JP2015153853A - semiconductor device - Google Patents

semiconductor device Download PDF

Info

Publication number
JP2015153853A
JP2015153853A JP2014025335A JP2014025335A JP2015153853A JP 2015153853 A JP2015153853 A JP 2015153853A JP 2014025335 A JP2014025335 A JP 2014025335A JP 2014025335 A JP2014025335 A JP 2014025335A JP 2015153853 A JP2015153853 A JP 2015153853A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor chip
prepreg
fiber material
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014025335A
Other languages
Japanese (ja)
Inventor
正明 竹越
Masaaki Takekoshi
正明 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014025335A priority Critical patent/JP2015153853A/en
Publication of JP2015153853A publication Critical patent/JP2015153853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which does not cause a major obstacle in via hole processing while supporting reduction in thickness and warpage of the semiconductor device at the same time.SOLUTION: A semiconductor device comprises a rewiring structure and a semiconductor chip on a surface of the rewiring structure, in which the semiconductor chip is coated with a hardened material of prepreg which includes a fiber material. Provided is the semiconductor device in which the prepreg includes a glass fiber material. Provided is the semiconductor device in which the prepreg includes an organic fiber material.

Description

本発明は、半導体装置に関するものである。   The present invention relates to a semiconductor device.

近年、モバイル機器では薄型化が著しい。当然、用いられる半導体装置も薄型化することが望まれており、様々な構造の半導体装置が提案されている。中でも、熱硬化性樹脂をガラスクロスに含浸させた基板材料を用いる配線板は半導体装置の厚さの大きな割合を占めており、配線板を無くした半導体装置が注目されている。   In recent years, mobile devices have become significantly thinner. Naturally, it is desired to reduce the thickness of the semiconductor device used, and semiconductor devices having various structures have been proposed. Among them, a wiring board using a substrate material in which a glass cloth is impregnated with a thermosetting resin occupies a large proportion of the thickness of the semiconductor device, and a semiconductor device without the wiring board has attracted attention.

図1に一般的にファンアウト型ウエハレベルパッケージと呼ばれる半導体装置を示す。半導体チップ1の回路面2側に再配線構造部3を備え、半導体チップ1を封止材4で被覆された構造となっており、必要に応じて封止材4に再配線構造部3に達するビア穴5を有する。再配線構造部3は配線板ではなく、感光性や熱硬化性の材料を薄く塗布あるいは貼付けて作製してあるため、原理的にはごく薄い半導体装置を提供することができる。   FIG. 1 shows a semiconductor device generally called a fan-out type wafer level package. The rewiring structure 3 is provided on the circuit surface 2 side of the semiconductor chip 1, and the semiconductor chip 1 is covered with the sealing material 4. The sealing material 4 is attached to the rewiring structure 3 as necessary. It has a via hole 5 that reaches it. Since the rewiring structure section 3 is not a wiring board but is made by thinly applying or pasting a photosensitive or thermosetting material, a very thin semiconductor device can be provided in principle.

しかしながら、全ての部材を薄くしてしまうと、半導体チップとそれを被覆する封止材の熱膨張係数の差から、半導体装置が反ってしまうなどの問題がある。   However, if all the members are made thin, there is a problem that the semiconductor device warps due to the difference in thermal expansion coefficient between the semiconductor chip and the sealing material covering the semiconductor chip.

この課題を解決するため、一般的に用いられる技術としては、封止材の熱膨張係数を下げることである。しかしながら、封止材は接着性や流動性を維持しなくてはならないため、低熱膨張化しても6×10−6/℃程度までしか下げられず、反りを抑えるには限界がある。 In order to solve this problem, a commonly used technique is to lower the thermal expansion coefficient of the sealing material. However, since the sealing material must maintain adhesiveness and fluidity, it can be lowered only to about 6 × 10 −6 / ° C. even if the thermal expansion is reduced, and there is a limit to suppressing warpage.

そのため、半導体チップに関しては150μm〜400μm程度に厚くして反りを抑える必要があり、パッケージの薄型化の障害になっている。   Therefore, it is necessary to suppress the warpage by increasing the thickness of the semiconductor chip to about 150 μm to 400 μm, which is an obstacle to thinning the package.

その他、効果的に反りを抑えるため、図2に示すように、半導体装置の再配線構造部3の逆側に金属やシリコン等の高剛性の板部6を備える構造のファンアウト型ウエハレベルパッケージも提案されている(例えば特許文献1参照)。   In addition, in order to effectively suppress warpage, as shown in FIG. 2, a fan-out type wafer level package having a structure having a highly rigid plate 6 such as metal or silicon on the opposite side of the rewiring structure 3 of the semiconductor device. Has also been proposed (see, for example, Patent Document 1).

特開2005−167191号公報JP 2005-167191 A

特許文献1に示す構造であればチップを薄くしても反りを抑えることができるが、板部6があるため、必要に応じて再配線構造部3に達するビア穴を開けることが困難であり、半導体装置の用途拡大に大きな障害となる。例えば、この構造では、半導体装置をPoP(パッケージオンパッケージ)のボトムパッケージに適用することが困難である。   Although the warp can be suppressed even if the chip is thinned with the structure shown in Patent Document 1, it is difficult to open a via hole reaching the rewiring structure part 3 as necessary because of the plate part 6. This is a major obstacle to expanding the use of semiconductor devices. For example, with this structure, it is difficult to apply the semiconductor device to a PoP (package on package) bottom package.

