JP2015153768A - Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative - Google Patents

Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative Download PDF

Info

Publication number
JP2015153768A
JP2015153768A JP2014023517A JP2014023517A JP2015153768A JP 2015153768 A JP2015153768 A JP 2015153768A JP 2014023517 A JP2014023517 A JP 2014023517A JP 2014023517 A JP2014023517 A JP 2014023517A JP 2015153768 A JP2015153768 A JP 2015153768A
Authority
JP
Japan
Prior art keywords
fluorine
substituted phenyl
pyridine derivative
organic
phenyl pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023517A
Other languages
Japanese (ja)
Inventor
城戸 淳二
Junji Kido
淳二 城戸
久宏 笹部
Hisahiro Sasabe
久宏 笹部
嵩弘 鎌田
Takahiro Kamata
嵩弘 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2014023517A priority Critical patent/JP2015153768A/en
Publication of JP2015153768A publication Critical patent/JP2015153768A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a novel fluorine-substituted phenyl pyridine derivative that maintains high triplet energy while exhibiting electron transport characteristics, is also excellent in solubility to an organic solvent and electron injection properties and is useful for a highly efficient phosphorescent organic EL element; an electron transport material comprising the fluorine-substituted phenyl pyridine derivative; and an organic EL element using the fluorine-substituted phenyl pyridine derivative.SOLUTION: A fluorine-substituted phenyl pyridine derivative represented by the following general formula (1) is used for an organic EL element. (In the formula (1), R-Reach independently represent hydrogen or fluorine.)

Description

本発明は、新規なフッ素置換フェニルピリジン誘導体、それよりなる電子輸送材料及びそれを用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)に関する。   The present invention relates to a novel fluorine-substituted phenylpyridine derivative, an electron transport material comprising the same, and an organic electroluminescence device (hereinafter abbreviated as an organic EL device) using the same.

有機ELは、一部の製品で実用化が開始されているが、大型ディスプレイや照明分野への応用には、素子のさらなる高効率化が重要課題の1つである。特に、高色純度かつ高効率な白色発光を実現する上で、青色有機EL素子の高効率化及び長寿命化が課題となっている。
このような課題の解決のために、従来の蛍光素子に比べて4倍の高効率化が可能なリン光有機EL素子が注目されている。
The organic EL has been put into practical use for some products, but further enhancement of the efficiency of the element is one of the important issues for application to the large display and lighting fields. In particular, in order to realize white light emission with high color purity and high efficiency, there is a problem of improving the efficiency and extending the life of the blue organic EL element.
In order to solve such problems, attention has been focused on phosphorescent organic EL elements that can achieve a four-fold higher efficiency than conventional fluorescent elements.

リン光有機EL素子においては、高い三重項レベルを持つ材料の開発が必須である。一方で、電子輸送材料は、高い三重項レベルを持つ材料が極めて少ないのが現状である。
高い三重項レベルを持つ電子輸送材料としては、下記に示すB3PyPB等のジピリジルフェニル誘導体が知られている(例えば、特許文献1参照)。
In the phosphorescent organic EL device, development of a material having a high triplet level is essential. On the other hand, there are very few electron transport materials having a high triplet level.
As electron transport materials having a high triplet level, dipyridylphenyl derivatives such as B3PyPB shown below are known (for example, see Patent Document 1).

Figure 2015153768
Figure 2015153768

特許第5063992号公報Japanese Patent No. 5063992

しかしながら、上記のようなジピリジルフェニル誘導体は、窒素の置換位置により、有機溶媒への溶解性が著しく低下し、結晶化するため、有機EL素子への応用には適さない。   However, the dipyridylphenyl derivative as described above is not suitable for application to an organic EL device because the solubility in an organic solvent is remarkably lowered due to the substitution position of nitrogen and crystallizes.

したがって、有機EL素子のさらなる高効率化には、高い三重項レベル、高い電子輸送性及び高い電子注入性を持ち、かつ、塗布型有機EL素子に応用可能とするために、有機溶媒への溶解性にも優れた電子輸送材料が求められている。   Therefore, in order to further increase the efficiency of the organic EL device, it has a high triplet level, a high electron transporting property and a high electron injecting property, and it can be applied to a coating type organic EL device. There is a demand for an electron transport material having excellent properties.

