JP2015154878A - Sphygmomanometry device - Google Patents

Sphygmomanometry device Download PDF

Info

Publication number
JP2015154878A
JP2015154878A JP2014031303A JP2014031303A JP2015154878A JP 2015154878 A JP2015154878 A JP 2015154878A JP 2014031303 A JP2014031303 A JP 2014031303A JP 2014031303 A JP2014031303 A JP 2014031303A JP 2015154878 A JP2015154878 A JP 2015154878A
Authority
JP
Japan
Prior art keywords
vibration
function
cuff
blood pressure
electrocardiogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014031303A
Other languages
Japanese (ja)
Other versions
JP6366954B2 (en
Inventor
滝澤正夫
Masao Takizawa
吉田功
Isao Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minato Medical Science Co Ltd
Original Assignee
Minato Medical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minato Medical Science Co Ltd filed Critical Minato Medical Science Co Ltd
Priority to JP2014031303A priority Critical patent/JP6366954B2/en
Publication of JP2015154878A publication Critical patent/JP2015154878A/en
Application granted granted Critical
Publication of JP6366954B2 publication Critical patent/JP6366954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems that: a doctor and nurse are forced to use a specific type device since even if k sound is extracted with an electrocardiogram trigger method so that measurement may be carried out even during exercise or hard working, there is a poor noise reduction means, thus there is a case where incorrect blood pressure value is obtained, resulting in that ECG lag of electrocardiograph is unknown; and, even if non specific electrocardiograph may be used, since it is unknown that measurement is carried out correctly, the doctor and nurse carry out the blood pressure measurement while confirming the relevance of the blood pressure value at that field by themselves, resulting in time consumption in measurement.
SOLUTION: There is provided a sphygmomanometry device having a cardiograph synchronizing function in which vibration generated in blood vessel is extracted by an electrocardiogram trigger method with cardiographic signal. Automatic learning function is provided to a parameter required upon extraction of the vibration. The required parameter is ECG lag specific to an electrocardiograph. ECG lag measurement means is provided to the automatic learning function.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、血圧測定装置に関するものであり、特に、血圧値に関する情報を抽出する手段に関するものである。    The present invention relates to a blood pressure measurement device, and more particularly to means for extracting information related to blood pressure values.

従来より血圧を測定する方法は周知されており、代表的な方法は聴診法(リバロッチ・コロトコフ法)とオシロメトリック法の2つがある。    Conventionally, methods for measuring blood pressure have been well known, and there are two typical methods: an auscultation method (Ribarotch Korotkov method) and an oscillometric method.

聴診法は腕に装着したカフを加圧して動脈を駆血した後、徐々にカフを減圧していく段階で、血液が心臓の拍動に合わせて断続的に流れるときに発生する血管音(コロトコフ音、以下K音とする)を聴診器やカフに内蔵したマイクロホンによって検出し、K音の発生及び消滅を確認することによって、血圧値を決定する方法で、一般的には、K音発生開始時のカフ内圧を最高血圧とし、K音が消えたときのカフ内圧を最低血圧としている。    Auscultation is a process in which the cuff attached to the arm is pressurized to drive the artery, and then the cuff is gradually depressurized, and the blood vessel sound that is generated when blood flows intermittently according to the heartbeat ( Korotkoff sound (hereinafter referred to as K sound) is detected by a stethoscope or a microphone built into the cuff, and the blood pressure value is determined by confirming the generation and disappearance of the K sound. The cuff internal pressure at the start is the maximum blood pressure, and the cuff internal pressure when the K sound disappears is the minimum blood pressure.

病院などにおいて血圧測定する場合、前述の聴診法はよく用いられている方法であり、多くの医師や看護師によって聴診器を用いて実施されている。しかし、経験豊富な医師や看護師であっても、被験者が安静状態で測定しなければ、得られる情報に血圧に関係のないノイズ成分が多く入ることとなり、高精度で安定した測定がし難い。    When blood pressure is measured in a hospital or the like, the auscultation method described above is a commonly used method, and it is performed by many doctors and nurses using a stethoscope. However, even experienced doctors and nurses will have many noise components that are not related to blood pressure if the subject does not measure in a resting state, making it difficult to perform highly accurate and stable measurements. .

一方、オシロメトリック法は、カフを加圧して動脈を駆血した後、徐々にカフを減圧していく段階で、心臓の拍動に同調した血管壁の振動を反映したカフ内圧の変動(圧脈波)を検出し、その変動の発生及び消滅を確認することによって血圧値を決定する方法で、一般的には、変動が急激に大きくなったときのカフ内圧を最高血圧とし、急激に小さくなったときのカフ内圧を最低血圧としている。
この方法は、家庭で使う電子式自動血圧計の多くに採用されているが、主に健常人を対象としており、聴診法と同様に被験者を安静状態で測定しなければ、高精度で安定した測定がし難い。
On the other hand, in the oscillometric method, after the cuff is pressurized and the artery is driven, the cuff is gradually depressurized, and the cuff internal pressure fluctuation (pressure) reflecting the vibration of the blood vessel wall synchronized with the pulsation of the heart. In this method, the blood pressure value is determined by checking the occurrence and disappearance of the fluctuations. In general, the cuff internal pressure when the fluctuations suddenly increase is the maximum blood pressure, and the blood pressure value decreases rapidly. The cuff internal pressure at the time of becoming the minimum blood pressure.
This method is used in many electronic blood pressure monitors used at home, but mainly for healthy people. If the subject is not measured in a resting state, as with auscultation, it is highly accurate and stable. Difficult to measure.

国民の高齢化が進む中、高血圧症など予防医学や最新医療の分野においては、高齢者を対象にした研究が数多く行われており、被験者を安静状態にし難く体動が激しい場合又は意識の有無など被験者の状態に関係なく血圧測定が可能なシステムの要望があり、また、その血圧測定に対する性能には、高精度で安定したものが求められている。また、被験者が健常人であっても運動中に心拍や血圧がどのように変化するかをモニタする事は臨床研究上、大変有効な情報となる。    In the field of preventive medicine such as hypertension and the latest medical fields, as the population is aging, many studies have been conducted on elderly people. There is a demand for a system capable of measuring blood pressure regardless of the state of the subject, and the performance for blood pressure measurement is required to be highly accurate and stable. Moreover, even if the subject is a healthy person, monitoring how the heart rate and blood pressure change during exercise is very useful information in clinical research.

そこで、例えば被験者が運動中や体動が激しい場合、心電信号などの生体信号を検出し、前記生体信号と同期させて血圧測定を行おうとしているシステムや血圧測定装置がある(例えば、特許文献1参照)。図4は、特許文献1に記載の実施例である。この装置は、心電信号をゲート信号として用い、K音の発生が予想されるゲート時間中にK音を含む振動を検出し解析する事でノイズの影響を少なくし、医師や看護師自身の聴覚で行う聴診法では測定困難なノイズ環境における血圧測定を可能としている。    Thus, for example, when a subject is exercising or has a lot of body motion, there are systems and blood pressure measurement devices that detect a biological signal such as an electrocardiogram signal and perform blood pressure measurement in synchronization with the biological signal (for example, patents). Reference 1). FIG. 4 shows an embodiment described in Patent Document 1. This device uses an electrocardiogram signal as a gate signal, reduces the influence of noise by detecting and analyzing vibrations including K sound during the gate time when K sound is expected to be generated, It enables blood pressure measurement in a noisy environment, which is difficult to measure by auscultation performed by hearing.

しかし、特許文献1では、K音の周波数と同じ周波数を有するノイズとK音との分離が不十分なため、高精度で安定した性能を満たしていない。このため、医師や看護師は前記装置に全て任せて血圧測定をすることができていない。このため、実際、運動中に血圧測定する場合では、医師や看護師は、測定中は常時、被験者の状態と血圧測定装置に表示される血圧値を目視観察し、経験的に比較評価することで、血圧値の妥当性を医師や看護師自らが確認しながら血圧測定を行っている。    However, in Patent Document 1, the noise having the same frequency as the frequency of the K sound and the K sound are not sufficiently separated from each other, and thus the high-precision and stable performance is not satisfied. For this reason, doctors and nurses are not able to rely on the device to measure blood pressure. For this reason, when actually measuring blood pressure during exercise, doctors and nurses should always visually observe the subject's condition and the blood pressure value displayed on the blood pressure measurement device during the measurement and empirically compare and evaluate it. Thus, blood pressure measurement is performed while doctors and nurses themselves confirm the validity of blood pressure values.

