JP2015151352A - Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same - Google Patents

Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same Download PDF

Info

Publication number
JP2015151352A
JP2015151352A JP2014024993A JP2014024993A JP2015151352A JP 2015151352 A JP2015151352 A JP 2015151352A JP 2014024993 A JP2014024993 A JP 2014024993A JP 2014024993 A JP2014024993 A JP 2014024993A JP 2015151352 A JP2015151352 A JP 2015151352A
Authority
JP
Japan
Prior art keywords
organic
same
benzofuropyrimidine
host material
benzofuropyrimidine derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014024993A
Other languages
Japanese (ja)
Inventor
城戸 淳二
Junji Kido
淳二 城戸
久宏 笹部
Hisahiro Sasabe
久宏 笹部
勇次 永井
Yuji Nagai
勇次 永井
嵩弘 鎌田
Takahiro Kamata
嵩弘 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2014024993A priority Critical patent/JP2015151352A/en
Publication of JP2015151352A publication Critical patent/JP2015151352A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new benzofuropyrimidine derivative useful for obtaining a high-efficiency organic EL element which is a host material suitable for a phosphorescent material and can adjust carrier balance in a luminous layer in an organic EL element, and to provide an organic EL element using the same.SOLUTION: There is used a benzofuropyrimidine derivative represented by the following general formula (1) in an organic EL element. (wherein, at least two of As represent N and the others represent CH; and Ar' represents a substituted or unsubstituted aromatic hydrocarbon group.)

Description

本発明は、新規なベンゾフロピリミジン誘導体、それよりなるホスト材料及びそれを用いた有機エレクトロルミネッセンス素子(以下、有機EL素子という)に関する。   The present invention relates to a novel benzofuropyrimidine derivative, a host material comprising the derivative, and an organic electroluminescence element (hereinafter referred to as an organic EL element) using the same.

有機ELは、電流注入型の自己発光素子であり、高視野角、高コントラスト、極薄構造、低電圧駆動及び高速な応答速度等の特長を有していることから、次世代のフラットパネルディスプレイとして期待されている。また、有機ELは、面状発光型デバイスであり、蛍光灯や無機LEDのように水銀やヒ素等の有害物質を使用しないため、環境低負荷型の照明用光源としての応用も期待されている。   Organic EL is a current-injection self-luminous device that has features such as a high viewing angle, high contrast, ultra-thin structure, low-voltage drive, and high-speed response. As expected. In addition, organic EL is a planar light-emitting device and does not use harmful substances such as mercury and arsenic unlike fluorescent lamps and inorganic LEDs, and therefore is expected to be applied as an environmentally light load illumination light source. .

近年注目されているリン光有機EL素子は、リン光発光材料をホスト材料に分散させることにより、従来の蛍光素子と比べて4倍の素子効率が得られる。リン光ホスト材料としては、下記に示すような1,3−ビス(カルバゾール−9−イル)ベンゼン(mCP)や4,4’−ジ(N−カルバゾリル)ビフェニル(CBP)等のカルバゾール誘導体が一般的に用いられている(特許文献1、非特許文献1,2参照)。   In recent years, phosphorescent organic EL devices, which have been attracting attention, can achieve a device efficiency four times that of conventional fluorescent devices by dispersing a phosphorescent material in a host material. As phosphorescent host materials, carbazole derivatives such as 1,3-bis (carbazol-9-yl) benzene (mCP) and 4,4′-di (N-carbazolyl) biphenyl (CBP) as shown below are generally used. (See Patent Document 1, Non-Patent Documents 1 and 2).

Figure 2015151352
Figure 2015151352

特表2013−530936号公報Special table 2013-530936 gazette

C.-H. Hsiao, et al., Organic Electronics, vol.11, pp.1500-1506, 2010C.-H. Hsiao, et al., Organic Electronics, vol.11, pp.1500-1506, 2010 Tai Peng, et al., Organic Electronics, vol.14, pp.1649-1655,2013Tai Peng, et al., Organic Electronics, vol.14, pp.1649-1655,2013

しかしながら、これらのカルバゾール誘導体は、ホール輸送性は高いものの、電子輸送性が乏しい。このため、リン光ホスト材料として用いた場合、発光層内がホール過多、電子不足となり、キャリアのバランスが崩れ、発光効率が低下するという課題を有していた。   However, these carbazole derivatives have a high hole transport property but a poor electron transport property. For this reason, when used as a phosphorescent host material, the inside of the light emitting layer has excessive holes and electrons are insufficient, and there is a problem that the balance of carriers is lost and the light emission efficiency is lowered.

