JP2015152583A - System and method for evaluating noise reduction device performance - Google Patents

System and method for evaluating noise reduction device performance Download PDF

Info

Publication number
JP2015152583A
JP2015152583A JP2014029921A JP2014029921A JP2015152583A JP 2015152583 A JP2015152583 A JP 2015152583A JP 2014029921 A JP2014029921 A JP 2014029921A JP 2014029921 A JP2014029921 A JP 2014029921A JP 2015152583 A JP2015152583 A JP 2015152583A
Authority
JP
Japan
Prior art keywords
noise reduction
reduction device
annular cavity
region
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029921A
Other languages
Japanese (ja)
Other versions
JP6260954B2 (en
Inventor
一泰 榊原
Kazuyasu Sakakibara
一泰 榊原
田中 洋介
Yosuke Tanaka
洋介 田中
誠希 中村
Seiki Nakamura
誠希 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Toyo Tire Corp
Original Assignee
Kyoto Institute of Technology NUC
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Toyo Tire and Rubber Co Ltd filed Critical Kyoto Institute of Technology NUC
Priority to JP2014029921A priority Critical patent/JP6260954B2/en
Publication of JP2015152583A publication Critical patent/JP2015152583A/en
Application granted granted Critical
Publication of JP6260954B2 publication Critical patent/JP6260954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for evaluating noise reduction device performance, with enhanced evaluation accuracy by eliminating variation in an evaluation result which depends on positions of microphones.SOLUTION: The system for evaluating noise reduction device performance includes; oscillation means 3 for oscillating air in an annular cavity SP of a structure 1 having the annular cavity SP; a noise reduction device 2, arranged in the annular cavity SP, for reducing sound waves in the annular cavity SP; a plurality of microphones 4 arranged in the annular cavity SP; and an evaluation device 5 for calculating a performance value of the noise reduction device 2 based on sound waves measured by the plurality of microphones 4. When the annular cavity SP is divided into halves of a first region Ar1 and second region Ar2 at an oscillating position 3a of the oscillation means 3, the plurality of microphones 4 are arranged only in the first region Ar1 and the noise reduction device 2 is arranged only in the second region Ar2.

Description

本発明は、環状空洞を有するタイヤ等の構造物に設けた騒音低減装置の性能評価システム及び性能評価方法に関する。   The present invention relates to a performance evaluation system and a performance evaluation method for a noise reduction device provided in a structure such as a tire having an annular cavity.

電気自動車やハイブリッドカーの普及、従来のガソリン車の技術向上による静音化が進み、タイヤで生じる騒音低減の要求が強くなっている。タイヤで生じる騒音の一つとしてタイヤ内空洞共鳴音が知られており、その対策として吸音材等の騒音低減装置をタイヤ内部に設けることが知られている。   With the spread of electric cars and hybrid cars, and the improvement in technology of conventional gasoline cars, the demand for noise reduction generated by tires has become stronger. In-tire cavity resonance is known as one of the noises generated in a tire, and it is known to provide a noise reduction device such as a sound absorbing material inside the tire as a countermeasure.

しかし、吸音材等の性能は材質だけでなく、吸音材等の形状や貼付状況によって変化するので使用状況に合った評価法が必要となる。   However, the performance of the sound absorbing material or the like varies depending not only on the material but also on the shape of the sound absorbing material or the like and the application situation, so an evaluation method suitable for the use situation is required.

従来の吸音材等の性能評価方法として音響管法が知られている。音響管法は、棒状の円筒管の一端にスピーカ等の加振手段を設け、他端に吸音材等を設け、中間部に複数のマイクロフォンを設けた装置を用い、加振手段からマイクロフォンに至る入射波と、吸音材等で減衰されつつ反射してマイクロフォンに至る反射波とに基づいて吸音材等の吸音率(性能値)を算出する方法である。音響管法の応用例の一例として例えば特許文献1が挙げられる。   An acoustic tube method is known as a conventional performance evaluation method for sound absorbing materials and the like. The acoustic tube method uses a device in which a vibrating means such as a speaker is provided at one end of a rod-shaped cylindrical tube, a sound absorbing material or the like is provided at the other end, and a plurality of microphones are provided at an intermediate portion. This is a method of calculating the sound absorption coefficient (performance value) of the sound absorbing material or the like based on the incident wave and the reflected wave that is attenuated by the sound absorbing material or the like and reaches the microphone. As an example of application of the acoustic tube method, for example, Patent Document 1 is cited.

上記音響管法は、空気入りタイヤのように音波の伝搬経路が閉ループを形成する環状空洞を有する構造物が計測対象ではないため、空気入りタイヤにそのまま適用することはできない。   The acoustic tube method cannot be applied to a pneumatic tire as it is because a structure having an annular cavity whose propagation path of sound waves forms a closed loop, such as a pneumatic tire, is not a measurement target.

そこで、本発明の発明者らは、非特許文献1に記載のように、空気入りタイヤをモデル化した構造物の空洞内空気を加振するスピーカ(加振手段)と、前記空洞内の外周部に一周に亘り貼り付けた吸音材等と、前記空洞内に設けた複数のマイクロフォンとを用い、マイクロフォンで計測した音波に基づき吸音材等または騒音低減装置の吸音率(性能値)を算出する方法を提案した。   Accordingly, as described in Non-Patent Document 1, the inventors of the present invention provide a speaker (vibration means) that excites air in a cavity of a structure modeled as a pneumatic tire, and an outer periphery in the cavity. The sound absorption rate (performance value) of the sound absorbing material or the noise reduction device is calculated based on the sound wave measured by the microphone using the sound absorbing material or the like pasted around the part and a plurality of microphones provided in the cavity. A method was proposed.