ここで当該問題となるノイズとK音の分離について考慮されたものが特許文献2及び特許文献3である。
特許文献2は、別途の心電計機能を不要としカフに内蔵する脈波検出手段にから得られる振動をゲート信号として用いた点に特徴を有し、また、カフによって血管を駆血させ血管の振動を止めてそのデータを体動ノイズに見立ててそのデータを基にフィルタリングを行うという特徴を有する。図5に記載するフィルタリング機能のフロー図を示す。
本来、体動ノイズは一定ノイズではなく、体動ノイズは血圧測定中であってもダイナミックに変化しており、固定ノイズと考えると本来の血圧から発生する振動成分がその近傍で発生しておれば必要な成分までもノイズと誤認し除去されてしまう可能性がある。
したがって、この方法では、フィルタリングによって本来の血圧から発生する振動も除去されてしまっている可能性が高い。
Here, Patent Document 2 and Patent Document 3 consider the separation of the noise and the K sound which are the problems.
Patent Document 2 is characterized in that a separate electrocardiograph function is not required and the vibration obtained from the pulse wave detection means built in the cuff is used as a gate signal. And the filtering is performed based on the data by regarding the data as body motion noise. FIG. 6 shows a flow diagram of the filtering function described in FIG.
Originally, body motion noise is not constant noise, and body motion noise changes dynamically even during blood pressure measurement, and if it is considered as fixed noise, vibration components generated from the original blood pressure are generated in the vicinity. If necessary, even necessary components may be mistaken for noise and removed.
Therefore, in this method, there is a high possibility that the vibration generated from the original blood pressure is also removed by filtering.

特許文献3は、心電計を使用するとR波とK音に時間的遅れが発生し、またこの時間がカフ内圧に追従変動する点に着目し、心拍を1拍遅らせる手段を設けて正しいK音を抽出しようという特徴を有する。方法としては、本願発明に近いように考えられるが、前提条件が全く異なる。つまり、特許文献3は、心電計固有のECGラグが既知であることが前提であり、各社心電計の性能向上に応じて移り変わる可能性がある遅れ時間については全く考慮されていない。
したがって、特許文献3では、本来必要となるレベルの精度を必要とする場合は、心電計の製造メーカ指定若しくは非常に時間のかかる初期セッティングが必要となり、当初の思惑とは異なり、大変不便となる。
Patent Document 3 focuses on the fact that when an electrocardiograph is used, a time delay occurs in the R wave and the K sound, and this time follows and fluctuates with the cuff internal pressure, and a means for delaying the heartbeat by one beat is provided. It has the characteristic of trying to extract sound. The method is considered to be close to the present invention, but the preconditions are completely different. That is, Patent Document 3 is based on the premise that an ECG lag unique to an electrocardiograph is known, and does not take into account any delay time that may change in accordance with the performance improvement of each company's electrocardiograph.
Therefore, in Patent Document 3, when the required level of accuracy is required, an electrocardiograph manufacturer designation or an extremely time-consuming initial setting is required, which is very inconvenient, unlike the initial speculation. Become.

よって、特許文献1乃至特許文献3の血圧測定装置では、自動血圧計の本来の役割を十分活かせていない。    Therefore, in the blood pressure measurement devices of Patent Documents 1 to 3, the original role of the automatic blood pressure monitor is not fully utilized.

特開昭61−193644号公報JP-A-61-193644 特開2001−008908号公報JP 2001-008908 A 特開平10−272109号公報JP-A-10-272109

運動中や体動が激しい場合でも測定可能となるよう心電信号をゲート信号としてK音の抽出をしても、ノイズ除去手段に乏しく、またゲート時間中のK音とノイズの分離も不十分なため、装置がノイズをK音と誤認識して誤った血圧値を決定することがある。また、心電計の製造メーカ、機種、心電計の設定条件等により発生するECGラグは未知な値であるため、通常は正しくゲート信号を得るために心電計の機種指定をしたりするが、指定機種以外の心電計を用いると、ECGラグは各機種毎に異なる値を示すため、正常に心電図トリガ法を用いて正しい血圧値を決定することが不可能となる。よって、医師や看護師が使用する心電計に制約が生じている。また、所有する指定以外の心電計を使った場合が、稀に使用できたとしても、正常に測定できているか不明となるため、医師や看護師は血圧測定装置に全て任せて血圧測定をすることができず、測定中は常時、被験者の状態と血圧測定装置に表示される血圧値を目視観察し経験的に比較評価し、血圧値の妥当性を医師や看護師自らがその場で確認しながら血圧測定を行っており、測定中の時間を拘束してしまっている。    Even if K sounds are extracted using an electrocardiogram signal as a gate signal so that measurement is possible even during exercise or when body movement is intense, noise removal means are poor, and K sound and noise are not sufficiently separated during the gate time. Therefore, the device may erroneously recognize noise as a K sound and determine an incorrect blood pressure value. Also, since the ECG lag generated by the ECG manufacturer, model, ECG setting conditions, etc. is an unknown value, the ECG model is usually specified to obtain the correct gate signal. However, when an electrocardiograph other than the designated model is used, the ECG lag shows a different value for each model, so that it is impossible to normally determine a correct blood pressure value using the electrocardiogram trigger method. Therefore, the electrocardiograph used by doctors and nurses is restricted. Also, if you use an electrocardiograph other than the one you specify, even if it can be used rarely, it will be unclear whether it can be measured normally, so doctors and nurses leave all blood pressure measurement devices to blood pressure measurement. At all times during the measurement, the state of the subject and the blood pressure value displayed on the blood pressure measurement device are visually observed and compared empirically, and the appropriateness of the blood pressure value is confirmed on the spot by the doctor or nurse himself. The blood pressure is measured while checking, and the time during measurement is restricted.

請求項1の発明は、被験者の血管を圧迫するために装着されるカフと、
前記カフ内に空気を注入又は排出することによって前記カフ内を加圧又は減圧する圧力制御機能と、
前記カフ内の圧力を測定するカフ内圧測定機能と、
前記カフ内の加圧時又は減圧時に前記血管から発生する振動Aを検出する振動A検出機能と、
前記振動Aからノイズを除去し振動Bを抽出する振動B抽出機能と、
前記振動Bの振動強度を得る振動強度導出機能と、
前記被験者の心電信号を検出する心電信号検出機能と、
前記心電信号を用いた心電図トリガ法によって前記振動A又は前記振動Bを抽出する心電同期機能と、
を設けた血圧測定装置において、
前記振動A又は前記振動Bを抽出する際に必要とするパラメータに自動学習機能を設け
前記必要とするパラメータが心電計固有のECGラグであり、前記自動学習機能にECGラグ測定手段を設けた
ことを特徴とする。
The invention of claim 1 includes a cuff that is worn to compress a blood vessel of a subject;
A pressure control function for pressurizing or depressurizing the inside of the cuff by injecting or discharging air into the cuff;
A cuff internal pressure measuring function for measuring the pressure in the cuff;
A vibration A detection function for detecting vibration A generated from the blood vessel at the time of pressurization or decompression in the cuff;
A vibration B extraction function for removing noise from the vibration A and extracting the vibration B;
A vibration intensity deriving function for obtaining a vibration intensity of the vibration B;
An electrocardiogram signal detection function for detecting the electrocardiogram signal of the subject;
An electrocardiogram synchronization function for extracting the vibration A or the vibration B by an electrocardiogram trigger method using the electrocardiogram signal;
In the blood pressure measuring apparatus provided with
An automatic learning function is provided for a parameter required when extracting the vibration A or the vibration B, and the required parameter is an ECG lag specific to an electrocardiograph, and an ECG lag measuring means is provided for the automatic learning function. It is characterized by that.