本発明の目的は、半導体装置の薄型化と反りの低減を両立しつつ、ビア穴加工に大きな障害を生じない半導体装置を提供することである。   An object of the present invention is to provide a semiconductor device that does not cause a major obstacle to via hole processing while achieving both reduction in thickness of the semiconductor device and reduction in warpage.

本発明はこのような状況に鑑みてなされたものであり、本発明者らは鋭意検討の結果、封止材の代わりに完全硬化前の絶縁樹脂を繊維材料に含浸してなるプリプレグを用い、半導体チップをプリプレグの硬化物で被覆することで、上記目的を達成できることを見出し、本発明を完成させるに至った。   The present invention has been made in view of such a situation, and as a result of intensive studies, the present inventors used a prepreg formed by impregnating a fiber material with an insulating resin before complete curing instead of a sealing material, It has been found that the above object can be achieved by coating a semiconductor chip with a cured product of prepreg, and the present invention has been completed.

すなわち、本発明は下記の態様を有することを特徴とする。
(1)再配線構造部と、前記再配線構造部表面に半導体チップとを備え、前記半導体チップが繊維材料を含むプリプレグの硬化物で被覆されてなる半導体装置。
(2)前記プリプレグが、ガラス繊維材料を含む前項(1)記載の半導体装置。
(3)前記プリプレグが、有機繊維材料を含む前項(1)又は(2)記載の半導体装置。
(4)プリプレグの硬化物が、再配線構造部に達するビア穴を有する前項(1)〜(3)いずれか一項記載の半導体装置。
(5)プリプレグの硬化物において、繊維材料を含む部分の平面方向の熱膨張係数が25〜220℃において5×10−6/℃以下である前項(1)〜(4)いずれか一項記載の半導体装置。
(6)半導体チップ厚みが100μm以下である前項(1)〜(5)いずれか一項記載の半導体装置。
That is, the present invention has the following aspects.
(1) A semiconductor device comprising a rewiring structure part and a semiconductor chip on the surface of the rewiring structure part, wherein the semiconductor chip is covered with a cured product of a prepreg containing a fiber material.
(2) The semiconductor device according to (1), wherein the prepreg includes a glass fiber material.
(3) The semiconductor device according to (1) or (2), wherein the prepreg includes an organic fiber material.
(4) The semiconductor device according to any one of (1) to (3), wherein the cured product of the prepreg has a via hole reaching the rewiring structure portion.
(5) In the cured product of prepreg, the thermal expansion coefficient in the planar direction of the portion including the fiber material is 5 × 10 −6 / ° C. or less at 25 to 220 ° C., any one of (1) to (4) above Semiconductor device.
(6) The semiconductor device according to any one of (1) to (5), wherein the thickness of the semiconductor chip is 100 μm or less.

本発明によって、半導体装置の薄型化と反りの低減を両立しつつ、ビア穴加工に大きな障害を生じない半導体装置を提供することができる。   According to the present invention, it is possible to provide a semiconductor device that does not cause a significant obstacle to via hole processing while achieving both reduction in thickness of the semiconductor device and reduction in warpage.

従来のファンアウト型ウエハレベルパッケージと呼ばれる半導体装置を示す断面模式図である。It is a cross-sectional schematic diagram showing a semiconductor device called a conventional fan-out type wafer level package. 従来のファンアウト型ウエハレベルパッケージと呼ばれる半導体装置を示す断面模式図である。It is a cross-sectional schematic diagram showing a semiconductor device called a conventional fan-out type wafer level package. 本発明の実施形態の半導体装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the semiconductor device of embodiment of this invention.

以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。また、図面の寸法比率は図示した比率に限られるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図3に本実施形態の半導体装置を示す。半導体チップ1の回路面2側に再配線構造部3を備え、半導体チップ1がプリプレグの硬化物7で被覆されている。プリプレグの硬化物7は、繊維材料を含む部分8と硬化前のプリプレグから染み出した絶縁樹脂9からなる。必要に応じて再配線構造部3に達するビア穴5を備える。なお、ビア穴5の直径は、通常10〜400μmであり、配線板のビア穴あけに一般的に用いるCOレーザー装置を用いて形成される。 FIG. 3 shows the semiconductor device of this embodiment. A rewiring structure 3 is provided on the circuit surface 2 side of the semiconductor chip 1, and the semiconductor chip 1 is covered with a cured product 7 of prepreg. The cured product 7 of the prepreg includes a portion 8 containing a fiber material and an insulating resin 9 that exudes from the prepreg before curing. Via holes 5 reaching the rewiring structure 3 are provided as necessary. The diameter of the via hole 5 is usually 10 to 400 μm, and is formed using a CO 2 laser device that is generally used for making a via hole in a wiring board.

本発明において、再配線構造部とは、半導体チップの回路面のパッドと、外部との接続端子とをつなぐために、半導体チップの回路面上に形成される配線を備えたものをいう。   In the present invention, the rewiring structure means a wiring provided on the circuit surface of the semiconductor chip in order to connect the pad on the circuit surface of the semiconductor chip and the connection terminal to the outside.