特開2001−289707号公報JP 2001-289707 A

京都工芸繊維大学 中村誠希、田中洋介、小林貴紀、村田滋,タイヤ内の吸音性能評価法の開発,日本機械学会関西学生会平成24年度学生員卒業研究発表講演会前刷集('13.3)、P15-4Kyoto Polytechnic University Seiki Nakamura, Yosuke Tanaka, Takanori Kobayashi, Shigeru Murata, Development of sound absorption performance evaluation method in tires, Preprint of Lecture Presentation for 2012 Graduation Research of Japan Society of Mechanical Engineers Kansai Student Association ('13 .3), P15-4

しかしながら、非特許文献1に記載の方法では、マイクロフォンを配置する位置によって吸音材の吸音率(性能値)が異なり、測定結果にバラツキが生じてしまう。測定結果の安定性を確保するためには、マイクロフォンの配置位置にかかわらず、測定結果が一定でなければならない。すなわち、非特許文献1に記載の内容では、吸音材の吸音率をバラツキ無く正確に把握することができていないことが判明した。   However, in the method described in Non-Patent Document 1, the sound absorption rate (performance value) of the sound absorbing material differs depending on the position where the microphone is arranged, and the measurement results vary. In order to ensure the stability of the measurement result, the measurement result must be constant regardless of the position of the microphone. That is, according to the contents described in Non-Patent Document 1, it has been found that the sound absorption rate of the sound absorbing material cannot be accurately grasped without variation.

本発明は、このような課題に着目してなされたものであって、その目的は、マイクロフォンの位置に応じた評価結果のバラツキを無くして、評価精度を向上させた騒音低減装置の性能評価システム及び性能評価方法を提供することである。   The present invention has been made paying attention to such a problem, and its purpose is to eliminate the variation of the evaluation result according to the position of the microphone and improve the evaluation accuracy of the noise reduction device performance evaluation system. And providing a performance evaluation method.

上記ではタイヤ内の騒音を計測しているが、本発明は、タイヤに限定されずタイヤ以外の構造物であって、環状空洞を有する物にも適用可能である。   In the above description, the noise in the tire is measured. However, the present invention is not limited to the tire, and can be applied to a structure other than a tire and having an annular cavity.

非特許文献1に記載のように、環状管構造物の内面一周に吸音材を貼り付けた場合では、加振位置から第1領域を通りマイクロフォンに到達する第1音波と、加振位置から第2領域を経てマイクロフォンに到達する第2音波のいずれも吸音材による影響を受ける。マイクロフォンの位置に応じて第1音波と第2音波が受ける吸音効果の度合いが変わるため、マイクロフォンの位置に応じて測定結果が変化することが判明した。そのため、吸音材の性能値を的確に評価できていなかったと考えられる。   As described in Non-Patent Document 1, when a sound absorbing material is attached around the inner surface of the annular tube structure, the first sound wave that reaches the microphone through the first region from the excitation position and the first position from the excitation position. Any of the second sound waves that reach the microphone through the two regions are affected by the sound absorbing material. Since the degree of the sound absorption effect received by the first sound wave and the second sound wave changes depending on the position of the microphone, it has been found that the measurement result changes depending on the position of the microphone. For this reason, it is considered that the performance value of the sound absorbing material has not been accurately evaluated.

本発明は、上記目的を達成するために、次のような手段を講じている。   In order to achieve the above object, the present invention takes the following measures.

すなわち、本発明の騒音低減装置の性能評価システムは、環状空洞を有する構造物の空洞内空気を加振する加振手段と、前記環状空洞に配置され、前記環状空洞の音波を低減する騒音低減装置と、前記環状空洞に配置される複数のマイクロフォンと、前記複数のマイクロフォンで計測した音波に基づき前記騒音低減装置の性能値を算出する評価装置と、を備え、前記加振手段による加振位置を境界として前記環状空洞を第1領域と第2領域の半分に分割した場合に、前記複数のマイクロフォンは前記第1領域のみに配置され、前記騒音低減装置は前記第2領域のみに配置されていることを特徴とする。   That is, the performance evaluation system for a noise reduction device according to the present invention includes a vibration means for exciting air in a cavity of a structure having an annular cavity, and noise reduction arranged in the annular cavity to reduce sound waves in the annular cavity. Apparatus, a plurality of microphones arranged in the annular cavity, and an evaluation device that calculates a performance value of the noise reduction device based on sound waves measured by the plurality of microphones, and an excitation position by the excitation means Is divided into half of the first region and the second region, the plurality of microphones are disposed only in the first region, and the noise reduction device is disposed only in the second region. It is characterized by being.

また、本発明の騒音低減装置の性能評価方法は、環状空洞を有する構造物に対して前記環状空洞の空気を加振する加振手段を設置すると共に、前記環状空洞内の音波を低減する騒音低減装置及び複数のマイクロフォンを前記環状空洞に配置する準備工程と、前記加振手段を介して空気を加振し、それにより生じた音波を前記複数のマイクロフォンで計測する実測工程と、前記複数のマイクロフォンの計測結果に基づき前記騒音低減装置の性能値を評価装置で算出する性能値算出工程と、を有し、前記準備工程において、前記加振手段による加振位置を境界として前記環状空洞を第1領域と第2領域の半分に分割した場合に、前記複数のマイクロフォンを前記第1領域のみに配置し、前記騒音低減装置を前記第2領域のみに配置する。   Further, the performance evaluation method of the noise reduction device according to the present invention includes a vibration means for exciting the air in the annular cavity with respect to a structure having the annular cavity, and noise that reduces sound waves in the annular cavity. A preparatory step of disposing a reduction device and a plurality of microphones in the annular cavity; an actual measurement step of vibrating the air via the vibration means and measuring the sound waves generated thereby by the plurality of microphones; A performance value calculation step of calculating a performance value of the noise reduction device by an evaluation device based on a measurement result of the microphone, and in the preparation step, the annular cavity is first defined with an excitation position by the excitation means as a boundary. When divided into one region and half of the second region, the plurality of microphones are disposed only in the first region, and the noise reduction device is disposed only in the second region.

上記システム及び方法によれば、マイクロフォンは、加振位置から第1領域のみを通り騒音低減装置の影響を受けることなくマイクロフォンに到達する第1音波と、加振位置から第2領域を経て騒音低減装置の影響を受けてマイクロフォンに到達する第2音波とを計測可能となる。これにより、騒音低減装置の性能値を精度よく算出可能になる。しかも、マイクロフォンを第1領域に配置していればマイクロフォンの位置が変化しても計測精度を損なうこともない。したがって、マイクロフォンの位置に応じた評価結果のバラツキを無くして、評価精度を向上させることが可能となる。   According to the above system and method, the microphone reduces the noise from the excitation position through the first region only through the first region and reaches the microphone without being affected by the noise reduction device, and from the excitation position through the second region. The second sound wave that reaches the microphone under the influence of the apparatus can be measured. As a result, the performance value of the noise reduction device can be accurately calculated. Moreover, if the microphone is arranged in the first region, the measurement accuracy is not impaired even if the position of the microphone is changed. Therefore, it is possible to improve evaluation accuracy by eliminating variations in evaluation results according to the position of the microphone.