請求項2の発明は、被験者の血管を圧迫するために装着されるカフと、
前記カフ内に空気を注入又は排出することによって前記カフ内を加圧又は減圧する圧力制御機能と、
前記カフ内の圧力を測定するカフ内圧測定機能と、
前記カフ内の加圧時又は減圧時に前記血管から発生する振動Aを検出する振動A検出機能と、
前記振動Aからノイズを除去し振動Bを抽出する振動B抽出機能と、
前記振動Bの振動強度を得る振動強度導出機能と、
前記被験者の心電信号を検出する心電信号検出機能と、
前記心電信号を用いた心電図トリガ法によって前記振動A又は前記振動Bを抽出する心電同期機能と
を設けた血圧測定装置において、
前記振動A又は前記振動Bを抽出する際に必要とするパラメータを自動で学習する機能を設け
前記必要とするパラメータが被験者特有のK音を抽出するための専用フィルタであり、前記自動学習機能にK音の周波数スペクトルを用いて前記専用フィルタを形成させる機能を設けた
ことを特徴とする。
The invention of claim 2 includes a cuff to be worn to compress the blood vessel of the subject;
A pressure control function for pressurizing or depressurizing the inside of the cuff by injecting or discharging air into the cuff;
A cuff internal pressure measuring function for measuring the pressure in the cuff;
A vibration A detection function for detecting vibration A generated from the blood vessel at the time of pressurization or decompression in the cuff;
A vibration B extraction function for removing noise from the vibration A and extracting the vibration B;
A vibration intensity deriving function for obtaining a vibration intensity of the vibration B;
An electrocardiogram signal detection function for detecting the electrocardiogram signal of the subject;
In the blood pressure measurement device provided with an electrocardiogram synchronization function for extracting the vibration A or the vibration B by an electrocardiogram trigger method using the electrocardiogram signal,
A function for automatically learning a parameter required when extracting the vibration A or the vibration B is provided, and the required parameter is a dedicated filter for extracting a K sound peculiar to a subject, and the automatic learning function A function of forming the dedicated filter using a frequency spectrum of K sound is provided.

請求項3の発明は、被験者の血管を圧迫するために装着されるカフと、
前記カフ内に空気を注入又は排出することによって前記カフ内を加圧又は減圧する圧力制御機能と、
前記カフ内の圧力を測定するカフ内圧測定機能と、
前記カフ内の加圧時又は減圧時に前記血管から発生する振動Aを検出する振動A検出機能と、
前記振動Aからノイズを除去し振動Bを抽出する振動B抽出機能と、
前記振動Bの振動強度を得る振動強度導出機能と、
前記被験者の心電信号を検出する心電信号検出機能と、
前記心電信号を用いた心電図トリガ法によって前記振動A又は前記振動Bを抽出する心電同期機能と
を設けた血圧測定装置において、
前記振動A又は前記振動Bを抽出する際に必要とするパラメータを自動で学習する機能を設け
請求項1及び請求項2の特徴を有する。
The invention of claim 3 includes a cuff that is worn to compress the blood vessel of the subject;
A pressure control function for pressurizing or depressurizing the inside of the cuff by injecting or discharging air into the cuff;
A cuff internal pressure measuring function for measuring the pressure in the cuff;
A vibration A detection function for detecting vibration A generated from the blood vessel at the time of pressurization or decompression in the cuff;
A vibration B extraction function for removing noise from the vibration A and extracting the vibration B;
A vibration intensity deriving function for obtaining a vibration intensity of the vibration B;
An electrocardiogram signal detection function for detecting the electrocardiogram signal of the subject;
In the blood pressure measurement device provided with an electrocardiogram synchronization function for extracting the vibration A or the vibration B by an electrocardiogram trigger method using the electrocardiogram signal,
A feature of automatically learning a parameter required when extracting the vibration A or the vibration B is provided.

本発明によれば、運動中や体動が激しい場合であっても、どのような心電計を使用したとしても、高精度で安定した血圧測定が可能となることで、測定中は常時、被験者の状態と血圧測定装置に表示される血圧値を目視観察する必要がなくなる。よって、医師や看護師は、心電計を機種の制約なく使用することが可能となった。また、今まで医師や看護師が拘束されていた血圧測定中の時間を、他の医療業務や臨床研究に回す事も可能になる。    According to the present invention, even if exercise or body movement is intense, no matter what electrocardiograph is used, highly accurate and stable blood pressure measurement is possible, There is no need to visually observe the state of the subject and the blood pressure value displayed on the blood pressure measurement device. Therefore, doctors and nurses can use electrocardiographs without any model restrictions. In addition, the time during blood pressure measurement, which has been restrained by doctors and nurses until now, can be used for other medical services and clinical research.

本発明による血圧測定装置の学習機能を示した実施例1のフロー図である。It is the flowchart of Example 1 which showed the learning function of the blood-pressure measuring device by this invention. 本発明による血圧測定装置の学習機能を示した実施例1のフロー図である。It is the flowchart of Example 1 which showed the learning function of the blood-pressure measuring device by this invention. 本発明による血圧測定装置の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of a blood pressure measurement device according to the present invention. 特許文献1に記載の実施例である。It is an Example described in Patent Document 1. 特許文献3に記載の表示方法の実施例である。10 is an example of a display method described in Patent Document 3.

以下、本発明を実施するための形態について図面を参照して説明する。    Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の請求項1に係る血圧測定装置の学習機能を示す一実施例であり、そのフロー図である。図1(a)はECGラグの学習機能を使用した時の本体のCPU37の一連の流れを示すフロー図であり、図1(b)はECGラグの学習機能自体の一連の流れを示すフロー図であり、図1(c)はECGラグを測定する際にK音の位置とR波の位置をずらした時の様子を示した説明図である。
図2は、本発明の請求項2に係る血圧測定装置の学習機能を示す一実施例であり、そのフロー図である。
図3は、本発明の請求項1乃至3に係る血圧測定装置の構成を概略的に示したブロック図であり、本発明の血圧測定装置の動作の流れはこの図をもって説明する。
図4及び図5は、前段で述べた特許文献1及び特許文献3に記載された測定装置の説明図である。
FIG. 1 is an example showing a learning function of a blood pressure measurement device according to claim 1 of the present invention, and is a flowchart thereof. FIG. 1A is a flowchart showing a series of flows of the CPU 37 of the main body when the ECG lag learning function is used, and FIG. 1B is a flowchart showing a series of flows of the ECG lag learning function itself. FIG. 1C is an explanatory diagram showing a state in which the position of the K sound and the position of the R wave are shifted when measuring the ECG lag.
FIG. 2 is a flowchart showing an embodiment of the learning function of the blood pressure measurement device according to claim 2 of the present invention.
FIG. 3 is a block diagram schematically showing the configuration of the blood pressure measurement device according to claims 1 to 3 of the present invention, and the flow of the operation of the blood pressure measurement device of the present invention will be described with reference to this figure.
4 and 5 are explanatory diagrams of the measuring apparatus described in Patent Document 1 and Patent Document 3 described in the previous stage.

まず、図3に記載の本体41の全体構造について大まかな概要を説明をする。
図3において、31はカフ、32はマイク、33はケーブル、34は圧力センサ、35は圧力制御部、36はポンプ、37はCPU、38は心電信号入力部、39は表示部、操作パネル、40は外部入出力、41は本体、本体ケース、42は心電計、43は心電センサ、45は外部機器である。
First, a general outline of the overall structure of the main body 41 shown in FIG. 3 will be described.
In FIG. 3, 31 is a cuff, 32 is a microphone, 33 is a cable, 34 is a pressure sensor, 35 is a pressure control unit, 36 is a pump, 37 is a CPU, 38 is an electrocardiogram signal input unit, 39 is a display unit, and an operation panel , 40 is an external input / output, 41 is a main body, main body case, 42 is an electrocardiograph, 43 is an electrocardiographic sensor, and 45 is an external device.

ケーブル33は、中空のチューブ状の空気回路機能及び電線機能を併せ持つケーブルである。カフ31はケーブル33にて本体41の加圧ポンプ36及び圧力センサ34及び圧力制御部35と接続し、加圧ポンプ36及び圧力センサ34及び圧力制御部35は電気信号回路にてCPU37と接続し、マイク32はケーブル33にて本体41のCPU37と接続する。圧力センサ34にて測定され得られたカフ内圧の圧力信号及びマイク32にて検出された血管から発生するK音を含む振動Aの信号はCPU37へ送られ処理されることで、CPU37はカフ内圧、K音強度、周波数スペクトル、最高血圧値、最低血圧値などのデータを得る。CPU37は表示部39と接続し、前記各データを表示部39に表示する。    The cable 33 is a cable having both a hollow tube-like air circuit function and an electric wire function. The cuff 31 is connected to the pressurization pump 36, the pressure sensor 34, and the pressure control unit 35 of the main body 41 by a cable 33, and the pressurization pump 36, the pressure sensor 34, and the pressure control unit 35 are connected to the CPU 37 by an electric signal circuit. The microphone 32 is connected to the CPU 37 of the main body 41 by a cable 33. The pressure signal of the cuff internal pressure measured by the pressure sensor 34 and the signal of the vibration A including the K sound generated from the blood vessel detected by the microphone 32 are sent to the CPU 37 and processed, whereby the CPU 37 detects the cuff internal pressure. , K sound intensity, frequency spectrum, systolic blood pressure value, diastolic blood pressure value and the like are obtained. The CPU 37 is connected to the display unit 39 and displays each data on the display unit 39.