本発明は、上記課題を解決するためになされたものであり、電子輸送特性を発現させつつ、高い三重項エネルギーを維持し、有機溶媒への溶解性及び電子注入性にも優れた、高効率なリン光有機EL素子に有用な新規のフッ素置換フェニルピリジン誘導体、それよりなる電子輸送材料及びそれを用いた有機EL素子を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and maintains high triplet energy while exhibiting electron transport properties, and is excellent in solubility in an organic solvent and electron injectability. It is an object of the present invention to provide a novel fluorine-substituted phenylpyridine derivative useful for a phosphorescent organic EL device, an electron transport material comprising the same, and an organic EL device using the same.

本発明に係るフッ素置換フェニルピリジン誘導体は、下記一般式(1)で表される。   The fluorine-substituted phenylpyridine derivative according to the present invention is represented by the following general formula (1).

Figure 2015153768
Figure 2015153768

前記式(1)において、R1〜R15は、それぞれ独立に、水素又はフッ素である。
上記のような構造からなるフッ素置換フェニルピリジン誘導体は、高い三重項レベル、高い電子輸送性及び高い電子注入性を持ち、かつ、有機溶媒への溶解性にも優れている。
In the formula (1), R 1 to R 15 are each independently hydrogen or fluorine.
The fluorine-substituted phenylpyridine derivative having the above structure has a high triplet level, a high electron transporting property and a high electron injecting property, and is excellent in solubility in an organic solvent.

また、本発明によれば、前記フッ素置換フェニルピリジン誘導体よりなる電子輸送材料が提供される。   The present invention also provides an electron transport material comprising the fluorine-substituted phenylpyridine derivative.

また、本発明によれば、前記フッ素置換フェニルピリジン誘導体が用いられていることを特徴とする有機EL素子が提供される。
本発明に係るフッ素置換フェニルピリジン誘導体を用いることにより、有機EL素子の低電圧駆動及び塗布プロセスによる作製が可能となる。
Moreover, according to the present invention, there is provided an organic EL device characterized in that the fluorine-substituted phenylpyridine derivative is used.
By using the fluorine-substituted phenylpyridine derivative according to the present invention, it is possible to produce an organic EL device by low voltage driving and a coating process.

本発明に係る新規なフッ素置換フェニルピリジン誘導体は、高い電子輸送特性、高い三重項エネルギーを有し、かつ、有機溶媒への溶解性及び電子注入性にも優れており、リン光有機EL素子、特に青色リン光有機EL素子の電子輸送材料として好適である。
したがって、本発明に係るフッ素置換フェニルピリジン誘導体を用いることにより、有機EL素子の低電圧駆動が可能となり、また、塗布プロセスによる有機EL素子の作製が可能となる。
The novel fluorine-substituted phenylpyridine derivative according to the present invention has a high electron transport property, a high triplet energy, and is excellent in solubility in an organic solvent and an electron injection property, and a phosphorescent organic EL device, It is particularly suitable as an electron transport material for blue phosphorescent organic EL devices.
Therefore, by using the fluorine-substituted phenylpyridine derivative according to the present invention, the organic EL element can be driven at a low voltage, and the organic EL element can be produced by a coating process.

本発明に係る有機EL素子の層構造の一例を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically an example of the layer structure of the organic EL element which concerns on this invention.

以下、本発明について、より詳細に説明する。
本発明に係るフッ素置換フェニルピリジン誘導体は、前記一般式(1)で表される化合物である。
前記式(1)において、R1〜R15は、それぞれ独立に、水素又はフッ素である。
このようなフッ素置換フェニルピリジン誘導体は、新規化合物であり、有機溶媒への溶解性及び電子注入性の向上を付与するフッ素置換芳香族炭化水素を有していることを特徴とする。すなわち、フッ素置換による有機溶媒への溶解性の向上と、電子求引基の導入による高い電子注入性の向上が図られ、電子輸送材料として好適に用いることができる。
Hereinafter, the present invention will be described in more detail.
The fluorine-substituted phenylpyridine derivative according to the present invention is a compound represented by the general formula (1).
In the formula (1), R 1 to R 15 are each independently hydrogen or fluorine.
Such a fluorine-substituted phenylpyridine derivative is a novel compound and is characterized by having a fluorine-substituted aromatic hydrocarbon that imparts improved solubility in an organic solvent and electron injection properties. That is, the solubility in an organic solvent is improved by fluorine substitution, and the high electron injection property is improved by introducing an electron withdrawing group, so that it can be suitably used as an electron transporting material.