したがって、リン光ホスト材料として、発光層内のキャリアバランスを調えることができ、発光効率の向上を図ることができる材料が求められている。   Therefore, a material that can adjust the carrier balance in the light emitting layer and can improve the light emission efficiency is demanded as a phosphorescent host material.

本発明は、上記技術的課題を解決するためになされたものであり、リン光材料に適したホスト材料であって、有機EL素子における発光層内のキャリアバランスを調えることができ、高効率な有機EL素子を得るのに有用な新規なベンゾフロピリミジン誘導体、それよりなるホスト材料及びそれを用いた有機EL素子を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and is a host material suitable for a phosphorescent material, which can adjust the carrier balance in the light emitting layer of the organic EL element, and is highly efficient. It is an object of the present invention to provide a novel benzofuropyrimidine derivative useful for obtaining an organic EL device, a host material comprising the same, and an organic EL device using the same.

本発明に係るベンゾフロピリミジン誘導体は、下記一般式(1)で表される。   The benzofuropyrimidine derivative according to the present invention is represented by the following general formula (1).

Figure 2015151352
Figure 2015151352

前記式(1)において、Aは、少なくとも2つはN、それ以外はCHである。Ar’は置換又は無置換の芳香族炭化水素基である。Xは、下記(化3)に示す置換基のうちのいずれかである。   In the formula (1), at least two of N are N, and CH is CH otherwise. Ar ′ is a substituted or unsubstituted aromatic hydrocarbon group. X is any of the substituents shown below (Chemical Formula 3).

Figure 2015151352
Figure 2015151352

上記のような構造からなるベンゾフロピリミジン誘導体は、電子受容性に優れ、また、有機EL素子の発光効率の向上を図ることができる高い三重項レベルを有している。   The benzofuropyrimidine derivative having the structure as described above has excellent electron acceptability, and has a high triplet level capable of improving the light emission efficiency of the organic EL device.

また、本発明によれば、前記ベンゾフロピリミジン誘導体よりなるホスト材料が提供される。
前記ベンゾフロピリミジン誘導体は、リン光材料のホスト材料として好適である。
In addition, according to the present invention, a host material comprising the benzofuropyrimidine derivative is provided.
The benzofuropyrimidine derivative is suitable as a host material for a phosphorescent material.

また、本発明によれば、前記ベンゾフロピリミジン誘導体が用いられていることを特徴とする有機EL素子が提供される。
このように、本発明に係るベンゾフロピリミジン誘導体を用いることにより、有機EL素子の発光効率の向上が図られる。
In addition, according to the present invention, there is provided an organic EL device characterized in that the benzofuropyrimidine derivative is used.
Thus, by using the benzofuropyrimidine derivative according to the present invention, the light emission efficiency of the organic EL element can be improved.

本発明に係る新規なベンゾフロピリミジン誘導体は、電子受容性に優れ、また、有機EL素子の発光効率の向上を図ることができる高い三重項レベルを有しており、発光層内のキャリアバランスを整えることができ、リン光材料のホスト材料として好適である。
したがって、本発明に係るベンゾフロピリミジン誘導体を用いることにより、高効率な有機EL素子を提供することができる。
The novel benzofuropyrimidine derivative according to the present invention is excellent in electron acceptability and has a high triplet level capable of improving the light emission efficiency of the organic EL device, thereby improving the carrier balance in the light emitting layer. It can be prepared and is suitable as a host material of a phosphorescent material.
Therefore, a highly efficient organic EL device can be provided by using the benzofuropyrimidine derivative according to the present invention.

本発明に係る有機EL素子の層構造の一例を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically an example of the layer structure of the organic EL element which concerns on this invention. 実施例の有機EL素子の電流密度−電圧特性を示したグラフである。It is the graph which showed the current density-voltage characteristic of the organic EL element of an Example.