心電センサ43は心電計42を本体41の心電信号入力部38に接続することでCPU37と接続する。心電センサ43から得られた信号は、K音を抽出するためのデータとして用い、得られた心拍数は、前記各データと共に表示部39に表示する。また、外部機器45は、メモリ増設用の機器や、別室でのモニタ機器であり、本体41の外部入出力40を通してCPU37に接続する。    The electrocardiogram sensor 43 is connected to the CPU 37 by connecting the electrocardiograph 42 to the electrocardiogram signal input unit 38 of the main body 41. The signal obtained from the electrocardiographic sensor 43 is used as data for extracting the K sound, and the obtained heart rate is displayed on the display unit 39 together with the data. The external device 45 is a memory expansion device or a monitor device in a separate room, and is connected to the CPU 37 through the external input / output 40 of the main body 41.

次に、図3に記載のカフ31及びマイク32について説明をする。
カフ31及びマイク32は、ケーブル33にて血圧測定装置の本体41に接続されており、カフ31とマイク32を使用する時は、一体となり、被験者の血圧を測定する部位に巻きつけて使用する。この場合、別途専用の袋を設けてその中にカフ31とマイク32を挿入し事前に一体としてまとめておくと利便性が高い。
Next, the cuff 31 and the microphone 32 illustrated in FIG. 3 will be described.
The cuff 31 and the microphone 32 are connected to the main body 41 of the blood pressure measurement device by a cable 33. When the cuff 31 and the microphone 32 are used, they are united and wound around a portion for measuring the blood pressure of the subject. . In this case, it is highly convenient to provide a dedicated bag separately and insert the cuff 31 and the microphone 32 into the bag so as to be integrated together in advance.

カフ31の材質は、伸縮する樹脂又はゴム又は樹脂及びゴムの複合物からなり、カフ31の大きさは、新生児、幼児、小児、成人、肥満者などによって使い分ける。なお、カフ31の大きさの目安は、一般に公開され知られており、JIS T 1115−2005−5.4又はJIS T 4203−1976又はWHO Expert Committeeの報告書又はWTO勧告による報告書などで確認ができる。    The material of the cuff 31 is made of a resin that expands or contracts, or a composite of resin and rubber, and the size of the cuff 31 is selected depending on a newborn, an infant, a child, an adult, an obese person, and the like. In addition, the standard of the size of the cuff 31 is publicly known and confirmed, and is confirmed by a report of JIS T 1115-2005-5.4, JIS T 4203-1976, WHO Expert Committee, or a report by WTO recommendation. Can do.

マイク32には、ECM(エレクトレットコンデンサマイクロホン)若しくはMEMSマイクなどの高精度マイク、又は圧電センサ若しくは歪みセンサなど応用した高精度振動センサを用い、被験者にカフ31を巻いた時、血管から発生するK音を含む振動Aを検出し易い位置にマイク32を配置させる。    The microphone 32 is a high-accuracy microphone such as an ECM (electret condenser microphone) or a MEMS microphone, or a high-accuracy vibration sensor applied such as a piezoelectric sensor or a strain sensor. When the cuff 31 is wound around the subject, K is generated from the blood vessel. The microphone 32 is arranged at a position where the vibration A including sound is easily detected.

実際には、マイク32の上からカフ31を重ね合わせるように使用し、カフ31の加圧を流用し、マイク32が前記血管上若しくは血管近傍に固定されるようにするため、使用前からマイク32をカフ31の決められた配置に固定させておくと使用前後の脱着にて利便性が高い。    Actually, the cuff 31 is used so as to overlap the microphone 32, and the pressure of the cuff 31 is used to fix the microphone 32 on or near the blood vessel. If 32 is fixed to the determined arrangement of the cuff 31, it is convenient to attach and detach before and after use.

なお、検出性能を上げるため、マイク32に使用する前記高精度マイク又は高精度振動センサを複数個使用し、複数個所に配置することもできる。また、使用時の利便性よりも性能を求める場合は、事前にマイク32を被験者の血管上に配置させておき、後からカフ31を被験者に巻く方法、若しくは、カフ31を被験者に巻いた後にマイク32をカフ31と被験者の間に挿入する方法がある。    In order to improve detection performance, a plurality of the high-precision microphones or high-precision vibration sensors used for the microphone 32 can be used and arranged at a plurality of locations. In addition, when performance is required rather than convenience during use, the microphone 32 is placed on the subject's blood vessel in advance and the cuff 31 is wound around the subject later, or after the cuff 31 is wound around the subject. There is a method of inserting the microphone 32 between the cuff 31 and the subject.

次に、図3に記載の本体41の動作について説明をする。
被験者にカフ31及びマイク32を装着させ、操作パネル39の血圧測定開始ボタンにて測定開始信号を入力すると、ポンプ36が動作しカフ31に空気を送り込んで加圧される。カフ31のカフ内圧は、圧力制御部35によって制御され、安静時の標準的な測定では、加圧されて動脈を駆血する程度の一定の圧力値に達した後、CPU37により圧力制御部35の急速排気弁及び比例制御弁を制御することで、減圧されて測定が完了する。なお、本発明の血圧測定装置では、前記振動Aの検出は、前記加圧時又は前記減圧時のいずれかを選択することが可能で、初期設定時の切り換えによって変更できる。
Next, the operation of the main body 41 shown in FIG. 3 will be described.
When the subject wears the cuff 31 and the microphone 32 and inputs a measurement start signal using the blood pressure measurement start button on the operation panel 39, the pump 36 operates to send air into the cuff 31 and pressurize it. The cuff internal pressure of the cuff 31 is controlled by the pressure control unit 35, and in a standard measurement at rest, the pressure control unit 35 is pressed by the CPU 37 after reaching a certain pressure value that is pressurized and drives the artery. By controlling the quick exhaust valve and the proportional control valve, the pressure is reduced and the measurement is completed. In the blood pressure measurement device of the present invention, the detection of the vibration A can be selected between the pressurization and the depressurization, and can be changed by switching at the initial setting.

実際には、予想以上に血圧が高い人の場合、前記圧力が動脈の駆血に不十分になることで、さらに追加で加圧したり、前記圧力が体動によって変化し過多になる場合は減圧したりする。この工程を繰り返すことで、安定に血圧測定ができるよう、CPU37を通じて圧力制御部35とポンプ36が制御され測定される。    Actually, if the blood pressure is higher than expected, if the pressure is insufficient for arterial blood pumping, additional pressure is applied, or if the pressure changes excessively due to body movement, the pressure is reduced. To do. By repeating this process, the pressure controller 35 and the pump 36 are controlled and measured through the CPU 37 so that blood pressure can be stably measured.

運動中や体動が激しい場合、例えば、カフ31を激しく動かすと、カフ31が被験者の衣服や周囲の物とぶつかり、擦れることで、ノイズによる振動がマイク32を通してK音と混在して振動Aの信号として検出してしまう。    When exercising or body movement is intense, for example, when the cuff 31 is moved violently, the cuff 31 collides with the subject's clothes and surrounding objects and rubs. It will be detected as a signal.

そこで、本発明の請求項1に記載の血圧測定装置では、このように外来ノイズが多く測定が困難な場合に心電信号を利用する。    Therefore, in the blood pressure measurement device according to claim 1 of the present invention, an electrocardiographic signal is used when measurement is difficult due to a large amount of external noise.

一般に心電図トリガ法とは、心電図のトリガ(R波)を基準として一定時間遅れた時にゲートを開き(K音ラグ:R波からK音までの遅れ時間)、その後一定時間帯(ゲート時間)のデータを抽出する方法である。
ECGラグとは、心電計から電気信号として出力されるECG波形が実際のECG波形からどれくらいの時間遅れが生じているかを表した遅れ時間のことをいう。
In general, the electrocardiogram trigger method is to open the gate when it is delayed for a certain time with reference to the trigger (R wave) of the electrocardiogram (K sound lag: delay time from R wave to K sound), and then for a certain time zone (gate time) This is a method for extracting data.
The ECG lag refers to a delay time that indicates how much time delay occurs in the ECG waveform output as an electrical signal from the electrocardiograph from the actual ECG waveform.