前記一般式(1)で表される化合物のうち、代表例としては、下記に示すようなフッ素置換フェニルピリジン誘導体を挙げることができる。   Among the compounds represented by the general formula (1), typical examples include fluorine-substituted phenylpyridine derivatives as shown below.

Figure 2015153768
Figure 2015153768

上記のような本発明に係るフッ素置換フェニルピリジン誘導体の合成方法は、特に限定されるものではないが、例えば、下記実施例に示すような方法により合成することができる。   The method for synthesizing the fluorine-substituted phenylpyridine derivative according to the present invention as described above is not particularly limited, and for example, it can be synthesized by a method as shown in the following examples.

また、上記のようなフッ素置換フェニルピリジンが用いられている本発明に係る有機EL素子は、一対の電極間に少なくとも1層の有機層が積層された構造からなる。具体的な層構造としては、例えば、陽極/発光層/陰極、陽極/正孔輸送層/発光層/電子輸送層/陰極、あるいはまた、図1に示すような、基板1/陽極2/ホール輸送層3/発光層4/電子輸送層5/電子注入層6/陰極7等の構造が挙げられる。
さらに、ホール注入層、ホール輸送発光層、電子輸送発光層等をも含む公知の積層構造であってもよい。
また、本発明に係る有機EL素子は、1つの発光層を含む発光ユニットが電荷発生層を介して直列式に複数段積層されてなるマルチフォトンエミッション構造の素子であってもよい。
In addition, the organic EL device according to the present invention using the above-described fluorine-substituted phenylpyridine has a structure in which at least one organic layer is laminated between a pair of electrodes. As a specific layer structure, for example, anode / light emitting layer / cathode, anode / hole transport layer / light emitting layer / electron transport layer / cathode, or substrate 1 / anode 2 / hole as shown in FIG. Examples thereof include a transport layer 3 / light emitting layer 4 / electron transport layer 5 / electron injection layer 6 / cathode 7 structure.
Furthermore, a known laminated structure including a hole injection layer, a hole transport light emitting layer, an electron transport light emitting layer, and the like may be used.
The organic EL element according to the present invention may be an element having a multi-photon emission structure in which a plurality of light emitting units including one light emitting layer are stacked in series via a charge generation layer.

前記有機EL素子において、本発明に係るフッ素置換フェニルピリジン誘導体は、有機EL材料として前記有機層のいずれに用いられてもよく、ホール輸送材料として用いたり、発光材料とともに分散して用いたりすることもできるが、特に、電子輸送材料として好適に用いることができ、リン光有機EL素子の低電圧駆動を可能とするものである。   In the organic EL element, the fluorine-substituted phenylpyridine derivative according to the present invention may be used as an organic EL material in any of the organic layers, and may be used as a hole transport material or dispersed with a light emitting material. However, it can be suitably used as an electron transport material, and enables the phosphorescent organic EL device to be driven at a low voltage.

なお、前記有機EL素子においては、本発明に係るフッ素置換フェニルピリジン誘導体以外の各層の構成材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができ、低分子系又は高分子系のいずれであってもよい。
前記各層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、5nm〜5μmの範囲内であることが好ましい。
In the organic EL element, the constituent material of each layer other than the fluorine-substituted phenylpyridine derivative according to the present invention is not particularly limited, and can be appropriately selected from known ones. Or any of a high molecular type may be sufficient.
The film thickness of each of the layers is appropriately determined depending on the situation in consideration of adaptability between the layers and the required total layer thickness, but is usually preferably in the range of 5 nm to 5 μm.