以下、本発明について、より詳細に説明する。
本発明に係るベンゾフロピリミジン誘導体は、前記一般式(1)で表される化合物である。
前記式(1)において、Aは、少なくとも2つはN、それ以外はCHである。Ar’は置換又は無置換の芳香族炭化水素基である。Xは、上記(化3)に示す置換基のうちのいずれかである。
このようなベンゾフロピリミジン誘導体は、新規化合物であり、ベンゾフロピリミジンと芳香族化合物との組み合わせにより形成されるものである。このような構造とすることにより、高い三重項レベルのみならず、電子輸送性の向上が期待される。
Hereinafter, the present invention will be described in more detail.
The benzofuropyrimidine derivative according to the present invention is a compound represented by the general formula (1).
In the formula (1), at least two of N are N, and CH is CH otherwise. Ar ′ is a substituted or unsubstituted aromatic hydrocarbon group. X is any of the substituents shown in the above (Chemical Formula 3).
Such a benzofuropyrimidine derivative is a novel compound and is formed by a combination of a benzofuropyrimidine and an aromatic compound. With such a structure, not only a high triplet level but also an improvement in electron transportability is expected.

ベンゾフロピリミジン骨格は、ジベンゾフランに窒素原子を導入し、電子受容性を向上させたものであり、このような電子受容性部位によって、有機EL素子における発光層内のキャリアバランスを調えることができる。
したがって、リン光材料のドーパントのホスト材料として好適に用いることができる。
また、前記ベンゾフロピリミジン誘導体は、高い三重項レベルを持つことから、発光材料の励起子の消光を防止することができ、有機EL素子の低電圧駆動かつ発光効率の向上を図ることができる。
The benzofuropyrimidine skeleton is obtained by introducing a nitrogen atom into dibenzofuran to improve the electron accepting property, and the carrier balance in the light emitting layer in the organic EL element can be adjusted by such an electron accepting site.
Therefore, it can be suitably used as a host material for a dopant of a phosphorescent material.
In addition, since the benzofuropyrimidine derivative has a high triplet level, quenching of excitons of the light emitting material can be prevented, and the organic EL element can be driven at a low voltage and the light emission efficiency can be improved.

前記一般式(1)で表されるベンゾフロピリミジン誘導体のうち、代表例としては、下記に示す2−フェニル−8−(3−(2−フェニルベンゾフロ[3,2,d]ピリミジン−8−イル)フェニル)ベンゾフルオロ[3,2,d]ピリミジン(以下、Ph−DBFPmと略称する)が挙げられる。   Among the benzofuropyrimidine derivatives represented by the general formula (1), representative examples include 2-phenyl-8- (3- (2-phenylbenzofuro [3,2, d] pyrimidine-8 shown below. -Yl) phenyl) benzofluoro [3,2, d] pyrimidine (hereinafter abbreviated as Ph-DBFPm).

Figure 2015151352
Figure 2015151352

上記のような本発明に係るベンゾフロピリミジン誘導体の合成方法は、特に限定されるものではないが、例えば、下記実施例に示すような方法により合成することができる。   The method for synthesizing the benzofuropyrimidine derivative according to the present invention as described above is not particularly limited.

上記のようなベンゾフロピリミジン誘導体が用いられている本発明に係る有機EL素子は、一対の電極間に少なくとも1層の有機層が積層された構造からなる。具体的な層構造としては、例えば、図1に示すように、陽極1/ホール輸送層2/発光層3/電子輸送層4/電子注入層5/負極6のような構造が挙げられる。
さらに、ホール注入層、ホール輸送発光層、電子輸送発光層等をも含む公知の積層構造であってもよい。
また、本発明に係る有機EL素子は、1つの発光層を含む発光ユニットが電荷発生層を介して直列式に複数段積層されてなるマルチフォトンエミッション構造の素子であってもよい。
The organic EL device according to the present invention using the benzofuropyrimidine derivative as described above has a structure in which at least one organic layer is laminated between a pair of electrodes. As a specific layer structure, for example, as shown in FIG. 1, a structure such as anode 1 / hole transport layer 2 / light emitting layer 3 / electron transport layer 4 / electron injection layer 5 / negative electrode 6 can be cited.
Furthermore, a known laminated structure including a hole injection layer, a hole transport light emitting layer, an electron transport light emitting layer, and the like may be used.
The organic EL element according to the present invention may be an element having a multi-photon emission structure in which a plurality of light emitting units including one light emitting layer are stacked in series via a charge generation layer.