本発明の好ましい適用例としては、前記構造物は、空気入りタイヤであることが挙げられる。   As a preferable application example of the present invention, the structure may be a pneumatic tire.

本発明の好ましい適用例としては、前記騒音低減装置は、吸音材であることが挙げられる。   As a preferable application example of the present invention, the noise reduction device may be a sound absorbing material.

本発明の好ましい適用例としては、前記騒音低減装置は、騒音を低減させる共鳴器を有する共鳴型騒音低減装置であることが挙げられる。   As a preferred application example of the present invention, the noise reduction device may be a resonance type noise reduction device having a resonator that reduces noise.

本発明の好ましい適用例としては、前記騒音低減装置は、騒音を打ち消す音波を加振することで騒音を低減するアクティブ型騒音制御装置であることが挙げられる。   As a preferred application example of the present invention, the noise reduction device may be an active noise control device that reduces noise by exciting a sound wave that cancels noise.

本発明の騒音低減装置の性能評価システムを示す図。The figure which shows the performance evaluation system of the noise reduction apparatus of this invention. 環状空洞を有する構造物、加振手段、マイクロフォンに関する図。The figure regarding the structure which has an annular cavity, a vibration means, and a microphone. 本発明の騒音低減装置の性能評価方法を示すフローチャート。The flowchart which shows the performance evaluation method of the noise reduction apparatus of this invention. 従来方法において、或る位置にマイクロフォンを置いた場合の測定結果を示す図。The figure which shows the measurement result at the time of placing a microphone in a certain position in the conventional method. 従来方法において、図4Aとは異なる位置にマイクロフォンを置いた場合の測定結果を示す図。The figure which shows the measurement result at the time of putting a microphone in the position different from FIG. 4A in the conventional method. 本発明においてマイクロフォンの位置を異ならせた測定結果を示す図。The figure which shows the measurement result which varied the position of the microphone in this invention. 本発明において騒音低減装置の設置状態を異ならせた測定結果を示す図。The figure which shows the measurement result which varied the installation state of the noise reduction apparatus in this invention.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

[騒音低減装置の性能評価システム]
本実施形態の騒音低減装置の性能評価システムは、図1及び図2に示すように、環状空洞SPを有する構造物1であるタイヤ又はタイヤモデルに設けた騒音低減装置2の性能を評価するシステム(装置)である。環状空洞SPを有する構造物1は、空気入りタイヤのように音波の伝搬経路が閉ループを形成する構造物を意味する。リム組みした空気入りタイヤ以外の例では、例えば、建物に設けられる閉ループを有する空気ダクトなどが考えられる。本実施形態では、厚さ5mmのアクリル板を用い、タイヤに見立てて製作したタイヤモデルを評価対象の構造物としている。タイヤモデルは、外径633mm、内径370mm、高さ(タイヤ幅)190mmとしている。勿論、実際の空気入りタイヤをリム組みして内圧を加えたものでもよい。
[Noise reduction system performance evaluation system]
As shown in FIGS. 1 and 2, the performance evaluation system for the noise reduction device of the present embodiment is a system for evaluating the performance of the noise reduction device 2 provided in a tire or tire model that is a structure 1 having an annular cavity SP. (Apparatus). The structure 1 having the annular cavity SP means a structure in which a sound wave propagation path forms a closed loop like a pneumatic tire. In an example other than a pneumatic tire with a rim assembled, for example, an air duct having a closed loop provided in a building can be considered. In the present embodiment, an acrylic plate having a thickness of 5 mm is used, and a tire model manufactured as if it were a tire is used as a structure to be evaluated. The tire model has an outer diameter of 633 mm, an inner diameter of 370 mm, and a height (tire width) of 190 mm. Of course, an actual pneumatic tire may be assembled with a rim and applied with internal pressure.

本システムは、環状空洞SPを有する構造物の空洞内空気を加振する加振手段3と、環状空洞SPに配置され、環状空洞SPの音波を低減する騒音低減装置2と、環状空洞SPに配置される複数のマイクロフォン4と、複数のマイクロフォン4で計測した音波に基づき騒音低減装置2の性能値を算出する評価装置5(制御部)と、を有する。   This system includes a vibration means 3 for vibrating air in a cavity of a structure having an annular cavity SP, a noise reduction device 2 disposed in the annular cavity SP and reducing sound waves of the annular cavity SP, and an annular cavity SP. It has the some microphone 4 arrange | positioned, and the evaluation apparatus 5 (control part) which calculates the performance value of the noise reduction apparatus 2 based on the sound wave measured with the some microphone 4. FIG.

本実施形態では、加振手段3としてスピーカを用いている。スピーカは、構造物1(タイヤモデル)の外側に配置されており、構造物1の外から環状空洞SPにある空気を間接的に加振する。勿論、スピーカを構造物1の内部に配置して、空洞内空気を直接的に加振するようにしてもよい。また、加振手段3としては、スピーカ以外に、インパクト入力や加振器等の物理的な衝撃入力手段により空気を加振するようにしてもよい。   In the present embodiment, a speaker is used as the vibration means 3. The speaker is disposed outside the structure 1 (tire model), and indirectly excites the air in the annular cavity SP from the outside of the structure 1. Of course, a speaker may be arranged inside the structure 1 to directly excite the air in the cavity. Further, as the vibration means 3, air may be vibrated by a physical impact input means such as an impact input or a vibrator in addition to the speaker.

本実施形態では、騒音低減装置2として、発泡ウレタンシートを用いた吸音材2を環状空洞SPに配置している。加振手段3による加振位置3aを境界として環状空洞SPを第1領域Ar1と第2領域Ar2の半分に分割した場合に、吸音材2は第2領域のみに配置している。本実施形態では、第2領域Ar2の外周部全面に吸音材2を貼り付けているが、第2領域Ar2の一部のみに吸音材2を設けてもよい。   In this embodiment, as the noise reduction device 2, the sound absorbing material 2 using a foamed urethane sheet is disposed in the annular cavity SP. When the annular cavity SP is divided into half of the first region Ar1 and the second region Ar2 with the vibration position 3a by the vibration means 3 as a boundary, the sound absorbing material 2 is disposed only in the second region. In the present embodiment, the sound absorbing material 2 is attached to the entire outer surface of the second region Ar2, but the sound absorbing material 2 may be provided only in a part of the second region Ar2.