図3において、心電計42を本体41の心電信号入力部38に接続し、心電センサ43を被験者に取り付け、血圧測定を開始すると、心電センサ43から検出された心電図トリガ(R波)がCPU37に送られる。前記心電図トリガをゲート信号として利用し、心電図トリガから予測されるK音の発生時間を含むゲート時間を決めることで、そのゲート時間内に発生するK音を含む振動Aの信号又は振動Bの信号からより高精度で安定したK音を含む振動信号を抽出することが可能になる。    In FIG. 3, when an electrocardiograph 42 is connected to an electrocardiogram signal input unit 38 of the main body 41, an electrocardiographic sensor 43 is attached to the subject, and blood pressure measurement is started, an electrocardiogram trigger (R wave) detected from the electrocardiographic sensor 43 is started. ) Is sent to the CPU 37. By using the electrocardiogram trigger as a gate signal and determining the gate time including the generation time of the K sound predicted from the electrocardiogram trigger, the vibration A signal or the vibration B signal including the K sound generated within the gate time is determined. Therefore, it is possible to extract a vibration signal including a more accurate and stable K sound.

また、得られた振動信号は、FFT解析を用いたスペクトル解析をすることで、周波数スペクトルを導出させることができ、より高精度の信号抽出が可能になる。    Further, the obtained vibration signal is subjected to spectrum analysis using FFT analysis, so that a frequency spectrum can be derived, and signal extraction with higher accuracy becomes possible.

また、心電計42が無い場合は、心拍センサ44を被験者に取り付け本体41と接続することで、心拍センサ44から検出した心拍信号を前記心電信号の代わりとして用いることも可能である。    When the electrocardiograph 42 is not provided, the heart rate signal detected from the heart rate sensor 44 can be used in place of the electrocardiogram signal by attaching the heart rate sensor 44 to the subject and connecting it to the main body 41.

これら心電図トリガを使った測定方法は、外来ノイズが多く測定が困難な場合には、大変有効な方法であり、前述で説明した高精度で安定した血圧測定の性能をさらに向上させるものである。    These measurement methods using an electrocardiogram trigger are very effective methods when there are many external noises and measurement is difficult, and further improve the performance of the highly accurate and stable blood pressure measurement described above.

しかし、その遅れ時間が未知の場合は、心電図トリガ法を正常に利用することができない。    However, when the delay time is unknown, the electrocardiogram trigger method cannot be normally used.

そこで、本発明の請求項1にかかる血圧測定装置では、心電計のメーカによる差や心電計の個体差がどのようなものでも対処できるよう、心電信号との遅れ時間を自動で学習する機能を設けた。    Therefore, in the blood pressure measurement device according to claim 1 of the present invention, the delay time with the electrocardiogram signal is automatically learned so that any difference between the electrocardiograph manufacturers and any individual difference of the electrocardiographs can be dealt with. The function to do was provided.

以下、その機能について説明する。
図1(a)において、ECGラグが既知であれば、測定が開始(S11)されると既知のECGラグに合わせECG波形をその時間分をずらす(S14)ことによって血圧計算が行われ血圧値の決定(S15、S35)が行われる。血圧計算については、図2のフロー図において専用フィルタが無いものとして見た場合のフロー図となる。
The function will be described below.
In FIG. 1A, if the ECG lag is known, when the measurement is started (S11), the blood pressure calculation is performed by shifting the ECG waveform by the time corresponding to the known ECG lag (S14). Is determined (S15, S35). The blood pressure calculation is a flowchart when it is assumed that there is no dedicated filter in the flowchart of FIG.

一般的には、事前に各社心電計メーカ等と契約、事前協議若しくは事前確認等をした上で、ECGラグが既知の心電計を指定機種とすることで対処しているのが殆どである。
一方、事前確認等をせず使用しようとすると、ECGラグは心電計測においては不必要なパラメータであるため、各社心電計メーカでは、ECGラグは公表及び保証もされておらず、ECGラグは未知の数値となる。未知の数値のままでは、心電図トリガ法は使用できない。
かかる場合、使用する心電計のECGラグを実際に計測して取得することで対処できそうであるが、これは非常に困難な作業であるためその労力を鑑みると実際に計測し取得している者は、弊社以外では皆無に等しい。
In general, after dealing with ECG manufacturers in advance, consulting in advance or confirming in advance, most ECG lags are dealt with by specifying an ECG with a known model. is there.
On the other hand, since ECG lag is an unnecessary parameter in electrocardiographic measurement if it is used without prior confirmation, etc., ECG lag is not disclosed or guaranteed by each ECG maker. Is an unknown number. The ECG trigger method cannot be used with unknown values.
In such a case, it seems that it can be dealt with by actually measuring and acquiring the ECG lag of the electrocardiograph to be used, but since this is a very difficult task, it is actually measured and acquired in view of its labor. There is no one other than us.

最近は、心電計の性能向上が図られ非常に優秀な心電計も存在するが、前述したとおり、ECGラグに関しては、心電計にとっては全く関係のない特性であるため、実際に自身が発売する心電計のECGラグがどの値になるのか知らないというメーカも存在するくらいである。    Recently, there has been an improvement in the performance of electrocardiographs and there are also very excellent electrocardiographs. However, as described above, ECG lag is a characteristic that has nothing to do with electrocardiographs. There are some manufacturers who don't know what value the ECG lag of ECG released by will be.

本発明の請求項1にかかる血圧測定装置では、これらの問題点を解決するため、R波とK音の位置ずれを観測し、位置ずれの最適値を見つけ出すことにより心電信号の遅れ時間(ECGラグ)を決定することができるECGラグ測定手段を開発し、且つその測定結果は血圧測定の作業中に学習することで得られるようにした。    In order to solve these problems, the blood pressure measurement device according to claim 1 of the present invention observes the positional deviation between the R wave and the K sound and finds the optimum value of the positional deviation, thereby delaying the electrocardiogram signal delay time ( An ECG lag measuring means capable of determining ECG lag) was developed, and the measurement result was obtained by learning during blood pressure measurement work.

ECGラグ測定手段は、一度の測定で見つけ出すことは困難であるため、図1(a)の血圧測定(S11〜S15)の工程を数回実施することが必要である。
まず、血圧測定で得られたK音(S21)とECG波形から得られたR波(S22)からECGラグを比較評価し最適値を数点に絞り込む(S23)。最適値は、被験者とカフ圧と心拍数によって変化するK音ラグも考慮した上で、実際のR波の位置をずらし、それを最適値とすれば良い。この最適値からさらにECG波形をずらして評価値の高い点を数点取得し(S23)、これを保存する(S24)。
Since it is difficult to find the ECG lag measuring means by one measurement, it is necessary to carry out the steps of blood pressure measurement (S11 to S15) in FIG.
First, the ECG lag is compared and evaluated from the K sound (S21) obtained by blood pressure measurement and the R wave (S22) obtained from the ECG waveform, and the optimum value is narrowed down to several points (S23). The optimum value may be determined by shifting the actual position of the R wave after considering the K sound lag that varies depending on the subject, the cuff pressure, and the heart rate. The ECG waveform is further shifted from the optimum value to obtain several points having a high evaluation value (S23), and stored (S24).