本発明において、プリプレグとは硬化前の絶縁樹脂を繊維材料に含浸してなるものであり、その作製方法については特に限定されない。プリプレグとしては、一般的に配線板用材料として用いられるものを適用することが好ましい。   In the present invention, the prepreg is obtained by impregnating a fiber material with an insulating resin before curing, and the production method is not particularly limited. As a prepreg, it is preferable to apply what is generally used as a wiring board material.

本発明に用いるプリプレグの絶縁樹脂は、特に制限はないが、熱硬化性樹脂組成物が好ましい。熱硬化性樹脂組成物は、特に限定するものではないが、耐めっき液性、耐熱性、耐絶縁性を考慮し、好ましくは、エポキシ樹脂及び熱硬化剤の混合物である。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂を用いることができる。熱硬化剤としては、例えば、アミン系硬化剤、グアニジン系硬化剤、イミダゾール系硬化剤、フェノール系硬化剤、酸無水物系硬化剤を用いることができる。   The insulating resin of the prepreg used in the present invention is not particularly limited, but a thermosetting resin composition is preferable. The thermosetting resin composition is not particularly limited, but is preferably a mixture of an epoxy resin and a thermosetting agent in consideration of plating solution resistance, heat resistance, and insulation resistance. As the epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl aralkyl type epoxy resin should be used. Can do. As the thermosetting agent, for example, an amine curing agent, a guanidine curing agent, an imidazole curing agent, a phenol curing agent, or an acid anhydride curing agent can be used.

熱硬化性樹脂組成物は、難燃剤を含んでいてもよい。また、難燃剤としてハロゲン含有樹脂、リン含有樹脂、窒素含有樹脂等を併用してもよい。また、必要に応じてアルミナ、シリカ、無機水和物充てん剤アルミノケイ酸塩、水酸化アルミニウム等の無機充てん剤を添加してもよい。   The thermosetting resin composition may contain a flame retardant. Moreover, you may use together halogen containing resin, phosphorus containing resin, nitrogen containing resin etc. as a flame retardant. Moreover, you may add inorganic fillers, such as an alumina, a silica, an inorganic hydrate filler aluminosilicate, and aluminum hydroxide as needed.

熱硬化性樹脂組成物中の熱硬化剤の配合量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量とすることが好ましく、0.75〜1.25当量とすることがより好ましい。熱硬化性樹脂組成物中の無機充てん剤の配合量は、溶剤を除く全固形分中で20〜80質量%とすることが好ましく、30〜70質量%とすることがより好ましい。   It is preferable that the compounding quantity of the thermosetting agent in a thermosetting resin composition shall be 0.5-1.5 equivalent with respect to 1 equivalent of epoxy groups of an epoxy resin, and shall be 0.75-1.25 equivalent. It is more preferable. The blending amount of the inorganic filler in the thermosetting resin composition is preferably 20 to 80% by mass and more preferably 30 to 70% by mass in the total solid content excluding the solvent.

ここで、プリプレグに含浸する絶縁樹脂の作製方法を二つ例示する。これら絶縁樹脂を用いることで、硬化後のプリプレグの熱膨張係数を効果的に低減できる。
(絶縁樹脂1)
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Arocy B−10):500gと、下記式(I)に示すシロキサン樹脂(信越化学工業株式会社製;商品名X−22−1821、水酸基当量;1600):500gとトルエン:1000gを配合し、攪拌しながら昇温し、120℃に到達後ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約115〜125℃で4時間還流反応を行った後、室温(25℃)に冷却し、熱硬化性樹脂の溶液を得た。
Here, two methods for producing an insulating resin impregnated in the prepreg are exemplified. By using these insulating resins, the thermal expansion coefficient of the prepreg after curing can be effectively reduced.
(Insulating resin 1)
In a reaction vessel with a capacity of 3 liters, which can be heated and cooled, equipped with a thermometer, a stirrer, and a reflux condenser, bisphenol A type cyanate resin (manufactured by Lonza Japan; trade name Arocy B-10): 500 g and the following formula ( I) Siloxane resin (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X-22-1821, hydroxyl equivalent: 1600): 500 g and toluene: 1000 g were blended, heated with stirring, and reached 120 ° C. before reaching naphthene. 0.01 g of an 8% by mass mineral spirit solution of zinc acid was added and refluxed at about 115 to 125 ° C. for 4 hours, and then cooled to room temperature (25 ° C.) to obtain a thermosetting resin solution.

Figure 2015153853
(式(I)中のpは35〜40の整数)
Figure 2015153853
(P in the formula (I) is an integer of 35 to 40)

得られた熱硬化性樹脂100質量部(固形分)、及び溶融シリカ(アドマテック社製;商品名SO−25R)150質量部、及び希釈溶剤にメチルエチルケトンを使用して、混合して樹脂分60質量%の均一な熱硬化性樹脂組成物(絶縁樹脂1)ワニスを得た。   100 parts by mass (solid content) of the obtained thermosetting resin, 150 parts by mass of fused silica (manufactured by Admatech Co., Ltd .; trade name SO-25R), and methyl ethyl ketone as a diluting solvent were mixed and the resin content was 60 masses. % Uniform thermosetting resin composition (insulating resin 1) varnish was obtained.

