooling water Wc for the cooler is provided by the meandering partition 26a provided in the cooling water compartment 23A of the upper tank 23 and the meandering partition 26b provided in the cooling water compartment 24A of the lower tank 24. By meandering, the cooling water Wc for the cooler can be cooled over a longer time than the cooling water We for the internal combustion engine. Thereby, the cooling water Wc for the cooler that needs to be cooled to a temperature zone lower than the cooling water We for the internal combustion engine can be reliably cooled to that temperature zone.

加えて、図2及び図3に示すように、冷却器用冷却水Wcの流路を蛇行させる蛇行用仕切り26a及び26bをアッパータンク23とロアータンク24のそれぞれの冷却器用冷却水区画23A及び24Aに設けるだけの簡易な構成のため、安価に製造することができる。   In addition, as shown in FIGS. 2 and 3, meandering partitions 26a and 26b that meander the flow path of the cooling water Wc are provided in the cooling water compartments 23A and 24A of the upper tank 23 and the lower tank 24, respectively. Because of the simple configuration, it can be manufactured at low cost.

更に、図4に示すように、第一コア部21と第二コア部22が共有している放熱フィンFにスリット27を設けることにより、放熱フィンFの第一コア部21側と第二コア部22側の伝熱面積を減らして、第二コア部22から第一コア部21に伝わる熱伝導を抑制することができる。また、この放熱フィンFに設けられたスリット27は放熱フィンFを完全に分離しないことで、第一コア部21と第二コア部22からなる一体型コア部20の強度を高めることができる。   Further, as shown in FIG. 4, by providing slits 27 on the heat radiation fin F shared by the first core portion 21 and the second core portion 22, the first core portion 21 side and the second core of the heat radiation fin F are provided. It is possible to reduce the heat transfer area on the side of the portion 22 and suppress the heat conduction transmitted from the second core portion 22 to the first core portion 21. Further, the slits 27 provided in the heat radiating fins F do not completely separate the heat radiating fins F, so that the strength of the integrated core part 20 composed of the first core part 21 and the second core part 22 can be increased.

その上、アッパータンク23に設けられた冷却器用冷却水連通口28aの開口面積とロアータンク24に設けられた冷却器用冷却水連通口28bの開口面積が、アッパータンク23に設けられた内燃機関用冷却水連通口29aの開口面積とロアータンク24に設けられた内燃機関用冷却水連通口29bの開口面積よりも小さく形成されることで、内燃機関用冷却水Weよりも流量の小さい冷却器用冷却水Wcに適した、及び蛇行するように構成した冷却器用冷却水Wcの流路に適した流量を各タンク23及び24に流入及び流出することができる。   In addition, the opening area of the cooling water communication port 28 a provided in the upper tank 23 and the opening area of the cooling water communication port 28 b provided in the lower tank 24 are the cooling for the internal combustion engine provided in the upper tank 23. The cooling water Wc for the cooler having a smaller flow rate than the cooling water We for the internal combustion engine is formed by being smaller than the opening area of the water communication port 29a and the opening area of the cooling water communication port 29b for the internal combustion engine provided in the lower tank 24. It is possible to flow into and out of the tanks 23 and 24 at a flow rate suitable for the flow path of the cooling water Wc for the cooler configured to meander and meander.

次に、本発明に係る第二の実施の形態の一体型ラジエータ1Bについて、図5及び図6を参照しながら説明する。なお、第一の実施の形態と同様の部材については同符号を用いてその説明は省略する。   Next, an integrated radiator 1B according to a second embodiment of the present invention will be described with reference to FIGS. In addition, about the member similar to 1st embodiment, the description is abbreviate | omitted using a same sign.

この一体型ラジエータ1Bは、一体型コア部30を備え、その一体型コア部30は、冷却器用冷却水Wcの熱交換を行う第一コア部31と内燃機関用冷却水Weの熱交換を行う第二コア部32とを風上側から順に配置して構成される。   The integrated radiator 1B includes an integrated core portion 30. The integrated core portion 30 performs heat exchange between the first core portion 31 that performs heat exchange of the cooling water Wc for the cooler and the cooling water We for the internal combustion engine. The second core portion 32 is arranged in order from the windward side.