上記各層の形成方法は、蒸着法、スパッタリング法等などのドライプロセスでもよいが、本発明は、特に、塗布プロセスにより形成可能である点に利点を有しており、スピンコート法、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ナノパーティクル分散液を用いる方法等のウェットプロセスを好適に適用することができる。   The formation method of each of the above layers may be a dry process such as a vapor deposition method, a sputtering method, etc., but the present invention has an advantage in that it can be formed by a coating process, in particular, a spin coating method, an inkjet method, Wet processes such as casting methods, dip coating methods, bar coating methods, blade coating methods, roll coating methods, gravure coating methods, flexographic printing methods, spray coating methods, and methods using nanoparticle dispersions can be suitably applied. .

また、電極も、公知の材料及び構成でよく、特に限定されるものではない。例えば、ガラスやポリマーからなる透明基板上に透明導電性薄膜が形成されたものが用いられ、ガラス基板に陽極として酸化インジウム錫(ITO)電極が形成された、いわゆるITO基板が一般的である。一方、陰極は、Al等の仕事関数の小さい(4eV以下)金属や合金、導電性化合物により構成される。   Also, the electrode may be a known material and configuration, and is not particularly limited. For example, a so-called ITO substrate is generally used in which a transparent conductive thin film is formed on a transparent substrate made of glass or polymer, and an indium tin oxide (ITO) electrode is formed as an anode on the glass substrate. On the other hand, the cathode is composed of a metal, alloy, or conductive compound having a small work function (4 eV or less) such as Al.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
(フッ素置換フェニルピリジン誘導体の合成)
本発明に係るフッ素置換フェニルピリジン誘導体(BPyMFB類)の代表例としてB3PyMFB及びB4PyMFBの合成例を以下に示す。下記前駆体を合成後、ピリジンボロン酸エステルとの反応により、B3PyMFB及びB4PyMFBを合成した。さらに、合成したBPyMFB類を昇華精製装置にて昇華精製した。なお、各工程における目的物の同定は、1H−NMR、EI−MSにて行った。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
(Synthesis of fluorine-substituted phenylpyridine derivatives)
Synthesis examples of B3PyMFB and B4PyMFB are shown below as representative examples of the fluorine-substituted phenylpyridine derivatives (BPyMFBs) according to the present invention. After synthesizing the following precursors, B3PyMFB and B4PyMFB were synthesized by reaction with pyridine boronic acid ester. Furthermore, the synthesized BPyMFBs were purified by sublimation using a sublimation purification apparatus. In addition, the target object in each process was identified by 1 H-NMR and EI-MS.

(合成例1)B3PyMFBの合成
(1−1)前駆体BDCPMFBの合成
(Synthesis Example 1) Synthesis of B3PyMFB (1-1) Synthesis of Precursor BDCPMFB

Figure 2015153768
Figure 2015153768

四つ口フラスコに、1,3−ジブロモ−5−フルオロベンゼン1.83g(7.2mmol)、DCPB2.78g(14.6mmol)、K2CO38.3g(60.1mmol)の2M水溶液、トルエン40ml、エタノール20mlを入れ、1時間窒素バブリングした後、Pd(PPh340.50g(0.43mmol)を加え、窒素気流下、撹拌しながら、22時間還流した。
薄層クロマトグラフィー(TLC)にて原料の消費を確認した後、反応混合物を室温に戻し、イオン交換水を少量加えて20分間撹拌し、析出した塩を溶解させた。反応混合物をろ過し、水、メタノールで洗浄した。ろ液は、有機層をトルエンで抽出、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液を濃縮し、褐色粘体を得た。得られたろ物とろ液を濃縮したものを、それぞれ、トルエン100mlに溶解させ、シリカゲルを通じて吸引ろ過し、トルエン100mlで洗浄した。得られた溶液をそれぞれ濃縮し、メタノールで洗浄して黄白色の固体2.09g(収率75%)を得た。
In a four-necked flask, 1.83 g (7.2 mmol) of 1,3-dibromo-5-fluorobenzene, 2.78 g (14.6 mmol) of DCPB, 8.3 g (60.1 mmol) of K 2 CO 3 , 2M aqueous solution, 40 ml of toluene and 20 ml of ethanol were added, and after nitrogen bubbling for 1 hour, 0.50 g (0.43 mmol) of Pd (PPh 3 ) 4 was added, and the mixture was refluxed for 22 hours with stirring under a nitrogen stream.
After confirming the consumption of the raw material by thin layer chromatography (TLC), the reaction mixture was returned to room temperature, a small amount of ion-exchanged water was added and stirred for 20 minutes to dissolve the precipitated salt. The reaction mixture was filtered and washed with water and methanol. The filtrate was extracted with toluene, washed with saturated brine, and dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to obtain a brown viscous body. The obtained filtrate and concentrated filtrate were each dissolved in 100 ml of toluene, suction filtered through silica gel, and washed with 100 ml of toluene. Each of the obtained solutions was concentrated and washed with methanol to obtain 2.09 g (yield 75%) of a pale yellow solid.