(絶縁樹脂2)
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、シロキサン樹脂(信越化学工業株式会社製;商品名X−22−161A、アミノ基当量;800):99.2gと、ビス(4−マレイミドフェニル)メタン:164.3gと、m−アミノフェノール:4.5g、及びジメチルアセトアミド:250gを入れ、100℃で3時間反応させて、熱硬化性樹脂の溶液を得た。
得られた熱硬化性樹脂50質量部(固形分)、ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000−H)50質量部、溶融シリカ(アドマテック社製;商品名SO−25R)150質量部、硬化促進剤としてイソシアネートマスクイミダゾール(第一工業製薬株式会社製、商品名:G−8009L)及び希釈溶剤にメチルエチルケトンを使用して、混合して樹脂分65質量%の均一な熱硬化性樹脂組成物(絶縁樹脂2)ワニスを得た。
(Insulating resin 2)
A siloxane resin (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X-22-161A, amino group equivalent) was added to a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. 800): 99.2 g, bis (4-maleimidophenyl) methane: 164.3 g, m-aminophenol: 4.5 g, and dimethylacetamide: 250 g, reacted at 100 ° C. for 3 hours, A solution of curable resin was obtained.
50 parts by mass (solid content) of the obtained thermosetting resin, 50 parts by mass of biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000-H), fused silica (manufactured by Admatech Co., Ltd .; trade name) (SO-25R) 150 parts by mass, isocyanate mask imidazole (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: G-8809L) as a curing accelerator, and methyl ethyl ketone as a diluent solvent, mixed and mixed to a resin content of 65% by mass A uniform thermosetting resin composition (insulating resin 2) varnish was obtained.

上記の絶縁樹脂1〜2を繊維材料に含浸し、加熱して絶縁樹脂が半硬化したシート状のものを、プリプレグの一例とする。   A sheet-like material obtained by impregnating the above-described insulating resins 1 and 2 into a fiber material and heating and semi-curing the insulating resin is taken as an example of a prepreg.

繊維材料の種類は特に限定されるものではないが、一般的に広くFRP用ガラスクロスに用いられるアルミノケイ酸ガラスが好適である。中でも、シリカ成分を増量して熱膨張係数を低下させた、いわゆるSガラスを用いると、効果的にプリプレグの硬化物の熱膨張係数を低減でき好ましい。ガラスクロス中のシリカ成分としては60〜70質量%が好ましく、64〜66質量%がより好ましい。シリカ成分が60質量%未満になると、熱膨張係数の低減効果が低くなり、70質量%を超えるとガラスクロスが割れやすくなり、プリプレグが脆くなる傾向にある。   Although the kind of fiber material is not specifically limited, Aluminosilicate glass generally used widely for glass cloth for FRP is suitable. Among them, it is preferable to use so-called S glass in which the silica component is increased to reduce the thermal expansion coefficient, so that the thermal expansion coefficient of the cured prepreg can be effectively reduced. As a silica component in glass cloth, 60-70 mass% is preferable, and 64-66 mass% is more preferable. If the silica component is less than 60% by mass, the effect of reducing the coefficient of thermal expansion is reduced, and if it exceeds 70% by mass, the glass cloth tends to break and the prepreg tends to become brittle.

また、繊維材料として有機繊維材料を用いることができる。有機繊維材料の種類は特に限定されるものではないが、例えばテクノーラ(帝人株式会社製、商品名、「テクノーラ」は登録商標)、ザイロン(東洋紡績株式会社製、商品名、「ザイロン」は登録商標)、ゼクシオン(KBセーレン株式会社製、商品名、「ゼクシオン」は登録商標)等が好適であり、効果的にプリプレグの硬化物の熱膨張係数を低減でき好ましい。   An organic fiber material can be used as the fiber material. The type of organic fiber material is not particularly limited. For example, Technora (trade name, manufactured by Teijin Limited, “Technola” is a registered trademark), Zyron (trade name, manufactured by Toyobo Co., Ltd., “Zylon” is registered) Trademarks), Zexion (trade name, “Zexion” is a registered trademark) manufactured by KB Seiren Co., Ltd.) and the like are preferable and can effectively reduce the thermal expansion coefficient of the cured prepreg.

また、用いるプリプレグの絶縁樹脂の含有量としては、プリプレグから染み出した絶縁樹脂(図3の9)が、搭載されている半導体チップ等の実装部品を充填できる量の100質量%以上120質量%以下であることが好ましく、100質量%以上110質量%以下であることがより好ましい。100質量%を下回るとプリプレグから染み出す絶縁樹脂の量が不足し、空隙を半導体装置内に生じることになる。また、120質量%を超えると、プリプレグの硬化後の平面方向の熱膨張係数が上昇するため好ましくない。   Moreover, as content of the insulating resin of the prepreg to be used, the insulating resin exuded from the prepreg (9 in FIG. 3) is 100% by mass or more and 120% by mass of the amount capable of filling the mounting components such as the mounted semiconductor chip. Or less, more preferably 100% by mass or more and 110% by mass or less. When the amount is less than 100% by mass, the amount of the insulating resin that oozes out from the prepreg is insufficient, and a void is generated in the semiconductor device. Moreover, when it exceeds 120 mass%, since the thermal expansion coefficient of the plane direction after hardening of a prepreg rises, it is unpreferable.