前記有機EL素子において、本発明に係るベンゾフロピリミジン誘導体は、前記有機層のいずれに用いられてもよく、ホール輸送材料、発光材料、電子輸送材料とともに分散して用いることや、この分散させた層中へ発光色素をドープすることも可能である。
特に、前記ベンゾフロピリミジン誘導体をホスト材料として用い、これにリン光材料をドープした発光層を構成することにより、リン光材料を効率よく発光させることができる。
In the organic EL element, the benzofuropyrimidine derivative according to the present invention may be used in any of the organic layers, and may be used in a dispersed manner together with a hole transport material, a light emitting material, or an electron transport material, or may be dispersed. It is also possible to dope a luminescent dye into the layer.
In particular, by using the benzofuropyrimidine derivative as a host material and forming a light emitting layer doped with the phosphorescent material, the phosphorescent material can be made to emit light efficiently.

なお、前記有機EL素子においては、本発明に係るベンゾフロピリミジン誘導体以外の各層の構成材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができ、低分子系又は高分子系のいずれであってもよい。
前記各層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、5nm〜5μmの範囲内であることが好ましい。
In the organic EL element, the constituent material of each layer other than the benzofuropyrimidine derivative according to the present invention is not particularly limited, and can be appropriately selected from known materials and used. Any of polymer type may be used.
The film thickness of each of the layers is appropriately determined depending on the situation in consideration of adaptability between the layers and the required total layer thickness, but is usually preferably in the range of 5 nm to 5 μm.

上記各層の形成方法は、蒸着法、スパッタリング法等などのドライプロセスでも、スピンコート法、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法等のウェットプロセスであってもよい。   The above layers can be formed by a dry process such as an evaporation method or a sputtering method, a spin coating method, an ink jet method, a casting method, a dip coating method, a bar coating method, a blade coating method, a roll coating method, a gravure coating method, a flexographic method. It may be a wet process such as a printing method or a spray coating method.

また、電極も、公知の材料及び構成でよく、特に限定されるものではない。例えば、ガラスやポリマーからなる透明基板上に透明導電性薄膜が形成されたものが用いられ、ガラス基板1に正極2として酸化インジウム錫(ITO)電極が形成された、いわゆるITO基板が一般的である。一方、負極6は、Al等の仕事関数の小さい(4eV以下)金属や合金、導電性化合物により構成される。   Also, the electrode may be a known material and configuration, and is not particularly limited. For example, a so-called ITO substrate in which a transparent conductive thin film is formed on a transparent substrate made of glass or polymer and an indium tin oxide (ITO) electrode is formed on the glass substrate 1 as the positive electrode 2 is generally used. is there. On the other hand, the negative electrode 6 is made of a metal, alloy, or conductive compound having a small work function (4 eV or less) such as Al.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
(ベンゾフロピリミジン誘導体の合成例)
本発明に係るベンゾフロピリミジン誘導体の代表例として、Ph−DBFPmの合成例を以下に示す。なお、各工程における目的物の同定は、1H−NMR、マススペクトルにて行った。
(1)(E)−1−(5−ブロモ−2−ヒドロキシフェニル)−3−(ジメチルアミノ)プロプ−2−エン−1−オンの合成
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
(Synthesis example of benzofuropyrimidine derivative)
As a representative example of the benzofuropyrimidine derivative according to the present invention, a synthesis example of Ph-DBFPm is shown below. In addition, the target object in each process was identified by 1 H-NMR and mass spectrum.
(1) Synthesis of (E) -1- (5-bromo-2-hydroxyphenyl) -3- (dimethylamino) prop-2-en-1-one