図1(c)にその様子を示す。この図の上図は、R波の位置をずらす前の図であり、下図は、K音の位置を固定し、R波の位置をずらしていった時の図である。
ここで、R波の位置をずらしながら、K音とR波の位置の重なり評価値を計算し、最適な評価値となる位置を見つけ出す。なお、重なり評価値は、K音とR波の位置情報の差分から評価計算式より導き出す。
しかし、一回のみの測定で見つけた場合、当該位置の信頼性は高くないため、数回測定することが必要となる。また、その時に幅広く比較できるよう一回の測定で上位数点の評価値を残しておくと良い。
この工程を複数回繰り返し、最終的に1つに絞り込む(S26)ことができれば、学習完了となり、当該心電計固有のECGラグが決定(S28)される。その後、決定したECGラグを用いてECG波形を当該ラグ分ずらした後(S14)、血圧計算(S15)を行いその結果を表示部39に表示する。
This is shown in FIG. The upper figure in this figure is a figure before shifting the position of the R wave, and the lower figure is a figure when the position of the K sound is fixed and the position of the R wave is shifted.
Here, while shifting the position of the R wave, the overlap evaluation value of the position of the K sound and the R wave is calculated, and the position that becomes the optimum evaluation value is found. The overlap evaluation value is derived from an evaluation calculation formula from the difference between the position information of the K sound and the R wave.
However, when it is found by only one measurement, the reliability of the position is not high, and it is necessary to measure several times. Also, it is advisable to leave the top several evaluation values in one measurement so that they can be compared widely at that time.
If this process is repeated a plurality of times and finally narrowed down to one (S26), the learning is completed and the ECG lag specific to the electrocardiograph is determined (S28). After that, the ECG waveform is shifted by the determined lag using the determined ECG lag (S14), blood pressure calculation (S15) is performed, and the result is displayed on the display unit 39.

本発明では、さらに正確な評価を可能とするために、心拍数を変化させた上でも評価できる工程(心拍変化BAT評価手段)をプログラム中に組み込んでいる。実際には、安静時に評価する安静時評価手段及び低負荷時(軽い運動)に評価する低負荷評価手段を設け、安静時及び低負荷時(軽い運動)において前述した血圧測定とECGラグの学習を行う。S23で取得した複数の候補には、真のECGラグと、偽のECGラグ(真のECGラグ±RR間隔の倍数)が含まれており、心拍数が変わらない(RR間隔が変わらない)とこれらの候補も変わらない。しかし、低負荷時にも学習を行うと、真のECGラグは変わらないが、心拍数(RR間隔)が変わるために偽のECGラグは安静時とは別の値となり、真のECGラグを精度良く学習することが可能となる。
なお、前記の低負荷評価手段は、あらためて別途工程を追加する必要はなく、通常の運動負荷測定中で行える。
In the present invention, in order to enable more accurate evaluation, a process (heart rate change BAT evaluation means) that can be evaluated even after changing the heart rate is incorporated in the program. Actually, there is provided a resting evaluation means for evaluating at rest and a low load evaluating means for evaluating at low load (light exercise), and blood pressure measurement and ECG lag learning described above at rest and low load (light exercise). I do. The plurality of candidates acquired in S23 include a true ECG lag and a false ECG lag (true ECG lag ± multiple of RR interval), and the heart rate does not change (RR interval does not change). These candidates remain unchanged. However, the true ECG lag does not change when learning at low load, but because the heart rate (RR interval) changes, the false ECG lag is different from that at rest, and the true ECG lag is accurate. It becomes possible to learn well.
Note that the low-load evaluation means does not require any additional process and can be performed during normal exercise load measurement.

実際にこの手段を用いて評価を行うと、一人当たり、2〜6回の血圧測定でECGラグの真値が得られることが判った。これまでECGラグが未知であった時の対処方法を考えると、ECGラグの取得について飛躍的に工数が削減され、さらに心電計の機種指定が不要となることであらゆる制約から解放される。
よって、本発明は、このような事からも、これまでに無い画期的な手段であり機能であることが判る。
When evaluation was actually made using this means, it was found that the true value of the ECG lag was obtained by measuring blood pressure 2-6 times per person. Considering how to deal with ECG lags that have been unknown so far, the man-hours for obtaining ECG lags are drastically reduced, and the specification of the model of the electrocardiograph is no longer required, thereby freeing you from any restrictions.
Therefore, it can be understood from the above that the present invention is an epoch-making means and a function that has never existed.

学習機能の流れを抜粋すると、図1(b)に示すものとなる。
血圧振動からK音を検出(S21)し、ECG波形からR波を検出(S22)する。K音とR波の位置からECGラグとする遅れ時間の評価値を計算し、評価値の高い点を数点取得し(S23)、CPU37に書き込む(S24)。その後、過去の遅れ時間候補を読み出し(S25)、候補が1つに絞れるか否かで学習完了か否かを決定(S26、S27、S28)する。
図1(b)に示す学習機能の流れが図1(a)のECGラグの学習(S13)部分にあたる。
なお、学習完了(S28)した場合は、再度学習ループ(S13)には入らない(S12)。また、心電計の製造メーカ、機種、設定条件毎で異なる値となるため、この機能を有効活用しようとした場合は、心電計や被験者の組み合わせ毎、何らかの変更があった毎に、このような学習(S11〜15)を繰り返すことが好ましい。
If the flow of the learning function is extracted, it is as shown in FIG.
A K sound is detected from the blood pressure vibration (S21), and an R wave is detected from the ECG waveform (S22). The evaluation value of the delay time as ECG lag is calculated from the position of the K sound and the R wave, and several points with high evaluation values are acquired (S23) and written in the CPU 37 (S24). Thereafter, past delay time candidates are read out (S25), and whether or not learning is completed is determined based on whether or not candidates are narrowed down to one (S26, S27, S28).
The flow of the learning function shown in FIG. 1B corresponds to the ECG lag learning (S13) portion of FIG.
When learning is completed (S28), the learning loop (S13) is not entered again (S12). In addition, since the value varies depending on the manufacturer, model, and setting conditions of the electrocardiograph, when trying to make effective use of this function, every time there is any change, It is preferable to repeat such learning (S11 to 15).

なお、前述した被験者によって変化するK音ラグを考慮する方法の一例として、特許文献 特開平07−265274号公報を挙げられる。ただし、本発明では、K音ラグにおいてもECGラグと同様に、前述した又は後述する自動学習機能を設けている。    An example of a method for taking into account the K sound lag that varies depending on the subject described above is disclosed in Japanese Patent Application Laid-Open No. 07-265274. However, in the present invention, the automatic learning function described above or described later is provided also in the K sound lag, similarly to the ECG lag.

以上のように、請求項1に記載の学習機能によって得られたECGラグを利用することで、ノイズを含む振動信号から精度の高いK音を抽出することが可能になり、高精度で安定した血圧測定が可能となった。このことで、心電計毎の固有の問題であったECGラグの問題が解消されると共に、測定中は常時、被験者の状態と血圧測定装置に表示される血圧値を目視観察する必要がなくなり、今まで医師や看護師が拘束されていた血圧測定中の時間を、他の医療業務や臨床研究に回す事が可能になる。    As described above, by using the ECG lag obtained by the learning function according to claim 1, it becomes possible to extract a high-accuracy K sound from a vibration signal including noise, which is highly accurate and stable. Blood pressure measurement became possible. This eliminates the problem of ECG lag, which is an inherent problem for each electrocardiograph, and eliminates the need to visually observe the state of the subject and the blood pressure value displayed on the blood pressure measurement device at all times during the measurement. The time during blood pressure measurement that has been constrained by doctors and nurses can be used for other medical services and clinical research.

本発明の請求項2にかかる血圧測定装置では、前述と同様に心電図トリガ法を用いるが、さらにノイズに対するフィルタリング機能を向上させるために、事前に被験者の安静時の血圧測定を実施し、そのデータを解析し得られた前記被験者特有のK音の特徴をCPU37に学習させた上で、運動中や体動が激しい場合の血圧測定を実施する機能を備えている。なお、当初の初期状態は標準的な値を設定しているので、実際に安静時の血圧測定を実施しなくても測定に支障はないが、可能な限り安静時のデータを事前に入手しておく方が好ましい。この機能により、測定中は常時、前記学習機能が繰り返し動作しているため、血圧を測定すればするほど得られる血圧値は高精度で安定した真値に近づいていく。    In the blood pressure measurement device according to claim 2 of the present invention, the electrocardiogram trigger method is used in the same manner as described above, but in order to further improve the filtering function against noise, blood pressure measurement at the time of resting of the subject is performed in advance, and the data The CPU 37 learns the characteristic of the K sound peculiar to the subject obtained by analyzing the above, and has a function of performing blood pressure measurement during exercise or when body movement is intense. In addition, since the initial initial state is set to a standard value, there is no problem in the measurement even if the blood pressure measurement at rest is not actually performed, but the resting data is obtained in advance as much as possible. It is preferable to keep it. With this function, since the learning function is repeatedly operating during measurement, the blood pressure value obtained as the blood pressure is measured approaches a highly accurate and stable true value.