本実施形態の半導体装置では、半導体チップ上部には、硬化後のプリプレグの繊維材料を含む部分(図3の8)が形成されており、前記部分はプリプレグの絶縁樹脂が染み出した結果、形成された部分であり、繊維材料に比べ熱膨張係数が比較的高い絶縁樹脂の割合が極めて少ないため、熱膨張係数が極めて低くなる。従って、適用するプリプレグの硬化後の平面方向の熱膨張係数には特に制限はないが、硬化後のプリプレグの繊維材料を含む部分の熱膨張係数が25〜220℃において5×10−6/℃以下であることが好ましく、4.5×10−6/℃以下であることがより好ましく、4×10−6/℃以下であることが更に好ましい。5×10−6/℃を上回ると、効果的に反りを低減できないため好ましくない。 In the semiconductor device of the present embodiment, a portion including the cured prepreg fiber material (8 in FIG. 3) is formed on the upper portion of the semiconductor chip, and the portion is formed as a result of the insulating resin of the prepreg exuding. Since the proportion of the insulating resin having a relatively high thermal expansion coefficient compared to the fiber material is extremely small, the thermal expansion coefficient is extremely low. Therefore, the thermal expansion coefficient in the planar direction after curing of the applied prepreg is not particularly limited, but the thermal expansion coefficient of the portion containing the fiber material of the cured prepreg is 5 × 10 −6 / ° C. at 25 to 220 ° C. Or less, more preferably 4.5 × 10 −6 / ° C. or less, and further preferably 4 × 10 −6 / ° C. or less. If it exceeds 5 × 10 −6 / ° C., the warp cannot be effectively reduced, which is not preferable.

半導体チップの厚さとしては、100μm以下が好ましく、100μm以下30μm以上がより好ましく、80μm以下30μm以上がさらに好ましい。半導体チップの厚さが100μmを超えると、薄型化に対して逆行するため好ましくないうえ、プリプレグから染み出す絶縁樹脂の量が不足しやすくなり、空隙を半導体装置内に生じるおそれがある。また、半導体素子が30μmを下回ると反りの低減効果が小さくなる傾向にある。なお、複数枚の半導体チップを縦方向に積層する場合、積層に用いる接着層を含む半導体チップ積層体トータルの厚さを半導体チップの厚さとする。   The thickness of the semiconductor chip is preferably 100 μm or less, more preferably 100 μm or less and 30 μm or more, and further preferably 80 μm or less and 30 μm or more. If the thickness of the semiconductor chip exceeds 100 μm, it is not preferable because it goes against the thinning, and the amount of the insulating resin that oozes out from the prepreg is likely to be insufficient, and a void may be generated in the semiconductor device. Further, when the semiconductor element is less than 30 μm, the warp reduction effect tends to be small. When a plurality of semiconductor chips are stacked in the vertical direction, the total thickness of the semiconductor chip stack including the adhesive layer used for stacking is defined as the thickness of the semiconductor chip.

次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
以下に実施例及び比較例において用いた半導体装置の材料と構造について説明する。
(実施例1)
実施例1においては図3を参照して説明する。実施例1において、半導体チップ1を被覆する材料として、プリプレグGEA−705GL1078N72(日立化成株式会社製、商品名)を使用した。また半導体チップ1は、回路面2の代わりに表面に酸化シリコン層を有するテストチップを使用した。また、再配線構造部3には絶縁材として感光性絶縁材AH−1170T(日立化成株式会社製、商品名)を、導通材としては銅を用いた。
EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
The materials and structures of the semiconductor devices used in the examples and comparative examples will be described below.
Example 1
The first embodiment will be described with reference to FIG. In Example 1, prepreg GEA-705GL1078N72 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a material for covering the semiconductor chip 1. The semiconductor chip 1 used was a test chip having a silicon oxide layer on the surface instead of the circuit surface 2. In the rewiring structure 3, a photosensitive insulating material AH-1170T (manufactured by Hitachi Chemical Co., Ltd., trade name) was used as an insulating material, and copper was used as a conductive material.

半導体装置全体のサイズは縦10mm×横10mm×厚さ175μmの板状である。再配線構造部3の厚さはトータル25μmであり、10μmの銅層を絶縁層で挟んだ構造になっており、銅層は残銅率が50%程度になるようにダミーパターンが設けられている。半導体チップ1のサイズは回路面2(酸化シリコン層)込みで8mm×8mm×60μmの板状である。半導体チップ1はパッケージの中央位置で、再配線構造部3に接するように配されている。半導体チップ1を被覆するプリプレグの硬化物7の繊維材料を含む部分8の厚さは90μmであり、硬化前のプリプレグから染み出した絶縁樹脂9が半導体チップ1の側面を完全に覆っている。ビア穴5は直径およそ200μmであり、半導体チップ1周囲の任意の場所に数箇所開けてある。半導体チップ1を被覆するプリプレグの硬化物7の繊維材料を含む部分8は、半導体チップ上部部材と表す(表1参照)。   The size of the entire semiconductor device is a plate shape of 10 mm long × 10 mm wide × 175 μm thick. The rewiring structure portion 3 has a total thickness of 25 μm, and has a structure in which a 10 μm copper layer is sandwiched between insulating layers, and the copper layer is provided with a dummy pattern so that the remaining copper ratio is about 50%. Yes. The size of the semiconductor chip 1 is a plate shape of 8 mm × 8 mm × 60 μm including the circuit surface 2 (silicon oxide layer). The semiconductor chip 1 is arranged in contact with the rewiring structure portion 3 at the center position of the package. The thickness of the portion 8 including the fiber material of the cured product 7 of the prepreg that covers the semiconductor chip 1 is 90 μm, and the insulating resin 9 that exudes from the prepreg before curing completely covers the side surface of the semiconductor chip 1. The via hole 5 has a diameter of approximately 200 μm and is formed at several locations around the semiconductor chip 1. The portion 8 including the fiber material of the prepreg cured product 7 covering the semiconductor chip 1 is represented as a semiconductor chip upper member (see Table 1).