Figure 2015151352
Figure 2015151352

4つ口フラスコに、2−アセチル−4−ブロモフェノール10.0g(46.5mmol)、トルエン50mlを入れ、窒素バブリングを1時間行った後、N,N−ジメチルホルムアミドジメチルアセタール8.31ml(69.7mmol)を加え、窒素気流下、90℃で加熱還流した。3時間後、薄層クロマトグラフィー(TLC)にて、原料の消失を確認し、反応混合物を室温に戻した。
析出物をろ過し、得られた固体を減圧乾燥し、黄色固体9.5g(収率78%)を得た。
A 4-necked flask was charged with 10.0 g (46.5 mmol) of 2-acetyl-4-bromophenol and 50 ml of toluene, and after bubbling with nitrogen for 1 hour, 8.31 ml of N, N-dimethylformamide dimethyl acetal (69 0.7 mmol) was added, and the mixture was heated to reflux at 90 ° C. under a nitrogen stream. After 3 hours, disappearance of the raw materials was confirmed by thin layer chromatography (TLC), and the reaction mixture was returned to room temperature.
The precipitate was filtered, and the resulting solid was dried under reduced pressure to obtain 9.5 g (yield 78%) of a yellow solid.

(2)6−ブロモ−3−クロロ−4H−クロメン−4−オンの合成 (2) Synthesis of 6-bromo-3-chloro-4H-chromen-4-one

Figure 2015151352
Figure 2015151352

4つ口フラスコに(E)−1−(5−ブロモ−2−ヒドロキシフェニル)−3−(ジメチルアミノ)プロプ−2−エン−1−オン11.3g(41.8mmol)、脱水アセトニトリル75mlを入れ、窒素バブリングを1時間行った後、イオジンモノクロライド3.2ml(63mmol)を加えて撹拌した。30分後、TLCにて原料の消失を確認し、撹拌を停止した。
反応液を分液ロートに移し、10%チオ硫酸ナトリウム水溶液で洗浄後、クロロホルムで抽出した。有機層を回収し、硫酸マグネシウムで乾燥、ろ別し、減圧下で溶媒を留去した。得られた液体を、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=6:1)で分離精製後、減圧下で溶媒を留去した。得られた固体を減圧乾燥し、白色〜薄い黄色固体9.3g(収率82%)を得た。
In a four-necked flask, 11.3 g (41.8 mmol) of (E) -1- (5-bromo-2-hydroxyphenyl) -3- (dimethylamino) prop-2-en-1-one and 75 ml of dehydrated acetonitrile were added. After nitrogen bubbling for 1 hour, 3.2 ml (63 mmol) of iodine monochloride was added and stirred. After 30 minutes, disappearance of the raw material was confirmed by TLC, and stirring was stopped.
The reaction solution was transferred to a separatory funnel, washed with 10% aqueous sodium thiosulfate solution, and extracted with chloroform. The organic layer was collected, dried over magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained liquid was separated and purified by silica gel column chromatography (developing solvent: chloroform: hexane = 6: 1), and then the solvent was distilled off under reduced pressure. The obtained solid was dried under reduced pressure to obtain 9.3 g (yield 82%) of a white to pale yellow solid.

(3)8−ブロモ−2−フェニルベンゾフロ[3,2−d]ピリミジンの合成 (3) Synthesis of 8-bromo-2-phenylbenzofuro [3,2-d] pyrimidine