複数のマイクロフォン4は、環状空洞SPの第1領域Ar1のみに配置されている。本実施形態ではマイクロフォン4を2つ設けているが、2つ以上あればよい。本実施形態では、環状空洞SPの中間部分(点線で示す)、すなわち径480mm上にマイクロフォン4を配置している。   The plurality of microphones 4 are disposed only in the first region Ar1 of the annular cavity SP. In the present embodiment, two microphones 4 are provided, but there may be two or more. In the present embodiment, the microphone 4 is arranged on an intermediate portion (indicated by a dotted line) of the annular cavity SP, that is, on a diameter of 480 mm.

評価装置5は、通常のパーソナルコンピュータ等の情報処理装置を用いたもので、マイクロフォン4からの信号が入力されると共に、加振手段3(スピーカ)への信号を出力可能に構成されている。図1では、安定化電源50に接続された増幅器51、データロガー52等の各種インターフェイスを介してマイクロフォン4からの信号が評価装置5へ入力される。評価装置5は、複数のマイクロフォン4で計測した音波に基づき騒音低減装置2(吸音材2)の性能値(吸音率α)を算出する。   The evaluation device 5 uses an information processing device such as a normal personal computer, and is configured to receive a signal from the microphone 4 and to output a signal to the vibration means 3 (speaker). In FIG. 1, a signal from the microphone 4 is input to the evaluation device 5 through various interfaces such as an amplifier 51 and a data logger 52 connected to the stabilized power supply 50. The evaluation device 5 calculates a performance value (sound absorption coefficient α) of the noise reduction device 2 (sound absorbing material 2) based on sound waves measured by the plurality of microphones 4.

具体的には、環状空洞を音響管へとモデル化できるので、図2に示すように、加振位置3aから第1領域Ar1のみを通りマイクロフォン4に至る第1音波w1(図中では右回りの音波である)を入射波とし、加振位置3aから第2領域Ar2を通ってマイクロフォン4に至る第2音波w2(図中では左回りの音波である)を反射波とし、2つのマイクロフォン4を用いた伝達関数法を適用する。伝達関数法では、音響管内の音圧を入射波による音圧と反射波による音圧の和として表現し、基準面(x=0)での音圧をp、波長定数をkとすれば、次の式(1),(2)で各マイクロフォンでの音圧p,pが表される。各マイクロフォン位置はそれぞれx,xである。

Figure 2015152583

第1項が入射波に関し、第2項が反射波に関する。 Specifically, since the annular cavity can be modeled into an acoustic tube, as shown in FIG. 2, the first sound wave w1 (clockwise in the figure) from the excitation position 3a to the microphone 4 through only the first region Ar1. And the second sound wave w2 (which is a counterclockwise sound wave in the drawing) from the excitation position 3a through the second region Ar2 to the microphone 4 as a reflected wave. Apply the transfer function method using. In the transfer function method, if the sound pressure in the acoustic tube is expressed as the sum of the sound pressure due to the incident wave and the sound pressure due to the reflected wave, the sound pressure at the reference plane (x = 0) is p 0 and the wavelength constant is k. The following equations (1) and (2) represent the sound pressures p 1 and p 2 at each microphone. Each microphone position is x 1 and x 2 , respectively.
Figure 2015152583

The first term relates to the incident wave, and the second term relates to the reflected wave.

入射波に関する伝達関数H、反射波に関する伝達関数H、及び2つのマイクロフォン間の伝達関数H12は、それぞれ次の式(3)〜(5)で表される。

Figure 2015152583
The transfer function H i related to the incident wave, the transfer function H r related to the reflected wave, and the transfer function H 12 between the two microphones are expressed by the following equations (3) to (5), respectively.
Figure 2015152583

音響反射率rは、式(3)〜(5)を用いた次の式(6)で表される。

Figure 2015152583

及びrは、音響反射率rの実部と虚部である。 The acoustic reflectivity r is expressed by the following formula (6) using formulas (3) to (5).
Figure 2015152583

r r and r i are a real part and an imaginary part of the acoustic reflectivity r.

吸音率αは次の式(7)で表される。吸音率αは騒音低減装置2の性能値といえる。

Figure 2015152583
The sound absorption coefficient α is expressed by the following equation (7). The sound absorption coefficient α can be said to be a performance value of the noise reduction device 2.
Figure 2015152583

評価装置5(制御部)は、マイクロフォン4で計測したデータと上記演算式を用いて吸音率α(騒音低減装置の性能値)を算出する。   The evaluation device 5 (control unit) calculates the sound absorption coefficient α (performance value of the noise reduction device) using the data measured by the microphone 4 and the above calculation formula.

[騒音低減装置の性能評価方法]
上記システムを用い、環状空洞を有する構造物に設けた騒音低減装置の性能を評価する方法について、図3を参照しつつ説明する。
[Noise reduction device performance evaluation method]
A method for evaluating the performance of a noise reduction device provided in a structure having an annular cavity using the above system will be described with reference to FIG.

まず、ステップST1において準備工程を実行する(図3参照)。準備工程は、図2に示すように、環状空洞SPを有する構造物1に対して環状空洞内空気を加振する加振手段3を設置すると共に、環状空洞内の音波を低減する騒音低減装置2及び複数のマイクロフォン4を環状空洞SPに配置する。この際、同図に示すように、加振手段3による加振位置3aを境界として環状空洞SPを第1領域Ar1と第2領域Ar2の半分に分割した場合に、複数のマイクロフォン4を第1領域Ar1のみに配置し、騒音低減装置2を第2領域Ar2のみに配置する。   First, a preparation process is executed in step ST1 (see FIG. 3). As shown in FIG. 2, in the preparation step, a vibration reducing means 3 for vibrating the air in the annular cavity is installed on the structure 1 having the annular cavity SP, and the sound wave in the annular cavity is reduced. Two and a plurality of microphones 4 are arranged in the annular cavity SP. At this time, as shown in the figure, when the annular cavity SP is divided into half of the first region Ar1 and the second region Ar2 with the excitation position 3a by the excitation means 3 as a boundary, the plurality of microphones 4 are connected to the first microphone 4. It arrange | positions only to area | region Ar1, and arrange | positions the noise reduction apparatus 2 only to 2nd area | region Ar2.