(比較例1〜2)
比較例1及び2においては図1を参照して説明する。比較例1及び2において、半導体チップ1を被覆する材料として、封止材4にはCEL−400ZHF40(日立化成株式会社製、商品名)を使用した。それ以外は実施例1と同様の材料を用いた。
(Comparative Examples 1-2)
Comparative examples 1 and 2 will be described with reference to FIG. In Comparative Examples 1 and 2, CEL-400ZHF40 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as the sealing material 4 as a material for covering the semiconductor chip 1. Other than that, the same material as in Example 1 was used.

比較例1においては、半導体装置全体のサイズは縦10mm×横10mm×厚さ375μmの板状である。半導体チップ1のサイズは回路面2(酸化シリコン層)込みで縦8mm×横8mm×厚さ250μmの板状である。半導体チップ1を被覆する封止材4の厚さは半導体チップ上が100μmであり、半導体チップ1の側面を完全に覆っている。それ以外は実施例1と同じである。半導体チップ1を被覆する封止材4の半導体チップ上の部分を、半導体チップ上部部材と表す(表1参照)。   In Comparative Example 1, the size of the entire semiconductor device is a plate shape having a length of 10 mm × width of 10 mm × thickness of 375 μm. The size of the semiconductor chip 1 is a plate shape of 8 mm long × 8 mm wide × 250 μm thick including the circuit surface 2 (silicon oxide layer). The thickness of the sealing material 4 covering the semiconductor chip 1 is 100 μm on the semiconductor chip, and completely covers the side surface of the semiconductor chip 1. The rest is the same as in Example 1. A portion of the sealing material 4 covering the semiconductor chip 1 on the semiconductor chip is represented as a semiconductor chip upper member (see Table 1).

比較例2においては、半導体チップ1のサイズは回路面2(酸化シリコン層)込みで縦8mm×横8mm×厚さ60μmの板状である。それ以外は比較例1と同じである。   In Comparative Example 2, the size of the semiconductor chip 1 is a plate shape of 8 mm long × 8 mm wide × 60 μm thick including the circuit surface 2 (silicon oxide layer). Other than that is the same as Comparative Example 1.

(比較例3)
比較例3においては図2を参照して説明する。比較例3において、半導体チップ1を被覆する材料として、板部6にはシリコンウエハを、充填材10にはABF−GX13(味の素ファインテクノ製、商品名)を用いた。それ以外は実施例1と同様の材料を用いた。
(Comparative Example 3)
Comparative Example 3 will be described with reference to FIG. In Comparative Example 3, as a material for covering the semiconductor chip 1, a silicon wafer was used for the plate portion 6, and ABF-GX13 (trade name, manufactured by Ajinomoto Fine Techno Co., Ltd.) was used for the filler 10. Other than that, the same material as in Example 1 was used.

半導体装置全体のサイズは縦10mm×横10mm×厚さ315μmの板状である。半導体チップ1を被覆する充填材10と板部6のチップ上の厚さは、充填材20μm、板部(シリコン板)200μmであり、充填材10が半導体チップの側面を完全に覆っている。ビア穴はない。それ以外は実施例1と同じである。なお、充填材10の一部及び板部6(シリコン板)が半導体チップ上部部材に相当する(表1参照)。   The size of the entire semiconductor device is a plate shape of 10 mm long × 10 mm wide × 315 μm thick. The filler 10 covering the semiconductor chip 1 and the thickness of the plate portion 6 on the chip are 20 μm filler and 200 μm plate portion (silicon plate), and the filler 10 completely covers the side surface of the semiconductor chip. There are no via holes. The rest is the same as in Example 1. Part of the filler 10 and the plate portion 6 (silicon plate) correspond to a semiconductor chip upper member (see Table 1).