Figure 2015151352
Figure 2015151352

4つ口フラスコに、6−ブロモ−3−クロロ−4H−クロメン−4−オン1.0g(3.85mmol)、ベンズアミジン0.66g(4.24mmol)、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン1.26g(8.48mmol)、ジメチルホルムアミド30mlを入れ、窒素バブリングを1時間行った後、臭化銅(I)0.55g(3.85mmol)を加え、窒素気流下、80〜85℃で加熱還流した。16時間後、TLCにて原料の消失を確認し、反応混合物を室温に戻した。
反応混合物に水40mlを加えて分液ロートに移し、クロロホルムで抽出した後、飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥、ろ過し、減圧下で溶媒を一部留去した。得られた液体を、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で分離精製した。得られた液体を濃縮し、減圧乾燥し、白色固体0.85g(収率70%)を得た。
In a four-necked flask, 1.0 g (3.85 mmol) of 6-bromo-3-chloro-4H-chromen-4-one, 0.66 g (4.24 mmol) of benzamidine, 1,8-diazabicyclo [5,4, 0] -7-undecene (1.26 g, 8.48 mmol) and dimethylformamide (30 ml) were added, nitrogen bubbling was performed for 1 hour, and then copper (I) bromide (0.55 g, 3.85 mmol) was added under nitrogen flow. The mixture was heated to reflux at 80 to 85 ° C. After 16 hours, disappearance of the raw materials was confirmed by TLC, and the reaction mixture was returned to room temperature.
40 ml of water was added to the reaction mixture, transferred to a separatory funnel, extracted with chloroform, and then washed with saturated brine. The extract was dried over anhydrous sodium sulfate and filtered, and a part of the solvent was distilled off under reduced pressure. The obtained liquid was separated and purified by silica gel column chromatography (developing solvent: chloroform). The obtained liquid was concentrated and dried under reduced pressure to obtain 0.85 g (yield 70%) of a white solid.

(4)Ph−DBFPmの合成 (4) Synthesis of Ph-DBFPm

Figure 2015151352
Figure 2015151352

4つ口フラスコに、1,3−ビス(4,4,5,5,−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゼン1.51g(4.57mmol)、8−ブロモ−2−フェニルベンゾフロ[3,2−d]ピリミジン2.97g(9.15mmol)、2M炭酸カリウム水溶液23ml(4.55mmol)、トルエン46ml、エタノール23mlを入れ、窒素バブリングを1時間行った後、テトラキス(トリフェニルホスフィン)パラジウム(0)0.11g(0.09mmol)を加え、窒素気流下、70℃で加熱還流した。16時間後、TLCにて原料の消失を確認し、反応混合物を室温に戻した。
反応混合物に水50mlを加えて分液ロートに移し、クロロホルムで抽出した後、無水硫酸ナトリウムで乾燥、ろ別し、減圧下で溶媒を留去した。得られた液体を、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)で分離精製した。得られた液体を濃縮し、減圧乾燥し、白色固体0.70g(収率27%)を得た。
In a four-necked flask, 1.51 g (4.57 mmol) of 1,3-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzene, 8-bromo- After putting 2.97 g (9.15 mmol) of 2-phenylbenzofuro [3,2-d] pyrimidine, 23 ml (4.55 mmol) of 2M aqueous potassium carbonate solution, 46 ml of toluene and 23 ml of ethanol, and performing nitrogen bubbling for 1 hour, Tetrakis (triphenylphosphine) palladium (0) (0.11 g, 0.09 mmol) was added, and the mixture was heated to reflux at 70 ° C. under a nitrogen stream. After 16 hours, disappearance of the raw materials was confirmed by TLC, and the reaction mixture was returned to room temperature.
50 ml of water was added to the reaction mixture, transferred to a separatory funnel, extracted with chloroform, dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure. The obtained liquid was separated and purified by silica gel column chromatography (developing solvent: chloroform). The obtained liquid was concentrated and dried under reduced pressure to obtain 0.70 g (yield 27%) of a white solid.

上記により合成したPh−DBFPmについて、以下に示すような各種特性評価を行った。   Various characteristics evaluation as shown below was performed about Ph-DBFPm synthesize | combined by the above.

(熱特性評価)
融点は267℃であり、ガラス転移点は測定されなかった。
また、Ph−DBFPmは、分子量が566とそれほど大きくはないものの、5%重量減衰温度が460℃と非常に高い値を示すことが認められた。
(Thermal characteristics evaluation)
The melting point was 267 ° C., and the glass transition point was not measured.
In addition, although Ph-DBFPm has a molecular weight of 566, which is not so large, it was confirmed that the 5% weight decay temperature shows a very high value of 460 ° C.