次のステップST2において実測工程を実行する(図3参照)。実測工程は、加振手段3を介して空気を加振し、それにより生じた音波(w1,w2)を複数のマイクロフォン4で計測する。   In the next step ST2, an actual measurement process is executed (see FIG. 3). In the actual measurement step, air is vibrated through the vibration means 3, and sound waves (w 1, w 2) generated thereby are measured by the plurality of microphones 4.

次のステップST3において性能値算出工程を実行する(図3参照)。性能値算出工程は、複数のマイクロフォン4の計測結果に基づき騒音低減装置2の性能値を評価装置5が算出する。   In the next step ST3, a performance value calculation step is executed (see FIG. 3). In the performance value calculation step, the evaluation device 5 calculates the performance value of the noise reduction device 2 based on the measurement results of the plurality of microphones 4.

従来技術と本発明の効果を以下に示す。   The effects of the prior art and the present invention are shown below.

従来技術としては非特許文献1に記載の通り、タイヤモデル(構造物1)の環状空洞の外周部全周に吸音材を貼り付けている。使用した吸音材のかさ密度は24kg/m、厚みは25mmである。スピーカでホワイトノイズを発振し、2つのマイクロフォンで計測し、400倍のアンプを通してデータロガーで記録した。測定結果を周波数毎に吸音率αを計算した。図4は、測定結果を点で示すと共に、測定結果の移動平均線を示している。図4Aは、x=188.4mm(θ=45°)の結果である。図4Bは、x=376.8mm(θ=90°)の結果である。xは図2に示すようにx=0(θ=0°)を基準にした外周の周長上の距離に相当する.
図4A及び図4Bを比較すれば、両者の吸音率αが大きく異なることから、マイクロフォン4の位置によって性能値(吸音率α)に変化が生じており、評価精度にバラツキが生じている。
As described in Non-Patent Document 1, as a conventional technique, a sound absorbing material is attached to the entire outer periphery of an annular cavity of a tire model (structure 1). The sound absorbing material used has a bulk density of 24 kg / m 3 and a thickness of 25 mm. White noise was oscillated with a speaker, measured with two microphones, and recorded with a data logger through a 400 × amplifier. The sound absorption coefficient α was calculated for each frequency of the measurement result. FIG. 4 shows the measurement results with dots and the moving average lines of the measurement results. FIG. 4A shows the result of x = 188.4 mm (θ = 45 °). FIG. 4B shows the result of x = 376.8 mm (θ = 90 °). As shown in FIG. 2, x corresponds to the distance on the outer circumference based on x = 0 (θ = 0 °).
Comparing FIG. 4A and FIG. 4B, since the sound absorption coefficient α of both is greatly different, the performance value (sound absorption coefficient α) varies depending on the position of the microphone 4, and the evaluation accuracy varies.

これに対し、本発明においては、吸音材を厚み5mmとし、図2に示すように第2領域(タイヤモデルの半周)のみに貼り付けた。測定結果がマイクロフォン位置に依存するか否かを検証するために、2つのマイクロフォンx1,x2をペアとして,3つのマイクロフォン・ペア位置を実験した。1つ目のマイクロフォン・ペア位置No.0は、x=0.051mm、x=0.0mmとした。2つ目のマイクロフォン・ペア位置No.1は、x=0.086mm、x=0.035mmとした。3つ目のマイクロフォン・ペア位置No.2は、x=0.121mm、x=0.07mmとした。結果を図5Aに示す。図5Aと図4を比較すれば、マイクロフォン位置に拘わらず、吸音率αがほぼ一致していることが分かる。したがって、マイクロフォンの位置に応じた評価結果のバラツキを無くして、評価精度を向上できた。 On the other hand, in the present invention, the sound absorbing material has a thickness of 5 mm and is attached only to the second region (a half circumference of the tire model) as shown in FIG. In order to verify whether or not the measurement result depends on the microphone position, two microphones x1 and x2 were paired, and three microphone pair positions were tested. The first microphone pair position No. 0 was set to x 1 = 0.051 mm and x 2 = 0.0 mm. Second microphone pair position No. 1 was set to x 1 = 0.086 mm and x 2 = 0.035 mm. The third microphone pair position No. 2 was set to x 1 = 0.121 mm and x 2 = 0.07 mm. The result is shown in FIG. 5A. Comparing FIG. 5A and FIG. 4, it can be seen that the sound absorption coefficient α is almost the same regardless of the microphone position. Therefore, the evaluation accuracy can be improved by eliminating the variation in the evaluation result according to the position of the microphone.

次に、騒音低減装置(吸音材)の貼り付け状況に応じた吸音率αを計測できるか否かを確認するために、吸音材を全く貼り付けない場合と、吸音材の厚みを5mmとした場合と、厚みを10mmとした場合の3つのパターンで測定した。結果を図5Bに示す。図5Bを見れば、吸音材を設けた方が吸音材を設けない場合よりも吸音率αが高まり、吸音材の厚みが増加するほど吸音効果(性能値)が高まることが確認できた。   Next, in order to confirm whether or not the sound absorption coefficient α can be measured according to the state of attachment of the noise reduction device (sound absorbing material), the case where no sound absorbing material is attached and the thickness of the sound absorbing material is set to 5 mm. In this case, the measurement was performed in three patterns when the thickness was 10 mm. The result is shown in FIG. 5B. 5B, it was confirmed that the sound absorption rate α is higher when the sound absorbing material is provided than when the sound absorbing material is not provided, and the sound absorbing effect (performance value) is increased as the thickness of the sound absorbing material is increased.

なお、図5A、Bにおいて一部の周波数にて結果にバラツキが生じているが、当該周波数帯にて共鳴が発生し、そのために測定バラツキが生じたと考えられる。   In FIGS. 5A and 5B, there are variations in the results at some frequencies. However, it is considered that resonance occurred in the frequency band, resulting in measurement variations.