図2にその学習機能のフロー図を示す。また機器本体41の動作については図3を基に説明する。
マイク32により検出された振動Aの信号(S31)は、第1のフィルタ(バンドパスアナログフィルタ)で処理され、A/D変換器によりデジタル変換されCPU37に送られた後、第2のフィルタ(FIRフィルタ、有限インパルス応答フィルタ)において、被験者に対する過去の測定で得られたK音の周波数スペクトルに応じて形成された専用フィルタが読み出され(S32)、専用フィルタが一定時間形成(S33)され処理されることで、振動Bの信号が抽出(S33)される。振動Bの信号の大きさからK音強度が導出され、振動Bの信号をFFT(高速フーリエ変換)解析を用いたスペクトル解析(S34)をすることで、周波数スペクトルが導出される。そして、血圧値の決定(S35)が行われる。一方、その後、前記周波数スペクトルはCPU37に記憶され再度新たな専用フィルタとして形成(S36、S37)される。
FIG. 2 shows a flowchart of the learning function. The operation of the device main body 41 will be described with reference to FIG.
The vibration A signal (S31) detected by the microphone 32 is processed by a first filter (bandpass analog filter), converted into a digital signal by an A / D converter, sent to the CPU 37, and then sent to a second filter ( In the FIR filter and the finite impulse response filter), a dedicated filter formed according to the frequency spectrum of the K sound obtained in the past measurement for the subject is read (S32), and the dedicated filter is formed for a certain time (S33). By processing, the signal of vibration B is extracted (S33). The K sound intensity is derived from the magnitude of the vibration B signal, and the frequency spectrum is derived by subjecting the vibration B signal to spectrum analysis (S34) using FFT (Fast Fourier Transform) analysis. Then, the blood pressure value is determined (S35). On the other hand, after that, the frequency spectrum is stored in the CPU 37 and formed again as a new dedicated filter (S36, S37).

なお、圧力センサ34によって測定され得られた圧力信号は、前記第1のフィルタを通りCPU37に送られた後、前記第2のフィルタ(S32)によって、カフ31のカフ内圧として導出される。    The pressure signal obtained by the pressure sensor 34 is sent to the CPU 37 through the first filter, and is then derived as the cuff internal pressure of the cuff 31 by the second filter (S32).

また、本発明にかかる請求項1に記載の血圧測定装置では、前述した心電図トリガ法における遅れ時間及びゲート時間も、請求項2に記載の学習機能(S13)を利用して決めることもできる。
かかる場合、図1(a)のフロー図において血圧計算にかかる作業中に図2のフロー図が包含される。つまり、図1(a)(b)のフロー中に図2のフローを盛り込めば、請求項3に記載の血圧測定装置となる。
In the blood pressure measurement device according to the first aspect of the present invention, the delay time and the gate time in the above-described electrocardiogram trigger method can also be determined using the learning function (S13) according to the second aspect.
In such a case, the flowchart of FIG. 2 is included in the work relating to blood pressure calculation in the flowchart of FIG. That is, if the flow of FIG. 2 is included in the flow of FIGS. 1A and 1B, the blood pressure measurement device according to claim 3 is obtained.

以上のように、請求項2に記載の学習機能によって得られたK音の特徴を参酌して繰り返し処理することで、ノイズを含む振動信号から精度の高いK音を抽出することが可能になり、高精度で安定した血圧測定が可能となった。このことで、測定中は常時、被験者の状態と血圧測定装置に表示される血圧値を目視観察する必要がなくなり、今まで医師や看護師が拘束されていた血圧測定中の時間を、他の医療業務や臨床研究に回す事が可能になる。    As described above, it is possible to extract the K sound with high accuracy from the vibration signal including noise by repeatedly processing the characteristic of the K sound obtained by the learning function according to claim 2. Highly accurate and stable blood pressure measurement became possible. This eliminates the need to visually observe the condition of the subject and the blood pressure value displayed on the blood pressure measurement device at all times during the measurement, so that the time during blood pressure measurement that has been restrained by doctors and nurses can be It can be used for medical services and clinical research.

一方、事前に操作パネル39から測定時間設定を入力し、自動的に測定開始及び測定停止する機能を付けることで、長時間の血圧測定が可能になる。例えば、血圧測定を1分間隔で実施し、それを60分間連続で繰り返し測定するなどの設定である。高精度で安定した測定に加え、この機能を用いることで、医師や看護師が血圧測定に拘束されることがなくなり、今まで医師や看護師が拘束されていた血圧測定中の時間を、他の医療業務や臨床研究に回す事が可能になる。    On the other hand, blood pressure can be measured for a long time by inputting measurement time settings from the operation panel 39 in advance and adding a function to automatically start and stop measurement. For example, the blood pressure measurement is performed at 1 minute intervals, and the measurement is repeated continuously for 60 minutes. By using this function in addition to highly accurate and stable measurement, doctors and nurses are not restrained by blood pressure measurement. It can be used for medical work and clinical research.

さらに、外部入出力40を使用し、CPU37に蓄積するデータが一杯にならないよう、外部機器45にデータ保存用のメモリを増設したり、別室にあるモニタに本体41の画面表示をしたり、データをテレメータ等で出力することで、別室での血圧測定の管理が可能になる。    Furthermore, by using the external input / output 40, an additional memory for storing data is added to the external device 45 so that the data stored in the CPU 37 does not become full, the screen of the main body 41 is displayed on a monitor in a separate room, Is output by a telemeter or the like, so that blood pressure measurement in a separate room can be managed.

被験者の生体データを測定し診断する上で、血圧値の高精度で安定した性能は必須である。本発明の血圧測定装置は、K音について信頼性が高い様々なデータを医師や看護師に提供することができるため、今後の医学発展に十分貢献する機器と考える。    In measuring and diagnosing the biological data of a subject, a highly accurate and stable performance of the blood pressure value is essential. The blood pressure measurement device according to the present invention can provide various data with high reliability for the K sound to doctors and nurses, and is considered to be a device that contributes sufficiently to future medical development.

なお、前述の実施例では、聴診法を用いた血圧測定装置を主に記載したが、オシロメトリック法を用いた血圧測定装置でも、同様の事が可能である。    In the above-described embodiment, the blood pressure measuring device using the auscultation method is mainly described. However, the same thing can be done with the blood pressure measuring device using the oscillometric method.

31 カフ
32 マイク
33 ケーブル
34 圧力センサ
35 圧力制御部
36 ポンプ
37 CPU
38 心電信号入力部
39 表示部、操作パネル
40 外部入出力
41 本体、本体ケース
42 心電計
43 心電センサ
44 心拍センサ
45 外部機器
31 Cuff 32 Microphone 33 Cable 34 Pressure sensor 35 Pressure control unit 36 Pump 37 CPU
38 ECG signal input section 39 Display section, operation panel 40 External input / output 41 Main body, main body case 42 ECG meter 43 ECG sensor 44 Heart rate sensor 45 External equipment

Claims (3)