下記表1に、実施例1及び比較例1〜3における、半導体チップ被覆部材、半導体チップ上部部材の熱膨張係数、半導体装置サイズ、半導体チップサイズ、再配線構造部厚さ、半導体チップ厚さ、半導体チップ上部部材厚さ、半導体装置厚さ、半導体装置反り、レーザービア穴開けの可否を示す。なお、半導体チップ被覆部材とは、半導体チップの表面及び側面等を被覆するための材料である。
なお、レーザービア穴開けは、配線板のビア穴あけに一般的に用いるCOレーザー装置(LC−2F21B/1C、日立ビアメカニクス株式会社製)を用いた。
また、半導体装置の反りはシャドウモアレ装置(サーモレイPS−200、AKROMETRIX社製)を用いて測定した。反りの測定条件は、25〜220℃の範囲での反りを測定し、25℃から220℃への昇温時間は20分である。
また、熱膨張係数は、DIC装置(サーモレイAXP、AKROMETRIX社製)を使用し、半導体装置チップ上部部分の平面方向のひずみを、25〜220℃の範囲にて測定した結果から算出した。
In Table 1 below, in Example 1 and Comparative Examples 1 to 3, the semiconductor chip covering member, the thermal expansion coefficient of the semiconductor chip upper member, the semiconductor device size, the semiconductor chip size, the rewiring structure thickness, the semiconductor chip thickness, The semiconductor chip upper member thickness, semiconductor device thickness, semiconductor device warp, and laser via hole availability are shown. The semiconductor chip covering member is a material for covering the surface and side surfaces of the semiconductor chip.
For the laser via drilling, a CO 2 laser device (LC-2F21B / 1C, manufactured by Hitachi Via Mechanics Co., Ltd.) generally used for via drilling of the wiring board was used.
Further, the warpage of the semiconductor device was measured by using a shadow moire device (Thermo Ray PS-200, manufactured by AKROMETRIX). The measurement condition of the warp is a warp in the range of 25 to 220 ° C., and the temperature raising time from 25 ° C. to 220 ° C. is 20 minutes.
The coefficient of thermal expansion was calculated from the result of measuring the strain in the planar direction of the upper part of the semiconductor device chip in the range of 25 to 220 ° C. using a DIC device (Thermolay AXP, manufactured by AKMROMTRIX).

Figure 2015153853
Figure 2015153853

表1から明らかなように、実施例1は比較例1〜3と比較してレーザービアの穴あけが可能であり、半導体装置の厚さを低く抑えることができ、かつ、半導体装置の反りも小さく抑えることができる。   As is clear from Table 1, in Example 1, laser vias can be drilled as compared with Comparative Examples 1 to 3, the thickness of the semiconductor device can be kept low, and the warp of the semiconductor device is small. Can be suppressed.

比較例1では、半導体装置の反りを小さく抑えるため、厚い半導体チップを用いているため、半導体装置の厚さが厚い。比較例2では半導体装置の厚さを薄くするため、薄い半導体チップを用いた結果、半導体装置の反りが大きい。比較例3では、シリコン板を用いているため、半導体装置の反りが小さいが、レーザービア穴あけが不可能であり、半導体装置の厚さも厚い。   In Comparative Example 1, since a thick semiconductor chip is used in order to suppress warpage of the semiconductor device, the thickness of the semiconductor device is large. In Comparative Example 2, the thickness of the semiconductor device is reduced, and as a result of using a thin semiconductor chip, the warp of the semiconductor device is large. In Comparative Example 3, since the silicon plate is used, the warp of the semiconductor device is small, but laser via drilling is impossible and the semiconductor device is thick.

以上、本発明の半導体装置は、封止材の代わりにプリプレグを用いることで、半導体チップ上部に封止材以下の熱膨張係数を有する部分を得ることができ、半導体装置の薄型化と反り低減を両立できるうえ、かつビア穴加工も容易であるため、産業上の利用価値は非常に大きい。   As described above, in the semiconductor device of the present invention, by using a prepreg instead of the sealing material, a portion having a thermal expansion coefficient equal to or lower than that of the sealing material can be obtained on the top of the semiconductor chip. In addition, since the via hole processing is easy, the industrial utility value is very large.

1:半導体チップ、2:回路面、3:再配線構造部、4:封止材、5:ビア穴、6:板部、7:プリプレグの硬化物、8:繊維材料を含む部分、9:硬化前のプリプレグから染み出した絶縁樹脂、10:充填材。 1: semiconductor chip, 2: circuit surface, 3: rewiring structure part, 4: sealing material, 5: via hole, 6: plate part, 7: cured product of prepreg, 8: part containing fiber material, 9: Insulating resin exuded from prepreg before curing, 10: filler.

Claims (6)

再配線構造部と、前記再配線構造部表面に半導体チップとを備え、前記半導体チップが繊維材料を含むプリプレグの硬化物で被覆されてなる半導体装置。   A semiconductor device comprising: a rewiring structure portion; and a semiconductor chip on a surface of the rewiring structure portion, wherein the semiconductor chip is covered with a cured product of a prepreg containing a fiber material. プリプレグが、ガラス繊維材料を含む請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the prepreg includes a glass fiber material. プリプレグが、有機繊維材料を含む請求項1又は2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the prepreg includes an organic fiber material. プリプレグの硬化物が、再配線構造部に達するビア穴を有する請求項1〜3いずれか一項記載の半導体装置。   The semiconductor device according to claim 1, wherein the cured product of the prepreg has a via hole reaching the rewiring structure portion. プリプレグの硬化物において、繊維材料を含む部分の平面方向の熱膨張係数が25〜220℃において5×10−6/℃以下である請求項1〜4いずれか一項記載の半導体装置。 5. The semiconductor device according to claim 1, wherein, in a cured product of the prepreg, a thermal expansion coefficient in a planar direction of a portion including the fiber material is 5 × 10 −6 / ° C. or less at 25 to 220 ° C. 6 . 半導体チップ厚みが100μm以下である請求項1〜5いずれか一項記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor chip has a thickness of 100 μm or less.
JP2014025335A 2014-02-13 2014-02-13 semiconductor device Pending JP2015153853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025335A JP2015153853A (en) 2014-02-13 2014-02-13 semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025335A JP2015153853A (en) 2014-02-13 2014-02-13 semiconductor device