(1−2)B3PyMFBの合成 (1-2) Synthesis of B3PyMFB

Figure 2015153768
Figure 2015153768

四つ口フラスコに、BDCPMFB1.33g(3.44mmol)、3PyDOB3.54g(17.2mmol)、K3PO44.87g(22.9mmol)の1.35M水溶液、1,4−ジオキサン43mlを加え、1時間窒素バブリングした後、Pd2(dba)30.064g(0.07mmol)、S−Phos0.059g(0.143mmol)を加え、窒素気流下、撹拌しながら、23時間還流した。
TLCにて原料の消費を確認した後、反応混合物を室温に戻し、イオン交換水を少量加えて20分間撹拌し、析出した塩を溶解させた。その後、沈殿した固体をろ別し、水、メタノールで洗浄し、灰色固体を得た。ろ液は、有機層をクロロホルムで抽出、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥、ろ別、濃縮し、褐色粘体を得た。先にろ別して得られた灰色固体を、クロロホルム150mlに還流下で溶解させた後、シリカゲルカラムクロマトグラフィー(シリカゲル:500cc、展開溶媒:クロロホルム/メタノール=200/1(1.0L)→100/1(3.0L)→100/5(2.0L))にて精製し、白色固体1.64g(収率86%)を得た。
To a four-necked flask was added 1.33 g (3.44 mmol) of BDCPMFB, 3.54 g (17.2 mmol) of 3PyDOB, 4.87 g (22.9 mmol) of K 3 PO 4 , 43 ml of 1,4-dioxane. After nitrogen bubbling for 1 hour, 0.064 g (0.07 mmol) of Pd 2 (dba) 3 and 0.059 g (0.143 mmol) of S-Phos were added, and the mixture was refluxed for 23 hours with stirring in a nitrogen stream.
After confirming consumption of the raw material by TLC, the reaction mixture was returned to room temperature, a small amount of ion-exchanged water was added and stirred for 20 minutes to dissolve the deposited salt. Thereafter, the precipitated solid was separated by filtration and washed with water and methanol to obtain a gray solid. The filtrate was extracted with chloroform, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give a brown viscous body. The gray solid obtained previously by filtration was dissolved in 150 ml of chloroform under reflux, and then silica gel column chromatography (silica gel: 500 cc, developing solvent: chloroform / methanol = 200/1 (1.0 L) → 100/1. (3.0 L) → 100/5 (2.0 L)) to obtain 1.64 g (yield 86%) of a white solid.