被験者の血管を圧迫するために装着されるカフと、
前記カフ内に空気を注入又は排出することによって前記カフ内を加圧又は減圧する圧力制御機能と、
前記カフ内の圧力を測定するカフ内圧測定機能と、
前記カフ内の加圧時又は減圧時に前記血管から発生する振動Aを検出する振動A検出機能と、
前記振動Aからノイズを除去し振動Bを抽出する振動B抽出機能と、
前記振動Bの振動強度を得る振動強度導出機能と、
前記被験者の心電信号を検出する心電信号検出機能と、
前記心電信号を用いた心電図トリガ法によって前記振動A又は前記振動Bを抽出する心電同期機能と、
を設けた血圧測定装置において、
前記振動A又は前記振動Bを抽出する際に必要とするパラメータに自動学習機能を設け
前記必要とするパラメータが心電計固有のECGラグであり、前記自動学習機能にECGラグ測定手段を設けた
ことを特徴とする血圧測定装置。
A cuff worn to compress the subject's blood vessels;
A pressure control function for pressurizing or depressurizing the inside of the cuff by injecting or discharging air into the cuff;
A cuff internal pressure measuring function for measuring the pressure in the cuff;
A vibration A detection function for detecting vibration A generated from the blood vessel at the time of pressurization or decompression in the cuff;
A vibration B extraction function for removing noise from the vibration A and extracting the vibration B;
A vibration intensity deriving function for obtaining a vibration intensity of the vibration B;
An electrocardiogram signal detection function for detecting the electrocardiogram signal of the subject;
An electrocardiogram synchronization function for extracting the vibration A or the vibration B by an electrocardiogram trigger method using the electrocardiogram signal;
In the blood pressure measuring apparatus provided with
An automatic learning function is provided for a parameter required when extracting the vibration A or the vibration B, and the required parameter is an ECG lag specific to an electrocardiograph, and an ECG lag measuring means is provided for the automatic learning function. A blood pressure measurement device characterized by that.
被験者の血管を圧迫するために装着されるカフと、
前記カフ内に空気を注入又は排出することによって前記カフ内を加圧又は減圧する圧力制御機能と、
前記カフ内の圧力を測定するカフ内圧測定機能と、
前記カフ内の加圧時又は減圧時に前記血管から発生する振動Aを検出する振動A検出機能と、
前記振動Aからノイズを除去し振動Bを抽出する振動B抽出機能と、
前記振動Bの振動強度を得る振動強度導出機能と、
前記被験者の心電信号を検出する心電信号検出機能と、
前記心電信号を用いた心電図トリガ法によって前記振動A又は前記振動Bを抽出する心電同期機能と
を設けた血圧測定装置において、
前記振動A又は前記振動Bを抽出する際に必要とするパラメータを自動で学習する機能を設け
前記必要とするパラメータが被験者特有のK音を抽出するための専用フィルタであり、前記自動学習機能にK音の周波数スペクトルを用いて前記専用フィルタを形成させる機能を設けた
ことを特徴とする血圧測定装置。
A cuff worn to compress the subject's blood vessels;
A pressure control function for pressurizing or depressurizing the inside of the cuff by injecting or discharging air into the cuff;
A cuff internal pressure measuring function for measuring the pressure in the cuff;
A vibration A detection function for detecting vibration A generated from the blood vessel at the time of pressurization or decompression in the cuff;
A vibration B extraction function for removing noise from the vibration A and extracting the vibration B;
A vibration intensity deriving function for obtaining a vibration intensity of the vibration B;
An electrocardiogram signal detection function for detecting the electrocardiogram signal of the subject;
In the blood pressure measurement device provided with an electrocardiogram synchronization function for extracting the vibration A or the vibration B by an electrocardiogram trigger method using the electrocardiogram signal,
A function for automatically learning a parameter required when extracting the vibration A or the vibration B is provided, and the required parameter is a dedicated filter for extracting a K sound peculiar to a subject, and the automatic learning function A blood pressure measuring apparatus provided with a function of forming the dedicated filter using a frequency spectrum of K sound.
被験者の血管を圧迫するために装着されるカフと、
前記カフ内に空気を注入又は排出することによって前記カフ内を加圧又は減圧する圧力制御機能と、
前記カフ内の圧力を測定するカフ内圧測定機能と、
前記カフ内の加圧時又は減圧時に前記血管から発生する振動Aを検出する振動A検出機能と、
前記振動Aからノイズを除去し振動Bを抽出する振動B抽出機能と、
前記振動Bの振動強度を得る振動強度導出機能と、
前記被験者の心電信号を検出する心電信号検出機能と、
前記心電信号を用いた心電図トリガ法によって前記振動A又は前記振動Bを抽出する心電同期機能と
を設けた血圧測定装置において、
前記振動A又は前記振動Bを抽出する際に必要とするパラメータを自動で学習する機能を設け
請求項1及び請求項2の特徴を有する血圧測定装置。
A cuff worn to compress the subject's blood vessels;
A pressure control function for pressurizing or depressurizing the inside of the cuff by injecting or discharging air into the cuff;
A cuff internal pressure measuring function for measuring the pressure in the cuff;
A vibration A detection function for detecting vibration A generated from the blood vessel at the time of pressurization or decompression in the cuff;
A vibration B extraction function for removing noise from the vibration A and extracting the vibration B;
A vibration intensity deriving function for obtaining a vibration intensity of the vibration B;
An electrocardiogram signal detection function for detecting the electrocardiogram signal of the subject;
In the blood pressure measurement device provided with an electrocardiogram synchronization function for extracting the vibration A or the vibration B by an electrocardiogram trigger method using the electrocardiogram signal,
A blood pressure measuring apparatus having the features of claim 1 and claim 2, wherein a function for automatically learning a parameter required when extracting the vibration A or the vibration B is provided.
JP2014031303A 2014-02-21 2014-02-21 Blood pressure measurement device Active JP6366954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031303A JP6366954B2 (en) 2014-02-21 2014-02-21 Blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031303A JP6366954B2 (en) 2014-02-21 2014-02-21 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2015154878A true JP2015154878A (en) 2015-08-27
JP6366954B2 JP6366954B2 (en) 2018-08-01

Family

ID=54774621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031303A Active JP6366954B2 (en) 2014-02-21 2014-02-21 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP6366954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106037699A (en) * 2016-07-13 2016-10-26 苏州咖丢卫私康信息科技有限公司 Circuit for extracting non-invasive blood pressure Korotkoff's sound and sphygmomanometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135708U (en) * 1983-03-03 1984-09-11 セイコーインスツルメンツ株式会社 Heart rate reference electronic blood pressure monitor
JPS6373934A (en) * 1986-09-18 1988-04-04 コーリン電子株式会社 Blood pressure measuring apparatus
JPH07265274A (en) * 1994-04-01 1995-10-17 Minato Ikagaku Kk Blood pressure measuring device
JP2001178693A (en) * 1999-11-24 2001-07-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natl Defence Method for measuring patient's systolic blood pressure and diastolic blood presser and method for monitoring heart rate as well as device for measuring patient's systolic blood pressure and diastolic blood presser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135708U (en) * 1983-03-03 1984-09-11 セイコーインスツルメンツ株式会社 Heart rate reference electronic blood pressure monitor
JPS6373934A (en) * 1986-09-18 1988-04-04 コーリン電子株式会社 Blood pressure measuring apparatus
JPH07265274A (en) * 1994-04-01 1995-10-17 Minato Ikagaku Kk Blood pressure measuring device
JP2001178693A (en) * 1999-11-24 2001-07-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natl Defence Method for measuring patient's systolic blood pressure and diastolic blood presser and method for monitoring heart rate as well as device for measuring patient's systolic blood pressure and diastolic blood presser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106037699A (en) * 2016-07-13 2016-10-26 苏州咖丢卫私康信息科技有限公司 Circuit for extracting non-invasive blood pressure Korotkoff's sound and sphygmomanometer

Also Published As

Publication number Publication date
JP6366954B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6659830B2 (en) Biological information analyzer, system, and program
JP5176849B2 (en) Blood pressure information display device, blood pressure information display system, blood pressure information display method, and blood pressure information display program
JP4869220B2 (en) Fetal movement monitoring system and fetal movement monitoring method
RU2597774C2 (en) Detection and monitoring of abdominal aortic aneurysm
JPWO2009150744A1 (en) Sleep state monitoring device, monitoring system, and computer program
JP2011115188A (en) Sleeping condition monitoring apparatus, monitoring system, and computer program
JP6522327B2 (en) Pulse wave analyzer
JP6547054B1 (en) Medical devices and programs
WO2017047384A1 (en) Blood pressure analyzing device, blood pressure measuring device, blood pressure analyzing method, and blood pressure analyzing program
JP6831382B2 (en) A method for evaluating the reliability of blood pressure measurement and a device for implementing it
US6923770B2 (en) Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus
JP7043247B2 (en) Sphygmomanometer and its control method
JP6108525B2 (en) Blood pressure measurement device
CN107822615B (en) Blood pressure measuring apparatus and signal processing method
JP6366954B2 (en) Blood pressure measurement device
JP6276912B2 (en) Biological information test result report, biological information processing apparatus, and biological information processing program
JP5070103B2 (en) Shunt stenosis detector
JP6393797B2 (en) Biological information processing apparatus and biological information processing program
JP5236881B2 (en) Blood pressure pulse wave inspection device and blood pressure pulse wave inspection method
JP2003230541A (en) Superior limb-inferior limb blood pressure index- measuring system
Vazquez Characterization of Inflationary and Deflationary Auscultatory Blood Pressure Measurements
KR101587989B1 (en) Method of evaluating a value for heart regularity by bioacoustic and electronic stethoscope
JP6013111B2 (en) Biological information processing device
JPS6397144A (en) Electronic hemomanometer
JPH04156822A (en) Peripheral circulating condition sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6366954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250