第一コア部31は、放熱性に優れた金属から形成され、アッパータンク23とロアータンク24を連通して冷却器用冷却水Wcが流れる第一チューブT1と、その第一チューブT1の熱を放熱するように波型に形成された放熱フィンF1とを、z方向に積層して形成される。第二コア部32は、内燃機関用冷却水Weが流れる第二チューブT2と、その第二チューブT2の熱を放熱する放熱フィンF2とを、z方向に積層して形成される。   The first core portion 31 is formed of a metal excellent in heat dissipation, and radiates heat from the first tube T1 through which the cooling water Wc for the cooler flows through the upper tank 23 and the lower tank 24 and the first tube T1. The radiating fins F <b> 1 thus formed in a wave shape are stacked in the z direction. The second core portion 32 is formed by laminating, in the z direction, a second tube T2 through which the cooling water We for the internal combustion engine flows and a radiation fin F2 that radiates heat from the second tube T2.

そして、この一体型コア部30は、第一コア部31と第二コア部32との間に所定の隙間33を設けて構成される。   The integral core part 30 is configured by providing a predetermined gap 33 between the first core part 31 and the second core part 32.

この隙間33は、送風方向であるx1方向の幅が3mm〜6mm程度の隙間であり、第一コア部31と第二コア部32とを完全に離間させるものである。   The gap 33 is a gap having a width of about 3 mm to 6 mm in the x1 direction, which is the blowing direction, and completely separates the first core portion 31 and the second core portion 32.

従って、この一体型ラジエータ1Bは、第一コア部31と第二コア部32との間に隙間33を設けることで、第一コア部31と第二コア部32とを完全に離間させることができるので、第一コア部31と第二コア部32との間の熱伝導を遮断することができる。これにより、内燃機関用冷却水Weの影響により冷却器用冷却水Wcの温度が上昇してしまうことを回避することができる。   Therefore, the integrated radiator 1B can completely separate the first core portion 31 and the second core portion 32 by providing the gap 33 between the first core portion 31 and the second core portion 32. Since it can do, the heat conduction between the 1st core part 31 and the 2nd core part 32 can be interrupted | blocked. Thereby, it can avoid that the temperature of the cooling water Wc for coolers rises by the influence of the cooling water We for internal combustion engines.

なお、上記の実施の形態の一体型ラジエータ1A及び1Bは、車両に搭載されたエンジン2の冷却システム10に設けられたものを例に説明したが、本発明はこれに限定されずに、使用圧力範囲が同じで、且つ温度帯が異なる冷却水を冷却する複数のラジエータを一体型にする場合に適用することができる。   Although the integrated radiators 1A and 1B of the above-described embodiment have been described as examples provided in the cooling system 10 of the engine 2 mounted on the vehicle, the present invention is not limited to this and is used. The present invention can be applied to a case where a plurality of radiators for cooling cooling water having the same pressure range and different temperature zones are integrated.

また、上記の実施の形態の一体型ラジエータ1A及び1Bは、ダウンフロー型のラジエータを例に説明したが、本発明はこれに限定されずに、例えば、クロスフロー型のラジエータにも適用することができる。   Further, the integrated radiators 1A and 1B of the above embodiment have been described by taking the downflow type radiator as an example. However, the present invention is not limited to this, and may be applied to, for example, a crossflow type radiator. Can do.

また、上記の実施の形態の一体型ラジエータ1A及び1Bを備える冷却システム10、及びその冷却システム10を備えるエンジン2の構成は、一例であり、本発明はこの構成に限定されない。   In addition, the configuration of the cooling system 10 including the integrated radiators 1A and 1B and the engine 2 including the cooling system 10 according to the above-described embodiment is an example, and the present invention is not limited to this configuration.

また、上記の実施の形態の一体型ラジエータ1A及び1Bでは、蛇行用仕切り26a及び26bを設けて、冷却器用冷却水Wcの流路を蛇行するように構成したが、蛇行用仕切りの数を増やして蛇行する回数を増やすように構成してもよい。   In the integrated radiators 1A and 1B of the above-described embodiment, the meandering partitions 26a and 26b are provided to meander the flow path of the cooling water Wc for the cooler. However, the number of meandering partitions is increased. The number of times of meandering may be increased.