以上のように、本実施形態の騒音低減装置の性能評価システムは、環状空洞SPを有する構造物1の空洞内空気を加振する加振手段3(スピーカ)と、環状空洞SPに配置され、環状空洞SPの音波を低減する騒音低減装置2(吸音材2)と、環状空洞SPに配置される複数のマイクロフォン4と、複数のマイクロフォン4で計測した音波に基づき騒音低減装置2(吸音材2)の性能値を算出する評価装置5と、を備える。加振手段3による加振位置3aを境界として環状空洞SPを第1領域Ar1と第2領域Ar2の半分に分割した場合に、複数のマイクロフォン4は第1領域Ar1のみに配置され、騒音低減装置2は第2領域Ar2のみに配置されている。   As described above, the performance evaluation system for the noise reduction device according to the present embodiment is arranged in the annular cavity SP and the vibration means 3 (speaker) for exciting the air in the cavity of the structure 1 having the annular cavity SP. A noise reduction device 2 (sound absorbing material 2) for reducing sound waves in the annular cavity SP, a plurality of microphones 4 arranged in the annular cavity SP, and a noise reduction device 2 (sound absorbing material 2) based on the sound waves measured by the plurality of microphones 4. And an evaluation device 5 that calculates a performance value of When the annular cavity SP is divided into half of the first area Ar1 and the second area Ar2 with the excitation position 3a by the excitation means 3 as a boundary, the plurality of microphones 4 are arranged only in the first area Ar1, and the noise reduction device 2 is arranged only in the second region Ar2.

本実施形態の騒音低減装置の性能評価方法は、環状空洞SPを有する構造物1に対して環状空洞の空気を加振する加振手段3を設置すると共に、環状空洞SP内の音波を低減する騒音低減装置2及び複数のマイクロフォン4を環状空洞SPに配置する準備工程(ST1)と、加振手段3を介して空気を加振し、それにより生じた音波を複数のマイクロフォン4で計測する実測工程(ST2)と、複数のマイクロフォン4の計測結果に基づき騒音低減装置2の性能値(吸音率α)を評価装置で算出する性能値算出工程(ST3)と、を有する。準備工程(ST1)において、加振手段3による加振位置3aを境界として環状空洞SPを第1領域Ar1と第2領域Ar2の半分に分割した場合に、複数のマイクロフォン4を第1領域Ar1のみに配置し、騒音低減装置2を第2領域Ar2のみに配置する。   In the performance evaluation method of the noise reduction device according to the present embodiment, the vibration means 3 that vibrates the air in the annular cavity SP is installed on the structure 1 having the annular cavity SP, and the sound wave in the annular cavity SP is reduced. Preparatory step (ST1) of arranging the noise reduction device 2 and the plurality of microphones 4 in the annular cavity SP, and actual measurement in which air is vibrated through the vibration means 3 and the sound waves generated thereby are measured by the plurality of microphones 4. A step (ST2), and a performance value calculation step (ST3) in which the performance value (sound absorption coefficient α) of the noise reduction device 2 is calculated by the evaluation device based on the measurement results of the plurality of microphones 4. In the preparation step (ST1), when the annular cavity SP is divided into half of the first region Ar1 and the second region Ar2 with the vibration position 3a by the vibration means 3 as a boundary, only the first region Ar1 is used as the plurality of microphones 4. The noise reduction device 2 is arranged only in the second region Ar2.

非特許文献1の方法では、環状管構造物の内面一周に吸音材を貼り付けた場合では、加振位置から第1領域を通りマイクロフォンに到達する第1音波と、加振位置から第2領域を経てマイクロフォンに到達する第2音波のいずれも吸音材による影響を受ける。マイクロフォンの位置に応じて第1音波と第2音波が受ける吸音効果の度合いが変わるため、マイクロフォンの位置に応じて測定結果が変化することが判明した。そのため、吸音材の性能値を的確に評価できていなかったと考えられる。   In the method of Non-Patent Document 1, when a sound absorbing material is pasted around the inner surface of the annular tube structure, the first sound wave that reaches the microphone from the excitation position through the first area and the second area from the excitation position. All of the second sound waves that reach the microphone via the sound are affected by the sound absorbing material. Since the degree of the sound absorption effect received by the first sound wave and the second sound wave changes depending on the position of the microphone, it has been found that the measurement result changes depending on the position of the microphone. For this reason, it is considered that the performance value of the sound absorbing material has not been accurately evaluated.

これに対し、上記構成のシステム及び方法によれば、図2に示すように、マイクロフォン4は、加振位置3aから第1領域Ar1のみを通り騒音低減装置2の影響を受けることなくマイクロフォン4に到達する第1音波w1と、加振位置3aから第2領域Ar2を経て騒音低減装置2の影響を受けてマイクロフォン4に到達する第2音波w2とを計測可能となる。これにより、騒音低減装置2の性能値を精度よく算出可能になる。しかも、マイクロフォン4を第1領域Ar1に配置していればマイクロフォン4の位置が変化しても計測精度を損なうこともない。したがって、マイクロフォン4の位置に拘わらず、評価結果にバラツキを無くして評価精度を向上させることが可能となる。   On the other hand, according to the system and method having the above-described configuration, as shown in FIG. 2, the microphone 4 passes through only the first region Ar1 from the excitation position 3a and is not affected by the noise reduction device 2. The first sound wave w1 that arrives and the second sound wave w2 that reaches the microphone 4 under the influence of the noise reduction device 2 from the excitation position 3a through the second region Ar2 can be measured. Thereby, the performance value of the noise reduction device 2 can be accurately calculated. And if the microphone 4 is arrange | positioned in 1st area | region Ar1, even if the position of the microphone 4 changes, measurement accuracy will not be impaired. Therefore, regardless of the position of the microphone 4, it is possible to improve the evaluation accuracy by eliminating variations in the evaluation results.

さらに、構造物1は、空気入りタイヤであることが好ましい。空気入りタイヤの音響特性を加味できるので、空気入りタイヤにおける空洞共鳴音を低減する騒音低減装置2の性能評価が可能となり、好ましい。   Furthermore, the structure 1 is preferably a pneumatic tire. Since the acoustic characteristics of the pneumatic tire can be taken into consideration, it is possible to evaluate the performance of the noise reduction device 2 that reduces the cavity resonance noise in the pneumatic tire, which is preferable.

本実施形態では、騒音低減装置2は、吸音材2である。吸音材2は、音のエネルギー(振動エネルギー)を熱エネルギーなどの他のエネルギーに変換することで音のエネルギーを低減する。吸音材2としては、発泡ウレタン、グラスウール、ロックウール、軟質ウレタンフォームなどの多孔質材料、軟質繊維板、木毛セメント板などの多孔質板材料、不織布、帆布カンバスやビニルシートなどの膜材料などが利用可能である。   In the present embodiment, the noise reduction device 2 is a sound absorbing material 2. The sound absorbing material 2 reduces sound energy by converting sound energy (vibration energy) into other energy such as heat energy. As the sound absorbing material 2, porous materials such as foamed urethane, glass wool, rock wool, and soft urethane foam, porous plate materials such as soft fiberboard and wood cement board, nonwoven fabric, membrane materials such as canvas canvas and vinyl sheet, etc. Is available.