(光学特性評価)
PYS(光電子収量分光)測定装置を用いて、HOMO−LUMOを測定したところ、HOMOが6.51eVと非常に深い値を示した。これは電子吸引性を示すベンゾフロピリミジン骨格による影響であると考えられる。
(Optical property evaluation)
When HOMO-LUMO was measured using a PYS (photoelectron yield spectroscopy) measuring apparatus, HOMO showed a very deep value of 6.51 eV. This is considered to be due to the influence of the benzofuropyrimidine skeleton exhibiting electron withdrawing property.

(有機EL素子の作製及び特性評価)
Ph−DBFPmをホスト材料として用いて、図1に示すような構造の有機EL素子を作製した。電子輸送層(ETL)には、B3PyPB又はB4PyPPMを用いた。
上記により作製した素子の層構成は、ITO/TAPC(35nm)/Ph−DBFPm:NIR1(20nm)/ETL(40nm)/LiF(1nm)/Al(100nm)である。
なお、TAPC、B3PyPB、B4PyPPM、NIR1の化学式を下記に示す。
(Production and characteristic evaluation of organic EL elements)
Using Ph-DBFPm as a host material, an organic EL device having a structure as shown in FIG. 1 was produced. B3PyPB or B4PyPPM was used for the electron transport layer (ETL).
The layer structure of the element produced as described above is ITO / TAPC (35 nm) / Ph-DBFPm: NIR1 (20 nm) / ETL (40 nm) / LiF (1 nm) / Al (100 nm).
The chemical formulas of TAPC, B3PyPB, B4PyPPM, and NIR1 are shown below.

Figure 2015151352
Figure 2015151352

図2に、上記において作製した各素子の電流密度−電圧特性のグラフを示す。
図2に示したグラフからも分かるように、B3PyPBよりもLUMO準位の低いB4PyPPMを電子輸送層に用いた場合の方が、低電圧化を示した。これは、ホスト材料のPh−DBFPmのLUMO準位に電子が注入されやすくなったためと考えられる。
FIG. 2 shows a graph of current density-voltage characteristics of each element manufactured as described above.
As can be seen from the graph shown in FIG. 2, the voltage was lowered when B4PyPPM having a lower LUMO level than B3PyPB was used for the electron transport layer. This is presumably because electrons are easily injected into the LUMO level of the host material Ph-DBFPm.

1 陽極
2 ホール輸送層
3 発光層
4 電子輸送層
5 電子注入層
6 陰極
DESCRIPTION OF SYMBOLS 1 Anode 2 Hole transport layer 3 Light emitting layer 4 Electron transport layer 5 Electron injection layer 6 Cathode

Claims (3)

下記一般式(1)で表されるベンゾフロピリミジン誘導体。
Figure 2015151352
(式(1)中、Aは、少なくとも2つはN、それ以外はCHである。Ar’は置換又は無置換の芳香族炭化水素基である。Xは、下記(化2)に示す置換基のうちのいずれかである。)
Figure 2015151352
A benzofuropyrimidine derivative represented by the following general formula (1).
Figure 2015151352
(In formula (1), A is at least two N and the others are CH. Ar ′ is a substituted or unsubstituted aromatic hydrocarbon group. X is a substitution represented by the following (Chemical Formula 2) Any of the groups.)
Figure 2015151352
請求項1記載のベンゾフロピリミジン誘導体よりなることを特徴とするホスト材料。   A host material comprising the benzofuropyrimidine derivative according to claim 1. 請求項1記載のベンゾフロピリミジン誘導体が用いられていることを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescence device, wherein the benzofuropyrimidine derivative according to claim 1 is used.
JP2014024993A 2014-02-13 2014-02-13 Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same Pending JP2015151352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024993A JP2015151352A (en) 2014-02-13 2014-02-13 Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024993A JP2015151352A (en) 2014-02-13 2014-02-13 Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same

Publications (1)

Publication Number Publication Date
JP2015151352A true JP2015151352A (en) 2015-08-24

Family

ID=53893984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024993A Pending JP2015151352A (en) 2014-02-13 2014-02-13 Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same

Country Status (1)