また、第一の実施の形態の一体型ラジエータ1Aの放熱フィンFに設けたスリット27を、図4に示すように全ての放熱フィンFで同じ位置に配置する例を説明したが、本発明はこれに限定されない。例えば、放熱フィンFの第一コア部21側と第二コア部22側を繋ぐ部分(スリット27を設けていない部分)を各放熱フィンFで異なる位置にしてもよい。この構成によれば、各放熱フィンFでスリット27の位置が異なるため、より一体型コア部20の強度を高めることができる。   Moreover, although the slit 27 provided in the radiation fin F of 1 A of integrated radiators of 1st Embodiment demonstrated the example arrange | positioned in the same position with all the radiation fins F, as shown in FIG. It is not limited to this. For example, the portions connecting the first core portion 21 side and the second core portion 22 side of the radiating fins F (portions where the slits 27 are not provided) may be located at different positions in each radiating fin F. According to this configuration, since the positions of the slits 27 are different for each radiating fin F, the strength of the integrated core portion 20 can be further increased.

本発明の一体型熱交換器は、送風方向の厚みをより薄くして搭載性を向上することができると共に、内燃機関用冷却水よりも低い温度帯の冷却器用冷却水を確実に目的の温度帯まで冷却することができるので、特に、水冷式の吸気用冷却器を備える内燃機関に利用す
ることができる。
The integrated heat exchanger of the present invention can improve the mountability by reducing the thickness in the air blowing direction, and can surely provide the cooling water for the cooler in the temperature zone lower than the cooling water for the internal combustion engine at the target temperature. Since it can cool to a belt, it can be used particularly for an internal combustion engine equipped with a water-cooled intake air cooler.

1A、1B 一体型ラジエータ(一体型熱交換器)
2 エンジン(内燃機関)
10 冷却システム
11 エンジン用冷却流路
12 冷却器用冷却流路
15a 第一吸気用冷却器
15b 第二吸気用冷却器
20 一体型コア部(一体型熱交換部)
21 第一コア部(第一熱交換部)
22 第二コア部(第二熱交換部)
23 アッパータンク(流入用容器)
23A 冷却器用冷却水区画
23B 内燃機関用冷却水区画
24 ロアータンク(流出用容器)
24A 冷却器用冷却水区画
24B 内燃機関用冷却水区画
25a、25b 区画仕切り
26a、26b 蛇行用仕切り
27 スリット(隙間)
Wc 冷却器用冷却水
We 内燃機関用冷却水
1A, 1B Integrated radiator (Integrated heat exchanger)
2 Engine (Internal combustion engine)
DESCRIPTION OF SYMBOLS 10 Cooling system 11 Engine cooling flow path 12 Cooler cooling flow path 15a First intake air cooler 15b Second intake air cooler 20 Integrated core part (integrated heat exchange part)
21 1st core part (1st heat exchange part)
22 2nd core part (2nd heat exchange part)
23 Upper tank (inflow container)
23A Cooling water compartment for cooler 23B Cooling water compartment for internal combustion engine 24 Lower tank (outflow container)
24A Cooling water compartment 24B Internal combustion engine cooling water compartment 25a, 25b Partition partition 26a, 26b Meander partition 27 Slit (gap)
Wc Cooling water for cooler We Cooling water for internal combustion engine

Claims (5)