また、騒音低減装置2として、騒音を低減させる共鳴器を有する共鳴型騒音低減装置が利用できる。この装置は、例えばヘルムホルツ共鳴器が挙げられる。   As the noise reduction device 2, a resonance type noise reduction device having a resonator for reducing noise can be used. An example of this apparatus is a Helmholtz resonator.

また、騒音低減装置2として、スピーカ等の発振手段を有し、騒音に対して逆位相となる騒音を打ち消す音波を発振手段から加振することで騒音を低減するアクティブ型騒音低減装置が利用できる。   Further, as the noise reduction device 2, an active noise reduction device that has an oscillating means such as a speaker and reduces noise by oscillating a sound wave that cancels noise having an opposite phase to the noise from the oscillating means can be used. .

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、吸音材2は厚みが一定のシート状をなしているが、これに限定されない。吸音材の厚みを変化させてもよい。また、吸音材2の配置位置は、周方向に連続していてもよく、周方向又は幅方向に非連続で断続的に配置されていてもよい。吸音材の形状はシート状であり、音波の進行方向が吸音材に対して平行しているが、これに限られず、例えば、音波と交差するように吸音材を配置してもよい。   For example, in the present embodiment, the sound absorbing material 2 has a sheet shape with a constant thickness, but is not limited thereto. The thickness of the sound absorbing material may be changed. Moreover, the arrangement position of the sound absorbing material 2 may be continuous in the circumferential direction, or may be discontinuously arranged in the circumferential direction or the width direction. The shape of the sound absorbing material is a sheet shape, and the traveling direction of the sound wave is parallel to the sound absorbing material. However, the present invention is not limited to this, and for example, the sound absorbing material may be arranged so as to intersect the sound wave.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The structure employed in each of the above embodiments can be employed in any other embodiment. The specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…構造物(空気入りタイヤ、タイヤモデル)
2…騒音低減装置
3…加振手段(スピーカ)
3a…加振位置
4…マイクロフォン
5…評価装置(制御部)
Ar1…第1領域
Ar2…第2領域
SP…環状空洞
1. Structure (pneumatic tire, tire model)
2 ... Noise reduction device 3 ... Excitation means (speaker)
3a ... excitation position 4 ... microphone 5 ... evaluation device (control unit)
Ar1 ... first region Ar2 ... second region SP ... annular cavity

Claims (10)

環状空洞を有する構造物の空洞内空気を加振する加振手段と、
前記環状空洞に配置され、前記環状空洞の音波を低減する騒音低減装置と、
前記環状空洞に配置される複数のマイクロフォンと、
前記複数のマイクロフォンで計測した音波に基づき前記騒音低減装置の性能値を算出する評価装置と、を備え、
前記加振手段による加振位置を境界として前記環状空洞を第1領域と第2領域の半分に分割した場合に、前記複数のマイクロフォンは前記第1領域のみに配置され、前記騒音低減装置は前記第2領域のみに配置されていることを特徴とする騒音低減装置の性能評価システム。
Vibration means for exciting air in the cavity of a structure having an annular cavity;
A noise reduction device disposed in the annular cavity for reducing sound waves of the annular cavity;
A plurality of microphones disposed in the annular cavity;
An evaluation device that calculates a performance value of the noise reduction device based on sound waves measured by the plurality of microphones, and
When the annular cavity is divided into half of the first region and the second region with the excitation position by the excitation means as a boundary, the plurality of microphones are arranged only in the first region, and the noise reduction device A system for evaluating the performance of a noise reduction device, wherein the system is disposed only in the second region.
前記構造物は、空気入りタイヤである請求項1に記載の騒音低減装置の性能評価システム。   The performance evaluation system for a noise reduction device according to claim 1, wherein the structure is a pneumatic tire. 前記騒音低減装置は、吸音材である請求項1又は2に記載の騒音低減装置の性能評価システム。   The performance evaluation system for a noise reduction device according to claim 1 or 2, wherein the noise reduction device is a sound absorbing material. 前記騒音低減装置は、騒音を低減させる共鳴器を有する共鳴型騒音低減装置である請求項1又は2に記載の騒音低減装置の性能評価システム。   The performance evaluation system for a noise reduction device according to claim 1 or 2, wherein the noise reduction device is a resonance type noise reduction device having a resonator for reducing noise. 前記騒音低減装置は、騒音を打ち消す音波を加振することで騒音を低減するアクティブ型騒音制御装置である請求項1又は2に記載の騒音低減装置の性能評価システム。   The noise reduction device performance evaluation system according to claim 1 or 2, wherein the noise reduction device is an active noise control device that reduces noise by exciting a sound wave that cancels noise. 環状空洞を有する構造物に対して前記環状空洞の空気を加振する加振手段を設置すると共に、前記環状空洞内の音波を低減する騒音低減装置及び複数のマイクロフォンを前記環状空洞に配置する準備工程と、
前記加振手段を介して空気を加振し、それにより生じた音波を前記複数のマイクロフォンで計測する実測工程と、
前記複数のマイクロフォンの計測結果に基づき前記騒音低減装置の性能値を評価装置で算出する性能値算出工程と、を有し、
前記準備工程において、前記加振手段による加振位置を境界として前記環状空洞を第1領域と第2領域の半分に分割した場合に、前記複数のマイクロフォンを前記第1領域のみに配置し、前記騒音低減装置を前記第2領域のみに配置することを特徴とする騒音低減装置の性能評価方法。
A vibration reducing means for vibrating air in the annular cavity is installed in a structure having an annular cavity, and a noise reduction device for reducing sound waves in the annular cavity and a plurality of microphones are provided in the annular cavity. Process,
An actual measurement process in which air is vibrated through the vibration means and sound waves generated thereby are measured by the plurality of microphones;
A performance value calculation step of calculating a performance value of the noise reduction device based on a measurement result of the plurality of microphones with an evaluation device,
In the preparation step, when the annular cavity is divided into half of the first region and the second region with the vibration position by the vibration means as a boundary, the plurality of microphones are disposed only in the first region, A method for evaluating the performance of a noise reduction device, wherein the noise reduction device is arranged only in the second region.
前記構造物は、空気入りタイヤである請求項6に記載の騒音低減装置の性能評価方法。   The performance evaluation method for a noise reduction device according to claim 6, wherein the structure is a pneumatic tire. 前記騒音低減装置は、吸音材である請求項6又は7に記載の騒音低減装置の性能評価方法。   The performance evaluation method for a noise reduction device according to claim 6 or 7, wherein the noise reduction device is a sound absorbing material. 前記騒音低減装置は、騒音を低減させる共鳴器を有する共鳴型騒音低減装置である請求項6又は7に記載の騒音低減装置の性能評価方法。   The performance evaluation method for a noise reduction device according to claim 6 or 7, wherein the noise reduction device is a resonance type noise reduction device having a resonator for reducing noise. 前記騒音低減装置は、騒音を打ち消す音波を加振することで騒音を低減するアクティブ型騒音制御装置である請求項6又は7に記載の騒音低減装置の性能評価方法。   The noise evaluation apparatus according to claim 6 or 7, wherein the noise reduction apparatus is an active noise control apparatus that reduces noise by exciting a sound wave that cancels noise.
JP2014029921A 2014-02-19 2014-02-19 Noise reduction device performance evaluation system and noise reduction device performance evaluation method Active JP6260954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029921A JP6260954B2 (en) 2014-02-19 2014-02-19 Noise reduction device performance evaluation system and noise reduction device performance evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029921A JP6260954B2 (en) 2014-02-19 2014-02-19 Noise reduction device performance evaluation system and noise reduction device performance evaluation method