(合成例2)B4PyMFBの合成 (Synthesis Example 2) Synthesis of B4PyMFB

Figure 2015153768
Figure 2015153768

四つ口フラスコに、BDCPMFB1.0g(2.59mmol)、4PyDOB2.66g(13.0mmol)、K3PO43.73g(17.6mmol)の1.35M水溶液、1,4−ジオキサン32mlを入れ、1時間窒素バブリングした後、Pd2(dba)30.049g(0.053mmol)、S−Phos0.044g(0.108mmol)を加え、窒素気流下、撹拌しながら、61時間還流した。
TLCにて原料の消費を確認した後、反応混合物を室温に戻し、イオン交換水を少量加えて20分間撹拌し、析出した塩を溶解させた。その後、沈殿した固体をろ別し、水、メタノールで洗浄し、灰色固体を得た。ろ液は、有機層をクロロホルムで抽出、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥、ろ別、濃縮し、褐色粘体を得た。先にろ別して得られた灰色固体をクロロホルム/メタノール(100/5)混合溶媒1.0Lに還流下で溶解させた後、溶け残りをろ別した。溶け残りを、再度クロロホルム/メタノール(100/5)混合溶媒1.0Lに還流下で溶解させ、溶け残りをろ別した。この操作を2回行った。溶液をシリカゲルカラムクロマトグラフィー(シリカゲル:600cc、展開溶媒:クロロホルム/メタノール=100/5(2.0L)→10/1(2.0L))にて精製し、白色固体0.385g(収率27%)を得た。
In a four-necked flask, 1.0 g (2.59 mmol) of BDCPMFB, 2.66 g (13.0 mmol) of 4PyDOB, 3.73 g (17.6 mmol) of K 3 PO 4 , 32 ml of 1,4-dioxane were added. After nitrogen bubbling for 1 hour, 0.049 g (0.053 mmol) of Pd 2 (dba) 3 and 0.044 g (0.108 mmol) of S-Phos were added, and the mixture was refluxed for 61 hours with stirring under a nitrogen stream.
After confirming consumption of the raw material by TLC, the reaction mixture was returned to room temperature, a small amount of ion-exchanged water was added and stirred for 20 minutes to dissolve the deposited salt. Thereafter, the precipitated solid was separated by filtration and washed with water and methanol to obtain a gray solid. The filtrate was extracted with chloroform, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give a brown viscous body. The gray solid obtained by filtration in advance was dissolved in 1.0 L of a mixed solvent of chloroform / methanol (100/5) under reflux, and then the undissolved residue was filtered off. The undissolved residue was again dissolved in 1.0 L of a chloroform / methanol (100/5) mixed solvent under reflux, and the undissolved residue was filtered off. This operation was performed twice. The solution was purified by silica gel column chromatography (silica gel: 600 cc, developing solvent: chloroform / methanol = 100/5 (2.0 L) → 10/1 (2.0 L)) to obtain 0.385 g (yield 27) of a white solid. %).

上記により合成したB3PyMFB類について、以下に示すような各種特性評価を行った。なお、比較のため、B3PyPBについても同様の評価を行った。   The B3PyMFBs synthesized as described above were evaluated for various properties as shown below. For comparison, the same evaluation was performed for B3PyPB.

(熱特性評価)
TGAにより熱分解温度(5%重量減)Td5を測定した。また、DSCにより融点Tmを測定した。
(Thermal characteristics evaluation)
The thermal decomposition temperature (5% weight loss) T d5 was measured by TGA. Moreover, melting | fusing point Tm was measured by DSC.

(光学特性評価)
PYS(光電子収量分光)測定装置を用いて、イオン化ポテンシャルIp(HOMO)を測定した。また、紫外−可視光吸収スペクトルの吸収端から光学エネルギーギャップEgを見積もり、イオン化ポテンシャルIpとの差から電子親和力Ea(LUMO)を算出した。
(Optical property evaluation)
The ionization potential I p (HOMO) was measured using a PYS (photoelectron yield spectroscopy) measurement apparatus. Further, the optical energy gap E g was estimated from the absorption edge of the ultraviolet-visible light absorption spectrum, and the electron affinity E a (LUMO) was calculated from the difference from the ionization potential I p .

これらの熱的特性及び光学特性の評価結果を表1にまとめて示す。   The evaluation results of these thermal characteristics and optical characteristics are summarized in Table 1.