使用圧力範囲が同じでそれぞれ異なる温度帯の冷却水の熱交換を行う第一熱交換部と第二熱交換部とを風上側から順に配置して構成された一体型熱交換部を備える一体型熱交換器において、
前記一体型熱交換部の両側にかしめて固定される流入用容器と流出用容器を一つずつ設けると共に、前記流入用容器と前記流出用容器のそれぞれに区画仕切りを設け、前記流入用容器と前記流出用容器のそれぞれの内部を、前記区画仕切りにより、前記第一熱交換部で熱交換される低温冷却水を貯留する低温冷却水区画と、前記第二熱交換部で熱交換される高温冷却水を貯留する高温冷却水区画とに区画し、
更に、前記流入用容器の前記低温冷却水区画と前記流出用容器の前記低温冷却水区画のそれぞれに蛇行用仕切りを設け、前記低温冷却水の流路を前記蛇行用仕切りにより、前記第一熱交換部を経由して前記流入用容器の前記低温冷却水区画と前記流出用容器の前記低温冷却水区画との間を往復させて蛇行させるように構成することを特徴とする一体型熱交換器。
An integrated type having an integrated heat exchanging unit configured by sequentially arranging a first heat exchanging unit and a second heat exchanging unit that perform heat exchange of cooling water in different temperature zones with the same operating pressure range from the windward side In the heat exchanger,
One inflow container and one outflow container that are caulked and fixed to both sides of the integrated heat exchange unit are provided, and a partition is provided in each of the inflow container and the outflow container, A low temperature cooling water section storing the low temperature cooling water heat-exchanged in the first heat exchange section and a high temperature heat exchanged in the second heat exchange section inside the outflow vessel by the partition partition. Compartment into a high-temperature cooling water compartment that stores cooling water,
Furthermore, a meandering partition is provided in each of the low-temperature cooling water compartment of the inflow container and the low-temperature cooling water compartment of the outflow container, and the flow path of the low-temperature cooling water is defined by the meandering partition, and the first heat An integrated heat exchanger configured to meander by reciprocating between the low-temperature cooling water section of the inflow container and the low-temperature cooling water section of the outflow container via an exchange section .
前記低温冷却水を、内燃機関の気筒へ供給される吸気を水冷により冷却する吸気用冷却器を循環する冷却器用冷却水とし、前記高温冷却水を、前記内燃機関を冷却する内燃機関用冷却水とすることを特徴とする請求項1に記載の一体型熱交換器。   The low-temperature cooling water is used as cooling water for cooling that circulates through an intake air cooling device that cools intake air supplied to the cylinders of the internal combustion engine by water cooling, and the high-temperature cooling water is used as cooling water for internal combustion engines that cools the internal combustion engine. The integrated heat exchanger according to claim 1, wherein: 前記流入用容器と前記流出用容器の前記低温冷却水区画に設けられた外部の配管との連通口の開口面積が、前記流入用容器と前記流出用容器の前記高温冷却水区画に設けられた外部の配管との連通口の開口面積よりも小さく形成されることを特徴とする請求項1又は2に記載の一体型熱交換器。   An opening area of a communication port between the inflow container and an external pipe provided in the low temperature cooling water section of the outflow container is provided in the high temperature cooling water section of the inflow container and the outflow container. The integrated heat exchanger according to claim 1, wherein the integrated heat exchanger is formed smaller than an opening area of a communication port with an external pipe. 前記第一熱交換部と前記第二熱交換部が、熱を放熱する複数の放熱部材を共有するように構成されると共に、前記放熱部材のそれぞれの前記第一熱交換部側と前記第二熱交換部側の間に各冷却水の流れ方向に並ぶ複数の隙間を設けることを特徴とする請求項1〜3のいずれか1項に記載の一体型熱交換器。   The first heat exchanging part and the second heat exchanging part are configured to share a plurality of heat dissipating members that dissipate heat, and each of the first heat exchanging part side and the second heat dissipating member. The integrated heat exchanger according to any one of claims 1 to 3, wherein a plurality of gaps arranged in the flow direction of each cooling water are provided between the heat exchange portions. 前記第一熱交換部と前記第二熱交換部との間に所定の隙間を設けることを特徴とする請求項1〜3のいずれか1項に記載の一体型熱交換器。   The integrated heat exchanger according to any one of claims 1 to 3, wherein a predetermined gap is provided between the first heat exchange part and the second heat exchange part.
JP2014031650A 2014-02-21 2014-02-21 Radiator Expired - Fee Related JP6354198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031650A JP6354198B2 (en) 2014-02-21 2014-02-21 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031650A JP6354198B2 (en) 2014-02-21 2014-02-21 Radiator

Publications (2)

Publication Number Publication Date
JP2015155785A true JP2015155785A (en) 2015-08-27
JP6354198B2 JP6354198B2 (en) 2018-07-11

Family

ID=54775189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031650A Expired - Fee Related JP6354198B2 (en) 2014-02-21 2014-02-21 Radiator

Country Status (1)