Publications (2)

Publication Number Publication Date
JP2015152583A true JP2015152583A (en) 2015-08-24
JP6260954B2 JP6260954B2 (en) 2018-01-17

Family

ID=53894972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029921A Active JP6260954B2 (en) 2014-02-19 2014-02-19 Noise reduction device performance evaluation system and noise reduction device performance evaluation method

Country Status (1)

Country Link
JP (1) JP6260954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973102B1 (en) * 2016-03-10 2016-08-23 三菱日立パワーシステムズ株式会社 Propagation constant acquisition method, sound absorption coefficient calculation method, sound absorption coefficient evaluation device
JP2020070954A (en) * 2018-10-30 2020-05-07 富士フイルム株式会社 Silencing ventilation structure and silencing performance evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237319A (en) * 1998-02-19 1999-08-31 Toyota Motor Corp Method for measuring vibration characteristic of tire
US6309026B1 (en) * 1997-02-12 2001-10-30 Saab Automobile Ab Method and arrangement for sound-suppression in wheels
JP2004212208A (en) * 2002-12-27 2004-07-29 Honda Motor Co Ltd On-table noise testing method for tire single body
JP2006064822A (en) * 2004-08-25 2006-03-09 Honda Motor Co Ltd Tire cavity resonance sound reducing device
JP2012145421A (en) * 2011-01-11 2012-08-02 Bridgestone Corp Tire noise test method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309026B1 (en) * 1997-02-12 2001-10-30 Saab Automobile Ab Method and arrangement for sound-suppression in wheels
JPH11237319A (en) * 1998-02-19 1999-08-31 Toyota Motor Corp Method for measuring vibration characteristic of tire
JP2004212208A (en) * 2002-12-27 2004-07-29 Honda Motor Co Ltd On-table noise testing method for tire single body
JP2006064822A (en) * 2004-08-25 2006-03-09 Honda Motor Co Ltd Tire cavity resonance sound reducing device
JP2012145421A (en) * 2011-01-11 2012-08-02 Bridgestone Corp Tire noise test method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973102B1 (en) * 2016-03-10 2016-08-23 三菱日立パワーシステムズ株式会社 Propagation constant acquisition method, sound absorption coefficient calculation method, sound absorption coefficient evaluation device
JP2020070954A (en) * 2018-10-30 2020-05-07 富士フイルム株式会社 Silencing ventilation structure and silencing performance evaluation method
JP7015230B2 (en) 2018-10-30 2022-02-02 富士フイルム株式会社 Silent ventilation structure and muffling performance evaluation method

Also Published As

Publication number Publication date
JP6260954B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
US8731224B2 (en) Acoustic structure including helmholtz resonator
US20130142373A1 (en) Array speaker system
WO2010089398A3 (en) Acoustic absorber, acoustic transducer, and method for producing an acoustic absorber or an acoustic transducer
Zhang et al. Sound radiation of a railway rail in close proximity to the ground
Arenas et al. A note on a circular panel sound absorber with an elastic boundary condition
Oliazadeh et al. Experimental and analytical investigation on sound transmission loss of cylindrical shells with absorbing material
JP6260954B2 (en) Noise reduction device performance evaluation system and noise reduction device performance evaluation method
Squicciarini et al. Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure
US9602928B2 (en) Speaker system having a sound collection unit for combining sound waves
US20130163773A1 (en) Closed-loop active noise reduction system, such as for a thermal printer
JP5893119B2 (en) Crack inspection equipment
JP2010060985A (en) Active sound insulation device, active sound insulation panel, and active sound insulation method
EP1837649A3 (en) Method and device for measuring the density of a gaseous medium and/or the acoustic velocity in a gaseous medium.
JP5388890B2 (en) Planar traveling wave sound field generating apparatus, acoustic sensor test apparatus and directional speaker using this apparatus
JP5705091B2 (en) Crack inspection equipment
JP7403754B2 (en) Vertical incidence sound absorption coefficient measurement device and vertical incidence sound absorption coefficient measurement method
Zhou et al. Airborne path attenuation of partial enclosures: Simulation and sensitivity study
JP5818575B2 (en) Standing wave noise reduction method
JP6165043B2 (en) Noise evaluation apparatus and noise evaluation method
Liu et al. Demonstration of vibro-acoustic reciprocity including scale modeling
JP2017053709A (en) Acoustic tube, and device, method and program for acoustic characteristic measurement using acoustic tube, and recording medium recording program
JP5773312B2 (en) Active sound insulation device and method for producing sound insulation panel with sensor
Dong et al. Simulation and experimental investigation of the resonance reduction of a tire cavity lined with porous materials
JP4626299B2 (en) Duct noise control method and apparatus
CN112447160B (en) Silencing structure, silencing device, equipment comprising motion table and photoetching equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6260954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250