Publications (1)

Publication Number Publication Date
JP2015153853A true JP2015153853A (en) 2015-08-24

Family

ID=53895830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025335A Pending JP2015153853A (en) 2014-02-13 2014-02-13 semiconductor device

Country Status (1)

Country Link
JP (1) JP2015153853A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204558A (en) * 2016-05-11 2017-11-16 信越化学工業株式会社 Sealing material with substrate for sealing semiconductor, semiconductor device, and method for manufacturing semiconductor device
WO2018074221A1 (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-shaped prepreg
JP2018142611A (en) * 2017-02-27 2018-09-13 信越化学工業株式会社 Manufacturing method for semiconductor device
WO2019075720A1 (en) * 2017-10-20 2019-04-25 华为技术有限公司 Chip package structure and packaging method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218143A (en) * 2002-01-23 2003-07-31 Sony Corp Method for manufacturing semiconductor device
JP2012151451A (en) * 2010-12-27 2012-08-09 Shin Etsu Chem Co Ltd Fiber containing resin substrate, after-sealing semiconductor element mounting substrate and after-sealing semiconductor element formation wafer, semiconductor device, and method of manufacturing semiconductor device
JP2013140963A (en) * 2011-12-29 2013-07-18 Troisd Plus Method for collective fabrication of 3d electronic module including only validated printed circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218143A (en) * 2002-01-23 2003-07-31 Sony Corp Method for manufacturing semiconductor device
JP2012151451A (en) * 2010-12-27 2012-08-09 Shin Etsu Chem Co Ltd Fiber containing resin substrate, after-sealing semiconductor element mounting substrate and after-sealing semiconductor element formation wafer, semiconductor device, and method of manufacturing semiconductor device
JP2013140963A (en) * 2011-12-29 2013-07-18 Troisd Plus Method for collective fabrication of 3d electronic module including only validated printed circuit board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204558A (en) * 2016-05-11 2017-11-16 信越化学工業株式会社 Sealing material with substrate for sealing semiconductor, semiconductor device, and method for manufacturing semiconductor device
KR20170127363A (en) * 2016-05-11 2017-11-21 신에쓰 가가꾸 고교 가부시끼가이샤 Base-attached encapsulant for semiconductor encapsulation, semiconductor apparatus, and method for manufacturing semiconductor apparatus
KR102262042B1 (en) 2016-05-11 2021-06-09 신에쓰 가가꾸 고교 가부시끼가이샤 Base-attached encapsulant for semiconductor encapsulation, semiconductor apparatus, and method for manufacturing semiconductor apparatus
WO2018074221A1 (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-shaped prepreg
JP2018065892A (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-like prepreg
KR20190069408A (en) * 2016-10-17 2019-06-19 주식회사 다이셀 Sheet-like prepreg
KR102402277B1 (en) 2016-10-17 2022-05-26 주식회사 다이셀 sheet prepreg
US11479637B2 (en) 2016-10-17 2022-10-25 Daicel Corporation Sheet-shaped prepreg
JP2018142611A (en) * 2017-02-27 2018-09-13 信越化学工業株式会社 Manufacturing method for semiconductor device
WO2019075720A1 (en) * 2017-10-20 2019-04-25 华为技术有限公司 Chip package structure and packaging method
US11309227B2 (en) 2017-10-20 2022-04-19 Huawei Technologies Co., Ltd. Chip package structure having a package substrate disposed around a die

Similar Documents

Publication Publication Date Title
JP4495772B1 (en) Insulating sheet and laminated structure
US20120244351A1 (en) Multilayer resin sheet and method for producing the same, method for producing cured multilayer resin sheet, and highly thermally conductive resin sheet laminate and method for producing the same
WO2010021167A1 (en) Insulating sheet and laminated structure
KR20120051634A (en) Adhesive composition, adhesive sheet, circuit board and semiconductor device both produced using these, and processes for producing these
JP2011070930A (en) Multi-layer insulating sheet, and laminated structure
JP2018090664A (en) Resin composition, and thermosetting film prepared therewith
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
KR20160031257A (en) Inorganic filler and epoxy resin composition comprising the same
TW201525055A (en) Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic devices
JP2015153853A (en) semiconductor device
JP5854062B2 (en) Thermally conductive sheet and semiconductor device
JP2013098217A (en) Method for manufacturing component for power semiconductor module
JP5798155B2 (en) Insulating resin composition for printed circuit board having low coefficient of thermal expansion and dielectric loss, prepreg and printed circuit board using the same
JP2011124075A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
JP5520183B2 (en) Resin composition, resin sheet and laminated structure
TW202138535A (en) Heat conductive material and method for manufacturing heat conductive material, heat radiation structure and method for manufacturing heat radiation structure, electronic device
JP6504050B2 (en) Adhesive composition and adhesive film having the same, substrate with adhesive composition, semiconductor device and method for manufacturing the same
JP5092050B1 (en) Laminated body
JP5346363B2 (en) Laminated body
JP2011162622A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2011124077A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
JP4495771B1 (en) Insulating sheet and laminated structure
JP6579106B2 (en) Thermally conductive sheet and semiconductor device
KR101447258B1 (en) Thermal conductive epoxy composites and their applications for light emitting diode fixtures
JP2011124078A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807