Country Link
JP (1) JP2015151352A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3056498A1 (en) * 2015-02-13 2016-08-17 Samsung SDI Co., Ltd. Diazadibenzofurane and diazadibenzothiophene derivatives and their use in organic optoelectronic devices
WO2018122664A1 (en) * 2016-12-28 2018-07-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, organic compound, light-emitting device, electronic device, and lighting device
WO2018234926A1 (en) * 2017-06-22 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2018234932A1 (en) * 2017-06-23 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074939A (en) * 2006-09-21 2008-04-03 Konica Minolta Holdings Inc Organic electroluminescence element material, organic electroluminescence element, display device and illumination device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074939A (en) * 2006-09-21 2008-04-03 Konica Minolta Holdings Inc Organic electroluminescence element material, organic electroluminescence element, display device and illumination device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3056498A1 (en) * 2015-02-13 2016-08-17 Samsung SDI Co., Ltd. Diazadibenzofurane and diazadibenzothiophene derivatives and their use in organic optoelectronic devices
WO2018122664A1 (en) * 2016-12-28 2018-07-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, organic compound, light-emitting device, electronic device, and lighting device
TWI787222B (en) * 2016-12-28 2022-12-21 日商半導體能源研究所股份有限公司 Light-emitting element, organic compound, light-emitting device, electronic device, and lighting device
CN110073510A (en) * 2016-12-28 2019-07-30 株式会社半导体能源研究所 Light-emitting component, organic compound, light emitting device, electronic equipment and lighting device
WO2018234926A1 (en) * 2017-06-22 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
EP3642208A4 (en) * 2017-06-22 2020-12-23 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN110785421A (en) * 2017-06-23 2020-02-11 株式会社半导体能源研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR20200019709A (en) * 2017-06-23 2020-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compounds, light emitting devices, light emitting devices, electronic devices, and lighting devices
JP2019006768A (en) * 2017-06-23 2019-01-17 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic apparatus and lighting apparatus
JP7106366B2 (en) 2017-06-23 2022-07-26 株式会社半導体エネルギー研究所 organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
US11456424B2 (en) 2017-06-23 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent host material
WO2018234932A1 (en) * 2017-06-23 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR102645515B1 (en) * 2017-06-23 2024-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices

Similar Documents

Publication Publication Date Title
JP6825195B2 (en) Organic electroluminescent device
JP6596587B2 (en) COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND ELECTRONIC DEVICE THEREOF
JP6430370B2 (en) Luminescent materials, organic light emitting devices and compounds
CN103443241B (en) For the compound of organic optoelectronic device, the Organic Light Emitting Diode comprising this compound and the display device comprising this diode
JP6367189B2 (en) Luminescent materials, organic light emitting devices and compounds
KR101561566B1 (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
JP5723764B2 (en) Organic electroluminescence device
WO2018159662A1 (en) Compound, light emitting material and organic light emitting element
CN105408310B (en) Carbazole derivates have used its material for organic electroluminescence device and have used its organic electroluminescent device and electronic equipment
WO2014185598A1 (en) Organic compound, organic optoelectronic element, and display device
CN106883205B (en) Novel compound and organic light-emitting device comprising same
TW201315795A (en) Phosphorescent organic light emitting devices combined with hole transport material having high operating stability
WO2016024675A1 (en) Organic photoelectronic device and display device
TWI741087B (en) High-molecular weight compound containing a substituted triarylamine structural unit
CN110078755B (en) Compound, display panel and display device
CN105431424A (en) Compound, material for organic electroluminescent element, ink composition, organic electroluminescent element, electronic device, and method for producing compound
KR20130121597A (en) Using triphenylamine as hole transporting mateial and organic electroluminescent device using the same
KR20200095709A (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
CN105431505A (en) Compound, material for organic electroluminescent element, ink composition, organic electroluminescent element, and electronic device
JP2015151352A (en) Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same
JP2015115372A (en) Material for organic electroluminescent devices, and organic electroluminescent device using the same
JP2019026556A (en) Arylamine derivative, hole transport material using the same, and organic el element
JP5609234B2 (en) Biscarbazole compounds and uses thereof
Zhang et al. Novel host materials based on phenanthroimidazole derivatives for highly efficient green phosphorescent OLEDs
KR20150010579A (en) A material for organic electroluminescent device and an organic electroluminescent device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180319