Figure 2015153768
Figure 2015153768

表1に示した結果から分かるように、BPyMFBは、融点がB3PyPBよりも50〜100℃ほど高く、耐熱性に優れていることが認められた。
また、B3PyMFBは、HOMO、LUMOがB3PyPBとほぼ同等であった。これに対して、B4PyMFBは、B3PyMFBやB3PyPBに比べて、HOMO、LUMOともに深くなった。
As can be seen from the results shown in Table 1, BPyMFB has a melting point higher by about 50 to 100 ° C. than B3PyPB, and is found to have excellent heat resistance.
Moreover, B3PyMFB was almost equivalent to B3PyPB in HOMO and LUMO. In contrast, B4PyMFB is deeper in both HOMO and LUMO than B3PyMFB and B3PyPB.

(有機EL素子の作製及び特性評価)
電子輸送層(ETL)に、B3PyPB、B3PyMFB又はB3PyPB:B4PyMFB50wt%を用いて、図1に示すような構造の有機EL素子を作製した。具体的な素子の層構成は、ITO/TAPC(40nm)/TCTA:FIrpic11wt%(10nm)/ETL(50nm)/LiF(0.5nm)/Alである。
なお、B4PyMFBは、結晶性が強く、金属の蒸着熱で結晶化してしまうため、B3PyPBに分散させて使用した。
前記素子に用いたTAPC、TCTA及びFIrpicの化学式を下記に示す。
(Production and characteristic evaluation of organic EL elements)
An organic EL device having a structure as shown in FIG. 1 was prepared using B3PyPB, B3PyMFB, or B3PyPB: B4PyMFB at 50 wt% for the electron transport layer (ETL). The specific layer structure of the element is ITO / TAPC (40 nm) / TCTA: FIrpic 11 wt% (10 nm) / ETL (50 nm) / LiF (0.5 nm) / Al.
Note that B4PyMFB was used by being dispersed in B3PyPB because it has strong crystallinity and is crystallized by the heat of vapor deposition of metal.
The chemical formulas of TAPC, TCTA and FIrpic used in the device are shown below.

Figure 2015153768
Figure 2015153768

上記において作製した各素子は、いずれも、良好な青色リン光発光が認められた。
また、各素子について、発光輝度1cd/m2、100cd/m2、1000cd/m2のときの駆動電圧、電力効率及び外部量子効率の測定を行った。
これらの測定結果を表2にまとめて示す。
Each of the devices produced above was found to emit good blue phosphorescence.
For each element, the driving voltage, power efficiency, and external quantum efficiency were measured at emission luminances of 1 cd / m 2 , 100 cd / m 2 , and 1000 cd / m 2 .
These measurement results are summarized in Table 2.

Figure 2015153768
Figure 2015153768

表2に示した結果から分かるように、電子輸送層にB3PyMFBを用いた場合、100cd/m2での駆動電圧はB3PyPBの場合と同等であった。
また、B4PyMFB:B3PyPBを用いた場合、1cd/m2での駆動電圧(開始電圧)は、B3PyPB又はB3PyMFBを用いた場合よりも低かった。これは、LUMOの深いB4PyMFBのドープにより電子注入性が向上したためと考えられる。しかしながら、B4PyMFBとB3PyPBのLUMOに差があるため、B4PyMFBがキャリアトラップとして働き、輸送性が下がるため、高電流密度(100cd/m2)下では、駆動電圧が高電圧化したものと考えられる。
As can be seen from the results shown in Table 2, when B3PyMFB was used for the electron transport layer, the driving voltage at 100 cd / m 2 was equivalent to that of B3PyPB.
When B4PyMFB: B3PyPB was used, the drive voltage (starting voltage) at 1 cd / m 2 was lower than when B3PyPB or B3PyMFB was used. This is presumably because the electron injection property was improved by doping B4PyMFB with deep LUMO. However, since there is a difference in LUMO between B4PyMFB and B3PyPB, B4PyMFB functions as a carrier trap and transportability is lowered. Therefore, it is considered that the driving voltage is increased under a high current density (100 cd / m 2 ).

上記評価結果から、本実施例において合成したBPyMFB類は、耐熱性に優れ、電子輸送材料として用いることにより、青色リン光材料を効率よく発光させることができ、低電圧駆動可能な有機EL素子を提供し得ると言える。   From the above evaluation results, the BPyMFBs synthesized in this example are excellent in heat resistance, and can be used as an electron transport material, whereby a blue phosphorescent material can be efficiently emitted, and an organic EL element that can be driven at a low voltage. It can be said that it can be provided.