Country Link
JP (1) JP6354198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022090592A (en) * 2020-12-07 2022-06-17 崇賢 ▲黄▼ Water-cooling radiator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016872U (en) * 1983-07-11 1985-02-05 トヨタ自動車株式会社 Dual system cooling system for internal engine
JPH03177795A (en) * 1989-12-07 1991-08-01 Showa Alum Corp Double system integrated type heat exchanger
JPH10253276A (en) * 1997-03-17 1998-09-25 Denso Corp Heat exchanger
JPH11192833A (en) * 1998-01-08 1999-07-21 Showa Alum Corp Heat exchanger combination structure and integrated heat exchanger
JP2002102975A (en) * 2000-07-25 2002-04-09 Valeo Thermique Moteur Manufacturing method for heat exchange module fin, fin manufactured by the method, and heat exchange module provided with the fin
US20040050543A1 (en) * 2000-12-11 2004-03-18 Young Jin Kim High/low temperature water cooling system
JP2005509833A (en) * 2001-11-13 2005-04-14 ヴァレオ テルミーク モツール Automotive heat exchange module comprising a main radiator and a sub-radiator, and a system including this module
JP2005325699A (en) * 2004-05-12 2005-11-24 Calsonic Kansei Corp Cooling water bypass structure for radiator
JP2006505760A (en) * 2002-11-08 2006-02-16 ヴァレオ テルミーク モツール Heat exchange module having a main radiator and an auxiliary radiator
JP2009074759A (en) * 2007-09-21 2009-04-09 Calsonic Kansei Corp Heat exchanger for vehicle
JP2010505081A (en) * 2006-09-29 2010-02-18 ヴァレオ インコーポレイテッド Multi-flow heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016872U (en) * 1983-07-11 1985-02-05 トヨタ自動車株式会社 Dual system cooling system for internal engine
JPH03177795A (en) * 1989-12-07 1991-08-01 Showa Alum Corp Double system integrated type heat exchanger
JPH10253276A (en) * 1997-03-17 1998-09-25 Denso Corp Heat exchanger
JPH11192833A (en) * 1998-01-08 1999-07-21 Showa Alum Corp Heat exchanger combination structure and integrated heat exchanger
JP2002102975A (en) * 2000-07-25 2002-04-09 Valeo Thermique Moteur Manufacturing method for heat exchange module fin, fin manufactured by the method, and heat exchange module provided with the fin
US20040050543A1 (en) * 2000-12-11 2004-03-18 Young Jin Kim High/low temperature water cooling system
JP2005509833A (en) * 2001-11-13 2005-04-14 ヴァレオ テルミーク モツール Automotive heat exchange module comprising a main radiator and a sub-radiator, and a system including this module
JP2006505760A (en) * 2002-11-08 2006-02-16 ヴァレオ テルミーク モツール Heat exchange module having a main radiator and an auxiliary radiator
JP2005325699A (en) * 2004-05-12 2005-11-24 Calsonic Kansei Corp Cooling water bypass structure for radiator
JP2010505081A (en) * 2006-09-29 2010-02-18 ヴァレオ インコーポレイテッド Multi-flow heat exchanger
JP2009074759A (en) * 2007-09-21 2009-04-09 Calsonic Kansei Corp Heat exchanger for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022090592A (en) * 2020-12-07 2022-06-17 崇賢 ▲黄▼ Water-cooling radiator
JP7152796B2 (en) 2020-12-07 2022-10-13 崇賢 ▲黄▼ water cooling radiator

Also Published As

Publication number Publication date
JP6354198B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
KR101405234B1 (en) Radiator for vehicle
US9920686B2 (en) Water-cooled charge air cooler with integrated multi-stage cooling
WO2015102037A1 (en) Intake air cooling device
KR20070112017A (en) Egr cooler with dual coolant loop
GB2453218A (en) Internal combustion engine cooling system
US20140216702A1 (en) Heat-Exchanger Plate
JP2010249129A (en) Charge air cooler and cooling system
KR20180131386A (en) Integrated radiator
WO2018123335A1 (en) Intercooler
AU2017208218B2 (en) Cooling module
JP6354198B2 (en) Radiator
JP6296439B2 (en) Vehicle radiator
JP2012145311A (en) Vehicle air conditioning device
KR101170689B1 (en) Oil Cooler
JP2014126315A (en) Compound heat exchanger
JP2010018151A (en) Vehicular heat exchanger
EP2784285B1 (en) System for cooling a gaseous intake fluid for an internal combustion engine, integrated into a cooling circuit of the engine
KR20120026177A (en) Water cooling type heat exchange system for motor vehicle
KR20100027324A (en) Integrated radiator
JP6464598B2 (en) Internal combustion engine cooling system
US20140060784A1 (en) Heat exchanger including an in-tank oil cooler with improved heat rejection
KR20140076218A (en) Cooling system using engine cover for vehicle
CN110100143B (en) Intercooler
JP2019065813A (en) Cooling structure for egr gas
WO2019111574A1 (en) Radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees