JP2015153630A - Charged particle beam irradiation device and charged particle beam axis adjustment method - Google Patents

Charged particle beam irradiation device and charged particle beam axis adjustment method Download PDF

Info

Publication number
JP2015153630A
JP2015153630A JP2014026888A JP2014026888A JP2015153630A JP 2015153630 A JP2015153630 A JP 2015153630A JP 2014026888 A JP2014026888 A JP 2014026888A JP 2014026888 A JP2014026888 A JP 2014026888A JP 2015153630 A JP2015153630 A JP 2015153630A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
center
opening
scanning range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014026888A
Other languages
Japanese (ja)
Other versions
JP6075306B2 (en
Inventor
丈寛 石川
Takehiro Ishikawa
丈寛 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014026888A priority Critical patent/JP6075306B2/en
Publication of JP2015153630A publication Critical patent/JP2015153630A/en
Application granted granted Critical
Publication of JP6075306B2 publication Critical patent/JP6075306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance the axis adjustment operability of a charged particle beam in a charged particle beam irradiation device, and to enhance the accuracy thereof.SOLUTION: A charged particle beam irradiation device 100 includes a beam source 101 for emitting a charged particle beam, an aperture plate 103a having an aperture 130, a deflection unit 102 for deflecting the charged particle beam, a control unit 110 for scanning the deflection unit 102 with the charged particle beam, in a scanning range wider than the aperture 130 above the aperture plate 103a, a detector 140 provided insertably on an axis passing through the beam source 101 and the center of the aperture 130, and detecting passage of the deflected charged particle beam through the aperture 130, a beam position extraction unit 141 for determining the centroid position of a region of the charged particle beam passed through the aperture 130 in the scanning range, and a correction unit 142 for determining the current amount supplied to the deflection unit 102, the centroid position of which becomes the center of the scanning range.

Description

本発明は、走査電子顕微鏡、電子線微小部分析装置等の分析装置・観察装置や、電子ビーム描画装置、電子ビーム加工機、イオンビーム微細加工装置等の加工装置など、電子ビームやイオンビームなどの荷電粒子を利用する各種装置において荷電粒子ビームを試料等の対象物に照射する荷電粒子ビーム照射装置、及び、そうした荷電粒子ビーム照射装置において荷電粒子ビームの光軸を調整する軸調整方法に関する。   The present invention includes an electron beam, an ion beam, etc., such as a scanning electron microscope, an analysis device / observation device such as an electron beam microanalyzer, an electron beam drawing device, an electron beam processing machine, an ion beam micromachining device, etc. The present invention relates to a charged particle beam irradiation apparatus for irradiating an object such as a sample with a charged particle beam in various apparatuses using charged particles, and an axis adjustment method for adjusting the optical axis of the charged particle beam in such a charged particle beam irradiation apparatus.

特許文献1には、このような荷電粒子ビーム照射装置とその軸調整方法が開示されている。図4に、従来の荷電粒子ビーム照射装置の概略構成図を示す。図4に示す荷電粒子ビーム照射装置400は、荷電粒子ビームとして電子ビームを試料に照射する装置であり、電子ビームEを射出する電子銃で成るビーム源401と電子ビームが照射される試料ステージ409上に設置された試料408との間に、それらビーム源401と試料408とを結ぶ軸Cに沿って、第1アパーチャ板414、第1集束レンズ419、X方向、Y方向偏向器421、422から成るビーム偏向部402、第2集束レンズ403、第2アパーチャ板405、走査コイル406、及び対物レンズ407を備えている。また、これら各部を制御するための、制御部410、レンズ電源部411、偏向電源部412、ビーム走査電源部413、二次電子計測部415、画像処理部416、操作部417、及び表示部418を備えている。ビーム源401から射出され、第1アパーチャ板414を通過した電子ビームは、第1集束レンズ419で集束され、ビーム偏向部402により第2集束レンズ403のアパーチャ板(コンデンサ用アパーチャ板)403aの第1開口部430を通過するように調整される。第2集束レンズ403を通過した集束電子ビームは第2アパーチャ板405を通過した後、走査コイル406により試料408上を走査するように偏向される。その後、対物レンズ407により試料408の表面上に集束される。   Patent Document 1 discloses such a charged particle beam irradiation apparatus and its axis adjustment method. FIG. 4 shows a schematic configuration diagram of a conventional charged particle beam irradiation apparatus. A charged particle beam irradiation apparatus 400 shown in FIG. 4 is an apparatus that irradiates a sample with an electron beam as a charged particle beam. A beam source 401 including an electron gun that emits an electron beam E and a sample stage 409 on which the electron beam is irradiated. A first aperture plate 414, first focusing lens 419, X direction and Y direction deflectors 421, 422 are arranged along the axis C connecting the beam source 401 and the sample 408 between the sample 408 and the sample 408 installed on the top. , A second focusing lens 403, a second aperture plate 405, a scanning coil 406, and an objective lens 407. Further, a control unit 410, a lens power supply unit 411, a deflection power supply unit 412, a beam scanning power supply unit 413, a secondary electron measurement unit 415, an image processing unit 416, an operation unit 417, and a display unit 418 for controlling these units. It has. The electron beam emitted from the beam source 401 and passed through the first aperture plate 414 is focused by the first focusing lens 419, and the beam deflecting unit 402 causes the second aperture lens (capacitor aperture plate) 403a of the second focusing lens 403 to be focused. Adjustment is made to pass through one opening 430. The focused electron beam that has passed through the second focusing lens 403 passes through the second aperture plate 405 and is then deflected by the scanning coil 406 so as to scan the sample 408. Thereafter, the light is focused on the surface of the sample 408 by the objective lens 407.

特開2011-054426号公報JP 2011-054426

このような荷電粒子ビーム照射装置において、ビーム源401の電子ビームが射出される位置、第2集束レンズ403の電子ビームの通過領域を制限するコンデンサ用アパーチャ板403aの第1開口部430の中心位置、第2アパーチャ板405の第2開口部450の中心位置、及び対物レンズ407の中心位置がいずれも一直線上にあって、これらの位置が動かないものであれば理想的である。しかし、実際には、各位置のずれが全くないように各構成要素を配置することは困難であり、また、理想的な配置をしたとしても、装置に加わる衝撃や振動などによって各位置のずれが生じてしまう。このような荷電粒子ビーム照射装置において、微小径の荷電粒子ビームを試料や加工物上の所定位置に正確に照射するためには、荷電粒子ビームがビーム源401から試料408に進む際に通過する軌道を軸Cと合わせる調整(以下、軸調整と呼ぶ)を高精度に行っておく必要がある。   In such a charged particle beam irradiation apparatus, the center position of the first opening 430 of the aperture plate 403a for the capacitor that restricts the electron beam emission position of the beam source 401 and the electron beam passage area of the second focusing lens 403. It is ideal if the center position of the second opening 450 of the second aperture plate 405 and the center position of the objective lens 407 are both in a straight line and these positions do not move. However, in reality, it is difficult to arrange each component so that there is no displacement of each position, and even if it is ideally arranged, the displacement of each position is caused by impact or vibration applied to the device. Will occur. In such a charged particle beam irradiation apparatus, in order to accurately irradiate a predetermined position on a sample or workpiece with a charged particle beam having a small diameter, the charged particle beam passes as it travels from the beam source 401 to the sample 408. It is necessary to perform adjustment with which the trajectory is aligned with the axis C (hereinafter referred to as axis adjustment) with high accuracy.

従来の荷電粒子ビーム照射装置400における荷電粒子ビームの軸調整は、次のように行われていた。まず、軸調整用試料408aを試料ステージ409上に載置する。軸調整用試料408aは、荷電粒子ビームが照射された際に二次電子を放出する試料であり、例えば、酸化ジルコニウムが用いられる。   The axis adjustment of the charged particle beam in the conventional charged particle beam irradiation apparatus 400 has been performed as follows. First, the axis adjustment sample 408 a is placed on the sample stage 409. The axis adjusting sample 408a is a sample that emits secondary electrons when irradiated with a charged particle beam. For example, zirconium oxide is used.

次に、ビーム源401から電子ビームを射出し、第1集束レンズ419を調整して該電子ビームをコンデンサ用アパーチャ板403aの第1開口部430に集束させる。制御部410は、偏向電源部412に走査信号を与え、ビーム偏向部402のX方向、Y方向偏向器421、422を用いて電子ビームをコンデンサ用アパーチャ板403a上で走査する。電子ビームが第1開口部430を通過した場合には、電子ビームが軸調整用試料408aに入射し、そこから二次電子が放出されるが、電子ビームがコンデンサ用アパーチャ板403aで遮蔽された場合には軸調整用試料408aから二次電子が放出されない。   Next, an electron beam is emitted from the beam source 401 and the first focusing lens 419 is adjusted to focus the electron beam on the first opening 430 of the condenser aperture plate 403a. The control unit 410 gives a scanning signal to the deflection power source unit 412 and scans the electron beam on the condenser aperture plate 403 a using the X-direction and Y-direction deflectors 421 and 422 of the beam deflection unit 402. When the electron beam passes through the first opening 430, the electron beam is incident on the axis adjustment sample 408a, and secondary electrons are emitted therefrom, but the electron beam is shielded by the capacitor aperture plate 403a. In this case, secondary electrons are not emitted from the axis adjustment sample 408a.

二次電子計測部415は電子ビームの各走査位置において、軸調整用試料408aから放出される二次電子を検出する。画像処理部416は、制御部410が有する電子ビームの走査位置の情報と二次電子計測部415が検出した二次電子の情報からアパーチャ像を作成し、表示部418に該アパーチャ像を表示する。   The secondary electron measurement unit 415 detects secondary electrons emitted from the axis adjustment sample 408a at each scanning position of the electron beam. The image processing unit 416 creates an aperture image from the information on the scanning position of the electron beam held by the control unit 410 and the information on the secondary electrons detected by the secondary electron measurement unit 415, and displays the aperture image on the display unit 418. .

アパーチャ像の一例を図5に示す。図5において、枠線57は電子ビームをコンデンサ用アパーチャ板403a上で走査させた範囲を示す。十字で示された走査中心位置56はビーム偏向部402が電子ビームをコンデンサ用アパーチャ板403a上で走査させた範囲の中心に相当し、アパーチャ像の円形パターン55は、電子ビームが軸調整用試料408aに入射する範囲、つまり、第1開口部430を通過した領域に相当する。走査中心位置56と円形パターン55の中心位置のずれは、電子ビームが軸Cからずれていることを反映している。   An example of the aperture image is shown in FIG. In FIG. 5, a frame line 57 indicates a range in which the electron beam is scanned on the capacitor aperture plate 403a. The scanning center position 56 indicated by a cross corresponds to the center of the range in which the beam deflecting unit 402 scanned the electron beam on the condenser aperture plate 403a, and the circular pattern 55 of the aperture image indicates that the electron beam is an axis adjustment sample. This corresponds to a range incident on 408 a, that is, a region that has passed through the first opening 430. The deviation between the scanning center position 56 and the center position of the circular pattern 55 reflects the deviation of the electron beam from the axis C.

ユーザは表示部418の画面に表示されたアパーチャ像を見ながら、図6のようにアパーチャ像の円形パターン55の中心が、十字で表示された走査中心位置56に来るように、操作部417を用いてアパーチャ像を移動させる。制御部410は、このような画像上の操作による移動量のデータから走査中心位置56に対応する電子ビームの偏向方向を決定すると共に、該偏向方向が走査範囲の中心と対応するようにX方向、Y方向偏向器421、422への供給電流等の制御パラメータを調整する。   While viewing the aperture image displayed on the screen of the display unit 418, the user moves the operation unit 417 so that the center of the circular pattern 55 of the aperture image comes to the scanning center position 56 displayed as a cross as shown in FIG. Use to move the aperture image. The control unit 410 determines the deflection direction of the electron beam corresponding to the scanning center position 56 from the data of the movement amount by such an operation on the image, and the X direction so that the deflection direction corresponds to the center of the scanning range. , Control parameters such as a supply current to the Y-direction deflectors 421 and 422 are adjusted.

このような手順で行われる従来の荷電粒子ビーム照射装置における荷電粒子ビームの軸調整は、軸調整用試料408aを試料ステージ409上に載置したり、制御パラメータを調整するためにユーザが表示部418の画面を見ながら手動で画像を操作したりする必要があるなど、操作性が悪い。また、軸調整用試料408aおよびユーザ依存の調整であるため、荷電粒子ビームの軸調整の精度は調整毎にばらついてしまう。   The charged particle beam axis adjustment in the conventional charged particle beam irradiation apparatus performed in such a procedure is performed by the user in order to place the axis adjustment sample 408a on the sample stage 409 or to adjust the control parameter. The operability is poor, for example, it is necessary to manually manipulate the image while viewing the screen 418. In addition, since the adjustment is based on the axis adjustment sample 408a and the user, the accuracy of the axis adjustment of the charged particle beam varies for each adjustment.

本発明は上記の点に鑑みて成されたものであり、その目的とするところは、荷電粒子ビーム照射装置における荷電粒子ビームの軸調整の操作性を向上し、また、その精度を向上させることにある。   The present invention has been made in view of the above points, and an object of the present invention is to improve the operability of the axis adjustment of the charged particle beam in the charged particle beam irradiation apparatus and to improve the accuracy thereof. It is in.

上記課題を解決するために成された本発明に係る荷電粒子ビーム照射装置は、
a)荷電粒子ビームを射出するビーム源と、
b)開口部を有するアパーチャ板と、
c)前記荷電粒子ビームを偏向させる偏向部と、
d)前記アパーチャ板上で前記開口部よりも広い範囲である走査範囲において前記荷電粒子ビームを前記偏向部に走査させる制御部と、
e)前記ビーム源と前記開口部の中心を通る軸上に挿入可能に設けられ、且つ、偏向された前記荷電粒子ビームの前記開口部の通過を検出する検出部と、
f)前記走査範囲における、前記開口部を通過した荷電粒子の領域の重心位置を求めるビーム位置抽出部と、
g)前記重心位置が前記走査範囲の中心となる、前記偏向部に供給する電流量を決定する補正部と、
を備える。
The charged particle beam irradiation apparatus according to the present invention, which has been made to solve the above problems,
a) a beam source for emitting a charged particle beam;
b) an aperture plate having an opening;
c) a deflection unit for deflecting the charged particle beam;
d) a control unit that causes the deflection unit to scan the charged particle beam in a scanning range that is wider than the opening on the aperture plate;
e) a detection unit provided so as to be insertable on an axis passing through the center of the beam source and the opening, and detecting the passing of the deflected charged particle beam through the opening;
f) a beam position extraction unit that obtains the position of the center of gravity of the charged particle region that has passed through the opening in the scanning range;
g) a correction unit that determines an amount of current to be supplied to the deflecting unit, wherein the position of the center of gravity is the center of the scanning range;
Is provided.

また、上記課題を解決するために成された本発明に係る荷電粒子ビーム軸調整方法は、
a)ビーム源から荷電粒子ビームを射出する射出ステップと、
b)アパーチャ板上で該アパーチャ板が有する開口部よりも広い範囲である走査範囲において前記荷電粒子ビームを走査させるように偏向部に前記荷電粒子ビームを偏向させる偏向ステップと、
c)前記ビーム源と前記開口部の中心を通る軸上に検出部を挿入し、偏向された前記荷電粒子ビームの前記開口部の通過を検出する検出ステップと、
d)前記走査範囲における、前記開口部を通過した荷電粒子の領域の重心位置を求めるビーム位置抽出ステップと、
e)前記重心位置が前記走査範囲の中心となる、前記偏向部に供給する電流量を決定する決定ステップと、
を備える。
Further, the charged particle beam axis adjusting method according to the present invention, which has been made to solve the above problems,
a) an injection step of emitting a charged particle beam from a beam source;
b) a deflection step for deflecting the charged particle beam on the aperture plate so that the charged particle beam is scanned in a scanning range that is wider than the aperture of the aperture plate;
c) a detection step of inserting a detector on an axis passing through the center of the beam source and the opening, and detecting the passing of the deflected charged particle beam through the opening;
d) a beam position extraction step for obtaining a gravity center position of a charged particle region that has passed through the opening in the scanning range;
e) a determination step of determining an amount of current to be supplied to the deflection unit, wherein the position of the center of gravity is the center of the scanning range;
Is provided.

前記重心位置は、前記開口部を通過した荷電粒子の領域における前記検出部による測定値を重みとした、前記走査範囲の中心を原点とする前記走査範囲の走査位置の加重平均(重み付き平均)を計算して求める構成にしてもよい。ここで、前記検出部がファラデーカップを備え、該ファラデーカップで検出されたビーム電流量(荷電粒子ビームの絶対強度)を測定値として用いてもよいし、該ファラデーカップで検出されたビーム電流量の所定の電流との差(荷電粒子ビームの相対強度)を測定値として用いてもよい。   The center-of-gravity position is a weighted average (weighted average) of the scanning positions of the scanning range with the center of the scanning range as the origin, with the measurement value by the detection unit in the charged particle region that has passed through the opening as a weight. You may make it the structure which calculates | requires and calculates | requires. Here, the detection unit may include a Faraday cup, and a beam current amount (absolute intensity of the charged particle beam) detected by the Faraday cup may be used as a measurement value, or a beam current amount detected by the Faraday cup. The difference from the predetermined current (relative intensity of the charged particle beam) may be used as a measured value.

本発明に係る荷電粒子ビーム照射装置及び荷電粒子ビーム軸調整方法によれば、試料やユーザに依らず荷電粒子ビームの軸調整を行うことができるため、荷電粒子ビームの軸調整の操作性を向上し、またその精度を向上させることができる。   According to the charged particle beam irradiation apparatus and the charged particle beam axis adjusting method according to the present invention, the charged particle beam axis can be adjusted regardless of the sample or the user, so that the operability of the charged particle beam axis adjustment is improved. In addition, the accuracy can be improved.

実施例に係る荷電粒子ビーム照射装置の概略構成図。The schematic block diagram of the charged particle beam irradiation apparatus which concerns on an Example. 実施例に係る荷電粒子ビーム照射装置における荷電粒子ビームの軸調整の手順を示すフローチャート。The flowchart which shows the procedure of the axis adjustment of the charged particle beam in the charged particle beam irradiation apparatus which concerns on an Example. 実施例に係る荷電粒子ビーム照射装置における(a)微調整の場合、(b)粗調整の場合の軸調整を説明する図。The figure explaining the axis adjustment in the case of (a) fine adjustment in the charged particle beam irradiation apparatus which concerns on an Example, and (b) rough adjustment. 従来の荷電粒子ビーム照射装置の概略構成図。The schematic block diagram of the conventional charged particle beam irradiation apparatus. 従来の荷電粒子ビーム照射装置における荷電粒子ビームの軸調整を説明する図。The figure explaining the axis adjustment of the charged particle beam in the conventional charged particle beam irradiation apparatus. 従来の荷電粒子ビーム照射装置における荷電粒子ビームの軸調整を説明する図。The figure explaining the axis adjustment of the charged particle beam in the conventional charged particle beam irradiation apparatus.

以下、本発明を実施するための形態を図1〜図3を参照しつつ実施例を用いて説明する。   Hereinafter, the form for implementing this invention is demonstrated using an Example, referring FIGS. 1-3.

本実施例の荷電粒子ビーム照射装置100の概略構成図を図1に示す。図1に示す荷電粒子ビーム照射装置100は、荷電粒子ビームとして電子ビームを試料に照射する装置であり、電子ビームEを射出する電子銃で成るビーム源101と電子ビームが照射される試料ステージ109上に設置された試料108との間に、それらビーム源101と試料108とを結ぶ軸Cに沿って、第1アパーチャ板114、第1集束レンズ119、X方向、Y方向偏向器121、122から成るビーム偏向部102、第2集束レンズ103、検出部140、第2アパーチャ板105、走査コイル106、及び対物レンズ107を備えている。また、これら各部を制御するための、制御部110、レンズ電源部111、偏向電源部112、ビーム走査電源部113、操作部117、ビーム位置抽出部141、及び補正部142を備えている。   A schematic configuration diagram of the charged particle beam irradiation apparatus 100 of the present embodiment is shown in FIG. A charged particle beam irradiation apparatus 100 shown in FIG. 1 is an apparatus that irradiates a sample with an electron beam as a charged particle beam. A beam source 101 including an electron gun that emits an electron beam E and a sample stage 109 that is irradiated with the electron beam. The first aperture plate 114, the first focusing lens 119, the X direction, and the Y direction deflectors 121 and 122 are arranged along the axis C connecting the beam source 101 and the sample 108 between the sample 108 and the sample 108 installed on the upper side. A beam deflection unit 102, a second focusing lens 103, a detection unit 140, a second aperture plate 105, a scanning coil 106, and an objective lens 107. Further, a control unit 110, a lens power supply unit 111, a deflection power supply unit 112, a beam scanning power supply unit 113, an operation unit 117, a beam position extraction unit 141, and a correction unit 142 are provided for controlling these units.

本実施例の荷電粒子ビーム照射装置100は、検出部140、ビーム位置抽出部141、及び補正部142を用いて、荷電粒子ビームの軸調整を行う構成であることに特徴を有している。検出部140がファラデーカップを備え、このファラデーカップが、コンデンサ用アパーチャ板103aを有する第2集束レンズ103と第2アパーチャ板105の間に、ビーム源101と試料108とを結ぶ軸Cから外れた位置140aから軸C上に挿入可能に設けられている場合を説明する。   The charged particle beam irradiation apparatus 100 according to the present embodiment is characterized in that a charged particle beam axis is adjusted using a detection unit 140, a beam position extraction unit 141, and a correction unit 142. The detection unit 140 includes a Faraday cup, and this Faraday cup is deviated from the axis C connecting the beam source 101 and the sample 108 between the second focusing lens 103 having the condenser aperture plate 103a and the second aperture plate 105. The case where it can be inserted on the axis C from the position 140a will be described.

ここで、「軸C」は、ビーム源101から電子ビームが射出される位置と、ビーム源101の直下であって、電子ビームが何ら外乱を受けなかった場合に試料108上に到達する位置とを結ぶものである。また、「ファラデーカップ」は金属製のカップであって、その金属の部分に荷電粒子ビームが当たると、金属には電荷が蓄積される。ファラデーカップに電流計を接続すると、金属の部分に当たった荷電粒子の数に応じた電流が流れるため、ファラデーカップを備える検出部140は、電流値として荷電粒子ビームの強度を検出することができる。   Here, “axis C” is a position at which the electron beam is emitted from the beam source 101, and a position immediately below the beam source 101 that reaches the sample 108 when the electron beam is not subjected to any disturbance. Tie. Further, the “Faraday cup” is a metal cup, and when a charged particle beam hits the metal portion, electric charges are accumulated in the metal. When an ammeter is connected to the Faraday cup, a current corresponding to the number of charged particles that hit the metal portion flows. Therefore, the detection unit 140 including the Faraday cup can detect the intensity of the charged particle beam as a current value. .

荷電粒子ビームの軸調整は、試料の測定前に予め行っておくものであり、以下、この軸調整の手順を図2を参照して説明する。   The axis adjustment of the charged particle beam is performed in advance before the measurement of the sample, and the procedure of this axis adjustment will be described below with reference to FIG.

まず、ユーザが操作部117を構成するマウスやキーボード等を操作して軸調整を荷電粒子ビーム照射装置100に指示する。荷電粒子ビーム照射装置100の制御部110が、この指示を受け取ると、制御部110は、図示しないモータ等の動力源を制御して、ファラデーカップで成る検出部140をコンデンサ用アパーチャ板103aの下であって、ビーム源101とコンデンサ用アパーチャ板103aの第1開口部130の中心を通る軸(軸C)上に移動させる。また、ビーム源101は、電子ビームEを射出する(ステップS21)。   First, the user operates the mouse, keyboard, or the like constituting the operation unit 117 to instruct the charged particle beam irradiation apparatus 100 to perform axis adjustment. When the control unit 110 of the charged particle beam irradiation apparatus 100 receives this instruction, the control unit 110 controls a power source such as a motor (not shown) so that the detection unit 140 formed of a Faraday cup is placed under the aperture plate 103a for the capacitor. Then, it is moved on an axis (axis C) passing through the center of the beam source 101 and the first opening 130 of the condenser aperture plate 103a. The beam source 101 emits an electron beam E (step S21).

次に、制御部110は第1集束レンズ119を調整する信号をレンズ電源部111に送り、レンズ電源部111は第1集束レンズ119に制御電流を供給する。第1集束レンズ119は、制御電流に従って、電子ビームEを第1開口部130近傍に集束させる。   Next, the control unit 110 sends a signal for adjusting the first focusing lens 119 to the lens power supply unit 111, and the lens power supply unit 111 supplies a control current to the first focusing lens 119. The first focusing lens 119 focuses the electron beam E near the first opening 130 according to the control current.

制御部110は、X方向、Y方向偏向器121、122による電子ビームEの偏向方向を変える走査信号を偏向電源部112に与える。偏向電源部112は走査信号に従って所定の電流をX方向、Y方向偏向器121、122に供給する。供給された制御電流の量に応じて、偏向器121は電子ビームEをX方向に偏向し、偏向器122は電子ビームEをY方向に偏向する(ステップS22)。ここで、X方向及びY方向は、軸Cと直交する面(X−Y面)内の方向である。走査信号は、このように電子ビームEをX方向及びY方向に偏向させ、電子ビームEをX−Y面内で第1開口部130よりも広い走査範囲に亘って走査させるものである。一例として、第1開口部130が直径25μmの円である場合、X方向に80μm、Y方向に80μmの正方形の範囲を走査範囲にすることができる。   The control unit 110 gives a scanning signal for changing the deflection direction of the electron beam E by the X-direction and Y-direction deflectors 121 and 122 to the deflection power supply unit 112. The deflection power supply unit 112 supplies a predetermined current to the X-direction and Y-direction deflectors 121 and 122 according to the scanning signal. In accordance with the amount of supplied control current, the deflector 121 deflects the electron beam E in the X direction, and the deflector 122 deflects the electron beam E in the Y direction (step S22). Here, the X direction and the Y direction are directions in a plane (XY plane) orthogonal to the axis C. Thus, the scanning signal deflects the electron beam E in the X direction and the Y direction, and scans the electron beam E over a scanning range wider than the first opening 130 in the XY plane. As an example, when the first opening 130 is a circle having a diameter of 25 μm, a square range of 80 μm in the X direction and 80 μm in the Y direction can be set as the scanning range.

電子ビームEを第1開口部130近傍に集束させた場合における、該第1開口部130近傍の拡大図を図3(a)及び図3(b)に示す。電子ビームEを図3(a)のように、第1開口部130が形成されたX−Y面内に集束させると、電子ビームEで照射されるX−Y面の範囲Rは、電子ビームEをコンデンサ用アパーチャ板103a上で走査させた範囲Sと同じ範囲になるため、軸調整の微調整ができる。一方、電子ビームEを集束させる位置を、図3(b)のように、X−Y面から軸Cに沿った電子ビームの進行方向である+Z方向に数μm程度ずらした位置にすると、電子ビームEで照射されるX−Y面の範囲R’は、電子ビームEをコンデンサ用アパーチャ板103a上で走査させた範囲Sより広い範囲になるため、軸調整の粗調整ができる。   3A and 3B are enlarged views of the vicinity of the first opening 130 when the electron beam E is focused near the first opening 130. FIG. When the electron beam E is focused in the XY plane where the first opening 130 is formed as shown in FIG. 3A, the range R of the XY plane irradiated with the electron beam E is the electron beam. Since E is in the same range as the range S scanned on the condenser aperture plate 103a, fine adjustment of the axis adjustment can be performed. On the other hand, if the position for focusing the electron beam E is shifted by several μm from the XY plane to the + Z direction, which is the traveling direction of the electron beam along the axis C, as shown in FIG. Since the range R ′ of the XY plane irradiated with the beam E is wider than the range S in which the electron beam E is scanned on the condenser aperture plate 103a, rough adjustment of the axis adjustment can be performed.

上述の走査範囲の中心を原点とした座標で上述の走査範囲を表すと、走査範囲はX方向に±40μm、Y方向に±40μmの正方形の範囲となる。この範囲において、電子ビームEが第1開口部130を通過する領域が全くないか一部の領域だけとなる場合は軸ずれが大きい。この場合、例えば、走査範囲をX方向に±120μm、Y方向に±120μmの正方形の範囲に拡げて粗調整を行い、第1開口部130の全領域が走査範囲内に収まるような電子ビームEの偏向方向を把握する。該偏向方向を次に行う走査範囲の中心に対応させた後、X方向、Y方向偏向器121、122への供給電流等の制御パラメータを調整する微調整を行う。以下では、微調整を行う場合を説明する。   If the above-mentioned scanning range is expressed by coordinates with the center of the above-mentioned scanning range as the origin, the scanning range is a square range of ± 40 μm in the X direction and ± 40 μm in the Y direction. In this range, when there is no region where the electron beam E passes through the first opening 130 or only a part of the region, the axial deviation is large. In this case, for example, the scanning range is expanded to a square range of ± 120 μm in the X direction and ± 120 μm in the Y direction, and coarse adjustment is performed, so that the entire region of the first opening 130 is within the scanning range. Know the direction of deflection. After the deflection direction is made to correspond to the center of the next scanning range, fine adjustment for adjusting control parameters such as supply current to the X-direction and Y-direction deflectors 121 and 122 is performed. Hereinafter, a case where fine adjustment is performed will be described.

コンデンサ用アパーチャ板103aの下であって軸C上に移動されたファラデーカップを備える検出部140は、X方向、Y方向偏向器121、122によって偏向された電子ビームEの強度に応じた電流値を出力する。これにより、走査範囲内の各偏向方向について、電子ビームEの第1開口部130の通過を検出する(ステップS23)。電子ビームEがコンデンサ用アパーチャ板103aによって遮蔽されると電流値は小さくなるが、電子ビームEが第1開口部130を通過すると電流値は大きくなる。   The detection unit 140 including the Faraday cup moved below the condenser aperture plate 103a and on the axis C has a current value corresponding to the intensity of the electron beam E deflected by the X-direction and Y-direction deflectors 121 and 122. Is output. Thereby, the passage of the electron beam E through the first opening 130 is detected for each deflection direction within the scanning range (step S23). When the electron beam E is shielded by the capacitor aperture plate 103a, the current value decreases. However, when the electron beam E passes through the first opening 130, the current value increases.

次に、ビーム位置抽出部141は、検出部140による測定値の情報と、制御部110が把握する走査位置の情報を取得し、検出部140による測定値を重みとした、走査範囲の中心を原点とする走査位置の加重平均(重み付き平均)を計算して、第1開口部130を通過した荷電粒子の領域の重心位置を求める(ステップS24)。すなわち、iを測定値が得られた全ての走査位置に割り当てられた変数、走査範囲の中心を原点として、測定値が得られた走査位置をx座標についてTxi[μm]、y座標についてTyi[μm]、測定値をIiとすると、重心位置のx座標の位置Tcxおよびy座標の位置Tcyは、それぞれ、Tcx=Σ(Ii×Txi)/ΣIi、Tcy=Σ(Ii×Tyi)/ΣIiを計算して求める。ここで、ファラデーカップで検出されたビーム電流量(荷電粒子ビームの絶対強度)を測定値として用いてもよいし、ファラデーカップで検出されたビーム電流量の所定の電流との差(荷電粒子ビームの相対強度)を測定値として用いてもよい。   Next, the beam position extraction unit 141 acquires information on the measurement value obtained by the detection unit 140 and information on the scanning position grasped by the control unit 110, and sets the center of the scanning range using the measurement value obtained by the detection unit 140 as a weight. A weighted average (weighted average) of the scanning positions as the origin is calculated, and the barycentric position of the charged particle region that has passed through the first opening 130 is obtained (step S24). That is, i is a variable assigned to all scanning positions from which measured values are obtained, the center of the scanning range is the origin, and the scanning position from which measured values are obtained is expressed as Txi [μm] for the x coordinate and Tyi [ μm] and the measured value is Ii, the x-coordinate position Tcx and the y-coordinate position Tcy of the centroid position are Tcx = Σ (Ii × Txi) / ΣIi and Tcy = Σ (Ii × Tyi) / ΣIi, respectively. Calculate to find. Here, the beam current amount (absolute intensity of the charged particle beam) detected by the Faraday cup may be used as a measurement value, or the difference between the beam current amount detected by the Faraday cup and a predetermined current (charged particle beam). Relative intensity) may be used as a measured value.

補正部142は、ステップS24で求めた重心位置が走査範囲の中心となる、偏向部102が備えるX方向、Y方向偏向器121、122に供給する電流量を決定する(ステップS25)。これにより、第1開口部130を通過した荷電粒子の領域の重心位置が、走査範囲の中心(原点)になり、荷電粒子ビームの軸調整が終了する。   The correction unit 142 determines the amount of current supplied to the X-direction and Y-direction deflectors 121 and 122 included in the deflection unit 102 in which the barycentric position obtained in step S24 is the center of the scanning range (step S25). As a result, the center of gravity of the charged particle region that has passed through the first opening 130 becomes the center (origin) of the scanning range, and the axis adjustment of the charged particle beam ends.

このように、本実施例の荷電粒子ビーム照射装置及び荷電粒子ビーム軸調整方法によれば、荷電粒子ビームの軸調整が、試料やユーザに依らず調整毎にばらつくことなく行えるため、荷電粒子ビームの軸調整の精度を向上させることができる。また、ビーム位置抽出部が強度の二次元空間分布の重心位置を定量的に求めるため、定量的な調整も可能である。さらに、本実施例の荷電粒子ビーム照射装置が、従来はユーザが手動で行っていた操作を行うため、操作性が向上する。   As described above, according to the charged particle beam irradiation apparatus and the charged particle beam axis adjusting method of the present embodiment, the charged particle beam axis adjustment can be performed without variation for each adjustment regardless of the sample and the user. The accuracy of the axis adjustment can be improved. Further, since the beam position extraction unit quantitatively obtains the position of the center of gravity of the intensity two-dimensional spatial distribution, quantitative adjustment is also possible. Furthermore, since the charged particle beam irradiation apparatus according to the present embodiment performs an operation that is conventionally performed manually by a user, the operability is improved.

本実施例では、荷電粒子ビームとして電子ビームを用いる場合を説明したが、本発明はこれに限られず、イオンビームなど、電荷を有し、その偏向方向を偏向器によって変えることができるものであれば、どのような荷電粒子ビームを用いてもよい。   In this embodiment, the case where an electron beam is used as the charged particle beam has been described. However, the present invention is not limited to this, and any ion beam or the like that has a charge and whose deflection direction can be changed by a deflector. Any charged particle beam may be used.

55…円形パターン
56…走査中心位置
57…枠線
100、400…荷電粒子ビーム照射装置
101、401…ビーム源
102、402…ビーム偏向部
103、403…集束レンズ
103a、403a…コンデンサ用アパーチャ板
105、405…第2アパーチャ板
106、406…走査コイル
107、407…対物レンズ
108、408…試料
109、409…試料ステージ
110、410…制御部
111、411…レンズ電源部
112、412…偏向電源部
113、413…ビーム走査電源部
114、414…第1アパーチャ板
117、417…操作部
119、419…集束レンズ
121、122、421、422…偏向器
130、430…第1開口部
140…検出部
141…ビーム位置抽出部
142…補正部
150、450…第2開口部
415…二次電子計測部
416…画像処理部
418…表示部
55 ... Circular pattern 56 ... Scanning center position 57 ... Frame line 100, 400 ... Charged particle beam irradiation apparatus 101, 401 ... Beam source 102, 402 ... Beam deflection section 103, 403 ... Condensing lens 103a, 403a ... Aperture plate 105 for condenser 405 ... second aperture plate 106,406 ... scanning coil 107,407 ... objective lens 108,408 ... sample 109,409 ... sample stage 110,410 ... control unit 111,411 ... lens power supply unit 112,412 ... deflection power supply unit 113, 413 ... beam scanning power supply units 114, 414 ... first aperture plates 117, 417 ... operation units 119, 419 ... focusing lenses 121, 122, 421, 422 ... deflectors 130, 430 ... first opening 140 ... detection unit 141: Beam position extraction unit 142: Correction unit 150, 450: Second opening 415 ... secondary electron measurement unit 416 ... image processing unit 418 ... display unit

Claims (6)

a)荷電粒子ビームを射出するビーム源と、
b)開口部を有するアパーチャ板と、
c)前記荷電粒子ビームを偏向させる偏向部と、
d)前記アパーチャ板上で前記開口部よりも広い範囲である走査範囲において前記荷電粒子ビームを前記偏向部に走査させる制御部と、
e)前記ビーム源と前記開口部の中心を通る軸上に挿入可能に設けられ、且つ、偏向された前記荷電粒子ビームの前記開口部の通過を検出する検出部と、
f)前記走査範囲における、前記開口部を通過した荷電粒子の領域の重心位置を求めるビーム位置抽出部と、
g)前記重心位置が前記走査範囲の中心となる、前記偏向部に供給する電流量を決定する補正部と、
を備える、荷電粒子ビーム照射装置。
a) a beam source for emitting a charged particle beam;
b) an aperture plate having an opening;
c) a deflection unit for deflecting the charged particle beam;
d) a control unit that causes the deflection unit to scan the charged particle beam in a scanning range that is wider than the opening on the aperture plate;
e) a detection unit provided so as to be insertable on an axis passing through the center of the beam source and the opening, and detecting the passing of the deflected charged particle beam through the opening;
f) a beam position extraction unit that obtains the position of the center of gravity of the charged particle region that has passed through the opening in the scanning range;
g) a correction unit that determines an amount of current to be supplied to the deflecting unit, wherein the position of the center of gravity is the center of the scanning range;
A charged particle beam irradiation apparatus comprising:
前記重心位置は、前記開口部を通過した荷電粒子の領域における前記検出部による測定値を重みとした、前記走査範囲の中心を原点とする前記走査範囲の走査位置の加重平均を計算して求める、請求項1に記載の荷電粒子ビーム照射装置。   The center-of-gravity position is obtained by calculating a weighted average of the scanning positions of the scanning range with the center of the scanning range as the origin, with the measurement value by the detection unit in the charged particle region that has passed through the opening as a weight. The charged particle beam irradiation apparatus according to claim 1. 前記検出部はファラデーカップを備え、該ファラデーカップで検出されたビーム電流量を前記測定値とする、請求項2に記載の荷電粒子ビーム照射装置。   The charged particle beam irradiation apparatus according to claim 2, wherein the detection unit includes a Faraday cup, and a beam current amount detected by the Faraday cup is used as the measurement value. a)ビーム源から荷電粒子ビームを射出する射出ステップと、
b)アパーチャ板上で該アパーチャ板が有する開口部よりも広い範囲である走査範囲において前記荷電粒子ビームを走査させるように偏向部に前記荷電粒子ビームを偏向させる偏向ステップと、
c)前記ビーム源と前記開口部の中心を通る軸上に検出部を挿入し、偏向された前記荷電粒子ビームの前記開口部の通過を検出する検出ステップと、
d)前記走査範囲における、前記開口部を通過した荷電粒子の領域の重心位置を求めるビーム位置抽出ステップと、
e)前記重心位置が前記走査範囲の中心となる、前記偏向部に供給する電流量を決定する決定ステップと、
を備える、荷電粒子ビーム軸調整方法。
a) an injection step of emitting a charged particle beam from a beam source;
b) a deflection step for deflecting the charged particle beam on the aperture plate so that the charged particle beam is scanned in a scanning range that is wider than the aperture of the aperture plate;
c) a detection step of inserting a detector on an axis passing through the center of the beam source and the opening, and detecting the passing of the deflected charged particle beam through the opening;
d) a beam position extraction step for obtaining a gravity center position of a charged particle region that has passed through the opening in the scanning range;
e) a determination step of determining an amount of current to be supplied to the deflection unit, wherein the position of the center of gravity is the center of the scanning range;
A charged particle beam axis adjusting method comprising:
前記重心位置は、前記開口部を通過した荷電粒子の領域における前記検出部による測定値を重みとした、前記走査範囲の中心を原点とする前記走査範囲の走査位置の加重平均を計算して求める、請求項4に記載の荷電粒子ビーム軸調整方法。   The center-of-gravity position is obtained by calculating a weighted average of the scanning positions of the scanning range with the center of the scanning range as the origin, with the measurement value by the detection unit in the charged particle region that has passed through the opening as a weight. The charged particle beam axis adjusting method according to claim 4. ファラデーカップで検出されたビーム電流量を前記測定値とする、請求項5に記載の荷電粒子ビーム軸調整方法。   6. The charged particle beam axis adjusting method according to claim 5, wherein the beam current amount detected by a Faraday cup is used as the measurement value.
JP2014026888A 2014-02-14 2014-02-14 Charged particle beam irradiation apparatus and charged particle beam axis adjusting method Active JP6075306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014026888A JP6075306B2 (en) 2014-02-14 2014-02-14 Charged particle beam irradiation apparatus and charged particle beam axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014026888A JP6075306B2 (en) 2014-02-14 2014-02-14 Charged particle beam irradiation apparatus and charged particle beam axis adjusting method

Publications (2)

Publication Number Publication Date
JP2015153630A true JP2015153630A (en) 2015-08-24
JP6075306B2 JP6075306B2 (en) 2017-02-08

Family

ID=53895675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014026888A Active JP6075306B2 (en) 2014-02-14 2014-02-14 Charged particle beam irradiation apparatus and charged particle beam axis adjusting method

Country Status (1)

Country Link
JP (1) JP6075306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3547347A1 (en) * 2018-03-26 2019-10-02 Shimadzu Corporation Charged particle beam axial alignment device, charged particle beam irradiation device and charged particle beam axial alignment method
US10541105B2 (en) 2017-02-24 2020-01-21 Nuflare Technology, Inc. Multi charged particle beam writing apparatus and adjusting method for multi charged particle beam writing apparatus
JP2021118056A (en) * 2020-01-23 2021-08-10 日本電子株式会社 Charged particle beam device and adjustment method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569371U (en) * 1978-11-08 1980-05-13
US4524277A (en) * 1981-12-18 1985-06-18 Hitachi, Ltd. Charged particle beam apparatus
JPS62234855A (en) * 1986-04-04 1987-10-15 Nippon Telegr & Teleph Corp <Ntt> Charged beam radiation device and method for adjusting charged bean axis
JPH04112443A (en) * 1990-09-01 1992-04-14 Hitachi Ltd Secondary ion mass-spectrometric device
JPH04209453A (en) * 1990-11-30 1992-07-30 Fujitsu Ltd Optical axis adjusting method for electron beam apparatus
JP2010183004A (en) * 2009-02-09 2010-08-19 Nuflare Technology Inc Charged particle beam drawing method and charged particle beam drawing device
JP2013251225A (en) * 2012-06-04 2013-12-12 Jeol Ltd Axis alignment method of charged particle beam and charged particle beam device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569371U (en) * 1978-11-08 1980-05-13
US4524277A (en) * 1981-12-18 1985-06-18 Hitachi, Ltd. Charged particle beam apparatus
JPS62234855A (en) * 1986-04-04 1987-10-15 Nippon Telegr & Teleph Corp <Ntt> Charged beam radiation device and method for adjusting charged bean axis
JPH04112443A (en) * 1990-09-01 1992-04-14 Hitachi Ltd Secondary ion mass-spectrometric device
JPH04209453A (en) * 1990-11-30 1992-07-30 Fujitsu Ltd Optical axis adjusting method for electron beam apparatus
JP2010183004A (en) * 2009-02-09 2010-08-19 Nuflare Technology Inc Charged particle beam drawing method and charged particle beam drawing device
JP2013251225A (en) * 2012-06-04 2013-12-12 Jeol Ltd Axis alignment method of charged particle beam and charged particle beam device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541105B2 (en) 2017-02-24 2020-01-21 Nuflare Technology, Inc. Multi charged particle beam writing apparatus and adjusting method for multi charged particle beam writing apparatus
EP3547347A1 (en) * 2018-03-26 2019-10-02 Shimadzu Corporation Charged particle beam axial alignment device, charged particle beam irradiation device and charged particle beam axial alignment method
JP2021118056A (en) * 2020-01-23 2021-08-10 日本電子株式会社 Charged particle beam device and adjustment method thereof
JP7054711B2 (en) 2020-01-23 2022-04-14 日本電子株式会社 How to adjust charged particle beam device and charged particle beam device

Also Published As

Publication number Publication date
JP6075306B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
TWI592976B (en) Charged particle beam device and inspection method using the device
JP5941704B2 (en) Pattern dimension measuring apparatus and computer program
JP6955325B2 (en) Systems and methods for imaging secondary charged particle beams using adaptive secondary charged particle optics
US9941095B2 (en) Charged particle beam apparatus
JP2001273861A (en) Charged beam apparatus and pattern incline observation method
US7714289B2 (en) Charged particle beam apparatus
JP6075306B2 (en) Charged particle beam irradiation apparatus and charged particle beam axis adjusting method
US9558911B2 (en) Method for analyzing and/or processing an object as well as a particle beam device for carrying out the method
JP2008084823A (en) Charged particle beam adjustment method and charged particle beam device
WO2013150847A1 (en) Charged particle beam device
JP6932050B2 (en) Scanning electron microscope
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
US8110799B2 (en) Confocal secondary electron imaging
US10573489B2 (en) Charged particle beam device and optical-axis adjusting method thereof
JP2012230919A (en) Method of irradiation of charged particle beam, and charged particle beam apparatus
US10332720B2 (en) Charged particle system and method for measuring deflection fields in a sample
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
WO2018020624A1 (en) Charged particle beam device
KR101639581B1 (en) Apparatus and method for controlling Charged Particle Beam in Charged Particle Microscope
JP3802525B2 (en) Charged particle microscope
US11257658B2 (en) Charged particle beam apparatus
JP6876519B2 (en) Charged particle beam device
KR100962243B1 (en) System and method for electric beam control using focal length
JP5174483B2 (en) Charged particle beam apparatus and method for knowing charged state of sample surface
JP2010016007A (en) Charged particle beam adjustment method, and charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R151 Written notification of patent or utility model registration

Ref document number: 6075306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151