1 基板
2 陽極
3 ホール輸送層
4 発光層
5 電子輸送層
6 電子注入層
7 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer 6 Electron injection layer 7 Cathode

Claims (3)

下記一般式(1)で表されるフッ素置換フェニルピリジン誘導体。
Figure 2015153768
(式(1)中、R1〜R15は、それぞれ独立に、水素又はフッ素である。)
A fluorine-substituted phenylpyridine derivative represented by the following general formula (1).
Figure 2015153768
(In formula (1), R 1 to R 15 are each independently hydrogen or fluorine.)
請求項1記載のフッ素置換フェニルピリジン誘導体よりなることを特徴とする電子輸送材料。   An electron transport material comprising the fluorine-substituted phenylpyridine derivative according to claim 1. 請求項1記載のフッ素置換フェニルピリジン誘導体が用いられていることを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescence device, wherein the fluorine-substituted phenylpyridine derivative according to claim 1 is used.
JP2014023517A 2014-02-10 2014-02-10 Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative Pending JP2015153768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023517A JP2015153768A (en) 2014-02-10 2014-02-10 Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023517A JP2015153768A (en) 2014-02-10 2014-02-10 Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative

Publications (1)

Publication Number Publication Date
JP2015153768A true JP2015153768A (en) 2015-08-24

Family

ID=53895772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023517A Pending JP2015153768A (en) 2014-02-10 2014-02-10 Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative

Country Status (1)

Country Link
JP (1) JP2015153768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462867A (en) * 2017-03-21 2019-11-15 柯尼卡美能达株式会社 Organic electroluminescent device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462867A (en) * 2017-03-21 2019-11-15 柯尼卡美能达株式会社 Organic electroluminescent device
JPWO2018173600A1 (en) * 2017-03-21 2020-01-23 コニカミノルタ株式会社 Organic electroluminescence device
JP7124818B2 (en) 2017-03-21 2022-08-24 コニカミノルタ株式会社 organic electroluminescence element

Similar Documents

Publication Publication Date Title
JP5972884B2 (en) Organic electroluminescence device
JP4870245B2 (en) Phosphorescent light emitting device material and organic electroluminescent device using the same
JP5662994B2 (en) Organic electroluminescence device
JP5834023B2 (en) Organic electroluminescence device
KR101005160B1 (en) Compound for organic electroluminescent device and organic electroluminescent device
TWI429650B (en) Organic electroluminescent elements
JP5723764B2 (en) Organic electroluminescence device
JP5027947B2 (en) Phosphorescent light emitting device material and organic electroluminescent device using the same
JP5432147B2 (en) Organometallic complex derivative and organic light emitting device using the same
Zhao et al. Thermally activated delayed fluorescence material with aggregation-induced emission properties for highly efficient organic light-emitting diodes
TWI593684B (en) The organic electroluminescent material and organic electroluminescence device
WO2011081061A1 (en) Organic electroluminescent element
WO2013038804A1 (en) Organic electroluminescent element
CN110563746B (en) Novel SO2 spiro-structure-containing compound and application thereof in OLED (organic light emitting diode) device
KR102028503B1 (en) Phosphorescent material and organic light emitting diode device using the same
JP5943467B2 (en) Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same
JP2015151352A (en) Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same
KR102054489B1 (en) A host material for blue phosphorescence and manufacturing method thereof
JP6420889B2 (en) Compound and organic electronic device using the same
WO2016138710A1 (en) Metal complex and manufacturing method and usage, display device thereof
JP2015153768A (en) Fluorine-substituted phenyl pyridine derivative, electron transport material comprising the same, and organic electroluminescent element using the fluorine-substituted phenyl pyridine derivative
KR101751784B1 (en) Novel phenylanthracene derivatives and organic electroluminescent device using the same
JP6074766B2 (en) 3,5-dipyridylphenyl derivative, electron transport material comprising the same, and organic electroluminescence device using the same
JP2010251565A (en) Organic electroluminescent element
JP6498243B2 (en) Compound and organic electronic device using the same